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Second-harmonic generation in arrays of spherical particles
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We calculate the optical second harmonic~SH! radiation generated by small spheres made up of a homo-
geneous centrosymmetric material illuminated by inhomogeneous transverse and/or longitudinal electromag-
netic fields. We obtain expressions for the hyperpolarizabilities of the particles in terms of the multipolar bulk
susceptibilities and dipolar surface susceptibilities of their constitutive material. We employ the resulting
response functions to obtain the nonlinear susceptibilities of a composite medium made up of an array of such
particles and to calculate the radiation patterns and the efficiency of SH generation from the bulk and the edge
of thin composite films illuminated by finite beams. Each sphere has comparable dipolar and quadrupolar
contributions to the nonlinear radiation, and the composite has comparable bulk and edge contributions which
interfere among themselves yielding nontrivial radiation and polarization patterns. We present numerical re-
sults for Si spheres and we compare our results with recent experiments.
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I. INTRODUCTION

Optical second harmonic generation~SHG! in centrosym-
metric systems has proved to be a useful spectroscopic p
of surfaces, as the bulk contribution is strongly suppres
due to the symmetry.1 As opposed to other surface tec
niques, SHG permits the observation of surfaces out of
trahigh vacuum and in many different ambients. For
stance, it may be employed to study buried interfac
Although most of the theoretical and experimental work h
been performed on flat surfaces,2,3 other shapes have als
been explored, most notably, spherical particles.4 Recently,
SHG was employed to explore a thin composite layer m
up of Si spherical nanocrystallites embedded within a S2
matrix.5 It was found that the signal came mainly from th
nanoparticles, not from the matrix, and that its strength
minished by an order of magnitude when the buried Si/S2
interfaces were passivated with hydrogen, thus demons
ing the sensitivity of SHG to the condition of the surface
the particles and its usefulness for studying novel electro
devices. However, experiment showed that the transmi
intensity displayed a peak along the forward direction a
with a very narrow angular aperture. This result was un
pected, as previous theory6 indicated that the radiation pro
duced by a single sphere illuminated by a plane wave v
ishes identically along the forward direction, as has be
corroborated through experiments with suspended collo
particles.7,8

The theory of Dadapet al.6 mentioned above was deve
oped for spheres illuminated by a plane electromagn
wave. However, the nonlinear response of the particles a
ally depends on the nature of the exciting field, as shown
Brudnyet al.9 which obtained alternative results for the ca
of a longitudinal exciting field. In general, the polarizin
0163-1829/2003/68~8!/085318~14!/$20.00 68 0853
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field is neither of a pure longitudinal character nor is it
simple plane wave. For example, within a composite,
electric field has longitudinal short range spat
fluctuations10 besides the transverse macroscopic field, a
the latter is not necessarily a plane wave. Thus, in the
part of this paper, we generalize the theories above to ca
late the quadratic nonlinear response functions of a sin
small nonmagnetic centrosymmetric sphere illuminated
an arbitrary nonhomogeneous electromagnetic field, c
strained only by the absence of external charges within
sphere. Afterward, we employ the resulting hyperpolar
abilities to calculate the macroscopic second order susce
bilities of a composite. Finally, we calculate the SHG from
thin homogeneous slab of this composite illuminated by
focused Gaussian beam, and from an inhomogeneous c
posite with a density gradient. We find similar bulk and s
face contributions to the signal produced by a single sph
Its dipolar and quadrupolar contributions are also simi
and their relative strength depends on the spatial variatio
the polarizing field. As expected, a plane wave produces
coherent SHG exactly along the forward direction, but a
nite sized beam produces a nontrivial radiation patt
around the forward direction when it illuminates a homog
neous composite film. The density gradient at the edge of
sample produces a signal that may be larger than that com
from the interior and has different patterns and polarizatio
depending on the direction of the incoming electric field w
respect to the edge.

The paper is organized as follows: In Sec. II we deve
the theory for the nonlinear response of a small sin
sphere. In Sec. III we obtain the macroscopic nonlinear s
ceptibilities of a homogeneous composite and we emp
them to calculate the SHG of a thin film illuminated by
Gaussian beam, and in Sec. IV we take account of the in
©2003 The American Physical Society18-1



th

ti
, a
i

T
i

th

ic

tr
e

rn

h
es

-
el
o
-

ri

d
n,

na-

o-
he
on-

d

sor
i-

on

us,

u-

the

r

ry

ou

.
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mogeneity of the density to calculate the radiation from
edge of the film. Within a continuous dipolium model,11 in
Sec. V we calculate the response functions and the radia
patterns and intensities corresponding to Si nanospheres
we compare our results with experiment. Finally, Sec. VI
devoted to a discussion of our results and to conclusions.
details of the derivation presented in Sec. II are included
Appendix A, and the results are compared with those in
literature in Appendix B.

II. NONLINEAR RESPONSE OF A SINGLE SPHERE

We first consider a single homogenous, local, isotrop
centrosymmetric, nonmagnetic sphere of radiusR centered at
the origin, with a linear response characterized by a dielec
function e(v). For simplicity we consider that outside th
sphere there is only vacuum~Fig. 1!.

The sphere is acted upon by an inhomogeneous exte
field EW ex(rW), oscillating at frequencyv. We assume that the
scale of spatial variation of this polarizing field is muc
larger thanR. Due to quadratic nonlinear optical process
the sphere may acquire a dipole momentpW (2) and a quadru-

pole momentQJ (2) in response to the external field. The sym
metry of the sphere implies that, to lowest order in the fi
gradient,pW (2) has to be constructed from a combination
only EW ex(0) and¹EW ex(0) yielding a vector. The only posibil
ity is

pW (2)5grEW ex~0!¹•EW ex~0!1geEW ex~0!•¹EW ex~0!

1gmEW ex~0!3@~¹3EW ex~0!#. ~1!

Similarly, QJ (2) should be written as a traceless, symmet
tensor quadratic inEW ex(0),9

QJ (2)5gqS EW ex~0!EW ex~0!2
1

3
@Eex~0!#21J D . ~2!

FIG. 1. Nonmagnetic sphere of radiusR with dielectric function
e(v) within a vacuum, being acted upon by an inhomogene

electric fieldEW ex. The selvedge of width, is shown as a dark shell
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Related toQJ (2), we will also calculate the scalar secon
momentQ̃(2) of the nonlinear induced charge distributio
given by

Q̃(2)5g̃q@Eex~0!#2. ~3!

Finally, there is no quadratic magnetization, as no combi
tion of only EW ex and¹EW ex can yield an axial vector. As the
sphere is small, we need not consider further multipolar m
ments nor higher order spatial derivatives of the field. T
purpose of the present section is the calculation of the n
linear response functionsgn to lowest order inR, wheregn

5ge,gm,gq, andg̃q.
Assuming thatR is small enough, we linearize the fiel

within the sphere as

EW ex~rW !5EW 01rW•¹EW 01O~r 2!. ~4!

Making an expansion in irreducible tensors,12 we write

Ei
ex~rW !5Ei

01
1

3
~¹•EW 0!r i1

1

2
@~¹3EW 0!3rW# i

1
1

2 S ] iEj
01] jEi

02
2

3
¹•EW 0d i j D r j , ~5!

and employing Maxwell’s equations,

EW ex~rW !5EW 01
4p

3
r0rW1

iq

2
BW 03rW1

1

2
CJ 0

•rW, ~6!

wherer0 is the external charge density,BW 0 the external mag-

netic field,CJ 0 is a second order symmetric traceless ten
and q5v/c is the characteristic wave number for the inc
dent field.

In the following we will make the reasonable assumpti
that there is no external charge within the sphere,r050, so
that we disregardgr. We notice that the first and third term
on the right hand side of Eq.~6! are irrotational and may be
derived from a scalar potential with angular momental 51
and 2 respectively, while the second term is solenoidal. Th
the self-consistent screened linear fieldEW within the sphere is
given by

EW ~rW !5L11EW
01

iq

2
BW 03rW1

1

2
L21CJ

0
•rW, ~7!

whereLlw are the screening factors for potentials with ang
lar momentuml and frequencywv,

Llw5
2l 11

l ew1 l 11
, ~8!

and we abbreviatedew[e(wv), w51,2. Notice that, as the
sphere is nonmagnetic, the solenoidal contribution to
field remains unscreened.

Now we chose a particularly simple polarizing field, fo
which EW 05(0,0,E0) points along the z direction, BW 0

5(B0,0,0) points along thex direction, andCJ 05diag(21,
21,2)C0/2 produces a potential with cylindrical symmet

s
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along thez axis. The hyperpolarizabilitiesgn obtained for
these fields may afterwards be employed for the general c
Thus, we write

EW ex~rW !5E0S 0

0

1
D 1

iq

2
B0S 0

2z

y
D 1

1

4
C0S 2x

2y

2z
D ~9!

and

EW ~rW !5L11E
0S 0

0

1
D 1

iq

2
B0S 0

2z

y
D 1

1

4
L21C

0S 2x

2y

2z
D ,

~10!

so we may identify

EW ex~0!•¹EW ex~0!5
1

2
~0,2 iqE0B0,E0C0!, ~11!

EW ex~0!3@¹3EW ex~0!#5~0,iqE0B0,0!, ~12!

¹@EW ex~0!#25~0,iqE0B0,E0C0!, ~13!

EW ex~0!EW ex~0!2
1

3
@Eex~0!#21J5diag~21,21,2!~E0!2/3,

~14!

and

@Eex~0!#25~E0!2, ~15!

with similar results for the screened field@Eq. ~10!#.
The macroscopic quadratic polarizationPW b induced by the

linear field within the bulk of a homogeneous isotropic m
dium may be written as13

PW b~rW !5g¹E21d8EW •¹EW , ~16!

whereg(v) andd8(v) are the bulk nonlinear response fun
tions. Using Eq.~10! we write

PW b5
1

2
@0,2 iqL11~d822g!E0B0,L11L21~d812g!E0C0#

1O~r !. ~17!

Besides the bulk polarizationPW b, there is a surface qua
dratic polarizarionPW s due to dipolarly allowed processes in
narrow selvedge of width, where centrosymmetry is locall
broken:

Pi
s5x i jk

s F jFk . ~18!

Here x i jk
s 5x i jk

s (RW ,v) is the second order surface suscep

bility at position RW . As in Refs. 9 and 11, we define th
susceptibility as the response to the continuous field

FW ~RW !5DW '~RW !1EW i~RW !, ~19!
08531
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constructed in terms of the displacementDW and the electricEW
fields at the surface. The advantage of this definition is tha
removes the ambiguities as to the position within the s
vedge where the fields are to be evaluated. Also, we iden
PW s as the total surface polarization, so that, in contrast to
bulk polarizationPW b, no further screening ofPW s is necessary.
This way, we also avoid the ambiguity as to where in t
surface should the surface polarization be located; co
sponding to PW s we place a singular polarizationPW sd(r
2R1) in vacuum just outside of the sphere~Fig. 2!.

Assuming thatR is much larger than,, we may safely
consider the sphere to be locally flat. Notice that we ha
already stated thatR is smaller than the spatial variation o
the field, so in particular, it should be smaller than the opti
wavelengthl. As , is of the order of the screening dept
typically about an atomic distance, whilel is commonly two
to three orders of magnitude larger, there is a range of s
R for which the conditions,!R!l may be obeyed, such a
for the 3–10-nm sized particles employed in the experime
of Ref. 5. Thus, we write

x i jk
s 5xsS d ir d j r dkr

a

e1
2

1@~12d ir !~12d j r !dkr

1~12d ir !d j r ~12dkr!#
b

e1

1d ir ~12d j r !~12dkr! f D ~spherical! ~20!

in the spherical coordinate basisr̂ ,û,ŵ. Here,a5a(v), b
5b(v) and f 5 f (v) are the dimensionless functions whic
are commonly employed to parametrize the response of a
homogeneous surface14,15 that is isotropic within its plane,

xs5
~e121!2

64p2ne
, ~21!

n is the electronic density, and2e is the electronic charge

FIG. 2. Illustration of the nonlinear bulk polarizationPW b and the

surface polarizationPW s located immediately outside the sphere.
8-3
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Integrating Eq.~17! over the bulk and Eq.~18! over the surface of the sphere, and accounting for linear screening av,
we can obtain the total second order dipole moment. A similar process permits the calculation of the quadrupole mom
results of these procedures are~see Appendix A!

pW (2)5
2p

15
R3L11L12S 0

25iq@~d822g!22~e2f 2b!xs#E0B0

@5~d812g!12~2e2a1b13e2f !xs#L21E
0C0

D , ~22!
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Qzz
(2)5

32p

15
R3L11

2 L22x
s~e2a13b2e2f !~E0!2, ~23!

and

Q̃s5
8p

3
R3L11

2 xs~a12 f !~E0!2. ~24!

Comparing Eq.~22! with Eq. ~1! and employing Eqs.~11!
and ~12! we finally obtain the dipolar hiperpolarizabilities

ge5
4p

15
R3L11L12L21@5~d812g!12xs~2e2a1b13e2f !#

~25!

and

gm5
2p

15
R3L11L12$5@~d812g!L212~d822g!#

12xs@~2e2a1b13e2f !L2125~b2e2f !#%. ~26!

Similarily, a comparison of Eq.~23! with Eqs.~2! and ~14!,
and of Eq.~24! with Eqs.~3! and ~15! yields

gq5
16p

5
R3L11

2 L22x
s~e2a13b2e2f ! ~27!

and

g̃q5
8p

3
R3L11

2 xs~a12 f !. ~28!

A comparison~see Appendix B! of the expressions abov
with earlier work~Refs. 9, 6, and 16! shows that the presen
work corrects an oversight in Ref. 9 and extends its result
small spheres made up of isotropic, homogeneous, and
trosymmetric materials with arbitrary bulk and surface
sponse functionsg, d8, a, b, andf and excited by a field with
both longitudinal and transverse components. Our results
also a generalization of those of Refs. 6 and 16 to sm
nonmagnetic spheres immersed in vacuum and excited
field which is not necessarily a plane wave.

In this section we have found expressions for the non
ear response functionsgn of a single nanosphere in terms
the intrinsic response of the surface (a, b, f ) and bulk (g,
d8) of flat semiinfinite homogeneous and isotropic materia
Thus, we may take advandtage of manifold models and m
surements of those intrinsic response functions in orde
obtain the nonlinear susceptibility of small particles.
08531
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III. NONLINEAR RESPONSE OF A COMPOSITE

In Sec. II we obtained the nonlinear response of a sin

sphere subject to an inhomogeneous fieldEW ex. In the present
section we want to look at the response of a composite
dium made up of such spheres, such as the nanocrystals
have been studied by Jianget al.5 In Ref. 5 a thin disordered
array of Si spherical nanocrystals within a SiO2 matrix was
studied using SHG. The second harmonic radiation w
found to be confined to a very narrow ('1°) cone and
peaked along the forward direction. At first sight, this res
is intriguing: The first two contributions to the nonlinear d
pole @Eq. ~1!# of each sphere are null when the sphere
illuminated by a plane wave, while its quadrupole@Eq. ~2!#
would have an axis of cylindrical symmetry lying on th
plane wavefront. Therefore, neither the second harmo
~SH! dipole nor the quadrupole moments of the sphere
expected to radiate along the forward direction.6–8,16Thus, it
was suggested that the observed radiation originated f
density, size and shape fluctuations.5 However, the angular
distribution of the radiation is inconsistent with the incohe
ent signal expected to arise from fluctuations.5,9 Neverthe-
less, coherent SH radiation may appear when the samp
illuminated with a beam that has a finite waist, as actua
employed in Ref. 5, since the in-plane inhomogeneity of
field amplitude might induce further nonlinear sources t
might be able to radiate. In Fig. 3 we show schematically
SH dipole moments induced on a composite by a focu
fundamental beam. Near the center of the beam, the dip
point along the nominal propagation direction, and thus th
cannot radiate into it. However, as the edge of the illum
nated spot is approached, the fundamental amplitude dec
and the corresponding gradient tilts the nonlinear dipo
away from the forward direction. Thus, those dipoles m
radiate close to the forward direction. Although the fiel
produced by dipoles located at opposite sides of the s
might cancel each other exactly along the forward directi
such cancelation is absent at small off-forward scatter
angles, yielding a nontrivial intensity distribution. To illus
trate this possibility, in this section we calculate the coher
SH radiated by a composite illuminated by a finite beam.
consider thus a system made up of a very narrow disorde
array of small spheres distributed with a densityns(rW) and
illuminated by a finite beam. The place of the external fie
acting on a given sphere should be taken by the actual ex
nal field plus the field produced by other spheres. Thus,
should replaceEW ex by the local fieldEW loc. For simplicity, we
further ignore the local field effect and identifyEW loc with the
macroscopic fieldEW M, which we denote in what follows
8-4
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simply asEW as it causes no confusion.
The macroscopic nonlinear polarization of the compos

medium may be obtained from the nonlinear dipole a
quadrupole of each of its component spheres,17

PW nl5nspW
(2)2

1

6
¹•nsQJ

(2)2
1

6
¹nsQ̃

(2), ~29!

where we include the scalarQ̃ as QJ is traceless. Within a
homogeneous composite,ns(rW) has a constant valuenb , and
we employ Eqs.~1!–~3! to write

PW nl5nbgeEW •¹EW 1nbgmEW 3~¹3EW !2nb

gq

6
EW •¹EW

1nb

gq23g̃q

18
¹E2, ~30!

which becomes

PW nl5G¹E21D8EW •¹EW , ~31!

after expanding the curl terms and eliminating the field
vergence, where we introduced the response functions

G5
nb

18
~9gm1gq23g̃q! ~32!

and

D8[nb~ge2gm2gq/6!, ~33!

analogous tog andd8 @Eq. ~16!#.
Now, we consider a thin sample of widthl lying on the

z50 plane illuminated by a beam with a finite waistw0, as
in Ref. 5 ~Fig. 4!.

The unscreened SH vector potentialAW obeys

FIG. 3. Schematic representation of the SH dipole mome
induced on a composite system illuminated by a focused beam.
SH field radiated at small off-normal directions is indicated, as w
as the expected two lobed intensity distribution and the contr
tions of some dipoles to those lobes.
08531
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¹2AW T1~2q!2AW T52
4p

c
WT, ~34!

where the superscriptT denotes the transverse projection o
vector field andW is the SH current

W5
]

]t
PW nl522ivPW nl, ~35!

and we solve Eq.~34! to obtain

AW T~rW !522iqE d3r 8
e2iqurW2rW8u

urW2rW8u
@PW nl~rW8!#T. ~36!

At large distancesr from the illuminated spot we may per
form the usual approximations 1/urW2rW8u'1/r and e2iqurW2rW8u

'e2iqre22iqn̂•rW8 with n̂5(sinu cosw,sinu sinw,cosu) a unit
vector in the direction ofrW, to obtain

AW T~rW !522iql
e2iqr

r
~PW K

nl!T, ~37!

where we assumed the film is much narrower than the wa
length,ql!1, and we introduced the two-dimensional Fo
rier transform

PW K
nl5E d2r iPW

nl~rW i ,z50!e2 iKW •rW i, ~38!

with wave vectorKW 52qn̂i . Actually, much wider films may
be considered, as long as phase matching effects are n
gible, i.e.,qlDn!1, with Dn5n(2v)2n(v), andn is the
index of refraction of the composite, and as long as be
divergence effects may also be neglected, i.e.,l !qw0

2. We
now realize that the first term in Eq.~31! is purely longitu-
dinal, so it cannot contribute to the radiated field. Thus, s
stituting into Eq.~37!, we obtain the transverse potential

AW T~rW !522iql
e2iqr

r
D8~EW •¹EW !K

T . ~39!

ts
he
ll
-

FIG. 4. A Gaussian beam is focused on a spot of radiusw0 on a
thin composite film of widthl giving rise to a SH scattered radia
tion.
8-5
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Using Eq.~39!, we have reduced the problem of SH rad
tion from a thin composite film illuminated by a beam
finite cross section to that of the calculation of the in-pla
Fourier transform of the nonlinear driving termEW •¹EW .

To proceed, we assume that atz50 the driving fieldEW is
given by the waist of a Gaussian beam and we assume
its width w0 is much larger than the wavelength, so that t
beam is paraxial around the nominal propagation directioz.
Thus, we can ignore the small variations of orderK/q in its
polarization direction, and we can take a linearly polariz
beam of the form

EW ~rW i,0!5E0e2r i
2/w0

2
x̂, ~40!

wherex̂ is the unit vector in thex direction. In this case,

EW •¹EW 522
E0

2x

w0
2

e22r i
2/w0

2
x̂ ~41!

is also linearly polarized alongx̂. Since we can considerx to
be a transverse direction, normal to the nominal propaga
axis z, we approximate (EW •¹EW )T'EW •¹EW , with the Fourier
transform

~EW •¹EW !K
T5

ip

4
Kxw0

2e2K2w0
2/8E0

2x̂. ~42!

We substitute Eq.~42! into Eq. ~39! to obtain the vector
potential

AW T~rW !5pq2w0
2lu coswe2q2w0

2u2/2
e2iqr

r
D8E0

2x̂, ~43!

where we wrote the wavevector in terms of the scatter
direction and further assumed sinu'u.

The radiated electric fieldEW r52iqAW T is immediatelly ob-
tained from the potential@Eq. ~43!#, and from it we obtain
Poynting’s vectorSW 5cuEr u2n̂/8p, the SH radiated intensity
per unit solid angle into directionn̂, dI(n̂)/dV5r 2SW (rn̂)
•n̂ and the differential efficiency of SH generation,

dE
dV

[
1

P 2

dI

dV
, ~44!

given by

dE
dV

5
2

p
~qw0!4u2cos2we2q2w0

2u2E, ~45!

whereP is the incoming power,

P5
c

8pE d2r iuE~rW i,0!u25
cw0

2

16
uE0u2, ~46!

andE is the integrated efficiency over the whole solid ang

E[
1

P 2E dV
dI

dV
5

64p2

c

~ql !2

w0
4

uD8u2. ~47!
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The radiated pattern obtained from Eq.~45! is shown in Fig.
5. Notice that there is no radiation along the forward dire
tion, but there is a strong nonlinear signal along two lob
very close to the forward direction, displaced along the
coming polarization directionw50 by an angle 6u2

561/(qw0). The angular displacementu25u1/25u2* /A2
whereu1 andu2* are the beam divergence half-angles of t
fundamental beam and of the SH field that would have b
generated by a homogeneous non-centrosymmetric mate
such as the quartz plates usually employed as a referen
SH experiments. We remark that the characteristic angleu1

and u2* are defined in terms of the angular decay of t
fundamental and SH far fieldamplitudes.18 More directly
observable are the corresponding quantities defined in te
of the angular decay of the fundamental and SHintensities,
or equivalently, by the second moment of the angular dis
bution of the intensities, which areA2 times smaller.

We notice that the efficiency grows as the square of
thicknessl of the system, since we assumed it to be ve
thin. It decreases as the inverse fourth power of the size
the illuminated spot, and for a fixed spot size and out
resonance, it grows as the square of the frequency. On
other hand, if the diffraction angleu1 is kept constant, the
efficiency scales as its fourth power and as the sixth powe
frequency. The order of magnitude ofE may be estimated
from Eqs.~20!, ~21!, ~25!, ~26!, ~27!, ~28!, ~33!, and~47!. Far
from resonance, the hypolarizabilitiesgn are of orderR3xs

@Eqs.~25!, ~26!, ~27!, and~28!#, andxs is of order 1023/ne.
The electronic densityn of a solid is typically of order 10/aB

3

where aB is Bohr radius. Thus, from Eq.~33!, D8
;1022f baB

3/e, wheref b54pnbR3/3 is the filling fraction of
the spheres. Substituting in Eq.~47! and writing the result in
terms ofu152/qw0, we finally obtain

E51022z~qaB!4~ql !2f b
2u1

4 1

e2/aB

1

c/aB

'1024z~qaB!4~ql !2f b
2u1

4 W21, ~48!

wherez is a pure number which we expect to be of ord
unity, though it may vary by a couple of orders of magnitu
due to the high powers of dimensionless numbers which
pear implicitly in Eq. ~47!. The reasonable choiceqaB

FIG. 5. SH intensity vs angular position of the detector for
disordered array of spheres illuminated by a Gaussian beam
width w0 and frequencyv5qc.
8-6
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SECOND-HARMONIC GENERATION IN ARRAYS OF . . . PHYSICAL REVIEW B 68, 085318 ~2003!
'1022, ql'1, f b'1021, andu1'1°'231022 yields an
efficiencyE'10224 W21. For thicker composites, for which
ql is larger than order 1, phase matching effects might h
to be accounted for. Qualitatively, this may be accomplish
simply by replacingl 2 in the previous equations by the pha
mismatch factor, i.e.,

l 2→usin~qlDn!/~qDn!u2. ~49!

Additional changes would be necessary for very th
samples withl'qw0

2 or larger, for which the divergence o
the fundamental and SH beams within the sample have t
accounted for. In the experiments of Jianget al. described
earlier5 l'10/q was not so large as to produce phase m
match effects and the other parameters were close to t
mentioned above. On the other hand, about 100–300 S
3.1-eV photons were detected per second from a sampl
luminated by 2.53105 100–200 fs, 1-mJ pulses each
second,19 yielding the measured efficiencyE'10223 W21,
in good agreement with the estimation above.

The ubiquitous randomness within composites yields n
essarily some incoherent radiation. Thus, it is instructive
estimate the efficiency of the incoherent SHGEinc and to
compare it with its coherent counterpartE @Eq. ~48!#. As the
dipolar and quadrupolar radiation produced by a sin
sphere are similar, we estimate the intensity of the SH sig
produced by an individual sphere through Larmor’s form
P 1

(2);c(2q)4(p(2))2/3;10cq6(xs)2R6E0
4/3, where we used

Eq. ~1! and we estimatedgn;xsR3 andE0¹E0;qE0
2. Mul-

tiplying by the number of illuminated spheres;nslw0
2 and

dividing by the square of the incident power Eq.~46!, we
obtain the incoherent efficiency

Einc; f b~qaB!4
q2lR3

w0
2

1

c/aB

1

e2/aB

, ~50!

where we employed the estimate forxs given above, so tha

Einc

E ;101
~qR!3~qw0!2

~ql ! f B
. ~51!

Substituting the parameters corresponding to the experim
of Jianget al. ~Ref. 5! mentioned above, we obtain that th
coherent and incoherent contributions have comparable
efficiency. However, the incoherent radiation is distribut
over a wide solid angle, according to a superposition of
polar and quadrupolar radiation patterns,9 while the coherent
radiation has a very narrow distribution close to the forwa
direction~Fig. 5! and, thus, it has a much larger intensity. O
the other hand, the dependence of the incoherent signal of b
andR differs20 from that of the coherent signal, and for d
luted samples such as suspensions, the incoherent radi
may dominate.7,8,20

IV. NONLINEAR RESPONSE AT THE EDGE OF THE
COMPOSITE

Another intriguing observation was reported in Ref. 5
garding the intensity of the SH signal as the fundamen
beam was scanned laterally through the sample. The
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served SH intensity as the beam crossed the edge of
composite was about an order of magnitude larger than
signal from well within the composite, instead of interpola
ing smoothly between the signal from the interior and t
practically inexistent signal from the exterior, as could ha
been naively expected. Furthermore, the signal displa
strong oscillations close to the edge. Thus, in this section
concentrate our attention on the calculation of the SH rad
tion from the lateral edge of a thin composite made of sm
spheres, such as that considered in the previous section~see
Fig. 6!.

Accounting for the variation of the densityns
[nbj(x,y) across the illuminated spot, from Eq.~29! we
obtain

PW nl5D8jEW •¹EW 1G¹~jE2!2nb

gm

2
E2¹j2nb

gq

6
EW EW •¹j,

~52!

instead of Eq.~31!, wherej is a function which varies from
0 outside the composite to its bulk value 1 within. Witho
loss of generality we take the edge along they axis, so that
j5j(x), and we write¹ns5nb(dj/dx) x̂[nbj8(x) x̂. Then,
Eq. ~52! reduces to

PW nl5D8jEW •¹EW 1G¹~jE2!1Ynj8~x!x̂E2, ~53!

whereYn depends on whether the external fieldEW points in
the direction parallel (n5i) or perpendicular (n5') to the
gradient ofns ,

Y i52nbS gm

2
1

gq

6 D , Y'52nb

gm

2
. ~54!

The far field is now given by

AW T~rW !522iql
e2iqr

r
~D8jEW •¹EW 1Ynj8x̂E2!K

T ~55!

instead of Eq.~39!. To proceed, we chose a smooth dens
profile and we assume that its spatial scale of variation
larger thanw0, so we approximate it by a linear profile

j~x!5j01x/L, ~56!

FIG. 6. A Gaussian beam is focused on the edge of a thin c
posite, as that in Fig. 4, producing SH radiation~light arrows!. The
gradient of the density of spheres¹ns close to the edge is indicate
~heavy arrow!.
8-7
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with j0 representing the relative density at the center of
beam, which we take without loss of generality atx50, and
L is a distance of the order of the width of the edge. Sub
tuting Eq. ~56! into Eq. ~55!, performing the Fourier trans
form under the assumption of a small illuminated spot (w0
,L), and calculating the resulting radiation pattern, we
nally obtain

dEi

dV
5

8

p
Eb

e24u2/u1
2

u1
2 U2u

u1
cosw1 i

w0

j0L

3S 1

2
22

u2

u1
2
cos2w2

Y i

D8
D U2

, ~57!

Ei5EbF11S w0

j0L D 2S 3

8
12UY i

D8
U2

2Re
Y i

D8
D G , ~58!

dE'

dV
5

8

p
E b

e24u2/u1
2

u1
2 FU2u

u1
sinw2 i

w0

j0L

u2

u1
2
sin 2wU2

1UY'

D8
U2S w0

j0L D 2G , ~59!

E'5EbF11S w0

j0L D 2S 1

8
12UY'

D8
U2D G , ~60!

whereEb is the total efficiency of a homogeneous film@Eq.
~47!# but evaluated at the nominal densitynbj0 at the center
of the illuminating beam, i.e.,Eb5j0

2E. Here,dEn /dV and
En denote the differential and total SHG efficiencies for t
case in which the incoming polarization points along t
direction n5i ,'. More detailed information may be ob
tained by analyzing the outgoing beam with a linear pol
izer. In this case we obtain

dEi i

dV
5

dEi

dV
, ~61!

Ei i5Ei , ~62!

dE'i

dV
50, ~63!

E'i50, ~64!

dEi'

dV
5

8

p
E b

e24u2/u1
2

u1
2 UY'

D8
U2S w0

j0L D 2

, ~65!

Ei'52EbS w0

j0L D 2UY'

D8
U2

, ~66!

dE''

dV
5

8

p
E b

e24u2/u1
2

u1
2 U2u

u1
sinw2 i

w0

j0L

u2

u1
2
sin 2wU2

,

~67!
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E''5EbF11
1

8 S w0

j0L D 2G , ~68!

where dEmn /dV and Emn denote the differential and tota
efficiencies, withm and n denoting the outgoing and th
incoming polarizations respectively.

V. RESULTS FOR SI NANOCRYSTALLITES

As Ref. 5 presents experimental results for Si nan
spheres, in this section we apply to them some of our pre
ous results. For simplicity, we calculate the surface and b
nonlinear response functions of Si from its linear dielect
function21 using the continuous dipolium model.11 In Fig. 7
we show the nonlinear response of a single Si nanosph
obtained from Eqs.~B4!–~B8!.

Some structures visible in this figure are inherited fro
the linear bulk responsese1 and e2 and thus appear at th
fundamental or at the subharmonic frequencies of the crit
points of the Si joint density of states. Further structures
due to the nonlinear surface responsea.9,11The resonances o

FIG. 7. Absolute value of the nonlinear response functionsugnu,
wheregn5ge,gm,gq, andg̃q for a single Si nanosphere. The labe
E1 and E2 denote the critical points of Si,E1/2 andE2/2 denote
their subharmonics, andD/2 andQ/2 denote the subharmonics o
the dipolar and quadrupolar resonances, for which Ree2522 and
23/2.

FIG. 8. Squared absolute valueuD8u2 of the bulk nonlinear
response of a homogeneous composite made up of spheric
inclusions.
8-8
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SECOND-HARMONIC GENERATION IN ARRAYS OF . . . PHYSICAL REVIEW B 68, 085318 ~2003!
the screening factorsLl2 are too damped due to the finit
imaginary part ofe2 and the resonances ofLl1 are outside of
the spectral region shown in Fig. 7.

In Fig. 8 we show the bulk responseD8 calculated for a
homogeneous composite made ofnb Si nanospheres per un
volume, calculated by substituting the nonlinear respons
each Si particle, shown in Fig. 7, into Eq.~33!. We notice
that only its squared magnitudeuD8u2 enters the differentia
and total SHG efficiencies@Eqs.~45! and~47!#, and that the
composite responseG does not contribute. Fig. 8 shows th
the efficiency increases almost monotonically up to about
eV, but has many features corresponding roughly to th
displayed in Fig. 7. However,gn are complex quantities an
they interfere among themselves, leading to a richer struc
in Fig. 8.

As shown by Eqs.~57!–~68!, the differential and total SH
efficiencies at the edge of a thin composite layer depend
the nominal efficiency of a homogeneous compositeEb and
on the quotientsY i /D8 andY' /D8, which together with the
relative widthsw0 and L of the beam and the edge contr
the relative contribution from the field and the density g
dients. Figure 9 illustrates the frequency dependence of th
relative contributions.

FIG. 9. Absolute valueYn /D8 of the quotient between the edg
and the bulk response functions at the edge of a composite ma
Si nanospheres for two directions of the incoming polarization, p
allel (n5i) and perpendicular(n5') to the density gradient¹ns .
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In Fig. 10 we show the SH radiation patterns from t
edge of the composite film. The incoming energy\v
51.55 eV and polarizationi are the same as in the exper
ment of Jianget al.5 We assumed the nominal beam focus
at the middle of the edge, with a nominal densityns
50.5nb . We notice that for a wide edge, or equivalently, f
a thin beam, the differential efficiency is the same as the
lobbed radiation pattern of Fig. 5 for a homogeneous fi
~left panel!. However, for a wider beam or a thinner edge
new contribution coming from the gradient¹ns of the den-
sity appears, filling the minimum between the two lob
~middle panel!. Furthermore, the interference between t
bulk-like and edge signals produces an asymmetry betw
both lobes; the lobe that leans towards¹ns is smaller. As
could be expected from Fig. 9, the degree of asymme
depends on the frequency. Already forw0 /L'0.1 the gradi-
ent contribution dominates and the two-lobed structure
almost lost~right panel!, although a slight asymmetry is sti
visible. In this case the peak is about twice as high as th
for the homogeneous film.

In Fig. 11 we show the corresponding results but for p
larization perpendicular to¹ns , i.e., along the edge. As
Y',Y i at \v51.55 eV, higher values ofw0 /L are re-
quired before the gradient contribution becomes visible.
this case, the two lobes are rotated with respect to thos
Fig. 10 and retain their symmetry. The gradient and the bu
like contributions are polarized along and normal to¹ns
respectively. Thus the relatively small gradient contributi
in Fig. 11 may be isolated by analyzing the outgoing be
with a linear polarizer. The polarized radiation patte
dEi' /dV is a simple Gaussian@Eq. ~65!# for all values of
w0 /L.

VI. DISCUSSION AND CONCLUSIONS

In this paper we first obtained the quadratic optical
sponse of a single centrosymmetric nonmagnetic isotro
sphere illuminated by an inhomogeneous electromagn
field. As we did not make assumptions about the nature
the polarizing field, our results may be employed for bo
transverse and longitudinal exciting fields. Thus they con

of
r-
beam
l

FIG. 10. SH radiation patternsdEi /dV from the edge of a composite thin film made up of Si nanospheres for various values of the
width w0 and the edge sizeL, w0 /L50.01, 0.05, and 0.1. The energy of the incoming photons is\v51.55 eV and we chose the nomina
density at half the bulk valuens50.5nb . For reference, small vertical bars corresponding to the same fixed height 0.5Eb are shown in each
panel. The arrow indicates the direction of the density gradient.
8-9
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FIG. 11. SH radiation patterns
dE' /dV as in Fig. 10 but for a
polarization perpendicular to the
density gradient¹ns . The vertical
bar references have the same si
as in Fig. 10.
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tute a generalization of previous works.9,6,16The hyperpolar-
izabilitiesge, gm, gq, andg̃q were calculated to lowest orde
(R3) in the size of the particles and were written in terms
their bulk and surface second order susceptibilities under
assumption that the curvature was small enough that the
face could be considered locally flat.

As has been discussed previously,6 each individual sphere
is unable to radiate in the forward direction when illuminat
by a plane wave. However, the experimental observation
very narrow SH peak in the forward direction from compo
ite films made up of spherical Si nanocrystals embedde
SiO2 was recently reported.5 To understand its origin, we
applied our results to the calculation of the response of c
posites illuminated by a focused Gaussian linearly polari
beam. We obtained that neither in this case can there
radiation exactly in the forward direction. However, the r
diation pattern shows two narrow lobes displaced along
polarization direction by a small angle of the order of t
diffraction-induced angular divergence of the linear far fie
The forward peak reported experimentally for an array of
nanospheres5 may have been confused with one of the
lobes.19 We discussed the dependence of the SH differen
and total efficiencies on parameters such as the width of
film, the density of inclusions, and the waist of the beam

The experiment also showed that the signal may be
hanced at the lateral edge of finite films. Thus, we calcula
the SH radiation produced at a non-homogeneous film.
found bulklike contributions and contributions due to t
gradient of the inclusion density. The radiation patterns,
dependence on the input polarization, the output polariza
directions, and the spectral features of both contributions
fer in general, and they arise from different combinations
the individual sphere’s response functions. These contr
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tions may interfere among themselves, yielding nontriv
patterns which may be modified by changing the frequen
the waist of the illuminating beam, or the sharpeness of
edge. By analyzing the polarization of the outgoing bea
gradient and bulk-like contributions may be separated, fac
tating the analysis of the response functions. Calculations
a Si nanosphere composite within a simple dipolium mod11

agree qualitatively with the experimental observations.5

The solid-angle resolved SH patterns radiated by the b
and edge we have calculated have not been explored ex
mentally yet. The bulk radiation of the composite depends
a single parameterD8, which in turn depends, through th
hyperpolarizabilitiesgn, on the bulk and surface respons
functionsd8, g, a, b, and f, of an individual sphere. As the
radiation from the edge involves different combinationsYn
of the above response functions, proper measurements m
provide additional information to partially disentangle th
separate contributions. We hope that this work will stimula
further experiments and theory.
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APPENDIX A: SECOND ORDER DIPOLE AND
QUADRUPOLE MOMENTS OF A SPHERE

To obtain the surface polarization, we substitute Eqs.~10!,
~19!, ~20!, and~21! into Eq. ~18!, leading to
PW s5xsS ~acos2u1 f sin2u!

22b sinu cosu

0
D L11

2 ~E0!21
1

2
xsS @a cosu~3 cos2u21!13 f cosu sin2u#

b sinu~126 cos2u!

0
D L11L21RE0C0

1 iqxsS f sinu sinw

2b cosu sinw

2b cos2u cosw
D L11RE0B01O~R2! ~spherical!. ~A1!
8-10
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SECOND-HARMONIC GENERATION IN ARRAYS OF . . . PHYSICAL REVIEW B 68, 085318 ~2003!
Now we calculate the dipole and quadrupole moments p
duced by the bulkPW b and surfacePW s polarizations. Integrat-
ing Eq. ~17! within the volume of the sphere we obtain th
bulk contribution to the nonlinear dipole moment, given
lowest order inR by

pW b5
2p

3
R3L11@0,2 iq~d822g!E0B0,L21~d812g!E0C0#.

~A2!

We notice that there is a contribution toPW s of orderO(R0)
so that even a constant external field induces a nonlin
polarization at the surface of the sphere due to the local
of centrosymmetry. However, once we convert Eq.~A1! to
Cartesian coordinates and integrate over the surface, it yi
a null contribution to the total nonlinear dipole of the sphe
as the sphere is globally centrosymmetric. On the other h
converting to Cartesian coordinates and integrating the
ond and third terms on the right hand side of Eq.~A1! yields
a finite surface contribution to the nonlinear dipole

pW s5pW i
s1pW'

s , ~A3!

where

pW i
s5

4p

15
R3xsL11S 0

25iqbE0B0

bL21E
0C0

D ~A4!

originates from the polarizationPW i
s parallel to the surface

and

pW'
s 5

4p

15
R3xsL11S 0

5iq f E0B0

~2a13 f !L21E
0C0

D ~A5!

from the polarizationPW'
s perpendicular to the surface. Bot

contributions are proportional to the volume of the sph
and we neglect terms of higher order inR.

We now proceed to the calculation of the quadrupole m
ment:

QJ5E d3rr~rW !~3rWrW2r 21J !. ~A6!

We write the density in terms of the polarizationr
52¹•PW , and we include inPW the quadratic bulk contribu
tion PW b @Eq. ~17!# and the singular surface polarizatio
PW sd(r 2R1) ~Eq. ~A1!!. Integrating Eq.~A6! by parts we
obtain a bulk contribution

QJ b5E
V
d3r @3~PW brW1rWPW b!22PW b

•rW1J#, ~A7!

and a surface contribution

QJ s5R3E d2V@3~PW sr̂ 1 r̂ PW s!22PW s
• r̂ 1J#, ~A8!
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whereV denotes the volume of the sphere, andV is the solid
angle. To lowest order, the bulk polarization is consta

leading to a bulk contributionQJ b to quadrupole~A7! of or-
der O(R4), which moreover vanishes from symmetry. Th
lowest order surface polarization is independent ofR and
yields a quadrupole of orderR3. From Eq.~A1!, we notice
that this term is independent ofB0 andC0 and is produced
only by the constant part of the external fieldEW 0. Thus, in the

calculation of QJ s we may assume cylindrical symmetr

around thez axis and writeQJ s5diag(21,21,2)Qzz
s /2. Sub-

stituting Eq.~A1! into Eq. ~A8! and performing the integral
we obtain

Qzz
s 5Qzzi

s 1Qzz'
s , ~A9!

where

Qzzi
s 5

32p

5
R3L11

2 xsb~E0!2 ~A10!

originates fromPW i
s and

Qzz'
s 5

32p

15
R3L11

2 xs~a2 f !~E0!2 ~A11!

originates fromPW'
s .

Finally, we calculate the second moment of the quadra
induced charge

Q̃5E d3rr~rW !r 2. ~A12!

As we did above, we writer in terms of the polarization and
integrate by parts to obtain a bulk contribution,

Q̃b52E d3rPW b
•rW, ~A13!

and a surface contribution,

Q̃s52R3E d2VPW s
• r̂ , ~A14!

in analogy to Eqs.~A7! and~A8!. As above, to orderO(R3)
there is no bulk contribution. The surface contribution,

Q̃s5
8p

3
R3L11

2 xs~a12 f !~E0!2, ~A15!

may be obtained by substituting the first term on the rig
hand side of Eq.~A1! in Eq. ~A14!. The only finite contri-
bution to Eq.~A15! originates from the perpendicular surfac
polarizationPW'

s .
To get the total multipole moments of the sphere we c

not simply add the bulk and surface contributions~A2!, ~A4!,
~A5!, or ~A10!, ~A11!, as we have yet to account for th
screening at 2v of the fields produced byPW b andPW s within
the bulk of the sphere. To this end we briefly follow Ref.
Since there is no magnetic moment induced and we assu
the sphere to be very small, in its immediate neighborho
8-11
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we can neglect retardation and describe the selfconsis
field in terms of a quasistatic scalar potentialf. The equa-
tion obeyed byf is

¹2f5H 24prb/e2 ~ inside!

0 ~outside!,
~A16!

where the unscreened bulk charge density at 2v, rb

52¹•PW b, is divided by e2 to yield the screened charg
density. The boundary conditions obeyed byf are

f~R1!2f~R2!54pP'
s ~A17!

and

]

]R
f~R1!2e2

]

]R
f~R2!524ps. ~A18!

Equation~A17! expresses the discontinuity of the potent
due to a singular surface polarization, while Eq.~A18! ex-
presses the discontinuity of the normal component of
field due to the surface charges5sb1s i

s which has a bulk

originated contributionsb5PW b
• r̂ and a surface originate

contributions i
s52¹i•PW i

s produced by the parallel compo

nent of the surface polarizationPW s ~see Fig. 12!.
As discussed above,PW s denotes the self-consistent surfa

polarization and therefore, there is no additional screen
contribution to it. However,PW s may induce a field within the
sphere, and this field may lead to an additional induced b
polarization and to bulk and surface screening charges. T
are accounted for by the factorse2 in Eqs.~A16! and~A18!.

Now we expand all quantities in Eqs.~A16!–~A18! in
terms of spherical harmonicsYlm(u,w) as f5(f lmYlm ,
rb5(r lm

b Ylm , P'
s 5((P'

s ) lmYlm , etc. Sincerb contributes

terms of at least orderO(R4) to the dipolar momentpW (2) and
O(R5) to the quadrupolar momentQ(2) and the second mo

FIG. 12. Illustration of the surface polarizationP'
s , and the

surface charge densitysb ands i
s produced by the bulk polarization

PW b and the surface polarizationPW i
s , respectively. The figure corre

sponds qualitatively to Fig. 2. Due to screening, additional char
are induced at the boundary of the sphere with dielectric respo
e2, but they are not shown. There is no additional screening sur
polarization.
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ment Q̃(2), in the following we will neglect it. Actually, it
turns out thatrb is a constant so it has no contribution to th
terms with lÞ0, for which Eq. ~A16! becomes Laplace’s
equation, with solution

f lm~r !5
4p

2l 11
3H Flmr l ~ inside!

qlm /r l 11 ~outside!,
~A19!

where we identifyqlm with the spherical components of th
multipolar moments.22 The coefficientsqlm andFlm are de-
termined by boundary conditions~A17! and ~A18!, which
become

qlm

Rl 11
2FlmRl5~2l 11!~P'

s ! lm , ~A20!

and

~ l 11!
qlm

Rl 12
1 l e2FlmRl 215~2l 11!~s lm

b 1s i lm
s !,

~A21!

and yield

qlm5Ll2@~s lm
b 1s i lm

s !Rl 121 l e2~P'
s ! lmRl 11#

5qlm
b 1qi lm

s 1q' lm
s , ~A22!

with Ll2 the screening factor~8! at the second harmonic fo
the angular momentuml. Here we have identified a bulk
contributionqlm

b }sb}Pb, a surface contribution originate
in the tangential surface polarizationqi lm

s }s i
s}Pi

s , and a
surface contribution originated in the perpendicular polari
tion q' lm

s }P'
s .

Setting e2→1, Ll2→1 in Eq. ~A22! we obtain the un-
screened multipolar moments, which are then simply co
pared to their screened counterparts, yielding

qlm
b ~screened!5Ll2qlm

b ~unscreened!, ~A23!

qi lm
s ~screened!5Ll2qi lm

s ~unscreened!, ~A24!

and

q' lm
s ~screened!5Ll2e2q' lm

s ~unscreened!. ~A25!

Thus, the total dipole (l 51) and quadrupole (l 52) mo-
ments may be obtained from the unscreened moments
tained previously@Eqs.~A2!, ~A4!, ~A5!, ~A10!, and~A11!#
by multiplying by the screening factorLl2 at 2v. Those
multipoles that originate in the perpendicular surface po
izationP'

s @Eqs.~A5! and~A11!# are to be further multiplied
by e2.

After screening and adding the bulk@Eq. ~A2!# and sur-
face @Eqs.~A4! and ~A5!# contributions, we obtain the tota
nonlinear dipolepW (2) induced in the sphere, given by Eq
~22!. Similarly, we screen and add the contributions to t
induced quadrupole@Eqs. ~A10! and ~A11!# to obtain the
total quadrupole moment~23!. Finally, we notice thatQ̃s is
determined only by thel 50 contribution to the normal po
larization (P'

s )00, and that the field produced by this pola
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ization does not penetrate the system and is therefore
screened. Thus,Q̃(2) coincides withQ̃s @Eq. ~A15!#, and is
given in Eq.~24! for the benefit of the reader.

APPENDIX B: COMPARISON WITH EARLIER WORK

In Ref. 11 a simple model for the nonlinear response o
centrosymmetric dielectric was developed, which lead to
plicit analytic expressions for the nonlinear bulk and surfa
response functions in terms of the linear response. The m
consists of a continuous distribution of polarizable entiti
each of which responds nonlinearly to the gradient of
field as a forced harmonic oscillator. Although very crud
that model is a convenient first step for the analysis of r
systems, as it permits the actual calculation of spectra f
the knowledge of onlye(v), which can be obtained exper
mentally or through microscopic calculations. In the pres
section we employ that model to obtain definite expressi
for the response of small spheres.

From Eqs.~12!, ~13! and ~14! of Ref. 11 we obtain the
bulk polarization

PW b5
n

2e
a1a2~¹E224EW •¹EW !1

n

2e
a1

2EW •¹EW , ~B1!

where n is the number density of polarizable ‘‘molecules
within the bulk andaw5a(wv) is the linear polarizability
of each one, related to the dielectric function throughew
5114pnaw . Comparing Eq.~B1! with Eq. ~16! we iden-
tify

g5
n

2e
a1a2 ~B2!

and

d85
n

2e
a1~a124a2!. ~B3!

Substituting Eqs.~B2! and~B3! in Eqs.~25!, ~26!, ~27!, and
~28!, we obtain

ge5
3

8pne

e121

~e112!~2e113!~e212!
@5~e122e211!

1~e121!~2e2a1b13e2f !#R3, ~B4!

gm5
ge

2
2

3

16pne

e121

~e112!~e212!
@~e126e215!

1~e121!~b2e2f !#R3, ~B5!

gq5
9

4pne

~e121!2

~e112!2~2e213!
~e2a13b2e2f !R3,

~B6!

and

g̃q5
3

8pneS e121

e112D 2

~a12 f !R3. ~B7!
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We complete the expressions above by stating in our nota
the values ofa, b, andf corresponding to the model of Re
11,

a~v!52~@e22e1#@2e12e22e1e2#

1@e1#2@12e2# log@e1 /e2# !/@e22e1#2, ~B8!

b521, ~B9!

and

f 50. ~B10!

Our ge andgq @Eqs. ~B4! and ~B6!# are similar to those
obtained for pure longitudinal fields, given by Eqs.~40! and
~41! of Ref. 9. However, in Ref. 9 no account was taken
the polarization linearly induced within the interior of th
sphere by the field originated at the surface nonlinear po
ization. Thus, a factor ofL12 is missing from the surface term
of Eq. ~40! and a factorL22 is missing from the surface term
of Eq. ~41! in Ref. 9. Furthermore, an additional factor ofe2
multiplying the surface response functionsa and f is also
missing from Ref. 9. Therefore, Sec. II corrects an oversi
in Ref. 9 and extends its results to small spheres made u
isotropic, homogeneous, and centrosymmetric materials w
arbitrary bulk and surface response functionsg, d8, a, b, and
f and excited by a field with both longitudinal and transve
components.

Another calculation similar to ours was performed in
recent work,6,16 where the nonlinear response of a sm
sphere to a plane electromagnetic wave was studied. In R
6 and 16 a magnetic response was allowed, the sphere
embedded within a polarizable medium and the surface
sponse took place within a thin spherical shell that scree
the surface polarization. SinceEW ex

•¹Eex vanishes for a plane
electromagnetic wave, from the calculation by Dadapet al. it
is only possible to extract values forgm, gq and g̃q. In our
notation, Eqs.~12! of Ref. 16 become

pW (2)5
8p i

15
R3x1qW ~E0!2 ~B11!

and

QJ •n̂1Q̃n̂5
8p

5
R3@~x125g!n̂~E0!212x2EW 0

•n̂EW 0#,

~B12!

from which we identify

gm5
8p

15
R3x1 , ~B13!

gq5
16p

5
R3x2 , ~B14!

and

g̃q2
gq

3
5

8p

5
R3~x125g!. ~B15!
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Here,x1 andx2 are parameters introduced in Ref. 16. Sim
lar equations were presented in Ref. 6, but without the n
radiating radial term of Eq.~B12!.

In the case we considered in Sec. II, the sphere is wi
vacuum and there is no magnetic response. Therefore, in
notation, Eqs.~22! of Ref. 16 reduce to

x15
1

4
L11L12$5@~d812g!L212~d822g!#

12@~2h2h1
2x̃'''

s 1h1x̃ i'i
s 13h2x̃'ii

s !L21

15~h2x̃'ii
s 2h1x̃ i'i

s !#% ~B16!

and

x25L11
2 L22~h2h1

2x̃'''
s 13h1x̃ i'i

s 2h2x̃'ii
s !, ~B17!

where we denoted the surface susceptibility employed
Refs. 6 and 16 byx̃ i jk

s , defined throughP̃i
s[x̃ i jkEjEk ,

where the electric field is evaluated within an interfac
layer3 with dielectric functione8 which further screens the
B

t.

t.
.

a

ol.
-

h-

e
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normal component of the surface polarizationP̃s. This defi-
nition differs in general from that of our susceptibility@Eq.
~18!#. Here we introducedh[e/e8. According to our defi-
nition of the surface susceptibility@Eq. ~18!#, the choicee18

5e2851 leads tox̃ i jk
s 5x i jk

s , so that substituting Eqs.~B16!
and ~B17! into Eqs.~B13! and ~B14!, and with the replace-
ments

h2h1
2x̃'''

s →e2xsa, h1x̃ i'i
s →xsb, h2x̃'ii

s →e2xsf ,
~B18!

we recover our Eqs.~26! and ~27!. On the other hand,

g̃q5
gq

3
13gm28pR3g ~B19!

does not agree with our Eq.~28!. This is not too important as
the scalar second momentQ̃(2) does not radiate. Therefore
our results are also a generalization of those of Refs. 6
16 to small nonmagnetic spheres immersed in vacuum
excited by a field which is not necessarily a plane wave.
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