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Atomic scale lattice distortions and domain wall profiles
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We present an atomic scale theory of lattice distortions using strain-related variables and their constraint
equations. Our approach connects constrainedatomic lengthscale variations tocontinuumelasticity and de-
scribes elasticity at several length scales. We apply the approach to a two-dimensional square lattice with a
monatomic basis and find the elastic deformations and hierarchical atomic relaxations in the vicinity of a
domain wall between two different homogeneous strain states. We clarify the microscopic origin of gradient
terms, some of which are included phenomenologically in Ginzburg-Landau theory, by showing that they are
anisotropic.
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An understanding of atomic scale lattice distortions is
sential for correctly describing the elastic energies of na
structured materials. New generations of experimental to
to probe individual atoms and local environments,1 and the
growing interest in complex functional materials, in whic
local lattice distortions are coupled to electronic, magne
and chemical degrees of freedom, further emphasize the
for a consistent theoretical framework to describe stra
based materials. For example, in perovskite manganites
change in oxygen ion displacement at each site is assoc
with the charge and orbital ordering states.2 An atomic scale
description of the interface or domain wall between two d
ferent homogeneous states is thus a first step towards pre
ing functionality located at the domain walls.

Strain variables~rather than displacement! with con-
straints have been recently shown to have advantages
describing the long-wavelength lattice distortions obser
in, for example, martensitic materials and, more genera
solid-solid phase transformations.3 The anisotropic long-
range interaction in the order parameter strain fields driv
the formation of a rich landscape of multiscale elastic t
tures. The aim of this work is to formulate a microscop
description of elasticity and demonstrate the relations
with and differences from long-wavelength continuu
theory. We introduce appropriate intercell and intracell d
tortion modes, and show how the form of the elastic ene
recovers the correct phonon spectra. The discreteness o
lattice, choice of modes, and constraints among them g
rise to an anisotropic gradient expansion for the elastic
ergy. This leads to elastic domain wall solutions that
different from those predicted using continuum theory;
obtain 0° and 90° ‘‘staircase’’ domain walls for sufficient
small bulk modulus~or ‘‘soft’’ ! materials, in addition to the
45° or 135° walls predicted from continuum theory f
‘‘hard’’ materials.

Models based on displacement variables with pair pot
tials, such as Born–von Ka´rmán models,4 have been widely
used to incorporate ‘‘microscopic elasticity.’’ However, e
sentially because distortion implies strain, the physical
sight for atomic scale elasticity will reveal itself in the la
guage of strain-related variables presented here. Moreo
our work is quite distinct from recent efforts to describe el
ticity of nanometer-sized objects.5 The interest there is to
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describelong-wavelengthstrains in a given dimension with
other dimensions maintained at nanoscales, such as ultra
long nanowires. Our emphasis is to describeatomic scale
distortions, irrespective of whether the region of interest is
bulk or nanosized objects. Our approach describes ela
deformation in terms ofintracell modes or ‘‘shuffles’’ of at-
oms, which are essential in describing short-wavelength
tice distortions, and distortion of unit cells, instead of ado
ing coarse graining approximations.6

We illustrate our ideas in detail for the simplest cas
namely, a square lattice in two-dimensional~2D! space with
a monatomic basis. We find that the most convenient str
related variables for atomic scale distortions are the nor
distortion modes~more precisely, symmetry coordinates! of
an elementary square object of four atoms, as shown in
1. Because of the number of atoms in this object and
dimensionality, eight normal modes exist. The rigid rotati
and two rigid translations~not shown in Fig. 1! cost no elas-
tic energy and, therefore, are not distortion modes. The
three distortion modes in Fig. 1 correspond to the usual
latation (e1), shear (e2), and deviatoric (e3) strains of the
continuum elasticity theory for a square lattice.3 The next
two degenerate modes in Fig. 1,s1 and s2 , correspond to
the ‘‘intracell’’ or ‘‘shuffle’’ modes of the square lattice,7

which are absent in continuum elasticity theory. Our a
proach uses these five distortion variables defined for e
plaquette of four atoms atiW, iW1(10), iW1(11), and iW

1(01), where iW represents the coordinate of the latti
points, to describe the elastic energy.8

Since the five variables are derived from two displac
ment variables for each lattice site, they are related by th
constraint equations. By representinge1 , e2 , e3 , s1 , and
s2 in terms of displacement variablesdx anddy in k ~wave

FIG. 1. Normal distortion modes for a square object of fo
atoms in 2D.
©2003 The American Physical Society01-1
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vector! space and eliminatingdx anddy, the constraint equa
tions are obtained. One of them is themicroscopicelastic
compatibility equation, which relates strain modes:

~12coskxcosky!e1~kW !2sinkxsinkye2~kW !

1~coskx2cosky!e3~kW !50. ~1!

The other two relate the intracell and strain modes:

2 cos
kx

2
cos

ky

2
s6~kW !7 i sinS kx6ky

2 De1~kW !

6 i sinS kx7ky

2 De3~kW !50. ~2!

These constraints generateanisotropic interactions~reflect-
ing the lattice symmetry! between atomic scale strain field
similar to the compatibility equations in Ref. 3, but no
including the intracell modes. In the long-wavelength lim
our description approaches the continuum model: FokW
→0, the above constraint equations can be written in r
space as

¹2e1~rW !22¹x¹ye2~rW !1~¹y
22¹x

2!e3~rW !50, ~3!

s6~rW !5@~¹y6¹x!e1~rW !1~¹y7¹x!e3~rW !#/4. ~4!

Equation ~3! is the usual compatibility equation in con
tinuum theory. Equation~4! shows thatthe spatial variations
of strains always generate intracell modes, the magnitude of
which vanish as the inverse of the length scale of the st
mode variations. It is well known in continuum Ginzbur
Landau theory that the energy associated with the gradien
strains is responsible for domain wall energies such as,
example, in structural phase transitions.7 The above result
shows that the intracell modes are at the origin of such
ergy terms. Since our strain-related variables become ide
cal to conventional strain variables in the long-wavelen
limit, various length scale lattice distortions may be d
scribed in asingletheoretical framework. This makes it po
sible to study typical multiscale situations where both sho
and long-wavelength distortions are important. It also p
vides a natural framework for incorporating interactions b
tween atomic scale strain-related fields coupled to other
grees of freedom in functional materials.

The following analysis of the simple harmonic elastic e
ergy for the square lattice further exemplifies the utility
these variables. We consider the simplest energy expres
by approximating the total elastic energy by the sum of
elastic energy of each square:

Esq.lat5(
iW

H (
n51,2,3

1

2
An@en~ iW !#21 (

m51,2

1

2
B@sm~ iW !#2J ,

~5!

whereAn andB denote elastic moduli and ‘‘intracell modu
lus,’’ respectively. The couplings betweene1 , e2 , e3 , s1 ,
and s2 at thesamesite are forbidden by symmetry at th
harmonic level, but are allowed at the anharmonic lev
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which may have important consequences for structu
‘‘phase transitions’’ at the nanoscale. In Eq.~5! the inter-
atomic elastic energies between atoms beyond each sq
or farther than the second nearest neighbors, are negle
These interactions may be included by adding energy te
with distortion variables atdifferent sites, e.g.,e1( iW)e1„iW
1(10)…. Since some of the atomic pairs are shared by t
square plaquettes of atoms, the parameters in Eq.~5! should
be appropriately renormalized. A robust way to determine
parameters is to compare the phonon spectrum of our m
with experimental data.

For the lattice energy of Eq.~5!, the phonon spectrum is

given by AM\v5AE16AE2, where E15(A11A21A3)
(12coskxcosky)/21B(12coskx)(12cosky), E25(A11A2
2A3 ) 2sin2kxsin2ky / 41 ( A12A21A3)2(coskx2cosky ) 2/ 4,
and M is the mass of an atom. A typical spectrum~upper
branch! for A155, A254, A353, andB55 is shown in Fig.
2~a!. At kW5(p,p), the distortion is a pure intracell mode
and the energy depends only on the intracell mode mod
B. Therefore, as shown in Fig. 2~b!, v(p,p) vanishes with-
out the intracell mode (B50), which is unphysical. Ask
→0, theslopeof the phonon spectrum is determined only
strain mode moduliA1 , A2, andA3, whereas thecurvature
depends onB as well because of Eq.~4!. Fork→0, since the
intracell modes vanish as the inverse of the wavelength,
lattice energy approaches Esq lat(kW→0)
'(kW ,n51,2,3Anen

2(kW )/2, in agreement with continuum theor
Using Eq.~4!, the energy for the intracell modes in Eq.~5!

can be written as Eintra'*drWB@(¹W e1)21(¹W e3)2

12(¹ye1¹ye32¹xe1¹xe3)#/16.
We compare our approach to a displacement-based Bo

von Kármán model4 for the square lattice. The first-neares
and second-nearest-neighbor atoms are connected by ce
force and non-central-force springs with spring consta
K1

C , K1
N and K2

C , K2
N , respectively. Elastic energies of th

lattice, one from our model and the other from the Born–v
Kármán model, can be represented in the following form
terms of displacement variablesdx( iW) and dy( iW): Esq lat

5(kW ,a,bda(2kW )Dab(kW )db(kW ). We find that theDab(kW )’s for
both models become identical ifA15K1

C2K1
N12(K2

C

2K2
N), A252(K1

N1K2
C1K2

N), A35K1
C1K1

N14K2
N , andB

5K1
C1K1

N .
We apply our formalism to obtain the domain wall sol

tion for the atomic displacements between two homogene
strain states~a ‘‘twin boundary’’! due to a phase transition t
a rectangular lattice. We then compare the solution to t

FIG. 2. An example of calculated phonon spectra~a! with and
~b! without intracell modes for a 2D square lattice with a mon
atomic basis. The upper phonon branch is shown for both ca
(M5\51).
1-2
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obtained from continuum theory where discreteness effe
are neglected.7 With elastic energyErec5Erec

(1)1Erec
(2) , where

Erec
(1)5(

iW

1
2 A1e1~ iW !21 1

2 A2e2~ iW !21 1
2 B@s1~ iW !21s2~ iW !2#,

Erec
(2)5(

iW
2 1

2 A38e3~ iW !21 1
4 F3e3~ iW !4, ~6!

the degenerate ground state ofErec is a uniform state with
e356AA38/F3 and e15e25s15s250. To study the do-
main wall between these two degenerate rectangular gro
states, we considere3( iW) as the order parameter and min
mize Erec

(1) with respect to the other variables using the co
straint equations@Eqs. ~1! and ~2!# and the method of

Lagrange multipliers. We obtain Erec,min
(1) 5(kW

1
2 e3

(2kW )U(kW )e3(kW ), where U(kW )5(V11V21V3)/V4, and V1

FIG. 3. ~Color! Atomic scale 135° domain wall profile for criti-
cal length scale,lc<1 along the direction perpendicular to th
domain wall: ~a! strain e3 and shuffles2 , ~b! differences ine3

(de35e3,atomic2e3,continuum), s2 (ds2), and displacement paralle
to the domain wall direction (dduu) between the results from con

tinuum theory forkW;0 and our model, which includes discretenes
The fieldse1 , e2 , s1 , and displacement perpendicular to the d
main wall are zero. Parameter values areA155, A254, A3854,
B55, andF3550.

FIG. 4. ~Color! Atomic displacements in the vicinity of domain
wall: ~a! lc<1 and~b! lc.1. Color represents the sign ofe3 ~red:
positive, blue: negative! and is lighter compared to Figs. 5 and 6
make the arrows visible.~c! The displacement component perpe
dicular to the large scale domain wall direction for~b!, magnified
by a factor of 3. Parameter values areA254, A3854, B55, F3

550, andA155 for ~a! andA151 for ~b! and ~c!.
09210
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5@A2(A1b2
21A2b1

2)1B2b4
2#A1b3

2, V25(2A1A2b1
21A2

2b1
2

1A1
2b2

2)Bb1b4 , V352(A1b2
21A2b1

2)B2b4
21B3b1b4

3, V4

5(A1b2
21A2b1

21Bb1b4)2, with b1512coskxcosky , b2

52sinkxsinky , b35coskx2cosky , and b45(12coskx)(1
2cosky).

With kx5k cosu and ky5k sinu, the expansion of
U(k,u) about k50 yields U(k,u)5U0(u)1U2(u)k2

1O(k4), where U0(u)5A1A2cos22u/(A1sin22u1A2) and
U2(u)5sin22u@6A1A2Bsin22u14A1A2(A11A2)cos22u13B(A2

2

1A1
2sin22u)#/@24(A21A1sin22u)2#. The term U0 is purely

orientation dependent without a length scale and is m
mized atu545° and 135°, as obtained in Ref. 3. The diffe
ence between continuum and our discrete theory lies in
k2 term: continuum theory commonly assumes isotropic g
dients in the order parameter, i.e., (¹W e3)2,7 whereasU2(u) is
anisotropic. The two origins of the anisotropy are~a! the
compatibility relation, Eq.~1!, which has higher powers ink
than Eq. ~3! due to discreteness, and~b! the presence of
shuffle mode energy. The latter can be written as gradient
strains, but with corrections to the phenomenological isot
pic term, (¹W e3)2, used in Ginzburg-Landau theory. A
U2(u) is minimized for u50° and 90°, it competes with
U0(u) which prefersu545° and 135°. Thus, the domai
wall direction depends on the length scale with a critic
length scalelc;AB/A1. If lc<1, i.e., less than the inter
atomic spacing, the domain wall has direction 45° or 13
down to atomic scales. Iflc.1, then for length scales
smaller~larger! thanlc , the domain wall direction is 0° or
90° (45° or 135°) and the domain wall has multisca
attributes.

We examine first the caselc<1 that would apply to ma-
terials with relatively large bulk modulusA1 ~‘‘hard’’ mate-
rials! for fixed B. Here kx56ky and U(kW )5B(1
2coskx)/(11coskx). The domain wall width is a result of the
competition betweenU(k), which favorskW→0 or thick do-
mains, andErec

(2) , which favors sharp walls. We illustrate th

.

FIG. 5. ~Color! Nonequilibrium domain wall state:~a! e3, ~b!
s1 , ~c! s2 for lc<1, ~d! e3 for lc.1. Parameter values are iden
tical to Fig. 4. Dark red corresponds to 0.28 and dark blue
20.28. Green implies a value close to zero.

FIG. 6. ~Color! Atomic scale domain wall solution for material
with lc.1. Parameters are the same as in Figs. 4~b! and 4~c!,
which show the region inside the square in this figure. Straine2 is
zero. Color scheme is the same as in Fig. 5.
1-3
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domain wall solution with 135° domain wall direction. Th
only nonzero distortion modes aree3 ands2 (s1 for a 45°
domain wall!. The straine3 reverses sign at the domain wa
the intracell modes2 is confined within the domain wall
and the atomic displacements are parallel to the domain
direction. The numerical solution9 for e3 ands2 along a line
perpendicular to the wall is shown in Fig. 3~a!, for which
lc;1. ~Narrow domain walls with widths of a few uni
cells, as considered here, have been identi
experimentally.10! The corresponding displacement field ne
the center of the domain wall is shown in Fig. 4~a!, in which
the red and blue colors show regions withe3 positive and
negative, respectively. Both figures show that the cente
the domain wall is located at bonds rather than sites to av
the higher-energy state ofe350 and larges2 . As for a
Peierls-Nabarro barrier,11 the higher energy~by 4.431024

per unit length for our parameter values! for the site-centered
domain wall acts as a pinning potential for the domain w
due to the inherent discreteness. In Fig. 3~b! we compare our
results with continuum theory, which predictse3

5e3
maxtanh(is/j) ~Ref. 7! and s25]e3/2] i s from Eq. ~4!,

where i s5 i x1 i y . The differences in the interface regio
shown in Fig. 3~b!, are of the order of 10% ofe3

max

5AA38/F3. The domain wall width10 is roughly given by
2j5A2AB/A38 and the ratio between the maxima ofs2 and
e3 , s2

max/e3
max, is about 1/(2j).

Anisotropic effects inU(k,u) become more apparen
away from equilibrium, e.g., at finite temperatures or in oth
conditions where metastability is present. Figure 5~a! shows
the results for e3 of a 2D simulation away from
equilibrium,12 in which atomic scale domain walls are or
ented along 45° and 135° directions. The corresponding
tracell modes are shown in Figs. 5~b! and 5~c!. Note that
boths1 ands2 shuffles are present at or near interfaces a
only one of these modes survives at equilibrium. The ho
zontal or vertical ‘‘jogs’’ in thes1 ands2 walls are second-
ary defects due to the competition betweenU0 and U2,
which provide principal relaxation forces.
.
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The domain wall solution forlc.1, typical for small
bulk modulusA1 or ‘‘soft’’ materials, is shown in Fig. 6 for
which lc;A5. Thee3 field in Fig. 6~a! shows that on length
scales of the size of the system~larger thanlc), the diagonal
orientation is still preferred. However, this diagonal doma
wall consists of a ‘‘staircase’’ of 0° and 90° domain walls
length scalelc . The existence of 0° and 90° walls ine3
forces elastic compatibility to induce alternately large po
tive and negative values in the dilatation straine1 in the
horizontal and vertical parts of the staircase, as shown in
6~b!. This has implications for the functionality of the do
main walls.13 For example, thee1 field can couple to charge
and modulate the local charge density along the wall. Sim
features are also reflected ins1 and s2 , as shown in Figs.
6~c! and 6~d!. The displacement pattern within the square
Fig. 6 is shown in Fig. 4~b!. Unlike the caselc<1 in Fig.
4~a!, the displacement has a component perpendicular to
135° large scale domain wall direction, which is shown
Fig. 4~c! magnified by a factor of 3. This component is grea
est for the atoms at the boundary of the two domains
nonequilibrium state is shown in Fig. 5~d!. The small do-
mains have 0° or 90° boundaries, but over larger len
scales these domains are correlated along 45° and 1
directions.

In summary, we have reported an approach to ‘‘atom
scale elasticity,’’ which uses symmetry modes of element
objects of atoms as distortion variables. A gradient expans
for the energy withanisotropic coefficients has been ob
tained, with corrections to the usual phenomenological i
tropic gradient terms used in Ginzburg-Landau theory. As
illustration, we have obtained domain wall~twin boundary!
solutions in terms of strainand intracell modes and have
shown how they differ from the continuum elastic solito
solution.7 Our work provides the basis for interpretin
atomic scale features in high-resolution electron microsc
studies of domain walls.1,10
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