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Pseudoquasielastic component in the neutron scattering cross section
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Neutron scattering cross sections exhibit no quasielastic components when the scatterers move in one-
dimensional Hamiltonian potentials. However, if the potential contains flattened regions, part of the inelastic
spectrum appears as a pseudoquasiel@Bi@E) component which could, in principle, be mistaken for a
genuine quasielastic line. Using as a paradigm a power-law potential, we investigate the main features of this
PQE component and discuss some of its prope(t@aperature, frequency dependeniteat would help us to
distinguish it from the quasielastic signal. Analytical results are given for the elastic and inelastic components.
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Neutron scattering is one of the most powerful tools used Except for trivial factors, the cross section is given by the
in the study of the geometry and dynamics of condensedynamical structure factofDSH S(«,w), where k is the
system$3 As a function of the energy transféw, the neu- wave number transfer. Our starting point is the general ex-
tron cross section exhibits three regions: an elastic linepression for the DSF in terms of a superposition of energy
=0, which informs about static properties; a quasielastidntegrals[see Eq(2.11) in Ref. 4],

(QE) region(small w), which contains the signatures of dif- - B

fusional anql oth_er nonperiodic motions; and an mel_astlc part, S(k,0)=2"1 E dEe FE+(E)|F,(,E)|?

related to vibrations. A careful study of the properties of the n=—w Jo

neutron scattering cross section in the case of scatterers mov-
ing in one-dimensional Hamiltonian potentials was presented XL o—nWE)], 2)
ten years ag8.One of the main results of that study was thatwherer(E) andW(E) =27 (E) are, respectively, the os-
a QE component cannot emerge unless the potential recordedlator period and its frequencyd= (kgT) ! is the inverse
by the scatterer contains flat segments. This result watemperatureZ is the partition function,

proved by calculating an upper bound for the QE component

and showing that the scattered intensity strictly vanishes Z:ondEeﬁBET(E), )
when the energy transféro goes to zerdalthough not for 0

ﬁw=_0, pf Coursg: However, the proof also indicate_d that and the Fourier coefficients,, are defined as

motion in a potential that has a softer-than-quadratic extre-
mum may generate a structure in the small energy transfer #(E) _ A

region that, although vanishing at=0, could be mistaken Fn(K,E):T_l(E)J dte”MWEIED ()

for a bona fide QE component. We will call such a structure 0

a pseudoquasielasti®QBE peak. It would be of interest to Herex(E,t) is the instantaneous scatterer location. The cal-
study the genesis of the PQE peak as the potential is locallgulation of the period is standafd=or the chosen potential,
flattened. The problem has practical importance, because thee obtain
PQE peak would appear superimposed to a genuine QE peak

resulting, for instance, from the transference of intensity (E)=PEY™12, (4)
from the elastic line due to stochastic forces. It would beyhere
useful to have criteria to distinguish the signatures of both
processes. (8m)*?
In this paper we clarify this issue, by calculating in detalil P= gAY B(1/9,1/2), ®)

the spectrum resulting from a scatterer of massioving in

a power-law potential of the forrv(x)=A|x|%. This is an  B(X,y) being the usual Beta functidhThe partition function
adequate paradigm for those situations in which a flattenets

region (which could also be a maximungenerates a PQE.

We will show explicitly how the PQE component emerges (8mm)Y2I'(1/q)

from the inelastic spectrum agj is increased. Models con- Z= W ©®
taining flat regions were introduced in condensed matter by

Kincaid and Eyring as early as 198 More recently, poten- whereI'(x) is the Gamma functiof.

tials that contain regions of lower-than-quadratic curvature The o dependence of the DSF is determined by the struc-
have been used in the context of the soft potential model iure of the frequency functiow(E) through theE— « map-
glasse$. ping defined by thes functions. The intensitys,(«) of the
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elastic line is given by the=0 term in Eq.(1). The integral ' '
projects the whole energy range onto the part0. To cal-
culate the Fourier coefficieiiy(E) it is convenient to write
the solution to the equation of motion as

X(E,t1)=X(E)G[40(q)t/7(E)], (7)

whereX(E) = (E/A)4 is the location of the right-hand turn-
ing point and®(q)=q 'B(1/q,1/2). A suitable change of
variables and some algebra lead to
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This is an oscillating function of, whose oscillations 0.1 1 10
are dampened with increasiri§y The fluctuations are also kBT
softened with increasingj, i.e., with a hardening of the
upper part of the potential. For large valuesgahese oscil- FIG. 1. Elastic line intensity as function of the temperature for

lations have a very |0ng Wa\/e|ength_ As a Consequence(,:().7 and the values Clj indicated in the figure. The solid line is
Fo(E) becomes almost energy independent over thdhe result for the infinite square well. Inset: the smalipproxima-
whole relevant range of Eql), leading to a very slow tion (dashed ling The units are arbitrary.

decrease of the elastic line with temperature. Indeed, in . o
the limit case of the infinite square well, the size of the V&MY slowly, leading to a weak decrease of the elastic inten-

elastic line becomes temperature-independise¢ Eq.(4.5 sity with temperature seen in the figure for Iargeln the
in Ref. 4. limit case g—, Sy(«x) becomes temperature-independent

for all T>0. The suitability of Eq(10) as a low-temperature
approximation is confirmed by the good agreement between
the curves in the inset of Fig. 1.

The dependence @&y(«) with « can be analyzed in the

Equation(8) can also be expanded in a power series tha
contains only even powers ofX(E). This series can be
integrated term by term. We obtain

o Co same manner, sinceand T always appear combined as the
SO(KqT/A)zw 2 iR; [E w product «%T. In particular, Sy(«) is a monotonically de-
[[(1/q)]* ii=o 2 q creasing function ok.
KT Va2 +) Because of the delta functions in E¢l), only those
x| x i) (9) energy domains for which the oscillation frequency is small
A contribute to the DSF in the smalb region. In the case
Here of a power-law potential, the relevant domain corresponds

to energies close to the potential minimum. Higher

R=(—1)T[(2i+1)/q] intensities result w_hen thE—w mapping projects a
large energy domain onto a very small segment along

X{T'[(4i+2+q)/(2g)]T'(2i +1)}‘1_ the w axis. From Eq(4), we see that only a narrow energy

o ] domain contributes to the»—0 region, but that its size

The argument ofS, indicates that, for a givery, the g%rhows for higher values af. By using the delta function in

dependence on the physical variables appears only throughy (1), it is easy to see that, far>2, the DSF in thes>0
the ratio x%T/A). In the low temperature region, region is given by

k(kgT/A)Y9<1, we can retain only the first two terms,

obtaining 2qP | P gf_g
r(3l) [keT|2 Sl = [g=37 &, (%n)
SokTIAI =1~ frgres a| 2 (10
a X @2 BETE (N2, (1D

Forq=2, Sy=1— (kgT/2A) «?, the simple harmonic os- where  E* = (Pw/27n)29/(a-2), Through suitable

cillator result® At T=0 all the intensity is in the elastic line; variable changes, the Fourier coefficients can be put into
as the temperature is increased, the intensity is partially, o torm '

transferred to the rest of the spectrum. This can be seen in

Fig. 1, where we observe the fast initial decay corresponding 1 1 dpeicvX(E)
to high-q potentials(in all figures we takeA=1). Since a Fo(E)= >0 f T
high-q potential is very soft near its minimum, in the low- (a) “1(1—[v[9)
temperature domain the scatterer records a rapidly increasing
. ) . o nm (v dé¢
region of configuration space dsis increased. Conversely, X Co _ (12)
at high temperatures the size of the recorded region grows 20(q) J-1(1—|g9)1?
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FIG. 2. Inelastic intensity as a function of frequency &2 FIG. 3. Wave number dependence of the inelastic intensity for

and x=0.7, and the values df indicated in the figure. The solid B=2 andw=0.1, and the values af indicated in the figure. The
line corresponds to the infinite square well. The dotted vertica0lid line corresponds to the infinite square well.

line corresponds to the first resonance for the harmonic oscillator . . . .
(q=2). P How do genuine QE peaks arise? For pure diffusion, the

motion of the scatterer is not confined and the elastic line

. .. disappears completely. The DSF is a Lorentzian whose half-

i These formulas are exac.t. .Tbemtegral may be_S|mpI|— width is 2«2D, the temperature dependence entering through
fied if we note that the coefficient of the exponential is eveny . jittsion coefficienD. The classical case of a QE com-

nv f,?r heven and_odd fon odd. It can then b_e S_h‘?""” that ponent arising from restricted motion is the harmonic oscil-

Fn(Ey) becomesw-independent as—0. In this limit, the 516 supject to frictional forces. Because of the confinement

DSF is therefore a sum of terms of the form there is a surviving elastic line; the QE component is formed
by a superposition of Lorentzians whose widths are propor-

1 [ Po \29/(a-2) tional to the friction coefficient. The decomposition of the
Sf,T)(K,wHO%w“’(q‘z)ex;{ _I<B_T<ﬁ) QE signal into Lorentzians is also possible for more general

(13) potentials—at least for those having harmonic bottdfiss
noted before, the total QE intensity can be obtained as the
difference between the elastic intensity and the Debye-Waller

In the range of our interestq2), S, (x,0—0) factor*®

~ %72 This indicates that the depression of the spectrum  Stochastic forces cause intensity to be transferred from

in the smallw region weakens ag grows, i.e., as the poten- the elastic line into the QE region. Flattening potentials

tial bottom flattens, a PQE structure arises. As seen from Egause a shift of the inelastic spectrum towards the frequency

(4.9 in Ref. 4, in the limit case of a square-well potential origin. We summarize the main differences between the re-

with infinitely high walls,S,(«,w) becomes a sum of Gaus- sulting structures.

sians. The exact form 08§;,(x,w) is depicted in Fig. 2, (a) The QE tends to a positive constant@s-0; in this

where we see that, with increasigg more of the inelastic limit the PQE tends to zero as a power law.

intensity is transferred to lower frequencies. For high values (b) The QE has a longLorentzian tail for large w.

of g, the inelastic peak converges towards the result for th&he PQE has no such a long tail, itsth component

infinite square well, except for a small neighborhood ofbeing bounded by the fast-decaying function exp

w=0, where it must agree with Eq13). Our numerical [—pB(w/27n)2¥(@=2)],

evaluationgnot shown also indicate that Eq.13) is an ex- (c) The n-th Lorentzian in the QE depends on temperature

cellent approximation. The first resonance for the harmonias T?"exd — (x/wo)?T]. The nth component in the PQE is

oscillator, represented in Fig. 2, can be used as a standard j@oportional toT ~ (V2" 1) x exp(a,/T), wherea, is a func-
ascertain the location of the PQE component. For instance, tfon of q and T that can be obtained from EL1).

this resonance corresponds dg= 10" Hz, then the PQE Next we show that the magnitude of the predicted PQE

component forgq=33 and the same value & lies in the  component is commensurate with that resulting from well-

interval 13°-10'? Hz. known scattering potentials. This is conveniently assessed by
A different aspect of the problem is illustrated in Fig. 3, considering two different benchmarks.

where we observe how the intensity distribution as a function (a) The Hamiltonian infinite square well. Since the scat-

of k evolves with increasing towards that corresponding to tered intensity for largg resembles that corresponding to an

the infinite square well. By increasing the stronger con- infinite square well, the magnitude of the square well inelas-
finement leads to the growth of the main peak and to its shiftic scattering is a suitable measure of the size of the PQE
towards shorter wave numbers. effect. From Eq.4.5 in Ref. 4, we see that the integrated
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inelastic intensity for a square well of widtthis i(«)=1 From Figs. 1 and 2, we see that 20% is also a typical value of

—[(2/xd)sin(xd/2)]%. For typical values ofl, say, 2-3 A,  the fraction of intensity scattered in the PQE region for the

i(x) will oscillate between 0 and unity asis varied in the potentials studied in this paper.

experimentally accessible range. Let us conclude by noting the PQE is robust in the sense
(b) The harmonic oscillator subject to frictional forces. that it should be observable even if the system contains a

This problem was studied in detail in Ref. 10. There itheterogeneous distribution of scatterer paramet&rg}.

was shown[Eqg. (59)] that the total QE intensity is

ioe=exp(—R)[1o(R)—1], where R=Txk?/2A, and |, is a The authors are grateful to Professor P. W. Lamberti for

modified Bessel function. Thig,e maximum is aR~3 and  useful discussions. This work was supported by CONICET

corresponds to about 20% of the total scattered intensityand SECyT - UNCQ(Argenting.
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