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Pseudoquasielastic component in the neutron scattering cross section
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Neutron scattering cross sections exhibit no quasielastic components when the scatterers move in one-
dimensional Hamiltonian potentials. However, if the potential contains flattened regions, part of the inelastic
spectrum appears as a pseudoquasielastic~PQE! component which could, in principle, be mistaken for a
genuine quasielastic line. Using as a paradigm a power-law potential, we investigate the main features of this
PQE component and discuss some of its properties~temperature, frequency dependence! that would help us to
distinguish it from the quasielastic signal. Analytical results are given for the elastic and inelastic components.
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Neutron scattering is one of the most powerful tools us
in the study of the geometry and dynamics of conden
systems1–3. As a function of the energy transfer\v, the neu-
tron cross section exhibits three regions: an elastic l
v50, which informs about static properties; a quasielas
~QE! region ~small v!, which contains the signatures of di
fusional and other nonperiodic motions; and an inelastic p
related to vibrations. A careful study of the properties of t
neutron scattering cross section in the case of scatterers
ing in one-dimensional Hamiltonian potentials was presen
ten years ago.4 One of the main results of that study was th
a QE component cannot emerge unless the potential reco
by the scatterer contains flat segments. This result
proved by calculating an upper bound for the QE compon
and showing that the scattered intensity strictly vanis
when the energy transfer\v goes to zero~although not for
\v50, of course!. However, the proof also indicated th
motion in a potential that has a softer-than-quadratic ex
mum may generate a structure in the small energy tran
region that, although vanishing atv50, could be mistaken
for a bona fide QE component. We will call such a structu
a pseudoquasielastic~PQE! peak. It would be of interest to
study the genesis of the PQE peak as the potential is loc
flattened. The problem has practical importance, because
PQE peak would appear superimposed to a genuine QE
resulting, for instance, from the transference of intens
from the elastic line due to stochastic forces. It would
useful to have criteria to distinguish the signatures of b
processes.

In this paper we clarify this issue, by calculating in det
the spectrum resulting from a scatterer of massm moving in
a power-law potential of the formV(x)5Auxuq. This is an
adequate paradigm for those situations in which a flatte
region ~which could also be a maximum! generates a PQE
We will show explicitly how the PQE component emerg
from the inelastic spectrum asq is increased. Models con
taining flat regions were introduced in condensed matter
Kincaid and Eyring as early as 1937.5 More recently, poten-
tials that contain regions of lower-than-quadratic curvat
have been used in the context of the soft potential mode
glasses.6
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Except for trivial factors, the cross section is given by t
dynamical structure factor~DSF! S(k,v), where k is the
wave number transfer. Our starting point is the general
pression for the DSF in terms of a superposition of ene
integrals@see Eq.~2.11! in Ref. 4#,

S~k,v!5Z21 (
n52`

` E
0

`

dEe2bEt~E!uFn~k,E!u2

3d@v2nW~E!#, ~1!

wheret(E) andW(E)52pt21(E) are, respectively, the os
cillator period and its frequency,b5(kBT)21 is the inverse
temperature,Z is the partition function,

Z5E
0

`

dEe2bEt~E!, ~2!

and the Fourier coefficientsFn are defined as

Fn~k,E!5t21~E!E
0

t(E)

dte2 inW(E)teikx(E,t). ~3!

Herex(E,t) is the instantaneous scatterer location. The c
culation of the period is standard.7 For the chosen potential
we obtain

t~E!5PE1/q21/2, ~4!

where

P5
~8m!1/2

qA1/q
B~1/q,1/2!, ~5!

B(x,y) being the usual Beta function.8 The partition function
is

Z5
~8pm!1/2G~1/q!

qA1/qb1/211/q
, ~6!

whereG(x) is the Gamma function.8

Thev dependence of the DSF is determined by the str
ture of the frequency functionW(E) through theE→v map-
ping defined by thed functions. The intensityS0(k) of the
©2003 The American Physical Society01-1
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elastic line is given by then50 term in Eq.~1!. The integral
projects the whole energy range onto the pointv50. To cal-
culate the Fourier coefficientF0(E) it is convenient to write
the solution to the equation of motion as

x~E,t !5X~E!G@4Q~q!t/t~E!#, ~7!

whereX(E)5(E/A)1/q is the location of the right-hand turn
ing point andQ(q)5q21B(1/q,1/2). A suitable change o
variables and some algebra lead to

F0~k,E!5
1

Q~q!
E

0

1

dv
cos@kX~E!v#

~12vq!1/2
. ~8!

This is an oscillating function ofE, whose oscillations
are dampened with increasingE. The fluctuations are also
softened with increasingq, i.e., with a hardening of the
upper part of the potential. For large values ofq these oscil-
lations have a very long wavelength. As a consequen
F0(E) becomes almost energy independent over
whole relevant range of Eq.~1!, leading to a very slow
decrease of the elastic line with temperature. Indeed
the limit case of the infinite square well, the size of t
elastic line becomes temperature-independent@see Eq.~4.5!
in Ref. 4#.

Equation~8! can also be expanded in a power series t
contains only even powers ofkX(E). This series can be
integrated term by term. We obtain

S0~kqT/A!5
G~1/211/q!

@G~1/q!#2 (
i , j 50

`

RiRjGF1

2
1

2~ i 1 j !11

q G
3FkS kBT

A D 1/qG2(i 1 j )

. ~9!

Here

Ri5~21! iG@~2i 11!/q#

3$G@~4i 121q!/~2q!#G~2i 11!%21.

The argument ofS0 indicates that, for a givenq, the
dependence on the physical variables appears only thro
the ratio kq(T/A). In the low temperature region
k(kBT/A)1/q!1, we can retain only the first two term
obtaining

S0~kqT/A!.12
G~3/q!

G~1/q! FkBT

A G2/q

k2. ~10!

For q52, S0.12(kBT/2A)k2, the simple harmonic os
cillator result.9 At T50 all the intensity is in the elastic line
as the temperature is increased, the intensity is parti
transferred to the rest of the spectrum. This can be see
Fig. 1, where we observe the fast initial decay correspond
to high-q potentials~in all figures we takeA51). Since a
high-q potential is very soft near its minimum, in the low
temperature domain the scatterer records a rapidly increa
region of configuration space asT is increased. Conversely
at high temperatures the size of the recorded region gr
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very slowly, leading to a weak decrease of the elastic int
sity with temperature seen in the figure for largeq. In the
limit case q→`, S0(k) becomes temperature-independe
for all T.0. The suitability of Eq.~10! as a low-temperature
approximation is confirmed by the good agreement betw
the curves in the inset of Fig. 1.

The dependence ofS0(k) with k can be analyzed in the
same manner, sincek andT always appear combined as th
product kqT. In particular, S0(k) is a monotonically de-
creasing function ofk.

Because of the delta functions in Eq.~1!, only those
energy domains for which the oscillation frequency is sm
contribute to the DSF in the smallv region. In the case
of a power-law potential, the relevant domain correspon
to energies close to the potential minimum. High
intensities result when theE→v mapping projects a
large energy domain onto a very small segment alo
the v axis. From Eq.~4!, we see that only a narrow energ
domain contributes to thev→0 region, but that its size
grows for higher values ofq. By using the delta function in
Eq. ~1!, it is easy to see that, forq.2, the DSF in thev.0
region is given by

Sin~k,v!5
2qP

uq22uZ (
n51

` S P

2pnD
q12
q22

3v4/~q22!e2bEn* uFn~En* !u2, ~11!

where En* 5(Pv/2pn)2q/(q22). Through suitable
variable changes, the Fourier coefficients can be put
the form

Fn~E!5
1

2Q~q!
E

21

1 dveikvX(E)

~12uvuq!1/2

3cosF np

2Q~q!
E

21

v dj

~12ujuq!1/2G . ~12!

FIG. 1. Elastic line intensity as function of the temperature
k50.7 and the values ofq indicated in the figure. The solid line is
the result for the infinite square well. Inset: the smallT approxima-
tion ~dashed line!. The units are arbitrary.
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These formulas are exact. Thev integral may be simpli-
fied if we note that the coefficient of the exponential is ev
in v for n even and odd forn odd. It can then be shown tha
Fn(En* ) becomesv-independent asv→0. In this limit, the
DSF is therefore a sum of terms of the form

Sin
(n)~k,v→0!;v4/(q22)expF2

1

kBT S Pv

2pnD 2q/(q22)G .
~13!

In the range of our interest (q.2), Sin(k,v→0)
;v4/(q22). This indicates that the depression of the spectr
in the smallv region weakens asq grows, i.e., as the poten
tial bottom flattens, a PQE structure arises. As seen from
~4.5! in Ref. 4, in the limit case of a square-well potent
with infinitely high walls,Sin(k,v) becomes a sum of Gaus
sians. The exact form ofSin(k,v) is depicted in Fig. 2,
where we see that, with increasingq, more of the inelastic
intensity is transferred to lower frequencies. For high valu
of q, the inelastic peak converges towards the result for
infinite square well, except for a small neighborhood
v50, where it must agree with Eq.~13!. Our numerical
evaluations~not shown! also indicate that Eq.~13! is an ex-
cellent approximation. The first resonance for the harmo
oscillator, represented in Fig. 2, can be used as a standa
ascertain the location of the PQE component. For instanc
this resonance corresponds tov051012 Hz, then the PQE
component forq533 and the same value ofA lies in the
interval 1010–1012 Hz.

A different aspect of the problem is illustrated in Fig.
where we observe how the intensity distribution as a funct
of k evolves with increasingq towards that corresponding t
the infinite square well. By increasingq, the stronger con-
finement leads to the growth of the main peak and to its s
towards shorter wave numbers.

FIG. 2. Inelastic intensity as a function of frequency forb52
and k50.7, and the values ofq indicated in the figure. The solid
line corresponds to the infinite square well. The dotted vert
line corresponds to the first resonance for the harmonic oscill
(q52).
09230
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How do genuine QE peaks arise? For pure diffusion,
motion of the scatterer is not confined and the elastic l
disappears completely. The DSF is a Lorentzian whose h
width is 2k2D, the temperature dependence entering throu
the diffusion coefficientD. The classical case of a QE com
ponent arising from restricted motion is the harmonic os
lator subject to frictional forces. Because of the confinem
there is a surviving elastic line; the QE component is form
by a superposition of Lorentzians whose widths are prop
tional to the friction coefficient. The decomposition of th
QE signal into Lorentzians is also possible for more gene
potentials—at least for those having harmonic bottoms.10 As
noted before, the total QE intensity can be obtained as
difference between the elastic intensity and the Debye-Wa
factor.4,6

Stochastic forces cause intensity to be transferred fr
the elastic line into the QE region. Flattening potentia
cause a shift of the inelastic spectrum towards the freque
origin. We summarize the main differences between the
sulting structures.

~a! The QE tends to a positive constant asv→0; in this
limit the PQE tends to zero as a power law.

~b! The QE has a long~Lorentzian! tail for large v.
The PQE has no such a long tail, itsnth component
being bounded by the fast-decaying function e
@2b(v/2pn)2q/(q22)#.

~c! The n-th Lorentzian in the QE depends on temperat
as T2nexp@2(k/v0)

2T#. The nth component in the PQE is
proportional toT2(1/211/q)3exp(an /T), wherean is a func-
tion of q andT that can be obtained from Eq.~11!.

Next we show that the magnitude of the predicted P
component is commensurate with that resulting from we
known scattering potentials. This is conveniently assesse
considering two different benchmarks.

~a! The Hamiltonian infinite square well. Since the sca
tered intensity for largeq resembles that corresponding to a
infinite square well, the magnitude of the square well inel
tic scattering is a suitable measure of the size of the P
effect. From Eq.~4.5! in Ref. 4, we see that the integrate

l
or

FIG. 3. Wave number dependence of the inelastic intensity
b52 andv50.1, and the values ofq indicated in the figure. The
solid line corresponds to the infinite square well.
1-3
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inelastic intensity for a square well of widthd is i (k)51
2@(2/kd)sin(kd/2)#2. For typical values ofd, say, 2–3 Å,
i (k) will oscillate between 0 and unity ask is varied in the
experimentally accessible range.

~b! The harmonic oscillator subject to frictional force
This problem was studied in detail in Ref. 10. There
was shown @Eq. ~59!# that the total QE intensity is
i QE5exp(2R)@I0(R)21#, where R5Tk2/2A, and I 0 is a
modified Bessel function. Thei QE maximum is atR'3 and
corresponds to about 20% of the total scattered inten
on

ed

09230
t
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From Figs. 1 and 2, we see that 20% is also a typical valu
the fraction of intensity scattered in the PQE region for t
potentials studied in this paper.

Let us conclude by noting the PQE is robust in the se
that it should be observable even if the system contain
heterogeneous distribution of scatterer parameters$A,q%.

The authors are grateful to Professor P. W. Lamberti
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