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Second-harmonic generation in arrays of spherical particles
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We calculate the optical second harmofH) radiation generated by small spheres made up of a homo-
geneous centrosymmetric material illuminated by inhomogeneous transverse and/or longitudinal electromag-
netic fields. We obtain expressions for the hyperpolarizabilities of the particles in terms of the multipolar bulk
susceptibilities and dipolar surface susceptibilities of their constitutive material. We employ the resulting
response functions to obtain the nonlinear susceptibilities of a composite medium made up of an array of such
particles and to calculate the radiation patterns and the efficiency of SH generation from the bulk and the edge
of thin composite films illuminated by finite beams. Each sphere has comparable dipolar and quadrupolar
contributions to the nonlinear radiation, and the composite has comparable bulk and edge contributions which
interfere among themselves yielding nontrivial radiation and polarization patterns. We present numerical re-
sults for Si spheres and we compare our results with recent experiments.
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[. INTRODUCTION field is neither of a pure longitudinal character nor is it a
simple plane wave. For example, within a composite, the

Optical second harmonic generati@HG) in centrosym-  electric field has longitudinal short range spatial
metric systems has proved to be a useful spectroscopic protieictuations® besides the transverse macroscopic field, and
of surfaces, as the bulk contribution is strongly suppressethe latter is not necessarily a plane wave. Thus, in the first
due to the symmetry.As opposed to other surface tech- part of this paper, we generalize the theories above to calcu-
nigues, SHG permits the observation of surfaces out of ullate the quadratic nonlinear response functions of a single
trahigh vacuum and in many different ambients. For in-small nonmagnetic centrosymmetric sphere illuminated by
stance, it may be employed to study buried interfacesan arbitrary nonhomogeneous electromagnetic field, con-
Although most of the theoretical and experimental work hasstrained only by the absence of external charges within the
been performed on flat surface$other shapes have also sphere. Afterward, we employ the resulting hyperpolariz-
been explored, most notably, spherical partiéléecently, abilities to calculate the macroscopic second order suscepti-
SHG was employed to explore a thin composite layer madailities of a composite. Finally, we calculate the SHG from a
up of Si spherical nanocrystallites embedded within a,SiO thin homogeneous slab of this composite illuminated by a
matrix® It was found that the signal came mainly from the focused Gaussian beam, and from an inhomogeneous com-
nanoparticles, not from the matrix, and that its strength diposite with a density gradient. We find similar bulk and sur-
minished by an order of magnitude when the buried Si4(SiO face contributions to the signal produced by a single sphere.
interfaces were passivated with hydrogen, thus demonstralts dipolar and quadrupolar contributions are also similar,
ing the sensitivity of SHG to the condition of the surface of and their relative strength depends on the spatial variation of
the particles and its usefulness for studying novel electronithe polarizing field. As expected, a plane wave produces no
devices. However, experiment showed that the transmittedoherent SHG exactly along the forward direction, but a fi-
intensity displayed a peak along the forward direction anchite sized beam produces a nontrivial radiation pattern
with a very narrow angular aperture. This result was unexaround the forward direction when it illuminates a homoge-
pected, as previous thedrindicated that the radiation pro- neous composite film. The density gradient at the edge of the
duced by a single sphere illuminated by a plane wave vansample produces a signal that may be larger than that coming
ishes identically along the forward direction, as has beeifrom the interior and has different patterns and polarizations,
corroborated through experiments with suspended colloidadepending on the direction of the incoming electric field with
particles’® respect to the edge.

The theory of Dadagt al® mentioned above was devel-  The paper is organized as follows: In Sec. Il we develop
oped for spheres illuminated by a plane electromagnetithe theory for the nonlinear response of a small single
wave. However, the nonlinear response of the particles actisphere. In Sec. Il we obtain the macroscopic nonlinear sus-
ally depends on the nature of the exciting field, as shown byeptibilities of a homogeneous composite and we employ
Brudny et al? which obtained alternative results for the casethem to calculate the SHG of a thin film illuminated by a
of a longitudinal exciting field. In general, the polarizing Gaussian beam, and in Sec. IV we take account of the inho-
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/ Related toé(z), we will also calculate the scalar second
e=1 —A- momentQ®® of the nonlinear induced charge distribution,
given by

QB=%IE*(0)]%. €)

Finally, there is no quadratic magnetization, as no combina-

tion of only E® and VE®* can yield an axial vector. As the
sphere is small, we need not consider further multipolar mo-
ments nor higher order spatial derivatives of the field. The
purpose of the present section is the calculation of the non-
I | linear response functiong” to lowest order inR, wherey”
R =9°%,9™ 99, andy".
Assuming thatR is small enough, we linearize the field
FIG. 1. Nonmagnetic sphere of radiRswith dielectric function  within the sphere as
e(w) within a vacuum, being acted upon by an inhomogeneous

electric fieldE®* The selvedge of widtlf is shown as a dark shell. E®r)=E°+r.VE’+O(r?). (4)

. . o Making an expansion in irreducible tensdfsye write
mogeneity of the density to calculate the radiation from the

edge of the film. Within a continuous dipolium mod&lin O 1, 1 o
Sec. V we calculate the response functions and the radiation EF(r)=Ei+ §(V'E )it E[(VX BT Xr]
patterns and intensities corresponding to Si nanospheres, and
we compare our results with experiment. Finally, Sec. VI is
devoted to a discussion of our results and to conclusions. The
details of the derivation presented in Sec. Il are included in ) ]
Appendix A, and the results are compared with those in thénd employing Maxwell's equations,

literature in Appendix B. :

P &, S I o [N AP
Eex(r)=E°+?p°r+EqBo><r+§C°~r, (6)

1 0 0 2 =0
+§ (9|EJ+(9]E|_§VE 5” rj, (5)

IIl. NONLINEAR RESPONSE OF A SINGLE SPHERE 0 =
wherep® is the external charge densiBP the external mag-

We first consider a single homogenous, local, iSotropicya e field, C° is a second order symmetric traceless tensor

centrqs_ymm_etric,.nonmagnetic sphere of rgcﬂilmntergd at  and g= w/c is the characteristic wave number for the inci-
the origin, with a linear response characterized by a d|electr|taem field

function e(w). For simplicity we consider that outside the
qu_ehre th(ra]re |s_only vgcuufﬁl% D). inh '%ﬂat there is no external charge within the sphefes 0, so

) ?ese ere '_s ac.:te upon by an inhomogeneous extemng; e disregard/’. We notice that the first and third term
field E¥(r), oscillating at frequency. We assume that the on the right hand side of Eq6) are irrotational and may be
scale of spatial variation of this polarizing field is much gerived from a scalar potential with angular momehtal
larger thanR. Due to quadratic nonlinear optical processes,and 2 respectively, while the second term is solenoidal. Thus,
the sphere may acquire a dipole mompft and a quadru-  the self-consistent screened linear filavithin the sphere is
pole momenQ® in response to the external field. The sym- given by

metry of the sphere implies that, to lowest order in the field

In the following we will make the reasonable assumption

gradient,p® has to be constructed from a combination of E(r)=L,E%+ iﬂgoxpr EL2160_I7 )
only E®{(0) andVE®X(0) vielding a vector. The only posibil- 2 2
ity Is wherel,,, are the screening factors for potentials with angu-
lar momentum and frequencywo,
p?=y?E*(0)V-E™(0) +y*E*{(0)- VE™(0) 21+1 @
R R Lw=r—"-, 8
+ yMESX(0) X [(V X E®X(0)]. (1) Yole, 1+l

and we abbreviated,=e(Www), w=1,2. Notice that, as the
sphere is nonmagnetic, the solenoidal contribution to the
field remains unscreened.

Now we chose a particularly simple polarizing field, for

which E°=(0,0E% points along thez direction, B°

1 _ /RO . . . S0 oo
S2)_ al ge cexy T ree 25 =(B",0,0) points along the direction, andC”=diag(— 1,
Q 7| E(OES0) 3[E (0)J"1). @ —1,2)C%2 produces a potential with cylindrical symmetry

Similarly, Q@ should be written as a traceless, symmetric
tensor quadratic if£X(0),°
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along thez axis. The hyperpolarizabilitiey” obtained for

these fields may afterwards be employed for the general case.

Thus, we write

0 ) 0 1 —X
N N |
E®(r)=E°| 0 +Eq|3° —z|+2C°% Y|
1 y 2z
and
0 _ 0 —X
. 0 19 _, 1 0
E(r)=LyE°| O +5B% —Z|+7LaC% Y,
1 y 2z
(10
SO we may identify
R R 1
Eex(O)-VEeX(O)zz(O,—inOBO,EOCO), (1)
E®(0)X[VXE®(0)]=(0iqE’B°,0), (12)
V[E®X(0)]2=(0iqE°B°,E°CY), (13)
R R 1 -
Eex(O)EeX(O)—§[Eex(0)]21=diag(—1,—1,2)(E°)2/3,
(14
and
[E®(0)]*=(E?)?, (15

with similar results for the screened figlg. (10)].
The macroscopic quadratic polarizatiBf induced by the
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FIG. 2. lllustration of the nonlinear bulk polarizati(ﬁﬁ’ and the
surface polarizationf’S located immediately outside the sphere.

constructed in terms of the displaceménand the electri&

fields at the surface. The advantage of this definition is that it
removes the ambiguities as to the position within the sel-
vedge where the fields are to be evaluated. Also, we identify

PS as the total surface polarization, so that, in contrast to the

bulk polarizationP®, no further screening d®S is necessary.
This way, we also avoid the ambiguity as to where in the
surface should the surface polarization be located; corre-
sponding to Ps we place a singular polarizatioﬁ“ﬁ(r
—R™) in vacuum just outside of the sphefféig. 2).

Assuming thatR is much larger thart, we may safely
consider the sphere to be locally flat. Notice that we have
already stated thaR is smaller than the spatial variation of
the field, so in particular, it should be smaller than the optical
wavelengthh. As ¢ is of the order of the screening depth,
typically about an atomic distance, whileis commonly two

linear field within the bulk of a homogeneous isotropic me-t0 three orders of magnitude larger, there is a range of sizes

dium may be written &3

P°(r)=yVE2+ §'E-VE, (16)

wherey(w) andé’ (w) are the bulk nonlinear response func-

tions. Using Eq(10) we write

ﬁb=3[o—iqL (8'—2y)E°B% L1l oy(6 +29)ECY]
LY 11 Y yL11k 21 Y

+0(r). (17)

Besides the bulk polarizatioﬁb, there is a surface qua-

dratic polarizariori33 due to dipolarly allowed processes in a
narrow selvedge of widtli where centrosymmetry is locally

broken:

Here Xﬁkzxﬁk(ﬁ,w) is the second order surface suscepti-
bility at position R. As in Refs. 9 and 11, we define this

susceptibility as the response to the continuous field

F(R)=D,(R)+E|(R), (19)

R for which the conditiond <R<\ may be obeyed, such as
for the 3—10-nm sized particles employed in the experiments
of Ref. 5. Thus, we write

a
5ir5jr5kr_2+[(1_ 5ir)(1_ 5jr)5kr

S _ .S
Xijk =X
€1

b
(1= 68ir) 6 (1= bir) ]

€
+ 6, (1— 6, )(1— é‘kr)f) (spherical (20

in the spherical coordinate bagis,¢. Here,a=a(w), b
=b(w) andf="f(w) are the dimensionless functions which
are commonly employed to parametrize the response of a flat
homogeneous surfate™® that is isotropic within its plane,

_(51_ 1)

64m2ne

S

X (21

n is the electronic density, and e is the electronic charge.

085318-3



MOCHAN, MAYTORENA, MENDOZA, AND BRUDNY PHYSICAL REVIEW B 68, 085318 (2003

Integrating Eq.(17) over the bulk and Eq18) over the surface of the sphere, and accounting for linear screening,at 2
we can obtain the total second order dipole moment. A similar process permits the calculation of the quadrupole moment. The
results of these procedures dsee Appendix A

0

N 2 .

p(2)=1—5R3L11L12 _5|q[(5,_27)_2(62f_b)Xs]EOBO ) (22
[5(8"+27y)+2(2e,a+b+3e,f) x5]L,ECCO

2 327 4 2 . 5 . - I1l. NONLINEAR RESPONSE OF A COMPOSITE
Qe =15 Rtk (eat3b—eD(ED" (23 In Sec. Il we obtained the nonlinear response of a single
and sphere subject to an inhomogeneous fefd In the present
section we want to look at the response of a composite me-
87 dium made up of such spheres, such as the nanocrystals that
QS:?Rsty(s(aﬂL 2f)(E?)?. (24 have been studied by Jiaegal® In Ref. 5 a thin disordered
array of Si spherical nanocrystals within a Si@atrix was

Comparing Eq(22) with Eq. (1) and employing Eqg11) studied using SHG. The second harmonic radiation was
and(12) we finally obtain the dipolar hiperpolarizabilites ~ found to be confined to a very narrow=(L°) cone and
peaked along the forward direction. At first sight, this result
o AT , . is intriguing: The first two contributions to the nonlinear di-
Y =75 Rbulwl 2 5(8"+2y) +2x*(2€a+ b+ 3e,f)] pole [Eq. (1)] of each sphere are null when the sphere is
(25) illuminated by a plane wave, while its quadrup¢g. (2)]
would have an axis of cylindrical symmetry lying on the
and plane wavefront. Therefore, neither the second harmonic
(SH) dipole nor the quadrupole moments of the sphere are
expected to radiate along the forward directioh®Thus, it
was suggested that the observed radiation originated from
density, size and shape fluctuaticnslowever, the angular
+2x(2€,a+b+3e,f)Lo—5(b—€,f)]}. (26)  distribution of the radiation is inconsistent v(\éir%h the incoher-
L . . ent signal expected to arise from fluctuatidrisNeverthe-
Similarily, a comparison of Eq23) W'th Egs.(2) and (14), less, coherent SH radiation may appear when the sample is
and of Eq.(24) with Egs.(3) and(15) yields illuminated with a beam that has a finite waist, as actually
employed in Ref. 5, since the in-plane inhomogeneity of the
167 i . T )
Vq:_RsLilesz( e,a+3b— e,f) 27) f|§ld amplitude mlght mduce_ further nonlinear sources that
) might be able to radiate. In Fig. 3 we show schematically the
SH dipole moments induced on a composite by a focused

2
Ym:ER3|—11|—12{5[(5' +2y)Ly— (8" —27v)]

and fundamental beam. Near the center of the beam, the dipoles
8 point along the nominal propagation direction, and thus they
Yi=—R3L2 x%(a+2f). (28)  cannot radiate into it. However, as the edge of the illumi-

3 nated spot is approached, the fundamental amplitude decays,

and the corresponding gradient tilts the nonlinear dipoles
A comparison(see Appendix Bof the expressions above away from the forward direction. Thus, those dipoles may
with earlier work(Refs. 9, 6, and J6shows that the present radiate close to the forward direction. Although the fields
work corrects an Oversight in Ref. 9 and extends its results t@roduced by dipo|es located at Opposite sides of the Spot
small spheres made up of isotropic, homogeneous, and cefyight cancel each other exactly along the forward direction,
trosymmetric materials with arbitrary bulk and surface re-sych cancelation is absent at small off-forward scattering
sponse functiony, &', a, b, andf and excited by a field with  angles, yielding a nontrivial intensity distribution. To illus-
both longitudinal and transverse components. Our results afgate this possibility, in this section we calculate the coherent
also a generalization of those of Refs. 6 and 16 to smal§H radiated by a composite illuminated by a finite beam. We
nonmagnetic spheres immersed in vacuum and excited by @nsider thus a system made up of a very narrow disordered

f'elld Vtvhh'Ch |st_not necgssar;ly a dplane wave. for th i array of small spheres distributed with a densig\ff) and
n this sec |fon we avef oun lexpressmrr:s or the non I?'llluminated by a finite beam. The place of the external field
ear response functions’ of a single nanosphere in terms of ,.ing on a given sphere should be taken by the actual exter-

the intrinsic response of the surface, (b, f) and bulk (v, h5| field plus the field produced by other spheres. Thus, we
6') of flat semiinfinite homogeneous and isotropic materials. hould replac&® by the local fieldE"™. For simplicit
Thus, we may take advandtage of manifold models and mea> OUld repiac y the local Tie - For simplicity, we

surements of those intrinsic response functions in order t&rther ignore the local field effect and identiB/°° with the
obtain the nonlinear susceptibility of small particles. macroscopic fieldEM, which we denote in what follows
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FIG. 4. A Gaussian beam is focused on a spot of radigien a
thin composite film of width giving rise to a SH scattered radia-
tion.

FIG. 3. Schematic representation of the SH dipole moments A
induced on a composite system illuminated by a focused beam. The V2AT+ (zq)ZAT: — _jT (34)
SH field radiated at small off-normal directions is indicated, as well c

as the expected two lobed intensity distribution and the contribu- . L
. . where the superscrifitdenotes the transverse projection of a
tions of some dipoles to those lobes.

vector field andf is the SH current
simply asE as it causes no confusion. g
The macroscopic nonlinear polarization of the composite J=—P"=—2jwp" (35)
ot '

medium may be obtained from the nonlinear dipole and

quadrupole of each of its component sphéfes, and we solve Eq(34) to obtain

AT(r)= —|[|3“'(F T (39
~ - —-r
where we include the scal® asQ is traceless. Within a . _ _
homogeneous composines(F) has a constant valug,, and At large distances from the illuminated spot we may per-

- - 1 - 1 .
P”'=nsp(2)—€V-nsQ(2)— gvnSQ(Z), (29) R _ , le2|q\r7r |
=2iq | d°r |a =
r !

we employ Eqgs(1)—(3) to write form the usual approximations|i/r'|~1/r and g2ialr—r’|
] ~e2larg=2ian-r" \with n=(sin #cose,sindsine,coss) a unit
P"'=ny,y°E-VE+nyy"EX (VX E)— nb%é.vé vector in the direction of , to obtain
_ e2iqr |
a_ 354 AT(r)=—2iql PIhT, 3
+nb7 187 VE2 (30 (r) ql ——(Px) (37

where we assumed the film is much narrower than the wave-
length,gl<1, and we introduced the two-dimensional Fou-
rier transform

which becomes

PN=T'VE2+A'E.VE, (3D

after expanding the curl terms and eliminating the field di-

Snl_ 2, B2 o ya—iKT
vergence, where we introduced the response functions Pk —f d<r|P™(ry,z=0)e I, (39

_ M o my a_avg with wave vectorlZ=2qﬁH . Actually, much wider films may
I'= 18(97 =379 (32 be considered, as long as phase matching effects are negli-
gible, i.e.,qlAn<1, with An=n(2w)—n(w), andn is the
and index of refraction of the composite, and as long as beam
"=y y5— ™~ 296), (33) divergence effects may also be neglected, I.@.qwg. We

now realize that the first term in E¢31) is purely longitu-
analogous toy and 8’ [Eq. (16)]. dinal, so it cannot contribute to the radiated field. Thus, sub-
Now, we consider a thin sample of widthying on the  stituting into Eq.(37), we obtain the transverse potential
z=0 plane illuminated by a beam with a finite waigg, as ‘
in Ref. 5(Fig. 4). R el
A'(r)=-2iql

T E.vB\T
The unscreened SH vector potentfabbeys r A'(E-VE)k. (39
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Using Eq.(39), we have reduced the problem of SH radia-
tion from a thin composite film illuminated by a beam of
finite cross section to that of the calculation of the in-plane

Fourier transform of the nonlinear driving terfn VE.
To proceed, we assume thatzat O the driving fieldE is

given by the waist of a Gaussian beam and we assume that S
its width wg is much larger than the wavelength, so that the
beam is paraxial around the nominal propagation direction

Thus, we can ignore the small variations of oré&q in its

polarization direction, and we can take a linearly polarized

beam of the form
E(F),0)=Ege "6, (40)

wherex is the unit vector in the direction. In this case,

> _ > E(Z)X 2, 2A
E-VE=-2—e 2"x
Wo

(41)

is also linearly polarized along Since we can considerto

PHYSICAL REVIEW B 68, 085318 (2003
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FIG. 5. SH intensity vs angular position of the detector for a
disordered array of spheres illuminated by a Gaussian beam of
width wy and frequencyw=qc.

The radiated pattern obtained from E45) is shown in Fig.
5. Notice that there is no radiation along the forward direc-
tion, but there is a strong nonlinear signal along two lobes
very close to the forward direction, displaced along the in-
coming polarization directiono=0 by an angle +6,

be a transverse direction, normal to the nominal propagatios +1/(qw,). The angular displacemertt,= 6,/2= 65/.2

axis z, we approximate - VE)"~E- VE, with the Fourier
transform

. i A
(E-VE)=7 K, w2e K WoBE2R (42)

We substitute Eq(42) into Eg. (39) to obtain the vector
potential

KT 2 20,2 —qzv\/"azlzemqr 123
A'(r)=mg“wgl 6§ cospe 0 TA Eox, (43

where we wrote the wavevector in terms of the scatterin

direction and further assumed gl 6.

The radiated electric fiel&" = 2igAT is immediatelly ob-
tained from the potentidlEq. (43)], and from it we obtain

Poynting's vectorS=c|E'|?n/8, the SH radiated intensity

per unit solid angle into directiom, dI(n)/dQ=r2S(rn)
-n and the differential efficiency of SH generation,

d¢ 1 di
0= pran’ 49
given by
d& 2
a0~ ;(qwo)“azcosﬂpe*qzwg@z& (45)
whereP is the incoming power,
c . cw3
P= 8_7Tf dZI’H|E(rH,O)|2=1—6|EO|2, (46)

where ¢, and ¢5 are the beam divergence half-angles of the
fundamental beam and of the SH field that would have been
generated by a homogeneous non-centrosymmetric material,
such as the quartz plates usually employed as a reference in
SH experiments. We remark that the characteristic angjles
and 65 are defined in terms of the angular decay of the
fundamental and SH far fieldmplitudes® More directly
observable are the corresponding quantities defined in terms
of the angular decay of the fundamental and iBténsities

or equivalently, by the second moment of the angular distri-
bution of the intensities, which aré2 times smaller.

We natice that the efficiency grows as the square of the
g[hicknessl of the system, since we assumed it to be very
thin. It decreases as the inverse fourth power of the size of
the illuminated spot, and for a fixed spot size and out of
resonance, it grows as the square of the frequency. On the
other hand, if the diffraction anglé; is kept constant, the
efficiency scales as its fourth power and as the sixth power of
frequency. The order of magnitude 6fmay be estimated
from Eqgs.(20), (21), (25), (26), (27), (28), (33), and(47). Far
from resonance, the hypolarizabilitieg are of orderR3y®
[Egs.(25), (26), (27), and(28)], andx® is of order 10 3/ne.

The electronic density of a solid is typically of order 1@(%
where ag is Bohr radius. Thus, from EQq.(33), A’
~10 ?f,ad/e, wheref,=4mn,R%3 is the filling fraction of
the spheres. Substituting in E@7) and writing the result in
terms of §,=2/qw,, we finally obtain

1

e?/ag ¢/ag

£=10"2¢(qag)*(ql)?f261

~10"*¢(qag)*(ql)2f267 WL, (48)

and¢& is the integrated efficiency over the whole solid angle:

1 di 647 (ql)?

£=52) Mg =

PZ |AI|2.

(47)

4
Wy

where { is a pure number which we expect to be of order
unity, though it may vary by a couple of orders of magnitude
due to the high powers of dimensionless numbers which ap-
pear implicitly in Eg. (47). The reasonable choicqag
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~1072, ql=1, f,~107%, and §;~1°~2x 10 ? yields an 2w
efficiency£~10 2 W™ 1. For thicker composites, for which

gl is larger than order 1, phase matching effects might have

to be accounted for. Qualitatively, this may be accomplished

simply by replacing? in the previous equations by the phase

mismatch factor, i.e., |

12— |sin(gqlAn)/(gqAn)|2. (49

Additional changes would be necessary for very thick

samples with ~qw§ or larger, for which the divergence of

the fundamental and SH beams within the sample have to be

accounted for. In the experiments of Jiaegal. described £ 6. A Gaussian beam is focused on the edge of a thin com-
earlie? 1~10/q was not so large as to produce phase MiSposite, as that in Fig. 4, producing SH radiatitight arrows. The

match effects and the other parameters were close to thog@adient of the density of sphers close to the edge is indicated
mentioned above. On the other hand, about 100-300 SHeavy arrow.

3.1-eV photons were detected per second from a sample il-
luminated by 2.%10° 100-200 fs, 1xJ pulses each served SH intensity as the beam crossed the edge of the
second?’ yielding the measured efficiengg~10"2W~%,  composite was about an order of magnitude larger than the
in good agreement with the estimation above. signal from well within the composite, instead of interpolat-
The ubiquitous randomness within composites yields necing smoothly between the signal from the interior and the
essarily some incoherent radiation. Thus, it is instructive tqoractically inexistent signal from the exterior, as could have
estimate the efficiency of the incoherent SHE3, and to  been naively expected. Furthermore, the signal displayed
compare it with its coherent counterp&arfEq. (48)]. As the  strong oscillations close to the edge. Thus, in this section we
dipolar and quadrupolar radiation produced by a singleconcentrate our attention on the calculation of the SH radia-
sphere are similar, we estimate the intensity of the SH signaion from the lateral edge of a thin composite made of small
produced by an individual sphere through Larmor’s formulaspheres, such as that considered in the previous ses@en
PP ~c(29)*(p@)?13~10cq®(x%)°RPES/3, where we used Fig. 6).
Eq. (1) and we estimateg”~ x°R* and EoVEo~qES. Mul- Accounting for the variation of the densityng
tiplying by the number of illuminated spheresndwj and ~ =npé(x,y) across the illuminated spot, from E(9) we
dividing by the square of the incident power Eg6), we  obtain
obtain the incoherent efficiency

Vng

SnI_ A1 eP VR 2 ", Yo
P"=A"¢E- VE+TV(6E?) —n, 5 E?Vé—n, - EE- V¢,

: (50) (52

_ _ instead of Eq(31), whereé is a function which varies from
where we employed the estimate fgt given above, so that 0 outside the composite to its bulk value 1 within. Without
loss of generality we take the edge along yhaxis, so that

(51)  £=&(x), and we writeVng=n,(dé/dx)x=ny&' (x)x. Then,

RS 1 1

q
I 4
glnc fb(an) Wg c/aB eZ/aB

Ene_ 4 (AR(aW0)’

3 (ahfs Eq. (52) reduces to
Substituting the parameters corresponding to the experiment S e o ) bR D
of Jianget al. (Ref. 5 mentioned above, we obtain that the PM=A"¢(E-VE+TV(EED) +Y & (X)XES, (53

coherent and incoherent contributions have comparable Sb\'/hereY depends on whether the external fiécpoints in
efficiency. However, the incoherent radiation is distributedthe diregtion parallel ¢=||) or perpendicular ¢=1) to the

over a wide solid angle, according to a superposition of di- radient ofn

polar and quadrupolar radiation pattePnshile the coherent 9 s?

radiation has a very narrow distribution close to the forward VLIV Y™

direction(Fig. 5 and, thus, it has a much larger intensity. On Y=- nb(7 +€ , Y, = nb7. (54)

the other hand, the dependence of the incoherent sigrig] on

andR differs?® from that of the coherent signal, and for di-

luted samples such as suspensions, the incoherent radiation

may dominaté:2° o g2iar
AT(r)=—2iql

The far field is now given by

(A'¢E-VE+Y ,&'XE?))  (55)

r
IV. NONLINEAR RESPONSE AT THE EDGE OF THE ) )
COMPOSITE instead of Eq(39). To proceed, we chose a smooth density

profile and we assume that its spatial scale of variation is

Another intriguing observation was reported in Ref. 5 re-|arger tharw,, so we approximate it by a linear profile
garding the intensity of the SH signal as the fundamental

beam was scanned laterally through the sample. The ob- EX)=¢&p+ XL, (56)
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with &, representing the relative density at the center of the E\/2 Ey/2 E, E; D/2Q/2
beam, which we take without loss of generalityxat0, and ,
L is a distance of the order of the width of the edge. Substi-
tuting Eq. (56) into Eq. (55), performing the Fourier trans- 1
form under the assumption of a small illuminated spot (

TIT 1°

2 ’ v
<L), and calculating the resulting radiation pattern, we fi- 5 8 50
nally obtain :3 6k - 60
1)
de,_ 8, e 41| 2¢ L Wo s
dQ N a b 0% 01COS(P : OL
2
1 6 I 0 1 2 3 4 5 6
X\ 2 —26—§co§cp—— ’ (57) Fundamental photon energy (eV)
FIG. 7. Absolute value of the nonlinear response funct|artk,
Wo 2(3 Y| Y| wherey”= 7%, y™, 99, and for a single Si nanosphere. The labels
=& 1+(—L) §+2 — | —Re— ||, (58 E, andE, denote the critical points of SE;/2 andE,/2 denote
%o A A their subharmonics, anb/2 andQ/2 denote the subharmonics of
- 5 the dipolar and quadrupolar resonances, for whictefRe—2 and
dg, 8 e 40|29 0 6% -3/2.
—— ==& —sSing—1—— —Sin2¢
aQ 0° 0, oL 42 )
E 1 =&1+ E o (68
v 2( o )2 (59 Sl sl
a € whered&,, /dQ) and &,, denote the differential and total
21 v |2 efficiencies, withy and v denoting the outgoing and the
Wo L incoming polarizations respectively.
= 4+ — — 42—
E=&|1 §0L) (8 2 N ) , (60)

where&, is the total efficiency of a homogeneous fi[ig. V. RESULTS FOR S| NANOCRYSTALLITES

(47)] but evaluated at the nominal density¢, at the center As Ref. 5 presents experimental results for Si nano-
of the illuminating beam, i.e&,=&5¢. Here,d&,/dQ and  spheres, in this section we apply to them some of our previ-
¢, denote the differential and total SHG efficiencies for theous results. For simplicity, we calculate the surface and bulk
case in which the incoming polarization points along thenonlinear response functions of Si from its linear dielectric
direction »=|,L. More detailed information may be ob- functior?* using the continuous dipolium mod®iln Fig. 7
tained by analyzing the outgoing beam with a linear polarwe show the nonlinear response of a single Si nanosphere,
izer. In this case we obtain obtained from Eqs(B4)—(B8).

Some structures visible in this figure are inherited from

déj| _ ﬂ (61) the linear bulk responses, and e, and thus appear at the
dQ  dQ’ fundamental or at the subharmonic frequencies of the critical
points of the Si joint density of states. Further structures are
E1=&) (62)  due to the nonlinear surface respoase The resonances of
dé, 0.25
o~ 02
(Sl”:O, (64) Qi
£ 05
dg, 8 ey, 2( Wo )2 (65) =
=—Ep———|—| |—] ., = o1
dQ 7P 62 |A"| &L <1
5 ;5/ 0.05
g —25(W°)2 bt (66)
L=l = || 1 1 1 I 1
“ oL/ A % 1 2 3 4 5 6
, Fundamental photon energy (eV)
—46%0 2 2
2
&:ﬁgbe—zl —gsimp—iﬂe—zsin 20| , FIG. 8. Squared absolute valya’|? of the bulk nonlinear
dQ m 01 01 &l 01 response of a homogeneous composite made up of spherical Si

(67) inclusions.
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In Fig. 10 we show the SH radiation patterns from the
edge of the composite film. The incoming enerdy
=1.55 eV and polarizatiofj are the same as in the experi-
ment of Jianget al® We assumed the nominal beam focused
at the middle of the edge, with a nominal density
=0.5n,. We notice that for a wide edge, or equivalently, for
a thin beam, the differential efficiency is the same as the two
lobbed radiation pattern of Fig. 5 for a homogeneous film
(left pane). However, for a wider beam or a thinner edge a
new contribution coming from the gradieling of the den-

0 " . . " . Al sity appears, filling the minimum between the two lobes
Fundamental photon energy (eV) (middle panel. Furthermore, the interference between the
bulk-like and edge signals produces an asymmetry between

FIG. 9. Absolute valu&’, /A’ of the quotient between the edge both lobes; the lobe that leans towardsg is smaller. As
and the bulk response functions at the edge of a composite made obuld be expected from Fig. 9, the degree of asymmetry
Si nanospheres for two directions of the incoming polarization, pardepends on the frequency. Already feg/L~0.1 the gradi-
allel (v=|) and perpendiculai= 1) to the density gradie@n;.  ent contribution dominates and the two-lobed structure is

almost lost(right pane], although a slight asymmetry is still
the screening factork,, are too damped due to the finite visible. In this case the peak is about twice as high as those
imaginary part ofe, and the resonances bf; are outside of for the homogeneous film.
the spectral region shown in Fig. 7. In Fig. 11 we show the corresponding results but for po-

In Fig. 8 we show the bulk responge’ calculated for a larization perpendicular t&Vng, i.e., along the edge. As
homogeneous composite madengfSi nanospheres per unit Y, <Y| at Aw=1.55 eV, higher values ofv,/L are re-
volume, calculated by substituting the nonlinear response djuired before the gradient contribution becomes visible. In
each Si particle, shown in Fig. 7, into E(B3). We notice  this case, the two lobes are rotated with respect to those of
that only its squared magnitudd’|? enters the differential Fig. 10 and retain their symmetry. The gradient and the bulk-
and total SHG efficiencielEgs. (45) and (47)], and that the like contributions are polarized along and normal %o,
composite responde does not contribute. Fig. 8 shows that respectively. Thus the relatively small gradient contribution
the efficiency increases almost monotonically up to about 5.5n Fig. 11 may be isolated by analyzing the outgoing beam
eV, but has many features corresponding roughly to thosaith a linear polarizer. The polarized radiation pattern
displayed in Fig. 7. Howevety” are complex quantities and d&), /dQ) is a simple GaussiafEq. (65)] for all values of
they interfere among themselves, leading to a richer structurg, /L.
in Fig. 8.

As shown by Eqs(57)—(68), the differential and total SH
efficiencies at the edge of a thin composite layer depend on
the nominal efficiency of a homogeneous composjieand In this paper we first obtained the quadratic optical re-
on the quotienty” /A" andY, /A’, which together with the  sponse of a single centrosymmetric nonmagnetic isotropic
relative widthsw, and L of the beam and the edge control sphere illuminated by an inhomogeneous electromagnetic
the relative contribution from the field and the density gra-field. As we did not make assumptions about the nature of
dients. Figure 9 illustrates the frequency dependence of thesbe polarizing field, our results may be employed for both
relative contributions. transverse and longitudinal exciting fields. Thus they consti-

/A

VI. DISCUSSION AND CONCLUSIONS

FIG. 10. SH radiation patterrek£) /d{) from the edge of a composite thin film made up of Si nanospheres for various values of the beam
width wy and the edge sizk, wy/L=0.01, 0.05, and 0.1. The energy of the incoming photorsuis-1.55 eV and we chose the nominal
density at half the bulk value;=0.5n,. For reference, small vertical bars corresponding to the same fixed heightadebshown in each
panel. The arrow indicates the direction of the density gradient.
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wo/L =0.1 ‘;;l“\ll\l
i
<(\'(,,££/I/,,"l),\,\““ FIG. 11. SH radiation patterns

LI
— 4 d&, /dQ as in Fig. 10 but for a
polarization perpendicular to the
density gradienVng. The vertical
bar references have the same size
as in Fig. 10.

IS
T
7
///,,////}I/

S st =1
(6/61) cosp 1 =1 1 —1 (6/6,)sin¢

tute a generalization of previous work&®The hyperpolar- tions may interfere among themselves, yielding nontrivial
izabilities ¥, y™, 99, andy® were calculated to lowest order Patterns which may be modified by changing the frequency,
(R%) in the size of the particles and were written in terms ofthe waist of the illuminating beam, or the sharpeness of the
their bulk and surface second order susceptibilities under th@d9€: By analyzing the polarization of the outgoing beams

assumption that the curvature was small enough that the sug-radient and buII_<-Iike contributions may be separated_, facili-
face could be considered locally flat tating the analysis of the response functions. Calculations for

As has been discussed previodsbach individual sphere a Si nanosphere composite within a simple dipolium mBdel

is unable to radiate in the forward direction when illuminated?% <o qualitatively with the experimental observations.

b | H h . | ob . f The solid-angle resolved SH patterns radiated by the bulk
y a plane wave. However, the experimental observation of 8,4 ¢qge we have calculated have not been explored experi-
very narrow SH peak in the forward direction from compos-

a4 - _ “mentally yet. The bulk radiation of the composite depends on
ite films made up of spherical Si nanocrystals embedded i single parameted’, which in turn depends, through the

SiO, was recently reported.To understand its origin, we hyperpolarizabiliiesy”, on the bulk and surface response
applied our results to the calculation of the response of compnctions §’, , a, b, andf, of an individual sphere. As the
posites illuminated by a focused Gaussian linearly polarizegadiation from the edge involves different combinatiohs
beam. We obtained that neither in this case can there bef the above response functions, proper measurements might
radiation exactly in the forward direction. However, the ra-provide additional information to partially disentangle the
diation pattern shows two narrow lobes displaced along theeparate contributions. We hope that this work will stimulate
polarization direction by a small angle of the order of thefyrther experiments and theory.
diffraction-induced angular divergence of the linear far field.
The forward peak reported experimentally for an array of Si ACKNOWLEDGMENTS
nanospheré@smay have been confused with one of these
lobes®® We discussed the dependence of the SH differential
and total efficiencies on parameters such as the width of th
film, the density of inclusions, and the waist of the beam.
The experiment also showed that the signal may be e
hanced at the lateral edge of finite films. Thus, we calculate N .
the SH radiation produced at a non-homogeneous film. W B."M')' and from Funde}cmAntorchadVLB). VLB.is also
found bulklike contributions and contributions due to theWlth CONICET, Argentina.
gradient of the inclusion density. The radiation patterns, the
dependence on the input polarization, the output polarization
directions, and the spectral features of both contributions dif-
fer in general, and they arise from different combinations of To obtain the surface polarization, we substitute Et8),
the individual sphere’s response functions. These contribucl9), (20), and(21) into Eqg.(18), leading to

We are grateful to Michael Downer for showing us his

sults previous to publication and to him and to Tony Heinz
or useful discussions. We acknowledge the support from
nI;)GAPA-UNAM under Grant Nos. IN110999 and IN117402
EW.L.M. and J.M), from Conacyt under Grant No. 36033-E

APPENDIX A: SECOND ORDER DIPOLE AND
QUADRUPOLE MOMENTS OF A SPHERE

(acog 0+ fsirf) [acosf(3 cog6— 1)+ 3f cosd sirtd]
Bs=ys| —2bsinfcoss |L2,(E%2+ SX° bsing(1—6 cog6) L.l REOCO
0 0
fsingsine
+iqy| —bcosésing |L,;RE°B°+0O(R?) (spherical. (A1)
—bcog6 cose
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Now we calculate the dipole and quadrupole moments prowhereV denotes the volume of the sphere, &hds the solid
duced by the bulle® and surfaceP® polarizations. Integrat- angle. To lowest order, the bulk polarization is constant,
ing Eq. (17) within the volume of the sphere we obtain the leading to a bulk contributio® to quadrupolgA7) of or-
bulk contribution to the nonlinear dipole moment, given toder O(R*), which moreover vanishes from symmetry. The
lowest order inR by lowest order surface polarization is independentRoand
yields a quadrupole of ordd®®. From Eq.(A1), we notice
that this term is independent &° and C° and is produced
only by the constant part of the external fi&ld. Thus, in the
calculation of Q% we may assume cylindrical symmetry

We notice that there is a contribution B of orderO(R?)  around thez axis and writeQ®= diag(— 1,— 1,2)Q$/2. Sub-
so that even a constant external field induces a nonlineatituting Eq.(Al) into Eq. (A8) and performing the integral,
polarization at the surface of the sphere due to the local loswe obtain

of centrosymmetry. However, once we convert E&l) to

Cartesian coordinates and integrate over the surface, it yields Q3 =Q34+ Q% (A9)
a null contribution to the total nonlinear dipole of the sphere, here

as the sphere is globally centrosymmetric. On the other hangv

converting to Cartesian coordinates and integrating the sec- 30

ond and third terms on the right hand side of B4l) yields Q§Z‘|=?R3Lfl)(sb(E°)2 (A10)
a finite surface contribution to the nonlinear dipole

>,

2
pP= S RL.[0,-1q(8' ~27)EBO, Ly( 5/ +27)ECY].
(A2)

originates fromﬁﬁ and

p*=pi+p?, (A3)
32w
where Qs = —R3L21X5(a f)(E%)? (A11)
0 FP 3S
5 < 000 originates fromP? .
pr= R Ly,| —5SiqbE'B (A4) Finally, we calculate the second moment of the quadratic
bL,,E°C® induced charge
. . - . —)S
Zgglnates from the polarizatioR| parallel to the surface, Q_J &3 p(7)r2 (A12)
0 As we did above, we writg in terms of the polarization and
2g ) 0m0 integrate by parts to obtain a bulk contribution,
pJ_ 15 R3 sI—ll 5|qu B (AS)
00 ~ S o
(2a+30L1E°C szzf d3rpe.r, (A13)
from the polarizatiorf’i perpendicular to the surface. Both o
contributions are proportional to the volume of the sphere?Nd @ surface contribution,
and we neglect terms of higher orderRn
We now proceed to the calculation of the quadrupole mo- QS: 2R3J d2Q ps. T, (A14)
ment:
in analogy to Eqs(A7) and(A8). As above, to orde®(R®)
SZJ d3rp(F)(3FF—r2f). (A6) there is no bulk contribution. The surface contribution,
We write the density in terms of the polarizatiop QS=—WR3L§1XS(a+ 2f)(E%)?, (A15)

- - 3
=—V.P, and we include irP the quadratic bulk contribu-

tion P° [Eq. (17)] and the singular surface polarization May be obtained by substituting the first term on the right

_pt hand side of Eq(Al) in Eq. (Al14). The only finite contri-
Ebfegi; aRbJIk(lighgﬁbldii'owtegranng Eq.(A6) by parts we bution to Eq.(A15) originates from the perpendicular surface

. . _)S
polarizationP? .

- 5 p= , ab e To get the total multipole moments of the sphere we can-
Q°= fvd r[3(P°r+rP°)—2P".r1], (A7) not simply add the bulk and surface contributiéAg), (A4),
(A5), or (A10), (Al11), as we have yet to account for the
and a surface contribution screening at @ of the fields produced bP® and P® within

the bulk of the sphere. To this end we briefly follow Ref. 9.
= S~ A Since there is no magnetic moment induced and we assumed
s_p3 2 S S\ _ S,
Q=R j dQL3(Pr+rP?)—2P%r1], (A8) the sphere to be very small, in its immediate neighborhood
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mentQ(®, in the following we will neglect it. Actually, it
turns out thap® is a constant so it has no contribution to the
terms with|#0, for which Eq.(A16) becomes Laplace’s
equation, with solution

4 Fim' (inside
$im(1)= 557 % aim/r'**  (outside,

where we identifyq,,, with the spherical components of the
multipolar moment$? The coefficientsy,,, andF,,,, are de-
termined by boundary condition®\17) and (A18), which

(A19)

become
S
PJ_ AQim | s
= FinR'= (214 1)(P})im, (A20)
FIG. 12. lllustration of the surface polarizatida} , and the R
surface charge density” andoﬁ produced by the bulk polarization 59
P® and the surface polarizatidﬁﬁ, respectively. The figure corre-
sponds qualitatively to Fig. 2. Due to screening, additional charges im - b
are induced at the boundary of the sphere with dielectric response (1 +1) T lesFimR ™ =(21+1)(oy,t amm),
€,, but they are not shown. There is no additional screening surface R
polarization. (A21)
and yield
we can neglect retardation and describe the selfconsistent
field in terms of a quasistatic scalar potential The equa- Q=L (o + ofimR "2 +1€(PS)mR 1]
tion obeyed byg is
g ¥ ZQFm+Qi|;|m+Qi|m, (A22)
V24— —4mp°le; (insidg (ALe)  With L2 the screening factof®) at the second harmonic for
0 (outside, the angular momenturh Here we have identified a bulk

. p  contributionqp,>o”<P®, a surface contribution originated
vi/h_er; I;Ee_ ur(;gc_;eedne;d bu:k C_hla;rgti density ZI ip in the tanger_1tia|_ surfa}cg polarizaticqflmocoﬁoclpﬁ, and a
=—V-F7, IS divided Dy e, 10 yield the screened chargeé g rface contribution originated in the perpendicular polariza-
density. The boundary conditions obeyed ¢yare tion g5, %P3
m .

Settinge,—1, Lj,—1 in Eq. (A22) we obtain the un-

+\ -\ — s
#(RT)—$(RT)=4nP] (AL7) screened multipolar moments, which are then simply com-
and pared to their screened counterparts, yielding
P p ab,(screenep=L,,qP, (unscreened (A23)
R (R+)_€2(?_R¢(R_):_47TU' (A18)

0jim(screenegi=L ,qj,(unscreened (A24)
Equation(A17) expresses the discontinuity of the potential and
due to a singular surface polarization, while E418) ex-

presses the discontinuity of the normal component of the S (screeneil=L,e,q°,(unscreened  (A25)
field due to the surface charge= 0°+ o which has a bulk i 12€200m

originated contributions®=BP.7 and a surface originated 'huS: the total dipolel=1) and quadrupolel&2) mo-

S g =5 ments may be obtained from the unscreened moments ob-
contribution o= — V|- P/ produced by the parallel compo- taineq previouslfEgs. (A2), (A4), (A5), (A10), and(A11)]
nent of the surface polarizatid?® (see Fig. 12 by multiplying by the screening factdr,, at 2w. Those
As discussed abov®® denotes the self-consistent surface multipoles that originate in the perpendicular surface polar-
polarization and therefore, there is no additional screeninggationP$ [Eqs.(A5) and(A11)] are to be further multiplied
contribution to it. HoweverP® may induce a field within the by €.
sphere, and this field may lead to an additional induced bulk After screening and adding the bulgq. (A2)] and sur-
polarization and to bulk and surface screening charges. The§ace[Egs.(A4) and (A5)] contributions, we obtain the total
are accounted for by the factoes in Eqs.(A16) and(A18).  nonlinear dipolep® induced in the sphere, given by Eq.
Now we expand all quantities in Eq$§A16)—(A18) in (22). Similarly, we screen and add the contributions to the
terms of spherical harmonic¥,,(8,¢) as == nYim, induced quadrupol¢Egs. (A10) and (A11)] to obtain the
PP=2p1Yim. PS=2(P})imYim. etc. Sincep® contributes  total quadrupole momeri23). Finally, we notice thaD)® is
terms of at least orde®(R*) to the dipolar momenp® and  determined only by thé=0 contribution to the normal po-
O(R®) to the quadrupolar mome®(? and the second mo- larization (P$)qo, and that the field produced by this polar-
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ization does not penetrate the system and is therefore ndte complete the expressions above by stating in our notation

screened. ThuD®@ coincides withQ® [Eq. (A15)], and is  the values ofa, b, andf corresponding to the model of Ref.
given in Eq.(24) for the benefit of the reader. 11,

a(w)=2([e>,—€1]|[2€,—€,— €€
APPENDIX B: COMPARISON WITH EARLIER WORK (0)=2(leze1]l2€e1™ €2 €16,

2 2
In Ref. 11 a simple model for the nonlinear response of a tle]T1—e]loglei/€e;])/[€,— €117, (BB
centrosymmetric dielectric was developed, which lead to ex- b=—1 (B9)
plicit analytic expressions for the nonlinear bulk and surface ’
response functions in terms of the linear response. The modehd
consists of a continuous distribution of polarizable entities,
each of which responds nonlinearly to the gradient of the f=0. (B10)

field as a forced harmonic oscillator. Although very crude,
that model is a convenient first step for the analysis of real
systems, as it permits the actual calculation of spectra fro
the knowledge of only(w), which can be obtained experi-

mentally or through microscopic calculations. In the presen
section we employ that model to obtain definite expression

Our ¢ and yY [Egs. (B4) and (B6)] are similar to those
btained for pure longitudinal fields, given by E¢40) and
41) of Ref. 9. However, in Ref. 9 no account was taken of
{he polarization linearly induced within the interior of the
gphere by the field originated at the surface nonlinear polar-

for the response of small spheres.
From Egs.(12), (13) and (14) of Ref. 11 we obtain the
bulk polarization

5o 1 2_ 4B VEY4 L 2E.VE
PP= o aiay(VE?~4E-VE) + 5 _alE-VE, (BY)

wheren is the number density of polarizable “molecules”

within the bulk anda,,= a(ww) is the linear polarizability
of each one, related to the dielectric function through
=1+4mna,. Comparing Eq(B1) with Eq. (16) we iden-
tify

V= 55102 (B2)

and

n
5’2_6‘(1(“1_4&2). (B3)

2e

Substituting Eqs(B2) and(B3) in Egs.(25), (26), (27), and
(28), we obtain

e €11 5(e1—2ep+1
Y = gmme (e,+2)(2¢,43) (e, 2) o1 2€2t D)
+(e;—1)(2e,a+b+3e,f) ]R3, (B4)
n Y3 ol 6e,+5
Y= T Temne (e, +2)(e, 1 2) L €162t D)
+(e1—1)(b—€f)IR?, (BY)
9 —1)2
yi= (= 1) (e,a+3b—e,f)R3,
47Ne (e,+2)%(2e,+3)
(B6)
and
sas 3 (a7 onRe B7
y_87rne €+2 (a IR (B7)

ization. Thus, a factor df ,, is missing from the surface term

of Eg. (40) and a factol,, is missing from the surface term

of Eqg. (41) in Ref. 9. Furthermore, an additional factor &f
multiplying the surface response functioasand f is also
missing from Ref. 9. Therefore, Sec. Il corrects an oversight
in Ref. 9 and extends its results to small spheres made up of
isotropic, homogeneous, and centrosymmetric materials with
arbitrary bulk and surface response functignsy’, a, b, and

f and excited by a field with both longitudinal and transverse
components.

Another calculation similar to ours was performed in a
recent workl!® where the nonlinear response of a small
sphere to a plane electromagnetic wave was studied. In Refs.
6 and 16 a magnetic response was allowed, the sphere was
embedded within a polarizable medium and the surface re-
sponse took place within a thin spherical shell that screened

the surface polarization. Sin&*- VE® vanishes for a plane
electromagnetic wave, from the calculation by Dadapl. it

is only possible to extract values fof", 9 and39. In our
notation, Eqs(12) of Ref. 16 become

. 8i .
p@=——R3y,q(E")?

15 (B11)

and

P

~ ~A~ 8T . I
G- A+ QR=o RY(xra~ 57)R(EY) + 2x,E0 REY),

(B12)
from which we identify
m 8m 3
Y= 15 R, (B13)
167 3
Yi=—7Rxa, (B14)
and
~y Y 87 _,
Y- 3 =5 R(i-57. (B15)
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Here, x, and, are parameters introduced in Ref. 16. Simi- normal component of the surface polarizatiéh This defi-
lar equations were presented in Ref. 6, but without the nonnition differs in general from that of our susceptibilitgq.
radiating radial term of E(B12). (18)]. Here we introducedy=e/€’. According to our defi-

In the case we considered in Sec. ll, the sphere is withit,ition of the surface susceptibilifiEq. (18)], the choicee

vacuum and there is no magnetic response. Therefore, in our , ~s s I
notation, Eqs(22) of Ref. 16 reduce to =¢€,=1 leads tox;jj = xjjx» SO that substituting Eq$B16)

and (B17) into Egs.(B13) and (B14), and with the replace-
1 ments

X1=ZL11L12{5[(5’+2y)L21—(5'—2y)]

27 s s 7S Sh ~s Sf

M2MX111 7€ X XL X P XL~ €XT,

+2[(2m2m5xS L+ Xt 372x5 L2 (B18)

~ ~ we recover our Eq926) and (27). On the other hand,
+5(mx 1~ maxj 1 (B16)

59

and ”}q=§+37m—87R37 (B19)
12 27 s 7S ~s
Xo= b2 Xt L 3mxuy— maxiyp)s (BL7) does not agree with our E(28). This is not too important as
where we denoted the surface susceptibility employed ifhe scalar second mome@® does not radiate. Therefore,
Refs. 6 and 16 by)(isjk, defined throughP;= x;;E;E, our results are also a generalization of those of Refs. 6 and
where the electric field is evaluated within an interfacial 16 to small nonmagnetic spheres immersed in vacuum and
layer with dielectric functione’ which further screens the excited by a field which is not necessarily a plane wave.
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