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Crossover from random-exchange to random-field critical behavior in Ising models
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We compute the crossover expon@ntlescribing the crossover from the random-exchange to the random-
field critical behavior in Ising systems. For this purpose, we consider the field-theoretical approach based on
the replica method, and perform a six-loop calculation in the framework of a fixed-dimension expansion. The
crossover from random-exchange to random-field critical behavior has been observed in dilute anisotropic
antiferromagnets, such as,#Za; _,F, and MnZn, _,F,, when applying an external magnetic field. Our result
¢=1.42(2) for the crossover exponent is in good agreement with the available experimental estimates.
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The most studied experimental realizations of randomthat in the REIM thee expansion is actually an expansion in
field Ising systems are dilute anisotropic antiferromagnets ipowers of \Je. The exponentp was computed td(e),?
a uniform magnetic field applied along the spin orderingobtaining
axis!=® A simple lattice model is provided by the Hamil-
tonian ély=1+0.16823'2—0.22666+ O(€>?), 4

where v is the REIM susceptibility exponent. Apart from
H:J% PiPJSiSJ_HEi piSi, (1) showing that$# y, wherey~1.34(see, e.g., Refs. 13—15
: this series does not yield a reliable estimategofor three-

whereJ>0, the first sum extends over all nearest-neighborimensional systems. This is generically true for theex-
sites,s;= =1 are the spin variables, apg are uncorrelated pansion of any critical exponent of the REM.
qguenched random variables, which are equal to one with In this paper we determine the crossover exporgnis-
probability p (the spin concentratiorand zero with probabil- ing an alternative field-theoretical method based on a fixed-
ity 1—p (the impurity concentration In the absence of an dimension expansion in powers of appropriate zero-
external field, i.e.H=0, the critical behavior of dilute Ising momentum quartic couplings, which we compute to six
systemgabove the percolation point of the spif®longs to  loops. As we shall see, the analysis of the series provides a
the universality class of the random-exchange Ising modedjuite precise estimate af,
(REIM), which differs from the standard Ising modgee,
e.g., Refs. 4,5 for recent reviewd he applied uniform field ¢$=1.422), (5)
H gives rise to a different critical behavior corresponding to. ) ) )
the universality class of the random-field Ising model" g_o_od agrgement with experiments. This result was already
(RFIM) (see, e.g., Refs. 68 for recent reviews on RFIM  anticipated in Ref. 16.

For t=(T—Ty)/Ty—0, Ty being the Nel temperature The field-theoretical approach is based on an effective
1 . . 4 . .

in zero field, andH—0 the singular part of the free energy Landau-Ginzburg-Wilsonp™ Hamiltonian that can be ob-

can be written agRef. 1) tained by using the replica methotli.e.,

F=u? “F(H|u %), 2 1o
2 ef(H2u =) @ oo [ dsx[i S [o,e02+re?]
whereu,~t+a;H?+a,t? is the scaling field associated with =1
the temperaturey is the specific-heat exponent of the REIM, 1 N
f(x) is a scaling function, ane is the corresponding cross- +— E (uo+v05ij)¢i2¢.2 , (6)
over exponent. As a consequence of the crossover scaling 4= .

(2), the critical temperature in the presence of the external . ' . .
field H is given by where ¢; is an N-component field. The critical behavior of

the REIM is expected to be described by the stable fixed
To(H)~Ty+cH?¢—aH?, (3y  point of the Hamiltoniar# 4 in the limit N—0 for uy<0.

The most precise field-theoretical results for the critical ex-
for sufficiently smallH. Experimental measurements on di- ponents have been obtained by analyzing the fixed-
lute antiferromagnets yielded rather precise estimaies: dimension expansion in powers of the zero-momentum quar-
=1.42(3) obtained for K&n,_,F,,° #=1.43(3) for tic couplingsu,v related toug,vg [i.e., u=Z,uy/m andv
Mn,Zn, _F,,1% and ¢=1.41(5) for FeMg; _,Cl,.}* =Z,vo/m, where Z,,=1+0(u,v)], which have been

On the theoretical side, a computationgdfvas presented computed to six loopS'8We refer the reader to Ref. 15 for
in Ref. 12 using the field-theoreticalexpansion. We recall notations and definitions.
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In the presence of a spatial.ly uncorrelated random fieldnT(U’v_): _ %U_,_ %Uz_,_ %E_ 0.0357 6783
h(x) with zero average and varianb&, one may still apply

the replica method. Averaging the replicated random-field —0.048 324y — 0.0042 154802
erm +0.034374 8*+0.076 261 6%
J d3xh(><)§i) @i(X) (7) +0.041 694 8%v2+0.008 961 160°
over the Gaussian distribution of the field, one obtains a new —0.040895 8°—0.121 37T*% —0.104 778

term proportional to —0.037 371 2?3~ 0.005 270 16v*

h2 f a2, @i(X)ei(X) (8) +0.059 704 &°+0.227 662% + 0.287 108*v?2
i

+0.17231°%°+0.055 212 4%v*

that must be added to the Hamiltonidt«.*? This term 0.1723L7"+0.055212 4%

causes the crossover from the REIM to the RFIM. Thus, the +0.007 596 540°+ - - -, (13

REIM-to-RFIM crossover exponent is determined by tthe — — o
—0 limit of the renormalization-groupRG) dimensiony; ~ Whereu andv are the rescaled couplings=u/(6) and

of the quadratic operator v=3v/(16m), and the dots indicate higher-order terms. In
o our analysis we also considered the serigal,v) corre-
Tij=eipj, 1#]. (9 sponding tog, which can be obtained by using E32) and

In order to evaluatg/; and the corresponding crossover ex- the series of the RG functiong(u,v) and »(u,v) corre-
ponenté =y, we define a related RG functidy from the ~ sPonding to the critical exponentsand v (cf. Ref. 15.

one-particle irreducible two-point functiofi{?) with an in- In order to obtain an estimate ofr and ¢, the corre-
sertion of the operatdf;; , i.e. sponding six-loop series must be resummed and then evalu-

N ated at the fixed-point valuea* andv*. Although the per-

F(T2)(0)ij kI:Z'FlAijkI , (10)  turbative expansion is not Borel summable various

resummation schemes have been proposed and employed,
where Ajj = 6ik8j + 6 6j with i#], so thatZr(0)=1.  obtaining rather reliable results for the critical exponents
Then, we compute the RG function (see, e.g., Refs. 45We analyzedy(u,v) and ¢(u,v) by
JInz Jinz JInz usipg the resummation methods outlined in Ref.. 15 and the
nr(U,0) = T =8, T +8, T (11 estimatesu*=-18.6(3) andv*=43.3(2) obtained by
AULLLE P au du Monte Carlo simulations in Ref. 13, which turn out to be
more precise than those obtained from the zeros of@he
where g, and B, are theg functions. The exponengr is  functions computed to six loops.
given by the value ofpr(u,v) atu=u* andv=v*, where We obtained 7r=0.095(30) from the analysis of

(u*,v™) is the REIM stable fixed point. Finally, the REIM- U0). é=1.43(3) fromd(u and ¢=1.42(2) from
to-RFIM crossover exponent is obtained by using the RGnT( hv), ¢=1.43(3) u.0), $=1.42(2)
scaling relation 1/¢(u,v). The errors are related to the spread of the results

obtained by using different resummation methods and differ-

b=(2+ 91— 1) v=y+ 77V (12) ent resummation parameters within each metfseg¢ Ref. 15
' for detailg. Using the available estimates of the critical ex-
wherey, v, andn are REIM critical exponents. ponents(e.g., y=1.3426), »=0.6833), and%=0.035(2)

We computed the functioR(™?(0) to six loops. The cal- from Monte Carlo simulation$>** y=1.330(17), »
culation is rather cumbersome, since it requires the evalua=0.678(10), andy=0.030(3) from the analysis of the six-
tion of 563 Feynman diagrams. We handled it with a sym-oop field-theoretical expansiol?s, the above-reported result
bolic manipulation program, which generates the diagrams$or » and the RG scaling relatio(l2) give ¢=1.41(2).
and computes the symmetry and group factors of each dfrom these results we arrive at the final estimate reported in
them. We used the numerical results compiled in Ref. 19 foEg. (5), which is in good agreement with the available ex-
the integrals associated with each diagram. The resulting siperimental results obtained for various uniaxial anisotropic

loop series ofpr(u,v) is antiferromagnets.
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