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Current fluctuations and electron-electron interactions in coherent conductors
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We analyze current fluctuations in mesoscopic coherent conductors in the presence of electron-electron
interactions. In a wide range of parameters we obtain explicit universal dependences of the current noise on
temperature, voltage, and frequency. We demonstrate that Coulomb interaction decreases the Nyquist noise. In
this case the interaction correction to the noise spectrum is governed by the combination(nTn(Tn21), where
Tn is the transmission of thenth conducting mode. The effect of electron-electron interactions on the shot noise
is more complicated. At sufficiently large voltages we recover two different interaction corrections entering
with opposite signs. The net result is proportional to(nTn(Tn21)(122Tn); i.e., Coulomb interaction de-
creases the shot noise at low transmissions and increases it at high transmissions.
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I. INTRODUCTION

Recent advances in nanotechnology enable detailed in
tigations of a variety of quantum effects in mesoscopic c
ductors. These investigations are of primary interest beca
of the fundamental importance of such effects as well du
the rapidly growing number of potential applications. A gre
deal of information is usually obtained from studying ele
tron transport. Additional and complementary informati
can be extracted from investigations of fluctuation effec
such as shot noise.1 For instance, it was demonstrated2–4 that
the power spectrum of the shot noise in coherent mesosc
conductors is expressed in terms of the parameter

b5

(
n

Tn~12Tn!

(
n

Tn

. ~1!

Here and belowTn stands for the transmission of thenth
conducting channel of a coherent conductor. Thus, si
transport measurements only allow one to determine
combination

1

R
5

2e2

h (
n

Tn , ~2!

studies of the shot noise provide additional valuable inform
tion about the transmission distribution of conducting mod

The above results apply to the situations when the in
action between electrons can be neglected. In the presen
electron-electron interactions the Landauer conductance~2!
and theI -V curve are modified in a nontrivial way. Recent
it was shown5 that theI -V curve of a~comparatively short!
coherent conductor with arbitrary transmission distribut
Tn in the presence of interactions can be expressed in
form

R
dI

dV
512b f ~V,T!, ~3!
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where f is a universal function evaluated in Ref. 5. This
result holds in the limit of large conductancesR!Rq
5h/e2 or, otherwise, at sufficiently high temperatures and
voltages. It demonstrates that the magnitude of the inte
tion correction is controlled bythe sameparameterb, Eq.
~1!, which is already well known in the theory of shot nois
Physically this result can easily be understood since b
phenomena are related to the discrete nature of the elec
charge. Hence, there exists a direct link between shot n
and interaction effects in mesoscopic conductors. In the c
of a single-channel conductor a similar observation was a
made in Ref. 6.

It is obvious that not only theI -V curve~3! but also shot
noise as well as higher moments of the current opera
should be affected by electron-electron interactions. This
per is devoted to a detailed investigation of current fluct
tions in mesoscopic coherent conductors in the presenc
electron-electron interactions. Previously various aspect
this problem have been studied for a particular case of tun
junctions in the Coulomb blockade regime; see, e.g., R
7–10. The effect of interactions on the shot noise in tw
dimensional~2D! diffusive conductors at sufficiently high
temperatures was recently addressed in Ref. 11.

Here we will employ a model of a coheren
conductor.5,12,13Within this model we will demonstrate tha
interactions lead to two different corrections to the shot no
spectrum. One of these corrections scales with the param
b, Eq. ~1!. This correction isnegativefor any Tn,1, simi-
larly to that found in Eq.~3! for the I -V curve. It describes
~partial! suppression of the current noise due to Coulo
blockade. In addition to this correction we shall find anoth
one, which is proportional to the parameter

g5

(
n

Tn
2~12Tn!

(
n

Tn

. ~4!

This second correction ispositive; i.e., for anyTn,1 it leads
to relative enhancement of the shot noise. The latter cor
©2003 The American Physical Society17-1
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tion turns out to be important only at voltages exceed
both frequency and temperature and is negligible otherw
Thus, at sufficiently high voltages two interactio
corrections—negative and positive—compete, forg.b/2
the second one wins and, hence, in this case overall enha
ment of the shot noise by interactions is predicted.

It is important to emphasize that the above results
obtained under the assumption that the conductor isshorter
than any inelastic relaxation length in our problem. In oth
words, it is assumed throughout the paper that inelastic
laxation may occur in the reservoirs but not inside the coh
ent conductor. In this sense our model is quite different fr
that employed, e.g., in Refs. 14 and 15, where diffusive c
ductors muchlonger than the inelastic relaxation length we
considered. In the latter case strong energy relaxation all
one to establish local equilibrium described by an effect
coordinate-dependent electron temperature. Such a des
tion is not possible within our model.

We also note that our results are applicable to phys
situations in which one can neglect the energy dependenc
transmission valuesTn . In the absence of inelastic relaxatio
inside the conductor this assumption embraces a large va
of ~comparatively short! disordered structures. On the oth
hand, our approach is not sufficient for scatterers with tra
missions which sharply depend on energy, such as,
quantum dots in the resonant tunneling regime. A gener
zation of our path integral technique to the case of ener
dependent transmission amplitudes is worked
elsewhere.16 We finally remark that the effect of Coulom
interaction on shot noise in conductors with energ
dependent scattering was addressed in a numerical wor17

Our paper is organized as follows. In Sec. II we will hig
light our key results. A detailed derivation of these results
then performed in Sec. III. Our main conclusions are brie
summarized in Sec. IV. Most of the technical details, such
the derivation of our effective action as well as a few oth
issues, are presented in Appendixes A, B, and C.

II. MODEL AND KEY RESULTS

Similarly to Refs. 5, 12, and 13 we will consider a cohe
ent scatterer between two big reservoirs. As we have alre
pointed out, the scatterer will be described by an arbitr
distribution of energy-independent transmissionsTn of its
conducting modes, and the corresponding Landauer con
tance 1/R is defined in Eq.~2!. The scatterer is assumed to b
shorter than both dephasing and inelastic lengths. The s
terer region is characterized by an effective capacitancC
and the corresponding charging energyEC5e2/2C. We fur-
ther assume that the scatterer is connected to the vo
sourceVx via a linear external impedanceZS ~see Fig. 1!.
Here we restrict ourselves to a simple caseZS(v)5RS . If
necessary, generalization of our calculation to arbitr
ZS(v) can be performed in a straightforward manner.
nally, we will assume that the typical traversal timet tr—i.e.,
the time it takes electron to propagate inside the scatt
region—is shorter than theRC time of our system,t tr
&RRSC/(R1RS).
08531
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In what follows we will investigate the current noise an
evaluate the correlation function

S~ t,t8!5
1

2
^ Î ~ t ! Î ~ t8!1 Î ~ t8! Î ~ t !&2^ Î &2, ~5!

where Î is the current operator in the circuit of Fig. 1. Th
correlator can be expressed in the form

S~ t,t8!5S ni~ t,t8!1dS~ t,t8!, ~6!

where S ni is the noninteracting contribution to the curre
noise2–4 and dS is the correction due to electron-electro
interactions inside the scatterer. This correction will
evaluated in the most interesting ‘‘metallic’’ limit

g05g1gS@1. ~7!

Here we introduced dimensionless conductances of the s
terer and shunt: respectively,g5Rq /R and gS5Rq /RS .
Equation~7! implies that at least one of these two dime
sionless conductances is required to be much larger
unity.

Quite obviously, the latter correlator~5! should depend on
bothR andRS . We also introduce another correlatorS̃(t,t8)
defined by the same Eq.~5! in which one should substitute
the current operator across the scattererÎ→ Î sc. The two cor-
relatorsS(t,t8) andS̃(t,t8) are not independent. With the ai
of the current conservation condition and performing t
Fourier transformation with respect tot2t8, one easily finds
the relation

S̃v5
RS

2

R0
2 ~11v2R0

2C2!Sv2
RS

R2
~11v2R2C2!v coth

v

2T
,

~8!

whereR05RRS /(R1RS). The second term is due the nois
produced by the external resistorRS which has to be sub-
tracted in order to arrive atS̃v .

In general also the correlatorS̃v depends on bothR and
RS . However, in the limitRS@R the dependence on th
shunt resistance is weak and can be neglected. In this

FIG. 1. The circuit under consideration. The scatterer~denoted
by a cross! has a capacitanceC and is connected to the voltag
sourceVx via an impedanceZS .
7-2
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the interaction correction to the current noise spectrum,dS̃v ,
depends only on the properties of the scatterer. Below
will present our key results fordS̃v only in this limit. More
general expressions can be found in Sec. III.

Let us define the average voltage across the scatterV
5VxR/(R1RS) and consider first the limit of relatively
small voltages. At sufficiently large temperatures and/or f
quencies we find

dS̃v52
2bEC

3R
, if T@gEC ,ueVu,uvu, ~9!

dS̃v52
bEC

R
, if uvu@T,gEC ,ueVu. ~10!

At lower temperatures and frequencies we obtain

dS̃v52
4bT

Rq
ln

gEC

T
, if uvu,ueVu!T!gEC , ~11!

dS̃v52
2buvu

Rq
ln

gEC

uvu
, if T,ueVu!uvu!gEC .

~12!

These results apply as long as either tempera
or frequency exceeds an exponentially small param
gECexp(2g/2). For even smaller frequencies an
temperatures20 we get

dS̃v52
bv

R
coth

v

2T
. ~13!

Note that the above expressions could also be anticip
from the fluctuation-dissipation theorem~FDT! combined
with the results.5 Indeed, in the limit of low voltages the
current noise is described by the standard Nyquist form
Hence, in order to satisfy the FDT one should simply sub
tute the effective conductance~3! into this formula. In this
way one gets the interaction correctiondS̃v proportional to
b f . For instance, in the low-frequency limit one find5

f (0,T).EC/3T for T@gEC , f (0,T).(2/g)ln(gEC /T) for
exp(2g/2)!T/gEC!1 and f (0,T).1 for T,gEC
3exp(2g/2). Combining these expressions with the FD
one immediately reproduces Eqs.~9!, ~11!, and~13!.

It is worth stressing that here we evaluate the curre
current correlation functions directly anddo not use the
results5 together with the FDT. However, it is satisfactory
observe that the FDT is explicitly maintained in our calcu
tion and the results derived here are fully consistent w
those of Ref. 5.

Now let us turn to the case of relatively large voltagesV
where the shot noise becomes important. As was alre
announced, in this case the correction to the noise po
spectrum is proportional to the parameter
08531
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b22g5

(
n

Tn~12Tn!~122Tn!

(
n

Tn

. ~14!

In particular we obtain

dS̃v52
2~b22g!ueVu

Rq
ln

gEC

ueVu
, ~15!

if T,uvu!ueVu!gEC ,

dS̃v52
~b22g!EC

R
, if ueVu@T,gEC ,uvu. ~16!

We note that this correction can be either negative or posi
depending on the relation between the parametersb andg.
Thus, in contrast to the limit of low voltages~Nyquist noise!,
one cannot conclude that shot noise is always reduced
interactions. This reduction occurs only for conductors w
relatively low transmissionsb.2g, while for systems with
higher transmissions the net effect of the electron-elect
interaction enhances the shot noise. In the important cas
diffusive conductors one hasb51/3, g52/15 and, hence,

b22g5
1

15
.

In this case the shot noise is reduced by interactions.
The above results have a transparent physical interpr

tion. At low voltages the power spectrum of the Nyqu
noise is proportional to the system conductance}(nTn .
Since in the presence of interactions the conductance
quires a correction proportional tob, the interaction correc-
tion to the Nyquist noise should scale with the same para
eter ~1!. On the other hand, shot noise is determined by
combination(n(Tn2Tn

2). Accordingly, the interaction cor-
rection to the shot noise power should consist of two con
butions. One of them comes from(nTn and is again propor-
tional to b. Another contribution originates from th
interaction correction to(nTn

2 which turns out to scale a
2g. Since these two corrections enter with opposite signs
immediately arrive at the combination~14!.

We also point out that the third cumulant of the curre
operator for noninteracting electrons is known18 to be pro-
portional to the parameters~1! and~14!, respectively, at low
and high voltages~for recent results related to the third cu
mulant see also Ref. 19!. Following the same arguments a
above we canconjecturethat the interaction correction to th
third cumulant should scale asb22g at low voltages, while
in the limit of large voltages one can expect that this corr
tion is governed by the combinationb26g16d, where

d5

(
n

Tn
3~12Tn!

(
n

Tn

. ~17!
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This conjecture can also be generalized to higher cumul
of the current operator.

We would like to emphasize that—although the abo
conjecture seems intuitively appealing—it should still
verified by means of a rigorous calculation which is beyo
the scope of the present paper. In the next section we
concentrate on the current noise and will provide a deta
derivation of the results presented above.

III. EFFECTIVE ACTION AND CURRENT NOISE

Similarly to Ref. 5 we will use the effective action tech
nique in order to evaluate the current-current correlator
the system depicted in Fig. 1. It is convenient to introdu
the quantum phase variablew which is proportional to the
integral of the fluctuating voltage~see Appendix A!. We will
proceed within the Keldysh formalism and introduce tw
phase variablesw1,2 related to the two branches of th
Keldysh contour. Definingw15(w11w2)/2 and w25w1
2w2 one can denote the overall phase jumps across the
terer asw11eVt andw2. Correspondingly, the phase jump
across the Ohmic shunt are (eVx2eV)t2w1 and2w2. The
symmetric current-current correlation function~5! can be ex-
pressed as follows:

1

2
^ Î ~ t ! Î ~ t8!1 Î ~ t8! Î ~ t !&

52e2E Dw6
d2

dwS
2~ t !dwS

2~ t8!
eiStot[w

6] ; ~18!

see Appendix A for further discussion. BywS
6 we denote the

phase jumps over the Ohmic shunt. The variational der
tives in Eq. ~18! act on the shunt part of the action. He
Stot@w6# is the total action of our system,

Stot@w6#5S@w6#1SS@w6#, ~19!

where the term

iSS@w6#5
i

e2RS
E

0

`

dtw2~ t !S eVxRS

R1RS
2ẇ1~ t ! D

2
1

2e2RS
E

0

`

dt1E
0

`

dt2a~ t12t2!w2~ t1!w2~ t2!

~20!

comes from the shunt,S@w6# is the scatterer action, and

a~ t2t8!52
1

p S pT

sinh@pT~ t2t8!#
D 2

. ~21!

A detailed derivation of the actionS@w6# is carried out in
Appendixes A, B, and C. The main idea of this derivation
to expandS@w6# in powers ofw2, keeping the full nonlin-
earity of the corresponding terms inw1. This procedure is
just the quasiclassical approximation for the phase varia
It is parametrically justified under the condition~7!. In Ref. 5
the actionS@w6# was evaluated up to the second order
08531
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w2. This is sufficient to derive the current-voltage charact
istics of the scatterer. However, in order to describe the c
rent noise it is necessary to expand the actionS@w6# further
and to retain all terms up to the third order inw2:

S@w6#5S(1)1S(2)1S(3). ~22!

This expansion is analyzed in Appendix C. We will now u
these results and explicitly evaluate the current-current c
relator ~5!.

A. Contribution of first- and second-order terms

Let us first restrict our attention to the contribution of th
first- and second-order terms in Eq.~22!. They read

iS(1)@w6#1 iS(2)@w6#

52
i

e2E0

`

dtw2~ t !FCẅ1~ t !1
1

R
@ẇ1~ t !1eV#G

2
1

2e2R
E

0

`

dt1E
0

`

dt2a~ t12t2!

3w2~ t1!w2~ t2!$12b1b cos@eV~ t12t2!

1w1~ t1!2w1~ t2!#%.

Employing Eq.~18! we obtain

1

2
^ Î ~ t ! Î ~ t8!1 Î ~ t8! Î ~ t !&5

a~ t2t8!

RS
1e2^K~ t !K~ t8!&,

~23!

where we defined

K~ t !5
1

e2RS
FeVx2eV2ẇ11 i E

0

`

d t̃a~ t2 t̃ !w2~ t̃ !G .
~24!

Angular brackets in Eq.~23! imply averaging with the path
integral:

^•••&5E Dw6~••• !exp~ iS(1)@w6#1 iS(2)@w6#

1 iSS@w6# !.

Rewriting the correlator̂KK& as

^K~ t !K~ t8!&52 lim
h→0

E Dw6
d2

dh~ t !dh~ t8!

3expH i (
i 51,2

S( i )@w6#1 iSS@w6#

1 i E
0

`

d t̃h~ t̃ !K~ t̃ !J ~25!

and performing a shift of wv
2→wv

21hvR0 /Rs(1
2 ivR0C), we obtain the expression for the Fourie
transformed noise spectrum~5!:
7-4
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Sv5v coth
v

2T H Re
1

Z~v!
2

b

RkVJ
1

b$a~ t2t8!^cos@eV~ t2t8!1w1~ t !2w1~ t8!#&%v

RkV

1
b2

e2R2kV
@^H~ t !&22^H~ t !H~ t8!&#v , ~26!

where

H~ t !5E
0

`

d t̃a~ t2 t̃ !w2~ t̃ !

3$12cos@eV~ t2 t̃ !1w1~ t !2w1~ t̃ !#%. ~27!

In Eq. ~26! we also introduced the notation

Z~v!5RS1
1

R212 ivC
, V511v2R0

2C2,

k5
~R1RS!2

R2
. ~28!

Making use of the relation~8!, we arrive at the correla
tor S̃v ,

S̃v5
1

R S ~12b!v coth
v

2T
1b$a~ t2t8!^cos@eV~ t2t8!

1w1~ t !2w1~ t8!#&%vD1•••, ~29!

where the ellipsis stands for the terms containing@^H(t)&2

2^H(t)H(t8)&#v in Eq. ~26!. We also note that exactly th
same results can be obtained from the quasiclassical La
vin equation approach.22,23

Within our analysis interaction effects are described
the terms containing the fluctuating variablew1. If one for-
mally sets this variable equal to zero, from Eq.~26! one
immediately recovers the noninteracting result2–4

S̃ v
ni5~12b!

v

R
coth

v

2T
1

b

2R (
6

~v6eV!coth
v6eV

2T
.

~30!

Taking the phase fluctuations into account we arrive at
expression for the interaction correction to Eq.~30!. How-
ever, the corresponding expression turns out to be incomp
in two respects. First, one of the terms does not satisfy F
Second, the correction to Eq.~30! obtained in this way scale
with the parameterb in both limits of small and large volt-
ages. While in the former limit~Nyquist noise! this result is
understandable and consistent with Ref. 5, at large volta
~shot noise! one also expects an extra contribution. Its ex
tence can be anticipated because the shot noise is gove
by the combination(nTn(12Tn) and not simply by(nTn as
the Nyquist noise; see also our discussion in Sec. II.
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Both these problems are remedied by taking into acco
the third order inw2 contribution to the effective action
This will be demonstrated in the next subsection.

B. Corrections due to third-order terms

Following the analysis in Appendix C we identify tw
different contributions to the third-order term

S(3)5Sb
(3)1Sg

(3) .

The first contribution has the form

iSb
(3)@w6#5

ib

6e2R
E

0

`

dt @w2~t!#3ẇ1~t!. ~31!

Taking this term into account and repeating the above an
sis we arrive at an extra contribution to the current noise
the form2e2bd(t2t8)/2RC; see also Appendix C. Adding
this contribution to Eq.~26! and subtracting the noninterac
ing result~30! we arrive at the interaction correction

dSv
(b)5

b

RkV
$a~ t2t8!cos@eV~ t2t8!#~e2F(t2t8)21!

2e2d~ t2t8!/2C%v . ~32!

The function F(t) results from averaging over the pha
fluctuations

^cos@eV~ t2t8!1w1~ t !2w1~ t8!#&

5cos@eV~ t2t8!#e2F(t2t8). ~33!

This function has the form

F~ t !5e2R0
2E

2`

` dv

2p

12cosvt

v2V
H S 1

R0
2

b

RDv coth
v

2T

1
b

2R (
6

~v6eV!coth
v6eV

2T J . ~34!

We also note that in Eq.~32! we omitted the last term of Eq
~26! which contains averages of the functionH Eq. ~27!. Our
analysis demonstrates that these terms are small in al
gimes considered below.

What remains is to evaluate the correction to the s
noise from the second contribution toS(3). The derivation of
this contribution is presented in Appendix C. Here we on
quote the result

iSg
(3)@w6#5

p igT3

6e2R
E

0

`

dy1E
0

`

dy2

3E
0

`

dy3

w2~y1!w2~y2!w2~y3!

sinh@pTy21#sinh@pTy32#sinh@pTy13#

3$sin@eVy211w1~y2!2w1~y1!#

1sin@eVy321w1~y3!2w1~y2!#

1sin@eVy131w1~y1!2w1~y3!#%, ~35!
7-5
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whereyi j 5yi2yj and the parameterg is defined in Eq.~4!.
At first glance this contribution to the effective actio

could be considered unimportant. This is indeed the cas
several limits. For instance, at sufficiently small transm
sionsb@g the term~35! can obviously be neglected. In th
limit of low voltages one can, making use of the conditi
~7!, expandSg

(3) in small phase fluctuationsw6. Then one
getsSg

(3) proportional to the combination (w1)3(w2)3 which
can be dropped as compared to other terms providedg0
@1. However, in the limit of large voltages the term~35!
gains importance and—as we shall see—provides a sig
cant contribution todSv .

Proceeding along the lines with the above analysis
find

dS v
(g)5

2p2gT3

g0RkV E
0

`

dt

3E
0

`

dx
~12e2x/R0C!~cos@eVt#2cos@eVx# !cosvt

sinh@pTx#sinh@pTt#

3S 1

sinh@pT~x2t !#
2

1

sinh@pT~x1t !# D . ~36!

This expression will be analyzed below in Sec. III F.

C. Relation to the FDT

Before we proceed with the analysis of the above res
let us establish some useful general expressions and illus
the relation between our approach and the FDT. Through
this subsection we will only consider the limit of small vol
ageseV!1/R0C and neglect the dependence of the funct
F(t) on V. In the spirit of theP(E) theory21 let us define the
function

P~E!5E
2`

`

dteiEte2F(t),

F~ t !5F~ t !uV501
ie2R0

2
sgn@ t#~12e2utu/R0C!. ~37!

This function obeys the ‘‘detailed balance’’ symmet
P(2E)5e2E/TP(E) which follows from the property
F(t2( i /T))5F(2t). Let us also introduce the function

Nv5
1

4pR0
(
6

E
2`

`

dE
E~11e2(v6eV)/T!

12e2E/T
P~v6eV2E!

~38!

and rewrite it in the form

Nv5
1

R0
E

2`

`

dteivtH 2
e2

2C
d~ t !

1a~ t !e2F(t)cos~eVt!cosF p

g0
~12e2t/R0C!G J .

~39!
08531
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We observe that, since in the interesting for us limitg0@1
the argument of cos@(p/g0)(12e2t/R0C)# is small, with the ac-
curacy;1/g0

2 one can use the function~39! in order to ana-
lyze the result~32!.

Proceeding further let us rewrite Eq.~38! as

N~v!5
1

2 (
6

coth
v6eV

2T
I~v6eV!, ~40!

where

I~v!5
12e2v/T

2pR0
E

2`

` dEE

12e2E/T
P~v2E!. ~41!

After a simple algebra from Eq.~41! we obtain I(v)
5v/R01dI(v) and

dI~v!5
2

R0
E

0

`

dt sin~vt !e2F(t)a~ t !sinF p

g0
~12e2t/R0C!G .

~42!

Comparing the above expressions with Eq.~32! we arrive at
the following correction to the current noise:

dSv5
bR0

2RkV (
6

coth
v6eV

2T
dI~v6eV!. ~43!

In order to illustrate the relation between our results and
FDT we notice that in the relevant limitg0@1 the quantity
dI(eV), Eq. ~42!, is defined by exactly the same time int
gral as the interaction correction to theI -V curve; cf. Eq.
~27! of Ref. 5. In particular, in the limit of zero frequenc
and voltage one finds

dS̃v5052Te2bE
0

`

ta~ t !e2F(t)~12e2t/R0C!dt. ~44!

In accordance with the FDT the combination on the rig
hand side is just the interaction correction to the zero-b
conductance of a coherent scatterer5 multiplied by 2T.

We will now derive the interaction correction to the cu
rent noise in several important limits.

D. High temperatures

In the limit T@1/R0C it is sufficient to evaluate the func
tion F(t) only at short timest&1/T. In this limit from Eq.
~34! we get

F~ t !5
e2t2

2C F S 12
bR0

R DT1
bR0

2R
eVcoth

eV

2TG . ~45!

Expandinge2F(t) in Eq. ~32! to the first order inF we obtain
7-6
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dSv5
e2b

2RCkV

3H 211F11
bR0

R S eV

2T
coth

eV

2T
21D G

3(
6

f S v6eV

2T D J , ~46!

where the functionf (x) reads

f ~x!5
x coshx

2 sinh3x
2

1

2 sinh2x
. ~47!

In the limit of small frequencies and voltages we then fin

dSv52
e2b

3RCk
. ~48!

At high frequenciesv@T,eV or large voltageseV@T,v we
get

dSv52
e2b

2RCkV
. ~49!

Both results~48! and~49! describe partial suppression of th
current noise by Coulomb interaction. As we have alrea
discussed, Eq.~48! is consistent with the results5 combined
with the FDT, whereas Eq.~49! just corresponds to the Cou
lomb offsetDV52eb/2C on the I -V curve of a coheren
scatterer at large voltages. For the sake of completenes
also note that in a specific limituv6eVu!T, Eq. ~46! yields
a positive correction to the current noise:

dSv5
e2b2R0ueVu

24CTR2kV
. ~50!

However, the magnitude of this correction is small in t
parameter;e2R0 /(RCT)!1/g0.

E. Low temperatures

Now let us consider the limit of low temperaturesT
!1/CR0. At low voltages eV!1/R0C and times much
longer than 1/R0C the functionF(t) reads

F~ t !.
2

g0
lnS sinh@pTt#

sinh@pTR0C# D . ~51!

Combining this expression with Eq.~32!, in the limit of
small v,eV,T we obtain

Sv52TF 1

R1RS
2

b

Rk
~12~TR0C!2/g0!G . ~52!

For T@g0ECexp(2g0/2) the result~52! can be expanded in
2/g0. In this limit for the interaction correction we get

dSv52
4Tb

g0Rk
ln

1

R0CT
. ~53!
08531
y
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In the opposite limit of very lowT,g0EC exp(2g0/2) ~but
still T@v,eV) the last term in Eq.~52! can be neglected an
the interaction correction becomes

dSv52
2Tb

Rk
. ~54!

In the limit T!v,eV!1/R0C we can setT50 in Eq. ~51!.
Then we obtain

Sv5uvuS 1

R1RS
2

b

Rk D
1

b

2Rk (
6

uv6eVu@ uv6eVuR0C#2/g0. ~55!

If both v and V tend to zero, the last term in Eq.~55! can
again be neglected and we find

dSv52
uvub
Rk

. ~56!

If, however, v and/or eV exceed the scaleg0EC
3exp(2g0/2), one expands Eq.~55! in 2/g0 and gets

dSv52
2uvub
g0Rk

ln
1

uvuR0C
. ~57!

This expression applies forv@eV. In the opposite limit in
Eq. ~57! one should simply substituteeV instead ofv. Note,
however, that in the latter limit the corresponding res
yields only one contribution (dSv

(b)) to the interaction cor-
rection. Another contribution (dSv

(g)) will be found in Sec.
III F.

To complete this subsection let us find the interaction c
rection in the limitv,eV@1/R0C. At large voltages the de
pendence ofF(t) on V should be taken into account. Evalu
ating the corresponding~linear inV) correction toF(t), Eq.
~51!, we obtain

dSv5
e2R0

2b2ueVu

4pR2kV
(
6

w@~v6eV!R0C#, ~58!

where

w~x!52222xarctanx2 ln x21 ln~11x2!1uxup.
~59!

For uv6eVu@1/R0C the asymptotics w(x@1).1/3x2

should be used. In this case we again recover Eq.~49!. If,
however,uv6eVu&1/R0C, then the interaction correction i
governed by another asymptoticsw(x!1).222 ln x2 and,
hence, this correction is positive. Such an increase of
noise atuv6eVu,1/R0C is similar to that found at highe
temperatures.

F. Large voltages

Now let us evaluate the remaining correctiondS (g) Eq.
~36!. At high temperaturesT@1/CR0 we obtain

dS v
(g);

e2g

RCkV S eV

T D 2

, if v,eV!T, ~60!
7-7
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dS v
(g)5

e2g

RCkV
u~ ueVu2uvu!tanh

ueVu2uvu
2T

,

if v,eV@T. ~61!

In the limit v,eV!T!1/CR0 one finds

dS v
(g)5

2g~eV!2

3Tg0Rk
ln

1

TR0C
, ~62!

while at higher frequencies and voltagesv,eV@T we derive

dS v
(g)5

4g

g0RkV
u~ ueVu2uvu!

3H arctan@~ ueVu2uvu!R0C#

R0C
1

ueVu2uvu
2

3 ln$11@~ ueVu2uvu!R0C#22%J . ~63!

Note that the correctiondS v
(g) is positive in all cases. As

compared to previously obtained contributiondSv
(b) the cor-

rection ~63! becomes important in the limiteV@T,v. For
such voltages both corrections add up,dSv5dS v

(b)

1dS v
(g) , and yield

dSv52
2~b22g!ueVu

g0Rk
ln

1

ueVuR0C
,

if T,uvu!ueVu!1/CR0 ,

dSv52
~b22g!EC

RkV
, if ueVu@T,1/CR0 ,uvu. ~64!

Finally, we present some explicit expressions for the
called Fano factor, defined as

z~V!5
S~eV@T,v50!

ueIu
. ~65!

This factor can easily be evaluated with the aid of the ab
results. In the regime of moderate voltagesT!ueVu
!1/CR0 we have

z5
R2

~R1RS!2 Fb1
2

g0
lnS 1

ueVuR0CD S b2R

R1RS
12g2b D G ,

~66!

whereas in the limit of high voltagesueVu@T,1/CR0 one
finds

z5
R2

~R1RS!2 Fb1
EC

ueVu S b2R

R1RS
12g2b D G .

In the diffusive case the interaction correction to the Fa
factor can be both positive and negative depending on
R/RS ratio.

These results complete our analysis of current fluctuati
in coherent conductors with electron-electron interactions
08531
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IV. SUMMARY

Combining the standard scattering matrix approach w
the effective action formalism we have analyzed the effec
electron-electron interactions on current noise in mesosc
coherent conductors in the metallic limit~7!. We have found
that Coulomb interaction always leads to partial suppress
of the Nyquist noise. The corresponding interaction term
proportional to the parameterb, Eq. ~1!, similarly to the
interaction correction to the conductance.5 Interaction-
induced suppression of both conductance and Nyquist n
has the same physical origin, and a direct relation betw
these two effects can easily be established with the aid of
FDT.

The effect of electron-electron interactions on the s
noise is somewhat more complicated. In this case we h
recovered two different interaction corrections entering w
opposite signs. One of them is negative and it is again g
erned by the parameterb. Another correction is positive and
it is proportional to the parameterg, Eq. ~4!, which depends
on the transmission distribution in a different way. The n
interaction correction to the shot noise scales asdSv(V)
}2g2b; i.e., it can be both negative and positive depend
on the relation betweenb and g. The contribution to
dSv(V) from thenth conducting mode isnegativeprovided
its transmissionTn is smaller than 1/2 and it ispositiveoth-
erwise. For coherent diffusive conductors 2g2b521/15;
i.e., in this particular case electron-electron interactions t
to decrease the shot noise.

The presence of two interaction corrections to the s
noise has a transparent physical interpretation. Theb correc-
tion is due to Coulomb blockade suppression of the Landa
conductance~2! while the g correction originates from the
term 2(nTn

2 in the expression for the shot noise.2–4 The
absolute value of this term is also decreased by interacti
But since it enters with a negative sign, the correspond
contribution to the noise spectrum turns out to be positi
We believe that the effect of electron-electron interactions
higher cumulants of the current operator can be describe
a similar manner.

Finally, we would like to make a remark concerning po
sible experimental verification of our results. Our theory w
developed under the same basic assumptions as those
previously in Ref. 5 for calculations of the interaction co
rection to theI -V curve of a disordered coherent conduct
~3!. In a wide range of parameters the theory5 predicts uni-
versal logarithmic temperature and voltage dependence
the interaction correction to the differential conductance. E
actly this dependence was measured in a variety of me
copic conductors, such as, e.g., diffusive metallic bridge24

metallic microstrips,25 multiwalled carbon nanotubes,26,27

break junctions,28 and nanoscale metallic contacts,29 to men-
tion a few. We believe that all these and possibly other
herent mesoscopic coherent conductors can as well be
for measurements of the current noise in order to experim
tally test the predictions made in this paper.
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APPENDIX A: EFFECTIVE ACTION AND OBSERVABLES

Following Ref. 5 let us combine the effective actio
formalism30,31 with the usual Landauer scattering approa
Within the latter approach one introduces a~relatively small!
scatterer which connects two bulk reservoirs. The scatter
described by the scattering matrix. In order to inclu
electron-electron interactions it is necessary to reckon w
the many-body Hamiltonian
W
ld

-

l

-

08531
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h

Ĥ5E drĈ1~r!F2
¹2

2m
1W~r!GĈ~r!

1
1

2E drE dr8Ĉ1~r!Ĉ1~r8!
e2

ur2r8u
C~r8!C~r!.

~A1!

Here the termW(r) accounts for boundary and impurity po
tentials, external fields, etc. After the standard Hubba
Stratonovich decoupling of the interaction term one arriv
at the following path integral over an auxiliary fieldV(r,t):
e2 iĤ t5

E DV~r,t8!XT̂expH 2 i E
0

t

dt8Ĥeff@V~r,t8!#J C expF i E
0

t

dt8E dr @¹V~r,t8!#2/8pG
E DV~r,t8!expF i E

0

t

dt8E dr @¹V~r,t8!#2/8pG . ~A2!
of

rer

be
rix

e

Here T̂ is the time-ordering operator and

Ĥe f f@V~r,t !#5E drĈ1~r!F2
¹2

2m
1W~r!2eV~r,t !GĈ~r!.

~A3!

We choose to define the electron charge as2e.
The time dynamics of the density matrixr is described by

means of the evolution operatorJ defined on the Keldysh
contour. In what follows we shall denote the fieldV on the
upper and lower parts of this contour byV1,2. The general
expression for the density matrix reads

r~X1 f ,X2 f ,t f !5E dX1idX2iJ~X1 f ,X2 f ;X1i ,X2i ;t f ,t i !

3r~X1i ,X2i ,t i !, ~A4!

whereX the set of relevant quantum degrees of freedom.
shall assume that the interaction with the fluctuating fie
V1,2 is turned on at a timet i50. The timet f is supposed to
be large. Making use Eq.~A2! and integrating over the fer
mionic degrees of freedom, we obtain

J5E DV1DV2expiS@V1 ,V2#, ~A5!

whereS is the effective action:

iS@V1 ,V2#52 Tr ln ĜV
211 i

C

2E0

t

dt8@VLR1
2 2VLR2

2 #.

~A6!

Here we definedVLR j5VL j2VR j and neglected the spatia
dependence of the fieldsVL1,2 andVR1,2 inside both the left
~L! and right~R! reservoirs. The term with the effective ca
e
s

pacitanceC appears in the same way as in the derivation
Ambegaokar-Eckern-Scho¨n ~AES! action,22,30 i.e., it comes
from the terms

1

8pE dtE dr@¹V1,2~r,t !#2 ~A7!

describing the energy of the fluctuating fields in the scatte
region.

The Green-Keldysh matrixGV(X1 ,X2) @here X5(r,t)]
obeys the 232 matrix equation

S i
]

]t1
1̂2Ĥ0~r1!1̂1eV̂~X1! D ĜV~X1 ,X2!5d~X12X2!ŝz ,

~A8!

whereĤ05(2¹2/2m)1W(r), V̂ is a diagonal 232 matrix
with componentsV̂i j 5Vid i j , andŝz is the Pauli matrix. The
above equation for the Green-Keldysh function should
supplemented by the initial condition for the density mat
r̂(t50)5 r̂0, wherer̂0 is the equilibrium density matrix of
noninteracting electrons. In what follows we will need th
solution of Eq.~A8!, which reads

G11~ t1 ,t2!52 iu~ t12t2!Û1~ t1 ,t2!1 iÛ 1~ t1,0!r̂0Û1~0,t2!,

G22~ t1 ,t2!52 iu~ t22t1!Û2~ t1 ,t2!1 iÛ 2~ t1,0!r̂0Û2~0,t2!,

G12~ t1 ,t2!5 iÛ 1~ t1,0!r̂0Û2~0,t2!,

G21~ t1 ,t2!52 iÛ 2~ t1,0!@ 1̂2 r̂0#Û1~0,t2!, ~A9!

whereÛ1,2(t1 ,t2) are the evolution operators
7-9
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Û1,2~ t1 ,t2!5T expF2 i E
t2

t1
dt8@Ĥ02eV1,2~r,t8!#G .

~A10!

One should keep in mind that in the operator products
Û r̂Û integration over intermediate spatial coordinates is
plied.

Instead of specifyingW(r) we will describe electron
transfer between the reservoirs by means of the scatte
matrix formalism. This procedure is standard and further
tails are provided in Appendix B. In calculating the trace
Eq. ~A6!, we shall make an explicit integration over the lo
gitudinal coordinates. Integration over the transverse coo
nates is replaced by summing over the transmission chan
of the scatterer. It is convenient to introduce the phase v
ables

w1~ t !5E
0

t

dt8@eVLR1~ t8!1eVLR2~ t8!#/2, ~A11!
s-

e

th
git

t

08531
e
-

ng
-

i-
els
ri-

w2~ t !5E
0

t

dt8@eVLR1~ t8!2eVLR2~ t8!#. ~A12!

Provided the dimensionless conductance is large,g0@1,
fluctuations ofw2(t) are strongly suppressed, so we can e
pand the exact actioniS@w6# in powers ofw2, keeping the
full nonlinearity inw1. Note that the external voltage ente
only in w1 but not inw2. Hence, for the system of Fig. 1 w
have to impose the constraints( jw j

1(t)5eVxt and
( jw j

2(t)50. Here the summation runs over different el
ments in our circuit—i.e., the scatterer and shunt.

Let us now define the current operator. The average
rent through the scatterer or through the shunt is defined
follows:

^ Î ~ t !&5 ieE Dw6
d

dw2~ t !
eiS[w6] . ~A13!

The noise is defined analogously:
1

2
^ Î ~ t ! Î ~ t8!1 Î ~ t8! Î ~ t !&5

1

2
tr@ Î ~ t ! Î ~ t8!r̂eq1 r̂eqÎ ~ t8! Î ~ t !#

52
e2

2 E Dw6S d2

dw1
2~ t !dw1

2~ t8!
1

d2

dw2
2~ t !dw2

2~ t8!
D eiS[w6]

52e2E Dw6S d2

dw2~ t !dw2~ t8!
1

1

4

d2

dw1~ t !dw1~ t8!
D eiS[w6] . ~A14!
els

he

-
the

-

Here r̂eq is the equilibrium density matrix of the whole sy
tem. Employing the properties of the actionS@2w1,2w2#
5S@w1,w2#, and S@w1,2w2#52S* @w1,w2#, one can
show that the term containingd2/dw1(t)dw1(t8) vanishes.
Thus we arrive at Eq.~18!.

Below we shall proceed with an explicit calculation of th
action by defining the scattering states.

APPENDIX B: TRANSMISSION CHANNELS

Following the usualŜ-matrix approach32 let us introduce
the transmission channels. We will assume that far from
scatterer the electron propagation in transverse and lon
dinal directions can be described separately. In this case
solution of the Schro¨dinger equation

2
¹2

2m
c~r!1W~r!c~r!5Ec~r! ~B1!

can be factorized:

c~r!5(
n

cnFn~r'!xn~x!. ~B2!
e
u-
he

Herex is the coordinate along the lead andr' are the trans-
verse coordinates. The transverse wave functionsFn(r') sat-
isfy the equation

2
¹'

2

2m
Fn~r'!1W~r'!Fn~r'!5EnF~r'!, ~B3!

where the subscriptn enumerates the transmission chann
~we are considering only channels withEn,EF). The func-
tion xn(x) outside the scatterer region is defined from t
equation

2
1

2m

d2

dx2
xn~x!5~E2En!xn~x!. ~B4!

Since the electronic states with energiesE close to the
Fermi energyEF mainly contribute, it is sufficient to de
scribe the electron dynamics quasiclassically. We define
energyj5E2EF and the particle velocity in thenth channel
vn5A2(EF2En)/m. Then the wave function can be ex
pressed as

xn~x!5eimvnxf n
in~x!1e2 imvnxf n

out~x!, left reservoir,
7-10
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xn~x!5eimvnxgn
out~x!1e2 imvnxgn

in~x!, right reservoir.
~B5!

In this way we have introduced the envelopes of the f
oscillating functions exp(6imvnx). Consider first the left res
ervoir. The functionsf n

in(x) and f n
out(x) satisfy the following

quasiclassical equations:

2 ivn

d

dx
f n

in~x!5j f n
in~x!,

ivn

d

dx
f n

out~x!5j f n
out~x!, ~B6!

with the solutions

f n
in~x!5

ei jx/vn

Avn

, f n
out~x!5

e2 i jx/vn

Avn

. ~B7!

Analogously, for the right reservoir we find

gm
in~x!5

e2 i jx/vm

Avm

, gn
out~x!5

ei jx/vm

Avm

. ~B8!

The eigenfunction of the whole system with the energyj in
the left reservoir may be expressed as

cj~r!5(
n

@aLneimvnxf n
in~x!1bLne2 imvnxf n

out~x!#Fn~r'!,

~B9!

while in the right reservoir we get

cj~r!5(
k

@bRke
imvkxgk

out~x!1aRke
2 imvkxgk

in~x!#Fk~r'!.

~B10!

The amplitudes of the outgoingbL,R and incomingaL,R

states~see Fig. 2! are related via the scattering matrixŜ(j):

S bL1

•••

bLNL

bR1

•••

bRNR

D 5Ŝ~j!S aL1

•••

aLNL

aR1

•••

aRNR

D . ~B11!

FIG. 2. Scattering states.
08531
t

The unitary matrix Ŝ with dimensions (NL1NR)3(NL
1NR) has the block structure

Ŝ~j!5S r̂ ~j! t̂8~j!

t̂~j! r̂ 8~j!
D . ~B12!

The diagonal blocksr̂ and r̂ 8 describe reflection back to th
left and right reservoirs, respectively. The off-diagon
blocks describe transmission through the scatterer. Later
shall neglect thej dependence ofŜ. An appropriate gener-
alization of our approach to the case of energy-depend
scattering will be published elsewhere.16

Let us now combine the incidentf n
in(x) and outgoing

f n
out(x) wave functions belonging to the same channel in

one wave functioncn(x). Namely, we assume that the sca
terer is located atx50, and for the left reservoir (x,0) we
put

cn~y!5H f n
in~y!, y,0,

f n
out~2y!, y.0.

~B13!

Analogously, for the right reservoir (x.0) we define

cm~y!5H f m
in~2y!, y,0,

f m
out~y!, y.0.

~B14!

These new functions are defined in all the rangeyP@2`,
1`# and are equal to

c j~y!5
ei jy/v j

Av j

. ~B15!

Let us emphasize that here the indexj enumerates all con
ducting channels, both in the left and in the right reservo
~for convenience, we assume that the left channels are
merated first!.

In the presence of the fluctuating fieldV(t), the matrix
elements of the Hamiltonian in the reservoirs take the fo

Ĥ i j 52 iv id i j

]

]y
2eVi~ t !d i j , ~B16!

whereVi5VL for all left channels andVi5VR for the right
channels. If at initial time t1 the wave function was
cn(t1 ,y), then at the final timet2.t1 it becomes

cn~ t2 ,y!5ei [wn(t2)2wn(t1)]cn„t1 ,y2vn~ t22t1!…,

y,0 or y.vn~ t22t1!,

cn~ t2 ,y!5(
k

ei [wn(t2)2wk(t1)] 2 i [wn(t22y/vn)2wk(t22y/vn)]

3snkAvk

vn
ckS t1 ,

vk

vn
y2vk~ t22t1! D ,

0,y,vn~ t22t1!. ~B17!
7-11
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Here snk are the matrix elements of theŜ matrix and, as

before,wn(t)5*0
t d t̃eVn( t̃ ). On the other hand, by definitio

of the evolution operator we have
m

e
b

pl

es
e
b

ca

08531
cn~ t2 ,y2!5(
k
E dy1 Unk~ t2 ,t1 ;y2 ,y1!ck~ t1 ,y1!.

Comparing this expression with Eqs.~B17!, we find
Unk~ t2 ,t1 ;y2 ,y1!5eiwn(t2)H dnk

vn
dS y22y1

vn
2t21t1D1u~y2!u„vn~ t22t1!2y2…e

2 iwn(t22y2 /vn)

3@snk2dnk#Avk

vn
eiwk(t22y2 /vn)dS vk

vn
y22y12vk~ t22t1! D J e2 iwk(t1).
r

the

cel

he
tion
It is convenient to introduce the new coordinatest5y/vn .
More precisely, instead of the wave function with the co
ponents cn(y) we introduce the functions hn(t)
5Avncn(y/vn). The kernels of the operators will also b
transformed. If the two functions are related to each other
means of a linear operator

cn
(2)~y!5(

k
E dy8 Knk~y,y8!ck

(1)~y8!, ~B18!

then the corresponding wave functionsh (2) andh (1) satisfy
the following relation:

hn
(2)~t!5(

k
E dt8 K̃nk~t,t8!hk

(1)~t8!, ~B19!

where

K̃nk~t,t8!5AvnKnk~vnt,vkt8!Avk. ~B20!

In this representation the evolution operator can be sim
fied. We find

Û~ t2 ,t1 ;t2 ,t1!

5d~t22t12t21t1!ei ŵ(t2)$1̂1u~t2!u~2t1!e2 i ŵ(t22t2)

3@Ŝ21̂#ei ŵ(t12t1)%e2 i ŵ(t1). ~B21!

The matrixŵ is diagonal with respect to the channel indic
ŵ ik5w id ik . We also obtain an expression for th
inverse operator—i.e., the operator defined
*dt2Û(t2t1 ;t3t2)Û21(t2t1 ;t2t1)5d(t32t1). It reads

Û21~ t2 ,t1 ;t2 ,t1!

5d~t12t22t21t1!ei ŵ(t1)$1̂1u~t1!u~2t2!e2 i ŵ(t12t2)

3@Ŝ121̂#ei ŵ(t22t1)%e2 i ŵ(t2). ~B22!

Equations~B21! and~B22! apply for t2.t1; in order to con-
struct the corresponding expressions in the opposite
one should just use the propertyÛ(t2 ,t1 ;t2 ,t1)
5Û21(t1 ,t2 ;t2 ,t1).
-

y

i-

y

se

Finally let us define the equilibrium density matrix fo
noninteracting electrons. It can be written in the form

r0,nk~y1 ,y2!5dnkE dp

2p

eip(y12y2)

11epvn /T

5
dnk

2
d~y12y2!2

dnk

2p

p iT

vnsinhFpT~y12y2!

vn
G .

~B23!

Performing the transformation~B20! we obtain

r̂0~t1 ,t2!5
1

2 S d~t12t2!2
iT

sinh@pT~t12t2!# D 1̂.

~B24!

APPENDIX C: EXPANSION IN THE PHASE DIFFERENCE

We shall expand the effective action~A6! perturbatively
in w2. The field w1 will be taken into account exactly in
each term of this expansion. The expansion starts from
first order inw2, since forw250 the contributions from the
forward and backward parts of the Keldysh contour can
each other. We get from Eq.~A8!

2 Tr ln ĜV
2152 Tr lnS 11

Ĝ0ŵ̇2

2
D . ~C1!

The Green-Keldysh matrixĜ0 is evaluated forŵ250; i.e.,
it is defined by Eqs.~A9! with the evolution operator~B21!

taken atŵ5ŵ1. The fluctuating fieldŵ2 in Eq. ~C1! is a
unity matrix in Keldysh space and a diagonal matrix in t
space of conducting channels. Performing the summa
over the Keldysh indices we arrive at the first order inw2

contribution to the actioniS(1):
7-12



g

n

r

gh
for

he

CURRENT FLUCTUATIONS AND ELECTRON-ELECTRON . . . PHYSICAL REVIEW B68, 085317 ~2003!
iS~1!@w6#52 i E dtE dsE dt1E dt2

3TrF Û~ t,0;s,t1!H 1

p

p iT

sinh@pT~t12t2!#J
3Û21~ t,0;t2,s!ŵ̇2~ t !G . ~C2!

For simplicity in Sec. III we have sett f→`. Here we will
keep it finite and use the conditionsw2(0)5w2(t f)50. The
d functions contained in theÛ matrices of Eq.~C2! will lead
to a singularity of the form 1/sinh@pT(t12t2)# which is cured
as follows. Let us choose close but not exactly equal ar
mentss1 ands2. Expanding the combination

2 i E dtE dt1E dt2Tr@Û~ t,0;s1 ,t1!Û21~ t,0;t2 ,s2!ŵ̇2~ t !#

~C3!

to the first order ins12s2 and multiplying the result by
1/sinh@pT(s12s2)#, we obtain

iS(1)@w6#5
i

pE0

t f
dsTr$ŵ2~s!@Ŝŵ̇1~s!Ŝ12 ŵ̇1~s!#%.

~C4!

Making use of the condition Tr@ t̂1 t̂ #5Tr@ t̂81 t̂8# we get

iS(1)@w6#52
i

p
Tr@ t̂1 t̂ #E

0

t f
dt w2~t!ẇ1~t!, ~C5!

wherew6(t)5wL
6(t)2wR

6(t).
Consider now the contribution to the action of the seco

order inw2. It is defined as

iS(2)@w6#52Tr@Ĝ12ŵ̇
2Ĝ21ŵ̇

2#. ~C6!

After a straightforward algebra one obtains

iS(2)@w6#52E
0

t f
dt1E

0

t f
dt2r0~t22t1!r0* ~t12t2!

3Tr$e2 i [ ŵ1(t1)2ŵ1(t2)]@Ŝ1ŵ2~t1!Ŝ2ŵ2~t1!#

3ei [ ŵ1(t1)2ŵ1(t2)]@Ŝ1ŵ2~t2!Ŝ2ŵ2~t2!#%.

~C7!

Taking into account the block structure of theŜ matrix, we
find

iS(2)@w6#52
1

4pE0

t f
dt1E

0

t f
dt2a~t12t2!$@Tr~ t̂81 t̂8!2

1Tr~ t̂1 t̂ !2#w2~t1!w2~t2!12 Tr@ r̂ 8 r̂ 81 t̂ t̂1#

3cos@w1~t1!2w1~t2!#w2~t1!w2~t2!%,

~C8!
08531
u-

d

wherea(t) is defined in Eq.~21!. Introducing the paramete
b5Tr@ r̂ 8 r̂ 81 t̂ t̂1#/Tr@ t̂ t̂1# we rewrite Eq.~C8! in a more
compact form

iS(2)@w6#52
Tr@ t̂1 t̂ #

2p E
0

t f
dt1E

0

t f
dt2a~t12t2!

3w2~t1!w2~t2!$12b1b

3cos@w1~t1!2w1~t2!#%. ~C9!

We now proceed to the third-order contributioniS(3) to
the effective action. It reads

iS(3)5
i

2
TrF E

0

t f
dt1E

0

t f
dt2E

0

t f
dt3u~ t12t2!

3u~ t32t2!F̂~ t1!F̂~ t2!F̂~ t3!r̂0
asG

1
1

12
Tr@~Ĝ12ŵ̇

21Ĝ21ŵ̇
2!3#. ~C10!

Here we used the notation

r̂0
as~t12t2!52

iT

2 sinh@pT~t12t2!#
1̂,

F̂~ t !5Û21~ t,0!ŵ̇2~ t !Û~ t,0!. ~C11!

We obtain two terms from Eq.~C10!. The first one is

iSb
(3)@w6#5

ib

6p
Tr@ t̂1 t̂ #E

0

t f
dt @w2~t!#3ẇ1~t!.

~C12!

In deriving this result we employed the same—althou
somewhat more involved—regularization procedure as
the first-order contributionS(1). This procedure allows us to
determine the correct overall prefactor in Eq.~C12!. One can
then verify that the resulting effective action satisfies t
requirements of the FDT.

The second term, coming from Eq.~C10!, has the form

iSg
(3)@w6#5

4

3
Tr@~ t̂ t̂1!2r̂ 8 r̂ 81#E

0

t f
dy1E

0

t f
dy2E

0

t f
dy3

3r0
as~y22y1!r0

as~y32y2!r0
as~y12y3!

3w2~y1!w2~y2!w2~y3!$sin@w1~y2!

2w1~y1!#1sin@w1~y3!2w1~y2!#

1sin@w1~y1!2w1~y3!#%. ~C13!

Defining the parameterg5Tr@( t̂ t̂1)2r̂ 8 r̂ 81#/Tr@ t̂ t̂1# and
shifting the phasew1 by eV we obtain Eq.~35!. Collecting
now all four contributions~C5!, ~C9!, ~C12!, and ~C13! we
arrive at the final result for the effective action:
7-13
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S5S(1)1S(2)1Sb
(3)1Sg

(3) . ~C14!

This action is valid up to the third order inw2, and the
variable w1 is treated exactly in each of the terms in E
~C14!.

It is instructive to compare our results with the AE
action22 derived for tunnel junctions (b→1) to all orders in
w6. Rewriting the action22 in our notation together with the
capacitive term one has

iSAES5
4i

e2R
E

0

t f
dt1E

0

t f
dt2a I~ t12t2!u~ t12t2!

3sin@w1~ t1!2w1~ t2!#sin
w2~ t1!

2
cos

w2~ t2!

2

2
2

e2R
E

0

t f
dt1E

0

t f
dt2a~ t12t2!

3sin
w2~ t1!

2
sin

w2~ t2!

2
cos@w1~ t1!2w1~ t2!#

2
i

e2E0

t f
dtCẅ1w2. ~C15!

Here we denoteda I(t12t2)5d8(t12t2). This d function
should be understood as a smeared one.

Let us expand Eq.~C15! in w2 and compare with our
results order by order. The first-order terms are exactly
same for both models. The difference between the mo
shows up in the second-order terms; for our model the
rameterb appears explicitly in the second-order contributi
~C9!. In the limit b→1 this expression reduces to that o
tained from Eq.~C15!. Expanding the action~C15! to the
third order in w2 one only recovers the term of the form
~C12! with b51, while another term~C13! cannot be recov-
ered. Contributions of this nature are not contained in
AES action at all since they are proportional to higher ord
of the channel transmissionTn .

It is worthwhile pointing out that a formally exact repre
sentation for the effective action of a coherent scatterer~all
orders in Tn and all orders in w6) can also be
derived.12,13,30,33However, this formal expression turns o
to be quite complicated to deal with in the situation a
dressed here. Forg5Rq /R@1 and provided instanton
effects12,13 can be neglected all necessary information
equally contained in a much simpler form of the effecti
action derived in the present paper.

We also note that there exists a simple relation betw
the action derived here and the cumulant generating func
describing the full counting statistics of the charge transp
in noninteracting coherent conductors.34 This relation can be
established if one neglects fluctuations of the ph
variable—i.e., setsw15eVt and choosesw2 to be time in-
dependent. By identifyingw252l and expanding the gen
erating function ln@x(l)# @defined in Eq.~37! of Ref. 34# in
powers ofl one arrives at the following identity:
08531
.

e
ls

a-

e
s

-

s

n
n

rt

e

ln@x~l!#5
i

2
S@eVt,2l#.

It is easy to prove that this relation is exact—i.e., it holds
all orders inl.

Finally, let us use the AES action~C15! in order to illus-
trate the importance of the third order inw2 terms for the
calculation of the current-current correlation functions. A
plying Eq. ~A14! one gets a contribution stemming from th
double differentiation of the term witha I in the action
~C15!:

dS~ t,t8!52 K i

R
u~ t2t8!a I~ t2t8!sin@w1~ t !

2w1~ t8!#sin
w2~ t !2w2~ t8!

2 L 1~ t↔t8!.

~C16!

Evaluating this average with the aid of path integrals one
to keep all nonlinear terms in the preexponent. However,
dependence of the cosine term onw1 in the action in the
exponent can be neglected providedg@1. Applying the
identity sin@w1(t)2w1(t8)#5(n56nein[w1(t)2w1(t8)]/2i we ar-
rive at the following integral:

E Dw1expH in@w1~ t !2w1~ t8!#

2
i

e2E0

`

d t̃w1~ t̃ !FCẅ2~ t̃ !2
ẇ2~ t̃ !

R
G J ,

~C17!

which yields

w2~ t̃ !5
2p

g
n@u~ t2 t̃ !~12e2(t2 t̃ )/RC!

2u~ t82 t̃ !~12e2(t82 t̃ )/RC!#. ~C18!

As was expected,w2( t̃ ) is indeed small forg@1. Combin-
ing the above expressions we arrive at the contribution

dS~ t,t8!52e2d~ t2t8!/2RC.

The same contribution multiplied by the factorb was de-
rived in Sec. III B from the termSb

(3) , Eq. ~31!. The above
analysis makes the significance of the third order inw2

terms in the action particularly transparent: The kernela I(t)
introduces the time derivative ofe2t/RC which compensates
for an extra smallness;1/g.
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