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Two-band theory of specific heat and thermal conductivity in the mixed state of MgB
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We solve the coupled gap equations for thend 7 bands of MgB in the vortex state and calculate the
resulting field dependencies of the specific heat coefficieraind the thermal conductivity. The crucial
parameters of the theory are the interband pairing interaetignand the ratios= ¢, /¢, of the coherence
lengths. For reasonably small,., and s, the small gap ,. decreases with increasing magnetic fieldnuch
faster than the large gap, . This gives rise to the observed rapid increase pfind « . for small fields while
v, and k, exhibit conventional field dependencies. Inclusion of intraband impurity scattering yields fairly
good agreement with experiments for applied fields alongcthgis.
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Evidence for the existence of two superconducting gaps invith respect to the direction di. For brevity we omit here,
MgB, (Ref. 1) is provided by the rapid rise of the specific and in the following, the terms containing ginand the
heat coefficienty,(H) (Ref. 2 and the thermal conductivity integrations overdésiné from 0 to #/2. For band 1
rks(H) (Ref. 3 at very low fields. These measured field de- (the ¢ band and the field along the axis, §=w/2 and
pendencies can be explained qualitatively by assuming twthus sing=1.
independent bands where the lag@ave pairing gap . In the limit H—O0 the vortex lattice constan@a
=A, is associated with the two-dimensioralband and the = (2/7)?A tends to infinity. Making use of the asymptotic
small swave gapA,=A, is associated with the three- expansiorw(z)~i/\/wz, the gap equations, E¢L), become
dimensionakr band? The steep rise ofs(H) andk¢(H) can
be explained qualitatively by assuming that the “virtual” up- w¢ Ajo
per critical field forA _ is much smaller than that df_ .2 In Aig=2 )\ijf doRg ——=——
the present paper we improve the theory of Ref. 4 by taking ! 0 (@"=Ajo)
into account the interband pairing interaction while neglectwhere theA,;, are the gap values =0 in zero field. Here
ing the interband impurity scatteringvhich has been shown e have made use of the relation
to be smalf We first have to solve the two-band gap equa-
tions in the presence of the vortex lattices produced by a (0+17i0)/ A% =(w+i7i0)Dio/Ajg= wlAjg, (6)
magnetic field. Generalization of the linearized gap equa- | ) ] )
tions near the upper critical field ., (Ref. 7) to all averaged Which can be derived with the help of the expressionlor
fields H betweerH ., and 0 yields, instead of the single gap " Eq. (4). However, this relation only holds in the absence

equation of Ref. 4, the following coupled gap equations for®f interband impurity scatterjn?;.
the gaps); at T=0: With the help of the Abrikosov parameters, denoted by

Bi, we now express\/v; in terms of the reduced fieltd
=H/H,, and the zero-field gap:*

. ®

2
A= xf “dwBj(w,Aj, Alv) (i=1,2. (1)
TR, dBiloA; Ay Alvi=(6B:hA%) Y2 Afu,=s(685hA2) Y2,
Here, the\;; are the intra- and interband pairing interactions
multiplied by the densities of staté§(0), and theB; are the $=(v1/v2)(A20/A10) = &10/ &20- )
spectral functions of the anomalous propagators for the Abri

) Employing these relations we can express the gapand
kosov vortex lattice: ploying P g8p

the scattering rateE; in Eqg. (2) by their ratios with respect

. to theA,y, and we can convert the integrations owem Eq.
=R 724 (Alv)W(z) . (2 (D to integrations over the new variablés=w/A;o. We
{1+8A2(Alv) Y 1+iVmzw(z)}Y? then divide Eq(1) by A; and Eq.(5) by A;, and subtract the

latter from the former. In this way we obtain two coupled
z=2(w+iy)Alv;, A=(2eH)"Y2 y=T;A;, (3) equations for the two unknown functiong(h) and x,(h)
for given values of the parametexg, &;, i, r, ands. The
Ai=Ai/Di, Di=1-2(yiAlv))w(z). (4  quantitiesx;, &;, andr are defined by

TheT are the normal state impurity scattering rates, Ahe xi=A/Aig,  8=TilAg, r=An/AL. @)
are the field-dependent densities of states, theare the

Fermi velocities perpendicular to the field, and the functionin Fig. 1 we show the reduced gap functiorgh) and
w(z) is defined in Ref. 4. For band @he = band we as- x,(h) for 3 sets of parameter valuegt) N;;1=1, Ay
sume a spherical Fermi surface. Then is replaced by =0.28,\,;=0.17,A,,=0.23, 8,=1.15, B8,=1.58, s=1/6;
v,Sind andB, andD, are averaged over the polar angle (la) \;; as in set I,s=1/4, ;=1.21, 3,=1.58; (Il) Ay;
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) > \\ \\ X, and the lower curves for,. The pairing inter-
O osf Y N 7 action matrices\;; have the values given in Ref.
N \\ AN 8 [our parameter set§l), s=1/6, and(la), s
- . ~a o - _ . _ .
0.4 7 =2 (n-band) . . N =1/4] fand in Ref. 9set(ll), s=1/6] wheres is
S N the ratio of coherence lengths=£,4/&59. The
03[ \\ N 7 curves correspond to the parameter s&ts (1),
I e NN and(ll), from top to bottom. The reduced impu-
0.2 NN T rity scattering rates; are §,=0.5 for thes band
N and 6,=0.8 for thew band.
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H/Hg,

:1, )\22: 045, )\2120.16, )\1220.21, B1:116, Bz
=1.58, s=1/6. The gap ratio has been taken torbel/3
and the reduced impurity scattering ra®s-I"; /A, are §;
=0.5 and§,=0.8. The\ matrix elements in(l) and (Il)
have been obtained from band structure calculati®ess. 8
and 9, see the review, Ref. 10'he ratio of Fermi velocities
is aboutv, /v,=0.54 and the gap ratio ranges between
about 1/3 and 0.4%*3which yields a range of the ratmof
coherence length$see Eq.(7)] between 0.18 and 0.24.
While the functiorx, (h)=(1—h)?is rather independent of
the choice of parameters, the functirg(h) depends sensi-

tively on the values of\;; ands. For vanishing interband
coupling A»; we obtain approximately,(h)=(1—h/s?)%?
which goes to zero at a smaller effective upper critical field
HZ,=s’H¢, Wheres=¢£,0/&, [see Eq.(7)]. Thus we see
thatHZ, corresponds to the “virtual” upper critical field for
the 7 band which was introduced in Ref. 2 as the field above
which the overlap of the vortex cores with large radésg
(see the STS measurements of Rej. dr2ves the majority of
the mr-band electrons normal.

In Fig. 2 we have plotted our results for the zero energy
density of stated\;(w=0) obtained from the expression for
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FIG. 2. Specific heat coefficients, or zero-
energy densities of stateg,;/ y,i=A;, (i=1,2)
vs h for the parameter values of Fig. 1. The lower
curves are for ther band,i=1, and the upper
curves are for ther band,i=2, for parameter
sets la, I, and Il, from bottom to top.
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H/Hc,

A; [given by Eq.(2) with the numerator set equal td by  crease as is decreased from 1/4 to 1/6. For applied fields
inserting the previously calculated gap ratigéh) together  perpendicular to the axis, the measured thermal conductiv-
with Egs. (7) for the functionsA(h)/v;. A, is obtained by ity «, first rises steeply for small fields and then saturates
averagingA,(¢) over the polar angl®. We note that it is  while, for fields along thee axis, it exhibits an upward cur-
important to calculate the impurity scattering rates  vature towardsH,.> These different behaviors have been
=TI'jAi(h) self-consistently. One sees from Fig. 2 thath)  explained by separating the individual contributions of the
rises steeply for small fields and then becomes almost con- ang ¢ bands. Thenx, rises steeply withH and approxi-
stant aboven~0.2. The slope ah=0 and the downward  mately attains its normal-state value at a small field apd
curvature for Iqw fields increase ass decreased from 1410 st rises very slowly and then curves upward towads. >
1/.6' The fu_ncUonAl(h) IS very similar 'go_t_he funct|o_n ob- These experimental curves are similar to our resultssfor
tained previously for a single baffdrhe initial steep rise of _ -
Ay(h) for s=1/6 qualitatively fits the data points for the - SnOWn in Fig. 3.
2( ) or s= quattatively Tis the data points Tor e . briefly discuss the parameter values and approxi-
contribution of thew band to the specific heat coefficient . )
> . . . mations that have been used to derive our results. We have
v(H).< The functionA,(h) corresponds to the straight line L o -
. o seen that the rapid increase of the specific heat coefficient
assumed in Ref. 2 for the-band contribution toy(H) for g . .
: ; ; vs(h)/v, and the thermal conductivity raties(h)/«, with
fields applied along the axis. . ing fielch=H/ is d inl her-band
We turn now to the calculation of the in-plane electronic Ncréasing field=H/Hc, is due mainly to ther-band con-
thermal conductivityx,(h) which is given atT=0 by the tribution. The reason is that the gadp(h) a;somated Wlth“
expression in Ref. 14. Again it is important to take into ac-the 7 band almost closes at the so-called virtual upper criti-
count the renormalization of the gap by the functippin ~ cal field H~s?Hc, because the ratis= ¢1o/£5 of the
the presence of impurity scatterifigee Eq.(13) of Ref. 4. coherence lengths of Fhe and ther bands is much_ smaller
By inserting the functions;(h) obtained from the gap equa- than 1. For the most important parameters entering our gap
tions, Eq.(1), and the functions\ (h)/v; from Eq.(7) into ~ €quations,s and r =A,/A;9, we have used the valugs
the expresions for the ratioss/«x, we obtain, for applied =1/3 ands= 1/4, and 1/6 which are based on various ex-
periments on MgB.2'1"13The field dependence of the gap

fields H along thec axis, the thermal conductivity ratios _ - OF
ksi(h)/kni shown in Fig. 3. It should be noted that the ratio x;(h)=A;/A;5, and thus of the contributions to

m-band contributionk,(h)/«,, has been obtained as an av- ¥si/ ¥n1 @Ndks; / kny arising from theo band, are nearly the
erage over the polar angl® by including the factor Same as those obtained for an independent siogband?
(3/2)sirfg which arises from the square of the group velocity indicating that the effect of the interband coupling, is

in the ab plane. The curve for the-band conductivity rather small. However, the field dependence f(h)
ks1(h)/ k1 turns out to be very similar to the curve obtained =A2/A o differs substantially from that for the independent
in Ref. 4 for a single band with the same impurity scatteringsingles band with an effective upper critical fiehf,=s* as
rate 5;=0.5. The curvecg,(h)/k,, for the r-band contribu- can be seen from Fig. 1. This is becaus¢h) is nonzero
tion with 5,= 0.8 rises almost linearly with where the slope betweenhl, and h=1 due to the effect of the interband
nearh=0 and the downward curvature for low fields in- coupling A,;. This shows that superconductivity survives
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even though the vortex cores for theband with giant radius  yield the dominant contributions t¢ and x. We have ap-

&0 (Ref. 12 start to overlap foh>h7,. As can be seen in proximated ther-band FS by a sphere, whereas theghave

Fig. 1, the curve fox,(h) is very sensitive to the values of been calculated for the a'ctuall FS. This actual FS can be
\ij ands. We find that the experimental contributions o~ Modeled by a half-toruéwguch yields, with thex matrix of
and k arising from themr band*® can be fitted by taking the Ref. 8 and smalk, result$® which agree qualitatively with

\;j given by band structure calculatiofisl® The other cru-  Ours shown in Figs. 1 and 2 fe=1/6. Finally it should be
cial parameter values needed to obtain good fits of the dat@ointed out that we have employed the Abrikosov ground
state of the vortex lattice although, in particular at lower

:;er‘;rifn?ngﬁ: i{ﬁé;’\'h;g r!rlfatlg rtczllr;ggfss egbitr?lgsg r]:Lonr::a r]i_elds, a Landau-level expansion or a variational expression
p : P . . . is needed to describe the distorted vortex lattice. The results
cal calculations are the reduced impurity scattering rates for y4(h)/y, andxy(h)/x, shown in Figs. 2 and 3 for the

=05 and52.=0.8 WIhiCh have bﬁen estir?ateg from tf(\je rel- nd 7 bands should still be added by weighting them with
evant experiments. It turns out that even for these moderately, corresponding density of states.

large impurity scattering rates it is very important to take into In conclusion we can say that our two-band theory for the

. vortex state in MgB can satisfactorily account for the ob-
in comparison to that calculated' without the funct[bnlt is gtsr(]e e!v'?hde]:rilgl df opnednudciir\]/?&ff rﬁesgfncéjicghaexfogzﬁs d
T Scat 7%, Wih the  band decreases wilh crezsing fkimuch
togcletr;er with the calculation of the zero-energy densityyo[{-alSter 'ghan the Iarger-band_gapAl W.hiCh shows conven-
(h). This yieldsA;(0)=0, as it should. The shape ional field dependence. This gives rise tolthe rapid increase

i‘attEZAlI:(er)n;ni surfgce{FS) Iand thé direction of.the a Iigd of v and x at small fields. Due to a small interband pairing
field play an important role because the spectral fungt%ms inte_raction)\zl, the gapA, remains finite even in thg field
in Eg. (2) have to be averaged over the corresponding Fgodlon Whe_re the larger-band vortex cores of radiugy

: overlap. This leads to smooth evolution of theband con-

where the velocity; denotes the component, (p) perpen- tributions to y and « to their normal state values near a

dicular toH. For the spherical FS we have assumed for the‘virtual” upoer critical field H™ ~s2H . which is much
7 band,v, (p)=vsing, where 8=~ (p,H). In the limit § PP c2— > "2

—0 the functionB approaches the BCS spectral function ofSmaller thanH, because the ratis=¢£1o/éz is much

the anomalous propagator. We find that the resuts for g S0 L TR L SR IEae S e
averages over the polar angfedo not differ significantly 9 y P

from the results obtained by settiiig /2. This means that 9€"ce Ofy and« for fields applied along the axis.
the quasiparticles moving perpendicular to the vortex axes We thank T. Dahm for helpful discussions.
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