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Third-harmonic exponent in three-dimensional N-vector models
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We compute the crossover exponent associated with the spin-3 operator in three-dimed@onalodels.
A six-loop field-theoretical calculation in the fixed-dimension approach and a five-loop calculatioexn
pansion give¢ps;=0.600(10) for the experimentally relevant case- 2 (XY model). The corresponding ex-
ponentB;=1.414(10) is compared with the experimental estimates obtained in materials undergoing a normal-
incommensurate structural transition and in liquid crystals at the smietiexaticB phase transition, finding
good agreement.
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I. INTRODUCTION ¢2
ORe=badvbe— 15 Padoct Podact dedan).  (2)
In nature many physical systems undergo phase transi-
tions belonging to the universality classes of @EN) vec-  We wish now to compute the crossover exponggiassoci-
tor models. In particular, the XY model, corresponding toated with©3)_and the corresponding exponerttg and y,
N=2, describes tha transition in*He, (antjferromagnets given by
with easy-plane anisotropy, density-wave systems, etc.; see

Ref. 1 for a review. The critical exponents associated with Bs=2—a—¢s,
the order parameter have been accurately measured both ex- _
perimentally and theoreticalfyMoreover, in some XY sys- Y3=—2+a+t2¢;. )

tems it is also possible to measure experimentally the criticathe exponentss; and y; describe, respectively, the critical

exponents associated with secondary order parameters. Thisingula) behavior of the average® ®)(x))~|t|#s and of

is the case of liquid crystafs;" of normal-incommensurate the susceptibilityyo= 2 (O @(0)O CY(x))~|t| = =.

transitions;”" and of graphite-intercalation compourfts. Let us first present the fixed-dimension calculation. We
The most relevant exponent is the second-harmonic ongetermine the renormalization functi@(g) from the one-

that has been recently computed to high precision usingarticle irreducible three-point functioR$(0) with an in-

field-theoretical methods in Refs. 9 and 10. Tehexpansion  gartion of the operato@(ek')) at zero external momenta, i.e.,

gives ¢, =1.174(12), while the fixed-dimension expansion o cet abe

gives ¢p,=1.184(12). The fourth-harmonic crossover expo-

nent was reported in Refs. 11 and 1§;=—0.077(3) I'¥0)=(08) ¢p.dpde) ™' =AZ;X(9), (4)

expansioh and ¢,=—0.069(5) (fixed-dimension expan- i , .

sion). Here, we wish to determine the third-harmonic expo-WhereA is a numerical coefficient that ensures t@a(0)

nent by means of a six-loop perturbative calculation in the= L» @ndg is the four-point renormalized coupling. Then, we

fixed-dimension approach and of a five-loop calculationCOMpute the renormalization-group function

in e expansion, extending previous three-loop determ- alnz dinz

inations™**32 Such a calculation is also relevant for some 73(g)= *| = B(g s

crossover phenomena, in which the XY symmetry is reduced dInm dg

to that of'the three-state Potts model, as it happens in cubifgnd ns=713(g*), whereg* is the fixed-point value ofy.

ﬁnﬁggit?sm the presence of stress or of appropriate magne'i'—‘fnally, the renormalization-group scaling relatioalid in d

, : imension
In the field-theoretical approach one starts from the usua(ij 5

¢* Hamiltonian
— d 1 2 1 2 1 2\2
H‘j A 5 (9, ¢) "+ 51"+ 7u($)7|, (D) allows us to determines.

The calculation oﬂ“ff)(O) to six loops is rather cumber-
where ¢,(x) is an N-component real field. The XY model some since it requires the evaluation of a few thousand Feyn-
corresponds ttN=2, but here we will keefN generic. Sec- man diagrams. We use a symbolic manipulation program in
ondary order parameters are associated with operé®/’s MATHEMATICA. It generates the diagrani,computes the
that are polynomials of orddrin the fields and that trans- symmetry factor of each of them using the algorithm dis-
form irreducibly under the spihrepresentation of th©(N) cussed in Ref. 17, and finally determines the group factors by
group. In particular, the third-harmonic operator is a straightforward application of the Feynman rules. We use

®)

u

d 3
¢3=(713+3—§—§77 v (6)
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the numerical results compiled in Ref. 17 for the integralswhere Py.=(¢%¢%¢"), and verify the zero-momentum
associated with each diagram. Indeed, it is easy to realiziglentity

that each graph contributing to the one-particle irreducible

correlation function appearing in E¢4) can be interpreted u 1PI

(as far as the Feynman integral is concerned_, symmetry and g< ( > pmmf) ¢a¢b¢°> =(p' 2P p%)P', (7
group factor of course diff¢ias a diagram contributing to the m

four-point function. It is enough to add an external line to the

vertex corresponding to the insertion. In order to check thevhich follows from the equations of motion. This is a strong
calculation, we determine more generglfyqp?#°#°) P!, check of our computation. Finally, we obtain

_ 6 — 2(N+10)—, 128.736‘r15.490(1\1—0.650238\12_3
73(9)=— g+ 79"~
N+8 (N+8) (N+8)3

. 1148.68+191.005N + 1.82163N2+ 0.283028\13_4
(N+8)% 9

12606.9+ 2550.46N + 64.4818N2— 2.34060N°3— 0.152501N4_5
(N+8)° g

161373.+38736.81\|+1874.231\12—5.98451N3+1.88168\14+0.094179\15_6 —
+ (N+8)° g°+0(g"), (8

where, as usual, we have introduced the rescaled coua'rdngfined by

B 48w — 9
9= 9

Hereg is the usual four-point renormalized coupling normalized so gati/m (m is the renormalized magat tree level.

We have repeated the calculation énexpansion in the minimal subtraction scheme to five loops. The computation is
analogous. Symmetry and group factor coincide with those compute before, while for the divergent part of the Feynman
integrals we use the results reported in Ref. 18. We obtain

6 3(N+2)(N-2) (N+2)(1705.97 244.84N+44.0753N2+ 1.5N?) (N+2)
n3(€)=— € e+ 3 - (256540
N-+8 (N+8) (N+8)° (N+8)

N+2
+79763.8N+10638.6N%+ 130.68N3— 15.3532N* + 1'05309\15)64+((I\|+—8))9

+5.88038< 10° N2+ 627841N>+ 39530.4N*+ 940.222N°— 30.6634N°+ 0.05892N ") >+ O( €), (10

(5.84399% 10’ +2.81169%< 10’ N

wheree=4—d. At three loops this expansion is consistentusing relationg3) and (6) with d=3. Then, we resum the
with the results reported in Ref. 19. perturbative series and compute themgatg*.?? For N
Field-theoretical perturbative expansions are divergent=2 we obtaing,;=0.5963(21), 0.5962), B;=1.3988),
and thus, in order to obtain accurate results, an appropriate 4053), y,= —0.80q7), —0.808(13), where for each ex-
resummation is required. We use the method of Ref. 20 thg§onent we report the estimate obtained from the direct analy-
takes into account the large-order behavior of the perturbasis and from the analysis of the series of the inverse. The two
tive expansion; see, e.g., Ref. 21. Mean values and error baggimates obtained for each exponent agree within error bars,
are computed using the algorithm Of, Ref. 1,1' . but, with the quoted errors, scaling relatidi3s are not well
Let us now analyze the perturbative series, starting fron%atisfied. For instance, using=0.67155(27)(Ref. 23 and
the six-loop ones. Given the expansionpf(g), we deter-  3.=1.403(8) we obtaing;=0.61%8), while using the
mine the perturbative expansion ¢§(g), B3(9), andys(9) same value ofr and y;=-0.803(13) we havedp,
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TABLE |. Critical exponents associated with the spin-3 opermﬁ;’c.

Fixed dimension € expansion

N &3 Bs 73 b3 B3 Y3

0 0.44511) 1.331(11 —0.89(2) 0.4345) 1.3425) —0.909(10)
2 0.60110) 1.41310 —0.81(2) 0.59915) 1.41515) —0.815(31)
3 0.67819) 1.45518) —0.78(4) 0.68130) 1.45230) —0.771(60)
4 0.76@23) 1.487123) —0.73(4) 0.76434) 1.48334) —0.72(7)
5 0.81414) 1.48414) —0.67(3) 0.81819 1.48519) —0.67(4)
8 0.97133) 1.51933) —0.55(7) 0.9500) 1.54Q50) —0.59(10)
16 1.19312) 1.54Q012) —0.35(2) 1.179) 1.579) —0.40(17)
o 3 3 0 3 3 0

2 2 2 2

=0.60§6). These two estimates are slightly higher thanfrom the e expansiof® and x;~0.276 from the fixed-
those obtained from the analysis af;(g) and 1é5(Qg). dimension expansion. It followg8;~1.397 and3;~1.602 in
Clearly, the errors are somewhat underestimated, a phenorthe two cases. These results are reasonably close to ours. The
enon that is probably connected with the nonanalyitits  exponentd; has been determined at the smedtiehexatic-
of the renormalization-group functions at the fixed pajfit B phase transition in liquid crystals, obtainfrigB;~4.88

In order to obtain a conservative estimate, we have thus=1.66, using3=0.3485(4)(Ref. 23. Such an exponent has
decided to take as estimate ¢f the weighted average of the also been measured in some materials exhibiting a structural
direct estimates and of the estimates obtained ugipgnd  normal-incommensurate phase transition. From the analysis
v, together with scaling relationg8). The error is such to of x-ray scattering data in erbium Ref. 6 obtaings
include all estimates. The other exponents are dealt with= 1.8(3),while two different experiments in BEnCl, give,
analogousl?’ The final results for several values Nfare  respectivelyB;=1.80(5)(Ref. 5§ andB3=1.50(4)(Ref. 7.
reported in Table I. Keeping into account that the experimental errors seem to be

The same analysis has been repeated by using the fivenderestimated, there is reasonable agreement with our re-
loop e-expansion series. The results are reported in Table kults. The exponerd* = B/ ¢; was measured at the trigonal-
They are in perfect agreement with the fixed-dimension onegp-pseudotetragonal transition ifl1ll]-stressed SrTiQ
providing an important check to our final results. Note that inobtainind* 6*=0.62(10). Such an estimate is in good
many cases the difference is much less than the reporteareement with our predictiod* =0.581). Finally, we
errors, confirming that our errors are very conservative. Foshould mention that our results are also relevant for polymer
the relevant castl=2, the estimates ofp; obtained using physics. Indeed, we can derive from the estimates obtained
the two expansions are essentially identical. As final estimatéor N=0 the partition-function exponemptfor nonunifornt®
we take@;=0.600(10). star polymers with three arms. Using;=0.440(10), we

Let us compare these results with previous onesNor obtain p=3(y+v)/2+ ¢$3=3.01(1), where we usedy
=2. Reference 3 report8;=38+3vXx;, wherex;~0.174 =1.1575(6)(Ref. 30.
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