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Atomic scale lattice distortions and domain wall profiles
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We present an atomic scale theory of lattice distortions using strain-related variables and their constraint
equations. Our approach connects constragtedic lengthscale variations t@ontinuumelasticity and de-
scribes elasticity at several length scales. We apply the approach to a two-dimensional square lattice with a
monatomic basis and find the elastic deformations and hierarchical atomic relaxations in the vicinity of a
domain wall between two different homogeneous strain states. We clarify the microscopic origin of gradient
terms, some of which are included phenomenologically in Ginzburg-Landau theory, by showing that they are
anisotropic.
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An understanding of atomic scale lattice distortions is es-describelong-wavelengthstrains in a given dimension with
sential for correctly describing the elastic energies of nanoether dimensions maintained at nanoscales, such as ultrathin,
structured materials. New generations of experimental toolong nanowires. Our emphasis is to descrdtemic scale
to probe individual atoms and local environmehtmnd the  distortions irrespective of whether the region of interest is in
growing interest in complex functional materials, in which bulk or nanosized objects. Our approach describes elastic
local lattice distortions are coupled to electronic, magneticdeformation in terms ointracell modes or “shuffles” of at-
and chemical degrees of freedom, further emphasize the ne@ins, which are essential in describing short-wavelength lat-
for a consistent theoretical framework to describe Strainlice distortions, and distortion of unit cells, instead of adopt-
based materials. For example, in perovskite manganites tHeg coarse graining approximatiofis.
change in oxygen ion displacement at each site is associated We illustrate our ideas in detail for the simplest case:
with the charge and orbital ordering stafesn atomic scale hamely, a square lattice in two-dimensioK2D) space with
description of the interface or domain wall between two dif-& monatomic basis. We find that the most convenient strain-
ferent homogeneous states is thus a first step towards predi(lfﬁ'&ted variables for atomic scale distortions are the normal
ing functionality located at the domain walls. distortion modegmore precisely, symmetry coordinatesf

Strain variables(rather than displacemenwith con-  an elementary square object of four atoms, as shown in Fig.
straints have been recently shown to have advantages fdr Because of the number of atoms in this object and the
describing the long-wavelength lattice distortions observedlimensionality, eight normal modes exist. The rigid rotation
in, for example, martensitic materials and, more generallyand two rigid translationgnot shown in Fig. 1cost no elas-
solid-solid phase transformatiofsThe anisotropic long- tic energy and, therefore, are not distortion modes. The first
range interaction in the order parameter strain fields drivesthree distortion modes in Fig. 1 correspond to the usual di-
the formation of a rich landscape of multiscale elastic tex/atation (;), shear €,), and deviatoric €;) strains of the
tures. The aim of this work is to formulate a microscopic continuum elasticity theory for a square lattt@he next
description of elasticity and demonstrate the relationshigwo degenerate modes in Fig. 4, ands_, correspond to
with and differences from long-wavelength continuumthe “intracell” or “shuffle” modes of the square lattice,
theory. We introduce appropriate intercell and intracell dis-which are absent in continuum elasticity theory. Our ap-
tortion modes, and show how the form of the elastic energproach uses these five distortion variables defined for each
recovers the correct phonon spectra. The discreteness of theaquette of four atoms at, i+(10), i+(11), andi
lattice, choice of modes, and constraints among them give. (g1), wherei represents the coordinate of the lattice
rise to an anisotropic gradient expansion for the elastic enyoints, to describe the elastic enefgy.
ergy. This leads to elastic domain wall solutions that aré  gince the five variables are derived from two displace-
different from those predicted using continuum theory; Wement variables for each lattice site, they are related by three
obtain 0° and 90° “staircase” domain walls for sufficiently constraint equations. By representiag, e,, €;, s, and
small bulk modulugor “soft” ) materials, in addition to the g iy terms of displacement variable andd? in k (wave
45° or 135° walls predicted from continuum theory for
“hard” materials.

Models based on displacement variables with pair poten-\‘ s . 7 F v AN
tials, such as Born—von Kman models! have been widely . PR . o < o« N
used to incorporate “microscopic elasticity.” However, es- e e S S
sentially because distortion implies strain, the physical in- ) 2 3 21 * 1 (shuffl
sight for atomic scale elasticity will reveal itself in the lan- 3 strain modes intracell (shuffle)

. . modes
guage of strain-related variables presented here. Moreover,
our work is quite distinct from recent efforts to describe elas- FIG. 1. Normal distortion modes for a square object of four
ticity of nanometer-sized objectsThe interest there is to atoms in 2D.
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vecton space and eliminating® andd?, the constraint equa- (a)
tions are obtained. One of them is th@croscopicelastic
compatibility equation, which relates strain modes:

(1— cosk,cosk,)e; (K) — sink,sinkye,(k)

With intracell modes Without intracell modes
+(COSkX_COSky)e3(|Z):O- (1) FIG. 2. An example of calculated phonon sped@awith and
_ ) (b) without intracell modes for a 2D square lattice with a mono-
The other two relate the intracell and strain modes: atomic basis. The upper phonon branch is shown for both cases
(M=f=1).

e1(K)

Ke kg o [keEKy
2 cos= cos=5S. (k) Fi sin . .
2 2 2 which may have important consequences for structural
Tk “phase transitions” at the nanoscale. In E@) the inter-
+i sin( x+ y)e3(IZ)=O. ) atomic elastic energies between atoms beyond each square,
2 or farther than the second nearest neighbors, are neglected.

These constraints generaaisotropic interactions(reflect- These interactions may be included by adding energy terms

ing the lattice symmetiybetween atomic scale strain fields, With distortion variables atlifferent sites, e.g..ei(i)e.(i
similar to the compatibility equations in Ref. 3, but now *(10)). Since some of the atomic pairs are shared by two
including the intracell modes. In the long-wavelength limit, Square plaquettes of atoms, the parameters in&dghould
our description approaches the continuum model: Ror be appropriately renormalized. A robust way to determine the

—0, the above constraint equations can be written in reaﬁ)grameterg is to compare the phonon spectrum of our model
space as with experimental data.

For the lattice energy of Ed5), the phonon spectrum is

V2e,(1)~ 2V, V,ep(1) +(V2-V2)ey(1)=0,  (3)  given by VMhw=VE; = VE,, where E;=(A;+Ay+As)
(1—coskcosk,)/2+B(1—cosk,)(1—cosk), E,=(A1+A;
s.(N=[(V,=Vey(N) + (V7 Ves(N]/4. (@)  —Ag)sinfksin’iy/4+ (Ar— Ayt Ag)®(cosk—cosky) 4,
and M is the mass of an atom. A typical spectriopper
Equation (3) is the usual compatibility equation in con- branch for A;=5, A,=4, A;=3, andB=5 is shown in Fig.
tinuum theory. Equatio¥) shows thathe spatial va_riations 2(a). At I2=(7-r,1-r), the distortion is a pure intracell mode,
of strains always generate intracell modése magnitude of 54 the energy depends only on the intracell mode modulus
which vanish as the inverse of the length scale of the straiy Therefore as shown in Fig(t®, w(r, ) vanishes with-
mode variations. It is well known in continuum Ginzburg- 4+ the intracell mode B=0) which is unphysical. Ak
Landau theory that the energy associated with the gradient OLO, theslopeof the phonon spectrum is determined only by
strains is responsible for domain wall energies such as, f0§train mode moduld. A, andA.. whereas theurvature
example, in structural phase transitidn§he above result depends o as well lg,ecazl;se of ng4) Fork—0. since the

shows that th_e intracell m_odes are at t_he origin of suc_h €Mhtracell modes vanish as the inverse of the wavelength, the
ergy terms. Since our strain-related variables become ident|-

cal to conventional strain variables in the long-wavelengthattice energy approaches  Esqia(k—0)

limit, various length scale lattice distortions may be de-=~Zin-123n€a(K)/2, in agreement with continuum theory.

scribed in asingletheoretical framework. This makes it pos- Using Eq.(4), the energy for the intracell modes in E&)

sible to study typical multiscale situations where both shortcan be  written as Eim,{ﬁfdFB[(V?al)ZﬂL(Vﬁeg)2

and long-wavelength distortions are important. It also pro-+2(V,e;V,e;— Vye; Vse3)1/16.

vides a natural framework for incorporating interactions be- We compare our approach to a displacement-based Born—

tween atomic scale strain-related fields coupled to other deron Karman modef for the square lattice. The first-nearest-

grees of freedom in functional materials. and second-nearest-neighbor atoms are connected by central-
The following analysis of the simple harmonic elastic en-force and non-central-force springs with spring constants

ergy for the square lattice further exemplifies the utility of Kf, K’I‘ andKS, K'g‘, respectively. Elastic energies of the

these variables. We consider the simplest energy expressig#ttice, one from our model and the other from the Born—von

by approximating the total elastic energy by the sum of thekarman model, can be represented in the following form in

elastic energy of each square: terms of displacement variables*(i) and d¥(i): Egqa
=31 2 pd3(—K)Dop(k)d®(k). We find that theD ,,(K)'s for

1 - 1 -
Esqa= > | SALen(i 2+ > EB[sm(i)]2 , both models become identical iA;=KS$—KN+2(KS
P (nmhas mee 5 KD Ap=2(KYHKEHK), Ag=KE+KI+ 4K, andB
=K§+KY.
whereA,, andB denote elastic moduli and “intracell modu- ~ We apply our formalism to obtain the domain wall solu-
lus,” respectively. The couplings between, e,, e3, s, , tion for the atomic displacements between two homogeneous

ands_ at thesamesite are forbidden by symmetry at the strain statega “twin boundary”) due to a phase transition to
harmonic level, but are allowed at the anharmonic levela rectangular lattice. We then compare the solution to that
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FIG. 3. (Color) Atomic scale 135° domain wall profile for criti-
cal length scalen.<1 along the direction perpendicular to the
domain wall: (a) strain e; and shuffles_, (b) differences ine;
(6€3=€3 atomic— €3.continuun)» S— (Is_), and displacement parallel
to the domain wall directiondd;) between the results from con-
tinuum theory fork~0 and our model, which includes discreteness.
The fieldse;, e,, s, , and displacement perpendicular to the do-
main wall are zero. Parameter values &g=5, A,=4, A;=4,
B=5, andF;=50.

obtained from continuum theory where discreteness effects,

are neglected With elastic energyE,..=E2)+E(2), where

E(l)_

rec

2 LAel(1)2+ 3 Ager(i)?+ 3 B[S, ()2+s_(1)?],

2) _
Efel=

>

— 3 Ales(i)2+ 3 Faes(D)?,

(6)

the degenerate ground state Bf. is a uniform state with
e;=*Aj/F; ande;=e,=s,=s_=0. To study the do-

main wall between these two degenerate rectangular groqungth scalex .~

states, we con5|d653(|) as the order parameter and mini-
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(b)S #’;J‘ 1 (0)s_ q,l:ln,l_

5
by /i"h'-sm

FIG. 5. (Colorn Nonequilibrium domain wall statga) ez, (b)
s, , (c) s_ for \(=<1, (d) e; for A\;>1. Parameter values are iden-
tical to Fig. 4. Dark red corresponds to 0.28 and dark blue to
—0.28. Green implies a value close to zero.

=[AABHABD+BPBIABS, Vo= (2A AT+ ASBT
+ALBS)BB1B, Va=2(A1B3+AB1)B%B5+BB1BY Vs
= (A1 B3+ A5 +BB1 )% with B;=1—coskcosk,, B,
—sinkssink,, B3=cosk,—cosk,, and B,=(1—cosk,)(1
—cosk,).

W|th ky=kcos# and k,=ksing, the expansion of
U(k,0) about k=0 y|elds U(k,8)=Uq(6) +U,(6)k?
+0(k%), where Uy(6)=A;A,cos26/(AsirP26+A,) and
U ,(0) = Sirf2¢[ 6A,A;BSIN260+4A, Ay(As + Ay)coS 26+ 3B(AS
+AZSi?26) [ 24(A,+ A,si26)?]. The term U, is purely
orientation dependent without a length scale and is mini-
mized atd=45° and 135°, as obtained in Ref. 3. The differ-
nce between continuum and our discrete theory lies in the
term: continuum theory commonly assumes isotropic gra-
dients in the order parameter, i.eﬁqg)2,7whereay2(9) is
anisotropic. The two origins of the anisotropy d@® the
compatibility relation, Eq(1), which has higher powers ik
than Eq.(3) due to discreteness, and) the presence of
shuffle mode energy. The latter can be written as gradients of
strains, but with corrections to the phenomenological isotro-
pic term, (ﬁeg)z, used in Ginzburg-Landau theory. As
U,(6) is minimized for #=0° and 90°, it competes with
Ug(#) which prefers§=45° and 135°. Thus, the domain
wall direction depends on the length scale with a critical
~yB/A;. If N\;=<1, i.e., less than the inter-
atomic spacing, the domaln wall has direction 45° or 135°

(d) C38

mize E%g with respect to the other variables using the con-down to atomic scales. Ih.>1, then for length scales

straint equationgEgs. (1) and (2)] and the method of
Lagrange  multipliers. We obtain E(Z) i =2¢3es

(—K)U(K)ez(k), whereU(K)=(V;+V,+V3)/V,, andV,

Ao e Ny o %o

\\\*\Q %Nf{%:-{. I

5 » « ¢ ¢

o,%\&\\ g.":x?\?\?\ sl
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FIG. 4. (Color) Atomic displacements in the vicinity of domain
wall: (&) A\;=1 and(b) A;>1. Color represents the sign ef (red:
positive, blue: negatiyeand is lighter compared to Figs. 5 and 6 to
make the arrows visibldc) The displacement component perpen-
dicular to the large scale domain wall direction ft, magnified
by a factor of 3. Parameter values akg=4, A;=4, B=5, F;
=50, andA,;=5 for (@) andA;=1 for (b) and(c).

smaller(largep than\ ., the domaln wall direction is 0° or
90° (45° or 135°) and the domain wall has multiscale
attributes.

We examine first the case.<1 that would apply to ma-
terials with relatively large bulk modulu&; (“hard” mate-
rials) for fixed B. Here k,==k, and U(k)=B(1
—cosky)/(1+cosk,). The domain wall width is a result of the
competition betweet (k), which favorsk—0 or thick do-

mains, ancE(Z), which favors sharp walls. We illustrate the

(b)c| LT (0)s, [T I (O)s

‘ f,_.,z'af’“ G \E\

FIG. 6. (Color) Atomic scale domain wall solution for materials

with A.>1. Parameters are the same as in Figb) 4nd 4c),
which show the region inside the square in this figure. Stegiis
zero. Color scheme is the same as in Fig. 5.

092101-3



BRIEF REPORTS

domain wall solution with 135° domain wall direction. The

only nonzero distortion modes aeg ands_ (s, for a 45°

PHYSICAL REVIEW B8, 092101 (2003

The domain wall solution foin.>1, typical for small
bulk modulusA; or “soft” materials, is shown in Fig. 6 for

domain wal). The straine, reverses sign at the domain wall, which A~ \/5. Thee; field in Fig. §a) shows that on length

the intracell modes_ is confined within the domain wall,

scales of the size of the systdtarger than\.), the diagonal

and the atomic displacements are parallel to the domain wafirientation is still preferred. However, this diagonal domain

direction. The numerical solutiSrior e; ands_ along a line
perpendicular to the wall is shown in Fig(ap, for which

wall consists of a “staircase” of 0° and 90° domain walls of
length scaleh.. The existence of 0° and 90° walls &

Ac~1. (Narrow domain walls with widths of a few unit forces elastic compatibility to induce alternately large posi-

cells, as considered here, have been

identifiedive and negative values in the dilatation stranin the

experimentally}®) The corresponding displacement field nearhorizontal and vertical parts of the staircase, as shown in Fig.

the center of the domain wall is shown in Figay in which
the red and blue colors show regions wek positive and

6(b). This has implications for the functionality of the do-
main walls®® For example, the, field can couple to charge

negative, respectively. Both figures show that the center oind modulate the local charge density along the wall. Similar
the domain wall is located at bonds rather than sites to avoiteatures are also reflected $n ands_, as shown in Figs.

the higher-energy state ;=0 and larges_. As for a
Peierls-Nabarro barriéf, the higher energyby 4.4x10°4
per unit length for our parameter valudsr the site-centered

6(c) and &d). The displacement pattern within the square in
Fig. 6 is shown in Fig. &). Unlike the case\.<1 in Fig.
4(a), the displacement has a component perpendicular to the

domain wall acts as a pinning potential for the domain wall135° large scale domain wall direction, which is shown in

due to the inherent discreteness. In Figh)3ve compare our
results with continuum theory, which predictse;
=eJ%tanh({s/9 (Ref. 7 and s_=des/2di from Eq. (4),

whereis=i,+i,. The differences in the interface region,

shown in Fig. 8b), are of the order of 10% o®J%
=Aj/F3. The domain wall width’ is roughly given by
2¢=/2\/B/A} and the ratio between the maximasof and
es, sS"ef™, is about 1/(Z).

Anisotropic effects inU(k,#) become more apparent
away from equilibrium, e.qg., at finite temperatures or in othe

conditions where metastability is present. Figu(a) Shows
the results for e; of a 2D simulation away from

equilibrium?? in which atomic scale domain walls are ori-
ented along 45° and 135° directions. The corresponding in,

tracell modes are shown in Figs(bb and Fc). Note that

boths, ands_ shuffles are present at or near interfaces an
only one of these modes survives at equilibrium. The hori

zontal or vertical “jogs” in thes, ands_ walls are second-
ary defects due to the competition betwedg and U,,
which provide principal relaxation forces.

Fig. 4(c) magnified by a factor of 3. This component is great-
est for the atoms at the boundary of the two domains. A
nonequilibrium state is shown in Fig(d. The small do-
mains have 0° or 90° boundaries, but over larger length
scales these domains are correlated along 45° and 135°
directions.

In summary, we have reported an approach to “atomic
scale elasticity,” which uses symmetry modes of elementary
objects of atoms as distortion variables. A gradient expansion
for the energy withanisotropic coefficients has been ob-
tained, with corrections to the usual phenomenological iso-
tropic gradient terms used in Ginzburg-Landau theory. As an
illustration, we have obtained domain watlin boundary
solutions in terms of strairand intracell modes and have
Shown how they differ from the continuum elastic soliton

olution/ Our work provides the basis for interpreting
tomic scale features in high-resolution electron microscope
‘studies of domain walls2°
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