
PHYSICAL REVIEW B 68, 092409 ~2003!
Crossover from random-exchange to random-field critical behavior in Ising models
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We compute the crossover exponentf describing the crossover from the random-exchange to the random-
field critical behavior in Ising systems. For this purpose, we consider the field-theoretical approach based on
the replica method, and perform a six-loop calculation in the framework of a fixed-dimension expansion. The
crossover from random-exchange to random-field critical behavior has been observed in dilute anisotropic
antiferromagnets, such as FexZn12xF2 and MnxZn12xF2, when applying an external magnetic field. Our result
f51.42(2) for the crossover exponent is in good agreement with the available experimental estimates.
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The most studied experimental realizations of rando
field Ising systems are dilute anisotropic antiferromagnet
a uniform magnetic field applied along the spin orderi
axis.1–3 A simple lattice model is provided by the Hami
tonian

H5J(̂
i j &

r ir j sisj2H(
i

r isi , ~1!

whereJ.0, the first sum extends over all nearest-neigh
sites,si561 are the spin variables, andr i are uncorrelated
quenched random variables, which are equal to one w
probabilityp ~the spin concentration! and zero with probabil-
ity 12p ~the impurity concentration!. In the absence of an
external field, i.e.,H50, the critical behavior of dilute Ising
systems~above the percolation point of the spins! belongs to
the universality class of the random-exchange Ising mo
~REIM!, which differs from the standard Ising model~see,
e.g., Refs. 4,5 for recent reviews!. The applied uniform field
H gives rise to a different critical behavior corresponding
the universality class of the random-field Ising mod
~RFIM! ~see, e.g., Refs. 6–8 for recent reviews on RFIM!.

For t[(T2TN)/TN→0, TN being the Ne´el temperature
in zero field, andH→0 the singular part of the free energ
can be written as~Ref. 1!

F5uutu22a f ~H2uutu2f!, ~2!

whereut't1a1H21a2t2 is the scaling field associated wit
the temperature,a is the specific-heat exponent of the REIM
f (x) is a scaling function, andf is the corresponding cross
over exponent. As a consequence of the crossover sca
~2!, the critical temperature in the presence of the exter
field H is given by

Tc~H !'TN1cH2/f2aH2, ~3!

for sufficiently smallH. Experimental measurements on d
lute antiferromagnets yielded rather precise estimatesf
51.42(3) obtained for FexZn12xF2,9 f51.43(3) for
MnxZn12xF2,10 andf51.41(5) for FexMg12xCl2.11

On the theoretical side, a computation off was presented
in Ref. 12 using the field-theoreticale expansion. We recal
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that in the REIM thee expansion is actually an expansion
powers ofAe. The exponentf was computed toO(e),12

obtaining

f/g5110.16823e1/220.22666e1O~e3/2!, ~4!

where g is the REIM susceptibility exponent. Apart from
showing thatfÞg, whereg'1.34 ~see, e.g., Refs. 13–15!,
this series does not yield a reliable estimate off for three-
dimensional systems. This is generically true for theAe ex-
pansion of any critical exponent of the REIM.4,5

In this paper we determine the crossover exponentf us-
ing an alternative field-theoretical method based on a fix
dimension expansion in powers of appropriate ze
momentum quartic couplings, which we compute to s
loops. As we shall see, the analysis of the series provide
quite precise estimate off,

f51.42~2!, ~5!

in good agreement with experiments. This result was alre
anticipated in Ref. 16.

The field-theoretical approach is based on an effec
Landau-Ginzburg-Wilsonw4 Hamiltonian that can be ob
tained by using the replica method,17 i.e.,

H w45E d3xH 1

2 (
i 51

N

@~]mw i !
21rw i

2#

1
1

4! (
i , j 51

N

~u01v0d i j !w i
2w j

2J , ~6!

wherew i is an N-component field. The critical behavior o
the REIM is expected to be described by the stable fix
point of the HamiltonianH w4 in the limit N→0 for u0,0.
The most precise field-theoretical results for the critical e
ponents have been obtained by analyzing the fix
dimension expansion in powers of the zero-momentum qu
tic couplingsu,v related tou0 ,v0 @i.e., u5Zuu0 /m and v
5Zvv0 /m, where Zu,v511O(u,v)], which have been
computed to six loops.15,18We refer the reader to Ref. 15 fo
notations and definitions.
©2003 The American Physical Society09-1
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In the presence of a spatially uncorrelated random fi
h(x) with zero average and varianceh2, one may still apply
the replica method. Averaging the replicated random-fi
term

E d3xh~x!(
i

w i~x! ~7!

over the Gaussian distribution of the field, one obtains a n
term proportional to

h2E d3x(
i , j

w i~x!w j~x! ~8!

that must be added to the HamiltonianH w4.12 This term
causes the crossover from the REIM to the RFIM. Thus,
REIM-to-RFIM crossover exponent is determined by theN
→0 limit of the renormalization-group~RG! dimensionyT
of the quadratic operator

Ti j 5w iw j , iÞ j . ~9!

In order to evaluateyT and the corresponding crossover e
ponentf5yTn, we define a related RG functionZT from the
one-particle irreducible two-point functionGT

(2) with an in-
sertion of the operatorTi j , i.e.,

GT
(2)~0! i j ,kl5ZT

21Ai jkl , ~10!

where Ai jkl 5d ikd j l 1d i l d jk with iÞ j , so that ZT(0)51.
Then, we compute the RG function

hT~u,v !5
] ln ZT

] ln m U
u0 ,v0

5bu

] ln ZT

]u
1bv

] ln ZT

]v
, ~11!

wherebu and bv are theb functions. The exponenthT is
given by the value ofhT(u,v) at u5u* andv5v* , where
(u* ,v* ) is the REIM stable fixed point. Finally, the REIM
to-RFIM crossover exponent is obtained by using the
scaling relation

f5~21hT2h!n5g1hTn, ~12!

whereg, n, andh are REIM critical exponents.
We computed the functionG (T,2)(0) to six loops. The cal-

culation is rather cumbersome, since it requires the eva
tion of 563 Feynman diagrams. We handled it with a sy
bolic manipulation program, which generates the diagra
and computes the symmetry and group factors of each
them. We used the numerical results compiled in Ref. 19
the integrals associated with each diagram. The resulting
loop series ofhT(u,v) is
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hT~ ū,v̄ !52 1
4 ū1 1

16 ū21 1
18 ūv̄20.0357 673ū3

20.048 324ū2v̄20.0042 1548ūv̄2

10.034 374 8ū410.076 261 6ū3v̄

10.041 694 3ū2 v̄210.008 961 16ūv̄3

20.040 895 8ū520.121 377ū4v̄20.104 778ū3v̄2

20.037 371 2ū2v̄320.005 270 15ūv̄4

10.059 704 8ū610.227 662ū5v̄10.287 108ū4v̄2

10.172 31ū3v̄310.055 212 4ū2v̄4

10.007 596 54ūv̄51•••, ~13!

where ū and v̄ are the rescaled couplingsū5u/(6p) and
v̄53v/(16p), and the dots indicate higher-order terms.
our analysis we also considered the seriesf(ū,v̄) corre-
sponding tof, which can be obtained by using Eq.~12! and
the series of the RG functionsg(ū,v̄) and n(ū,v̄) corre-
sponding to the critical exponentsg andn ~cf. Ref. 15!.

In order to obtain an estimate ofhT and f, the corre-
sponding six-loop series must be resummed and then ev
ated at the fixed-point values,u* andv* . Although the per-
turbative expansion is not Borel summable,20 various
resummation schemes have been proposed and emplo
obtaining rather reliable results for the critical expone
~see, e.g., Refs. 4,5!. We analyzedhT(ū,v̄) and f(ū,v̄) by
using the resummation methods outlined in Ref. 15 and
estimates u* 5218.6(3) and v* 543.3(2) obtained by
Monte Carlo simulations in Ref. 13, which turn out to b
more precise than those obtained from the zeros of thb
functions computed to six loops.

We obtained hT50.095(30) from the analysis o
hT(ū,v̄), f51.43(3) fromf(ū,v̄), and f51.42(2) from
1/f(ū,v̄). The errors are related to the spread of the res
obtained by using different resummation methods and dif
ent resummation parameters within each method~see Ref. 15
for details!. Using the available estimates of the critical e
ponents~e.g.,g51.342(6), n50.683(3), andh50.035(2)
from Monte Carlo simulations,13,14 g51.330(17), n
50.678(10), andh50.030(3) from the analysis of the six
loop field-theoretical expansions15!, the above-reported resu
for hT and the RG scaling relation~12! give f51.41(2).
From these results we arrive at the final estimate reporte
Eq. ~5!, which is in good agreement with the available e
perimental results obtained for various uniaxial anisotro
antiferromagnets.
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