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Third-harmonic exponent in three-dimensional N-vector models
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We compute the crossover exponent associated with the spin-3 operator in three-dimensionalO(N) models.
A six-loop field-theoretical calculation in the fixed-dimension approach and a five-loop calculation ine ex-
pansion givef350.600(10) for the experimentally relevant caseN52 ~XY model!. The corresponding ex-
ponentb351.414(10) is compared with the experimental estimates obtained in materials undergoing a normal-
incommensurate structural transition and in liquid crystals at the smectic-A–hexatic-B phase transition, finding
good agreement.
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I. INTRODUCTION

In nature many physical systems undergo phase tra
tions belonging to the universality classes of theO(N) vec-
tor models. In particular, the XY model, corresponding
N52, describes thel transition in 4He, ~anti!ferromagnets
with easy-plane anisotropy, density-wave systems, etc.;
Ref. 1 for a review. The critical exponents associated w
the order parameter have been accurately measured bot
perimentally and theoretically.1 Moreover, in some XY sys-
tems it is also possible to measure experimentally the crit
exponents associated with secondary order parameters.
is the case of liquid crystals,2–4 of normal-incommensurate
transitions,5–7 and of graphite-intercalation compounds.8

The most relevant exponent is the second-harmonic
that has been recently computed to high precision us
field-theoretical methods in Refs. 9 and 10. Thee expansion
gives f251.174(12), while the fixed-dimension expansi
gives f251.184(12). The fourth-harmonic crossover exp
nent was reported in Refs. 11 and 10:f4520.077(3) (e
expansion! and f4520.069(5) ~fixed-dimension expan
sion!. Here, we wish to determine the third-harmonic exp
nent by means of a six-loop perturbative calculation in
fixed-dimension approach and of a five-loop calculat
in e expansion, extending previous three-loop deter
inations.12,13,3 Such a calculation is also relevant for som
crossover phenomena, in which the XY symmetry is redu
to that of the three-state Potts model, as it happens in c
magnets in the presence of stress or of appropriate mag
fields.14,15

In the field-theoretical approach one starts from the us
f4 Hamiltonian

H5E ddxF1

2
~]mf!21

1

2
rf21

1

4!
u~f2!2G , ~1!

wherefa(x) is an N-component real field. The XY mode
corresponds toN52, but here we will keepN generic. Sec-
ondary order parameters are associated with operatorsO ( l )

that are polynomials of orderl in the fields and that trans
form irreducibly under the spin-l representation of theO(N)
group. In particular, the third-harmonic operator is
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O abc
(3) 5fafbfc2

f2

N12
~fadbc1fbdac1fcdab!. ~2!

We wish now to compute the crossover exponentf3 associ-
ated withO abc

(3) and the corresponding exponentsb3 andg3

given by

b3522a2f3 ,

g35221a12f3 . ~3!

The exponentsb3 andg3 describe, respectively, the critica
~singular! behavior of the averagêO (3)(x)&;utub3 and of
the susceptibilityxO[(x^O (3)(0)O (3)(x)&c;utu2g3.

Let us first present the fixed-dimension calculation. W
determine the renormalization functionZ3(g) from the one-
particle irreducible three-point functionG3

(3)(0) with an in-
sertion of the operatorO abc

(3) at zero external momenta, i.e
we set

G3
(3)~0![^O abc

(3) fafbfc&
1PI5AZ3

21~g!, ~4!

whereA is a numerical coefficient that ensures thatZ3(0)
51, andg is the four-point renormalized coupling. Then, w
compute the renormalization-group function

h3~g![
] ln Z3

] ln m U
u

5b~g!
d ln Z3

dg
, ~5!

and h35h3(g* ), where g* is the fixed-point value ofg.
Finally, the renormalization-group scaling relation~valid in d
dimensions!

f35S h3132
d

2
2

3

2
h D n ~6!

allows us to determinef3.
The calculation ofG3

(3)(0) to six loops is rather cumber
some since it requires the evaluation of a few thousand Fe
man diagrams. We use a symbolic manipulation program
MATHEMATICA . It generates the diagrams,16 computes the
symmetry factor of each of them using the algorithm d
cussed in Ref. 17, and finally determines the group factors
a straightforward application of the Feynman rules. We u
©2003 The American Physical Society03-1
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the numerical results compiled in Ref. 17 for the integr
associated with each diagram. Indeed, it is easy to rea
that each graph contributing to the one-particle irreduci
correlation function appearing in Eq.~4! can be interpreted
~as far as the Feynman integral is concerned, symmetry
group factor of course differ! as a diagram contributing to th
four-point function. It is enough to add an external line to t
vertex corresponding to the insertion. In order to check
calculation, we determine more generally^Pde ff

afbfc&1PI,
n

n
ria
th
rb
ba

om

09240
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where Pde f[(fdfef f), and verify the zero-momentum
identity

u

6 K S (
m

Pmm fDfafbfcL 1PI

5^f ffafbfc&1PI, ~7!

which follows from the equations of motion. This is a stron
check of our computation. Finally, we obtain
n is
eynman
h3~ ḡ!52
6

N18
ḡ1

2~N110!

~N18!2 ḡ22
128.736115.4900N20.650238N2

~N18!3
ḡ3

1
1148.681191.005N11.82163N210.283028N3

~N18!4
ḡ4

2
12606.912550.46N164.4818N222.34060N320.152501N4

~N18!5
ḡ5

1
161373.138736.8N11874.23N225.98451N311.88168N410.094179N5

~N18!6
ḡ61O~ ḡ7!, ~8!

where, as usual, we have introduced the rescaled couplingḡ defined by

g5
48p

81N
ḡ. ~9!

Hereg is the usual four-point renormalized coupling normalized so thatg5u/m (m is the renormalized mass! at tree level.
We have repeated the calculation ine expansion in the minimal subtraction scheme to five loops. The computatio

analogous. Symmetry and group factor coincide with those compute before, while for the divergent part of the F
integrals we use the results reported in Ref. 18. We obtain

h3~e!52
6

N18
e1

3~N12!~N22!

~N18!3 e21
~N12!~1705.971244.849N144.0753N211.5N3!

~N18!5
e32

~N12!

~N18!7 ~256540

179763.8N110638.6N21130.68N3215.3532N411.05309N5!e41
~N12!

~N18!9 ~5.84399310712.811693107 N

15.880383106 N21627841N3139530.4N41940.222N5230.6634N610.058929N7!e51O~e6!, ~10!
-
aly-
two
ars,
wheree542d. At three loops this expansion is consiste
with the results reported in Ref. 19.

Field-theoretical perturbative expansions are diverge
and thus, in order to obtain accurate results, an approp
resummation is required. We use the method of Ref. 20
takes into account the large-order behavior of the pertu
tive expansion; see, e.g., Ref. 21. Mean values and error
are computed using the algorithm of Ref. 11.

Let us now analyze the perturbative series, starting fr
the six-loop ones. Given the expansion ofh3(ḡ), we deter-
mine the perturbative expansion off3(ḡ), b3(ḡ), andg3(ḡ)
t

t,
te
at
a-
rs

using relations~3! and ~6! with d53. Then, we resum the

perturbative series and compute them atḡ5ḡ* .22 For N
52 we obtainf350.5963(21), 0.5968(2), b351.398(8),
1.405(3), g3520.800(7), 20.808(13), where for each ex
ponent we report the estimate obtained from the direct an
sis and from the analysis of the series of the inverse. The
estimates obtained for each exponent agree within error b
but, with the quoted errors, scaling relations~3! are not well
satisfied. For instance, usingn50.67155(27)~Ref. 23! and
b351.403(8) we obtainf350.611(8), while using the
same value of n and g3520.803(13) we havef3
3-2



BRIEF REPORTS PHYSICAL REVIEW B68, 092403 ~2003!
TABLE I. Critical exponents associated with the spin-3 operatorOabc
(3) .

Fixed dimension e expansion

N f3 b3 g3 f3 b3 g3

0 0.445~11! 1.331~11! 20.89(2) 0.434~5! 1.342~5! 20.909(10)
2 0.601~10! 1.413~10! 20.81(2) 0.599~15! 1.415~15! 20.815(31)
3 0.678~18! 1.455~18! 20.78(4) 0.681~30! 1.452~30! 20.771(60)
4 0.760~23! 1.487~23! 20.73(4) 0.764~34! 1.483~34! 20.72(7)
5 0.814~14! 1.484~14! 20.67(3) 0.813~19! 1.485~19! 20.67(4)
8 0.971~33! 1.519~33! 20.55(7) 0.950~50! 1.540~50! 20.59(10)
16 1.193~12! 1.540~12! 20.35(2) 1.17~9! 1.57~9! 20.40(17)
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50.606(6). These two estimates are slightly higher th
those obtained from the analysis off3(g) and 1/f3(g).
Clearly, the errors are somewhat underestimated, a phen
enon that is probably connected with the nonanalyticity24–26

of the renormalization-group functions at the fixed pointḡ* .
In order to obtain a conservative estimate, we have t

decided to take as estimate off3 the weighted average of th
direct estimates and of the estimates obtained usingb3 and
g3 together with scaling relations~3!. The error is such to
include all estimates. The other exponents are dealt w
analogously.27 The final results for several values ofN are
reported in Table I.

The same analysis has been repeated by using the
loop e-expansion series. The results are reported in Tab
They are in perfect agreement with the fixed-dimension on
providing an important check to our final results. Note tha
many cases the difference is much less than the repo
errors, confirming that our errors are very conservative.
the relevant caseN52, the estimates off3 obtained using
the two expansions are essentially identical. As final estim
we takef350.600(10).

Let us compare these results with previous ones foN
52. Reference 3 reportsb353b13nx3, wherex3'0.174
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