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Current fluctuations and electron-electron interactions in coherent conductors
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We analyze current fluctuations in mesoscopic coherent conductors in the presence of electron-electron
interactions. In a wide range of parameters we obtain explicit universal dependences of the current noise on
temperature, voltage, and frequency. We demonstrate that Coulomb interaction decreases the Nyquist noise. In
this case the interaction correction to the noise spectrum is governed by the comhhAtjgm,— 1), where
T, is the transmission of theth conducting mode. The effect of electron-electron interactions on the shot noise
is more complicated. At sufficiently large voltages we recover two different interaction corrections entering
with opposite signs. The net result is proportionalXgl,(T,—1)(1—2T,); i.e., Coulomb interaction de-
creases the shot noise at low transmissions and increases it at high transmissions.
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[. INTRODUCTION where f is a universal function evaluated in Ref. 5. This
result holds in the limit of large conductancd®<R,
Recent advances in nanotechnology enable detailed inves=h/e? or, otherwise, at sufficiently high temperatures and/or
tigations of a variety of quantum effects in mesoscopic convoltages. It demonstrates that the magnitude of the interac-
ductors. These investigations are of primary interest becaug®n correction is controlled byhe sameparameter3, Eq.
of the fundamental importance of such effects as well due t@l), which is already well known in the theory of shot noise.
the rapidly growing number of potential applications. A greatPhysically this result can easily be understood since both
deal of information is usually obtained from studying elec-phenomena are related to the discrete nature of the electron
tron transport. Additional and complementary informationcharge. Hence, there exists a direct link between shot noise
can be extracted from investigations of fluctuation effectsand interaction effects in mesoscopic conductors. In the case
such as shot noiseFor instance, it was demonstratetithat  of a single-channel conductor a similar observation was also
the power spectrum of the shot noise in coherent mesoscopinade in Ref. 6.
conductors is expressed in terms of the parameter It is obvious that not only thé-V curve(3) but also shot
noise as well as higher moments of the current operator
should be affected by electron-electron interactions. This pa-

En: Ta(1=T) per is devoted to a detailed investigation of current fluctua-
B=—. (1) tions in mesoscopic coherent conductors in the presence of
2 T, electron-electron interactions. Previously various aspects of
n

this problem have been studied for a particular case of tunnel
Here and belowT,, stands for the transmission of theh junctions in the Coulomb blockade regime; see, e.g., Refs.

conducting channel of a coherent conductor. Thus, sincé—10. The effect of interactions on the shot noise in two-

transport measurements only allow one to determine thdimensional(2D) diffusive conductors at sufficiently high
combination temperatures was recently addressed in Ref. 11.

Here we will employ a model of a coherent
1 2€? conductor*#*Wwithin this model we will demonstrate that
R h 2 Th, (2)  interactions lead to two different corrections to the shot noise
spectrum. One of these corrections scales with the parameter

studies of the shot noise provide additional valuable informag, Eq.(1). This correction imegativefor any T,,<1, simi-
tion about the transmission distribution of conducting modeslarly to that found in Eq(3) for the |-V curve. It describes

The above results apply to the situations when the inter¢partia) suppression of the current noise due to Coulomb
action between electrons can be neglected. In the presencelidbckade. In addition to this correction we shall find another
electron-electron interactions the Landauer conductd®ce one, which is proportional to the parameter
and thel -V curve are modified in a nontrivial way. Recently

it was shown that thel-V curve of a(comparatively shoyt E T2(1-T,)
coherent conductor with arbitrary transmission distribution mo " A
T, in the presence of interactions can be expressed in the Y| - (4)
form > T,
n
Rﬂ: 1-Bf(V,T) 3) This second correction [gositive i.e., for anyT,<1 it leads
dv T to relative enhancement of the shot noise. The latter correc-

0163-1829/2003/68)/08531715)/$20.00 68 085317-1 ©2003 The American Physical Society



GALAKTIONOQOV, GOLUBEY, AND ZAIKIN PHYSICAL REVIEW B 68, 085317 (2003

tion turns out to be important only at voltages exceeding C

both frequency and temperature and is negligible otherwise. [ 1

Thus, at sufficiently high voltages two interaction i Z,
corrections—negative and positive—compete, for 8/2 —

the second one wins and, hence, in this case overall enhance-
ment of the shot noise by interactions is predicted.

It is important to emphasize that the above results are
obtained under the assumption that the conductshter Ise IJ
than any inelastic relaxation length in our problem. In other
words, it is assumed throughout the paper that inelastic re-
laxation may occur in the reservoirs but not inside the coher-
ent conductor. In this sense our model is quite different from
that employed, e.g., in Refs. 14 and 15, where diffusive con-
ductors mucHongerthan the inelastic relaxation length were ~ FIG. 1. The circuit under consideration. The scattédanoted
considered. In the latter case strong energy relaxation allowdy a cross has a capacitanc€ and is connected to the voltage
one to establish local equilibrium described by an effectivesourceVy via an impedancés.
coordinate-dependent electron temperature. Such a descrip-
tion is not possib'e within our mode'_ In What f0||OWS we will inVeStigate the current nOise al’ld

We also note that our results are applicable to physicagvaluate the correlation function
situations in which one can neglect the energy dependence of
fcransmission values,, . !n the abse_nce of inelastic relaxatior_1 S(tt')= E(T(t)f(t’)+T(t’)T(t)>—(T)2, (5)
inside the conductor this assumption embraces a large variety 2
of (comparatively shojtdisordered structures. On the other “ ) o ) )
hand, our approach is not sufficient for scatterers with transwherel is the current operator in the circuit of Fig. 1. This
missions which sharply depend on energy, such as, e.gCorrelator can be expressed in the form
guantum dots in the resonant tunneling regime. A generali- N omNice b1 ,
zation of our path integral technique to the case of energy- SL) =AY+ aS(LL), ©)
dependent transmission amplitudes is worked oufvhere S™ is the noninteracting contribution to the current
elsewheré® We finally remark that the effect of Coulomb noisé=* and S is the correction due to electron-electron
interaction on shot noise in conductors with energy-interactions inside the scatterer. This correction will be
dependent scattering was addressed in a numerical Work. evaluated in the most interesting “metallic” limit

Our paper is organized as follows. In Sec. Il we will high-
light our key results. A detailed derivation of these results is 0o=0+gs>1. (7)
then performed in Sec. Ill. Our main conclusions are briefly ) ) )
summarized in Sec. IV. Most of the technical details, such a§'ere we introduced dimensionless conductances of the scat-

the derivation of our effective action as well as a few otherterer and shunt: respectivelg=R,/R and gs=R/Rs.
issues, are presented in Appendixes A, B, and C. Equation(7) implies that at least one of these two dimen-
sionless conductances is required to be much larger than

unity.
Quite obviously, the latter correlat@®) should depend on
o _ _ bothR andRs. We also introduce another correlatt,t’)
Similarly to Refs. 5, 12, and 13 we will consider a coher-defined by the same E¢5) in which one should substitute
ent scatterer between two blg reservoirs. As we have aI_read[y]e current operator across the scattérefl ... The two cor-
pointed out, the scatterer will be described by an arbitrary

distribution of energy-independent transmissiohns of its relatorsS(t,t') andS(t,t') are not independent. With the aid

conducting modes, and the corresponding Landauer condug the current conservation condition and performing the

tance 1R is defined in Eq(2). The scatterer is assumed to be ourier transformation with respectto-t’, one easily finds
shorter than both dephasing and inelastic lengths. The scatpe relation

terer region is characterized by an effective capacitadce 5

and the corresponding charging enefey=e?/2C. We fur- 3 =—S(1+w2R2C2)S _ R—S(1+w2RZCZ)w cothﬂ
ther assume that the scatterer is connected to the voltage  R2 oY R 2T
sourceV, via a linear external impedancé; (see Fig. L (8)

Here we restrict ourselves to a simple c&gw)=Rg. If

necessary, generalization of our calculation to arbitrar))"’hereRO:RRS/(RJF Rs). The §econd tgrm is due the noise
Z«(w) can be performed in a straightforward manner. Fi-Produced by the external resist®% which has to be sub-

nally, we will assume that the typical traversal timg—i.e.,  tracted in order to arrive af, .

the time it takes electron to propagate inside the scatterer In general also the correlat&rw depends on botR and
region—is shorter than th&C time of our system,r, Rs. However, in the limitRg>R the dependence on the
=RRC/(R+Rg). shunt resistance is weak and can be neglected. In this case

()

IIl. MODEL AND KEY RESULTS
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the interaction correction to the current noise spectréify,,

depends only on the properties of the scatterer. Below we ; Ta(1-Ty)(1-2T,)

will present our key results fofS,, only in this limit. More B—2y= (14)
general expressions can be found in Sec. Ill. > T
Let us define the average voltage across the scattérer "
=V,R/(R+Rg) and consider first the limit of relatively |n particular we obtain
small voltages. At sufficiently large temperatures and/or fre-
guencies we find - 2(B—2y)|e E
53— — (B—2y)| V||n9 c 15
2o Rq leVi
~ c .
58“’:_—3R , if T>gE¢,|eV,|w], (9) if T,|o|<|eVl<gEc,
= (B—2vy)Ec .
~ E 6S,=—————, |If |eV|>T,gEc,|w|. (16
2 w=——BRC, it |o|>T.gEc.leM. (10 . R eVFT9E ol 10

We note that this correction can be either negative or positive
depending on the relation between the parameseasd y.
Thus, in contrast to the limit of low voltag€blyquist noise,
one cannotconclude that shot noise is always reduced by

At lower temperatures and frequencies we obtain

~ 48T gEc interactions. This reduction occurs only for conductors with
08u=" Rq In T’ i lol.leVi<T<gEc, (1D relatively low transmissiong>2vy, while for systems with
higher transmissions the net effect of the electron-electron
5 E interaction enhances the shot noise. In the important case of
58,=— BR|“’| | 9|] |C it T,leVi<|w|<gEc. diffusive conductors one hg3=1/3, y=2/15 and, hence,
q
(12 1

B=2y=1&
These results apply as long as either temperature
or frequency exceeds an exponentially small parametein this case the shot noise is reduced by interactions.
gEcexp(~g/2). For even smaller frequencies and The above results have a transparent physical interpreta-
temperature we get tion. At low voltages the power spectrum of the Nyquist
noise is proportional to the system conductancg,T,.
Bo © Since in the presence of interactions the conductance ac-
88, =— —coth==. (13 quires a correction proportional {8, the interaction correc-
R 2T tion to the Nyquist noise should scale with the same param-
eter(1). On the other hand, shot noise is determined by the
Note that the above expressions could also be anticipate@bmbinationzn(Tn_Tﬁ)_ Accordingly, the interaction cor-
from the fluctuation-dissipation theoreDT) combined  rection to the shot noise power should consist of two contri-
with the resulté. Indeed, in the limit of low VOItageS the butions. One of them comes froE'th and is again propor-
current noise is described by the standard Nyquist formulagonal to B. Another contribution originates from the
Hence, in order to satisfy the FDT one should simply substijnteraction correction ta,T2 which turns out to scale as
tute the effective conductand®) into this formula. In this 5., gince these two corrections enter with opposite signs we
way one gets the interaction correctié, proportional to  immediately arrive at the combinatidtd).
Bf. For instance, in the low-frequency limit one filds  We also point out that the third cumulant of the current
f(0,T)=Ec/3T for T>gEc, f(0,T)=(2/g)In(gE:/T) for  operator for noninteracting electrons is kndfto be pro-
exp(—g/2)<T/gEc<1 and f(0,T)=1 for T<gEc portional to the parametet4) and(14), respectively, at low
Xexp(—g/2). Combining these expressions with the FDTand high voltagesfor recent results related to the third cu-
one immediately reproduces Ed9), (11), and(13). mulant see also Ref. 19Following the same arguments as
It is worth stressing that here we evaluate the currentabove we camonjecturethat the interaction correction to the
current correlation functions directly ando not use the third cumulant should scale -2y at low voltages, while
results together with the FDT. However, it is satisfactory to in the limit of large voltages one can expect that this correc-
observe that the FDT is explicitly maintained in our calcula-tion is governed by the combinatigh— 6y+ 64, where
tion and the results derived here are fully consistent with
those of Ref. 5.

Now let us turn to the case of relatively large voltages ; Ta(1-Ty)
where the shot noise becomes important. As was already 5= (17)
announced, in this case the correction to the noise power ST
spectrum is proportional to the parameter wo "
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This conjecture can also be generalized to higher cumulantg ™. This is sufficient to derive the current-voltage character-

of the current operator. istics of the scatterer. However, in order to describe the cur-
We would like to emphasize that—although the aboverent noise it is necessary to expand the ac8pa™] further

conjecture seems intuitively appealing—it should still beand to retain all terms up to the third orderdn :

verified by means of a rigorous calculation which is beyond

the scope of the present paper. In the next section we will " ]=SM+8@+83), (22)

concentrate on the current noise and will provide a detaile

T q‘his expansion is analyzed in Appendix C. We will now use
derivation of the results presented above. P y PP

these results and explicitly evaluate the current-current cor-

relator (5).
IIl. EFFECTIVE ACTION AND CURRENT NOISE

Similarly to Ref. 5 we will use the effective action tech- A. Contribution of first- and second-order terms

nique in order to evaluate the current-current correlator for | et ys first restrict our attention to the contribution of the

the system depicted in Fig. 1. It is convenient to introducesirst- and second-order terms in E@2). They read
the quantum phase variable which is proportional to the

integral of the fluctuating voltagesee Appendix A We will iS¢ ]+iSP¢*]
proceed within the Keldysh formalism and introduce two

phase variablesp; , related to the two branches of the L . 1.,
Keldysh contour. Defininge™ = (@14 ¢,)/2 and ¢~ = ¢, “;L dte (t){C(p O+ gle (D+ev]
— ¢, one can denote the overall phase jumps across the scat-

terer asp™ +eVtande ™. Correspondingly, the phase jumps 1 (= %

across the Ohmic shunt are\,—eV)t— ¢ and— ¢ . The - 2e2Rf0 dtlfo dtya(t;—ty)

symmetric current-current correlation functi@®) can be ex-
pressed as follows: X (t)e (tp){1- B+ BcogeV(t;—ty)

+o T (t)— e (1)1}
Employing Eq.(18) we obtain

5 e '

_ + 1. 1. . A a(t—t")

__eZJ Do felsmtw ], (18) - "4 , _er=)
Sos (1) deg (1) S (HOTE)+1)I(0) = —¢

see Appendix A for further discussion. By we denote the

phase jumps over the Ohmic shunt. The variational derivawhere we defined

tives in Eq.(18) act on the shunt part of the action. Here

Sl ¢~ ] is the total action of our system,

1 -~ ~ ~ ~
S(HOTE) 1))

+eX(K()K(t")),
(23

K(t)=% eVX—eV—¢++ifmd'jta(t—'f)go_('f)}.
Sol " 1=H ¢ 1+Sde"], (19 e rs ’ 24
where the term

Angular brackets in Eq(23) imply averaging with the path
integral:

iSd o] | th (t)(evXRS ”(t))
iISd ¢~ 1= —— ¢ R+R. ¢
ReJo R+Rg <,._>=fD(Pi(..-)exms(l)[qoi]-l-is(z)[@i]
1
2e’Rg

f “dt, f “dta(ti—ty) e (t)e () isd e ).
0 0

Rewriting the correlatofKK) as
(20 ¢ (KK)
comes from the shun§[ ¢=] is the scatterer action, and (KK (') = — lim f Do 52 ,
T )2 70 on(t)on(t’)

1
t=t)=——|——— (21)
‘ sinf{ 7 T(t—t")] Xexp[igzsU)[cp*]ﬂss[go*]

ko

A detailed derivation of the actioB[ ¢~ ] is carried out in
Appendixes A, B, and C. The main idea of this derivation is [~ o~ ~

to expandS ¢* ] in powers ofe ", keeping the full nonlin- T fo dt”(t)K(t)] (29
earity of the corresponding terms in*. This procedure is

just the quasiclassical approximation for the phase variableand performing a shift of ¢, — ¢+ 7,Re/Rs(1

It is parametrically justified under the conditién). In Ref. 5 —iwRyC), we obtain the expression for the Fourier-
the actionS[ ¢ ] was evaluated up to the second order intransformed noise spectru(B):
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) B Both these problems are remedied by taking into account
S,=wcoths= | Res—— —= the third order ing~ contribution to the effective action.
2T Z(w) RkQ - . X
This will be demonstrated in the next subsection.

N Bla(t—t)(cogeV(t—t" )+ () - (t)])},

RxQ B. Corrections due to third-order terms
2 Following the analysis in Appendix C we identify two
+e2R2 Q[(H(t)>2—(H(t)H(t’)>]w, (26) different contributions to the third-order term
K

(3)=g(3) 1 g(3)
SO=g@)+53,

The first contribution has the form

where

iB (= _, g3
i i 662ng dr [¢ (NP (7). (3D
_ _ + _ .t
*{1-cogeMt-+e () =¢ (D). (27 Taking this term into account and repeating the above analy-

In Eq. (26) we also introduced the notation sis we arrive at an extra contribution to the current noise in
the form —e?B48(t—t')/2RC; see also Appendix C. Adding

H(t)zf:d’fa(t—”mp*(”t)

iS5 e 1=

1 this contribution to Eq(26) and subtracting the noninteract-

Z(w)=Rg+ T Q=1+ 0?R3C?, ing result(30) we arrive at the interaction correction

—iw
(8) — B ' ’ —F(t—t")
(R+Rg)? oS, —RK—Q{a(t—t )ycogeV(t—t')](e -1)
K= —2 (28)
R —e?5(t—t)/2C},, . (32)
Making use of the relatiori), we arrive at the correla- The function F(t) results from averaging over the phase
torS,, fluctuations

~ 1 w (cogeV(t—t" )+ ()= (t)])
Swzﬁ (1-Bow cothﬁ+ﬁ{a(t—t’)<cos{eV(t—t’)

=codeV(t—t')]e Ft-t), (33
et =@ (DI, |+ - (29) This function has the form
» dow 1- t{[1
where the ellipsis stands for the terms containiifd (t))? F(t)=e2RSf i &( (—— E) wCOthi
—(H(t)H(t"))], in Eq. (26). We also note that exactly the —=2T () Ro R 2T

same results can be obtained from the quasiclassical Lange-

vin equation approacft:?3 T B S (0+eV)coth
Within our analysis interaction effects are described by 2R 3

the terms containing the fluctuating varialgdé . If one for-

mally sets this variable equal to zero, from EG6) one

immediately recovers the noninteracting restfit

w

*+eV
o7 ] . (39

We also note that in Eq32) we omitted the last term of Eq.
(26) which contains averages of the functidrEq. (27). Our
analysis demonstrates that these terms are small in all re-

° 0 B gin\ﬁﬁ conside_red _below. | A _ e
SN (1-g)— — + at remains is to evaluate the correction to the shot
Su=(=hlgeothar*oR Et: (w=eVjcoth—5r—. noise from the second contribution 8. The derivation of

(30 this contribution is presented in Appendix C. Here we only

équote the result

wteV

Taking the phase fluctuations into account we arrive at th

expression for the interaction correction to E§0). How- .3
. . . myT> (= »

ever, the corresponding expression turns out to be |ncomple§g(3)[(p:]: j dylf dy,

in two respects. First, one of the terms does not satisfy FDT. ” 6e’R Jo 0

Second, the correction to E(RO) obtained in this way scales B N N

with the parameteg in both limits of small and large volt- % fcdyg _ ¢ (yl_)‘P (y2)¢ (_y3)

ages. While in the former limifNyquist noise this result is 0 sin wTyoq|SiNH 7T y3,]SIN 7T y43]

understandable and consistent with Ref. 5, at large voltages i N .

(shot noisg one also expects an extra contribution. Its exis- X{siMeVy,i+ e (y2) = ¢ (y1)]

tence can be anticipated because the shot noise is governed ; + o+

by the combinatior®,, T,(1—T,) and not simply by, T, as sineVyst e(ys) — e (¥2)]

the Nyquist noise; see also our discussion in Sec. Il. +siMeVyste (Y1) —e (ys)1}, (35
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wherey;; =y;—Yy; and the parametey is defined in Eq(4).  We observe that, since in the interesting for us ligye> 1
At first glance this contribution to the effective action the argument of cém/go)(1—e YRe%)] is small, with the ac-

could be considered unimportant. This is indeed the case iouracy~ 1/g3 one can use the functioi39) in order to ana-

several limits. For instance, at sufficiently small transmis-lyze the resul{32).

sions 3> vy the term(35) can obviously be neglected. In the  Proceeding further let us rewrite E@8) as

limit of low voltages one can, making use of the condition

(7), expandS{®) in small phase fluctuationg=. Then one

1 *eV

getsS{®) proportional to the combinationg(*)3(¢ ~)* which Mo)=5 > cothwz_l_ T(w+eV), (40)
can be dropped as compared to other terms proviglied =
>1. However, in the limit of large voltages the ter(®5)
gains importance and—as we shall see—provides a signifivhere
cant contribution tasS,, .

Proceeding along the lines with the above analysis we 1—e ¢ r»  JEE
find I(w)= f P(w—E) (41)

2’7TRO — 1—e_E/T '
272y T3 (=

88N = dt ; -

©  goRkQ Jo After a simple algebra from Eq(41) we obtain Z(w)

= w/Ry+ 6Z(w) and

dx

» (1—e XRoC)(codeVi]—cogdeVx)coswt
% fo sini wTx]sini 7 Tt]

2 o0
ol w)= —J dtsin(wt)e FOa(t)sin 1(1_e—t/Roc)
RO 0 do

1 1
><(sinr[ﬂ(x—t)] TS AT+ 0]} (36) (42)
This expression will be analyzed below in Sec. Il F. Comparing the above expressions with E2R) we arrive at

the following correction to the current noise:
C. Relation to the FDT
Before we proceed with the analysis of the above results BRo E wteV

let us establish some useful general expressions and illustrate 58“’:2RKQ = coth 2T
the relation between our approach and the FDT. Throughout

this subsection we will only consider the limit of small volt- |, o qer to illustrate the relation between our results and the
agese V<1/R,C and neglect the dependence of the functlonFDT we notice that in the relevant limig,>1 the quantity

F(t) onV. In the spirit of theP(E) theory! let us define the 5I(eV), Eq. (42), is defined by exactly the same time inte-

s(w=xeV). (43

function gral as the interaction correction to thev curve; cf. Eq.
" (27) of Ref. 5. In particular, in the limit of zero frequency
P(E)=f dteEte= 2, and voltage one finds
ie?R T - ~F(t)(q _ a—t/RC
(I)(t):F(t)l\/:O"r‘ Tosgr[t](l—e"t‘moc). (37) 5Sw:0 ZTGZBJO ta(t)e (1 e )dt (44)

This function obeys the “detailed balance” symmetry In accordance with the FDT the combination on the right-
P(—E)=e FTP(E) which follows from the property hand side is just the interaction correction to the zero-bias
®(t—(i/T))=d(—t). Let us also introduce the function  conductance of a coherent scattémaultiplied by 2T.

We will now derive the interaction correction to the cur-

1 = E(l+e (0=eVT rent noise in several important limits.
— E + —
No=amRe 2 Lcd._ o PleteV-E)
(39 D. High temperatures
and rewrite it in the form In the limit T>1/R,C it is sufficient to evaluate the func-
tion F(t) only at short timegs=<1/T. In this limit from Eq.
1> ] € (34) we get
Nw:R_O _wdte' [_ié(t)
2.2
et BRo BRg eV
a F(t)= —[(1— ——|T+ —==—eVcoth-—=|. (45
+a(t)e‘F(‘)cos{th)cos{g—(l—e‘”ROC) } 2C R 2R 2T
0

(39  Expandinge "™ in Eq.(32) to the first order irF we obtain

085317-6
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e’B
950 = 3R CrO)
ol —14] 14 PR &Y oSy g
-1+ +? ﬁCOt E—
wteV
ng 5T )} (46)
where the functiorf(x) reads
X coshx 1
f(x)= (47)

 2sinfx 2 sinfx
In the limit of small frequencies and voltages we then find

e’p
- 3RCk’

8S,= (49
At high frequencieso>T,eV or large voltagege V>T,w we
get

e’B

950= " JRCxO"

(49

Both resultg48) and(49) describe partial suppression of the

PHYSICAL REVIEW B8, 085317 (2003

In the opposite limit of very lowl <goEc exp(—=gy/2) (but
still T> w,eV) the last term in Eq(52) can be neglected and
the interaction correction becomes

2TB
Rk *
In the limit T<w,eV<1/R,C we can seff=0 in Eq. (51).
Then we obtain

5S,=— (54)

So=lo|

1 ,8)
R+Rs

+one S lozeMllo=eVRCIM. (55

If both  andV tend to zero, the last term in E¢G5) can
again be neglected and we find

|8

Rk -~

If, however, o and/or eV exceed the scalegyEc
X exp(—gy/2), one expands Ed55) in 2/g, and gets

88,=— (56)

2wlp 1

05.= JoRk |0[RoC”

(57)

current noise by Coulomb interaction. As we have alreadyrpis expression applies fas>eV. In the opposite limit in

discussed, Eq48) is consistent with the resuftsombined
with the FDT, whereas Ed49) just corresponds to the Cou-
lomb offsetAV=—eB/2C on thel-V curve of a coherent
scatterer at large voltages. For the sake of completeness
also note that in a specific limito+eV|<T, Eq.(46) yields

a positive correction to the current noise:

e?B%R,le
< = B°RoleVl

= . 0
¢ 24CTRkQ) 0

However, the magnitude of this correction is small in the

parameter-e’R,/(RCT)<1/g,.

E. Low temperatures

Now let us consider the limit of low temperaturds
<1/CR,. At low voltages eV<1/R,C and times much
longer than 1R,C the functionF(t) reads

2 | sini 7 Tt]

9 "\ Sin{#TR,C]/"
Combining this expression with Eq32), in the limit of
small w,eV<T we obtain

F(t)= (51)

B
~ 2 (1~ (TRC)?%0)

S,=2T . (52

R+Rs

For T>goEcexp(—gy/2) the result(52) can be expanded in
2/go. In this limit for the interaction correction we get

4T 1
GoRx "R,CT’

5S,=— (53

Eq. (57) one should simply substituV instead ofw. Note,
however, that in the latter limit the corresponding result

\k{/ields only one contribution é(SEf)) to the interaction cor-

&ction. Another contribution dS{”) will be found in Sec.
" F.

To complete this subsection let us find the interaction cor-
rection in the limitw,eV>1/R,C. At large voltages the de-
pendence of(t) onV should be taken into account. Evalu-
ating the correspondinginear inV) correction toF(t), Eq.
(51), we obtain

e’R5B%(eV]
8S,=——— 2, W[(w*+eV)R,C], 58)
47R?k () ; [« VIRC] (
where
w(x) = —2—2xarctanx— In X%+ In(1+x2) + || .
(59

For |o*+eV|>1/R,C the asymptotics w(x>1)=1/3x>
should be used. In this case we again recover (E§). If,
however|w+ eV|=<1/R,C, then the interaction correction is
governed by another asymptotieg§x<1)=—2—Inx? and,
hence, this correction is positive. Such an increase of the
noise atjw*eV|<1/R,C is similar to that found at higher
temperatures.

F. Large voltages

Now let us evaluate the remaining correctiés (" Eq.
(36). At high temperature3> 1/CR, we obtain

e’y [eV\?
RCkQ| T

58~ ., if w,eV<T, (60)
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ey leVi—|o| IV. SUMMARY
(= _
88 = 6(|eV|—|w|)tanh , . . : :
RCk() 2T Combining the standard scattering matrix approach with
, the effective action formalism we have analyzed the effect of
if ©,eV>T. (61) electron-electron interactions on current noise in mesoscopic
In the limit w,eV<T<1/CR, one finds coherent conductors in the metallic lingif). We have found
’ that Coulomb interaction always leads to partial suppression
2y(eV)? 1 of the Nyquist noise. The corresponding interaction term is
68 = I (62  proportional to the parametgs, Eq. (1), similarly to the

= n ,
3TgoRx  TR,C interaction correction to the conductarcenteraction-

while at higher frequencies and voltagese V>>T we derive ~ induced suppression of both conductance and Nyquist noise
has the same physical origin, and a direct relation between

y these two effects can easily be established with the aid of the
88 =—= 5 tleV—wl) FDT.
Yok The effect of electron-electron interactions on the shot
arctafi(|eV|—|w|)R,C]  |eV—|w| noise is somewhat more complicated. In this case we have
+ recovered two different interaction corrections entering with

RoC 2 opposite signs. One of them is negative and it is again gov-

erned by the paramet@&. Another correction is positive and
XIn{1+[(|eV|—|w|)RyC] ?};. (63) itis proportional to the parameter, Eq. (4), which depends
on the transmission distribution in a different way. The net
Note that the correctioS(? is positive in all cases. As interaction correction to the shot noise scalesédg (V)
compared to previously obtained contributié8® the cor- ~ *2Y—#; i.e., it can be both negative and positive depending
rection (63) becomes important in the lim&V>T,o. For ~©On the relation betweerg and y. The contribution to
such voltages both corrections add UFfSaFtSSEUB) _&S‘w(V) frqm_the n'gh conducting mode mega'tlvep(owded
+587  and yield its t_ransmlssmnTn is smgller_ than 1/2 and it igositiveoth-
@’ erwise. For coherent diffusive conductory2 8= —1/15;
2(B—27)|eV] 1 i.e., in this particular case electron-electron interactions tend

8S,= R n| VIR,C' to decrease the shot noise.
YoR« €ViRo The presence of two interaction corrections to the shot
. 3 _ noise has a transparent physical interpretation. Flcerrec-
if T,|w|<[eV|<1/CRy, tion is due to Coulomb blockade suppression of the Landauer
(B—29)E conductancg2) while the y correction originates from the
55‘0:_# if |eVI>T,1/CRy,|w|. (64 term —=.T in the expression for the shot no. The

ReQ absolute value of this term is also decreased by interactions.
But since it enters with a negative sign, the corresponding
contribution to the noise spectrum turns out to be positive.
We believe that the effect of electron-electron interactions on

Finally, we present some explicit expressions for the so
called Fano factor, defined as

S(eVs>T,w=0) higher cumulants of the current operator can be described in
(V)= i (65) a similar manner.
lel] Finally, we would like to make a remark concerning pos-

This factor can easily be evaluated with the aid of the abovéible experimental verification of our results. Our theory was
results. In the regime of moderate voltagds<|eV| developed under the same basic assumptions as those used

<1/CR, we have previously in Ref. 5 for calculations of the interaction cor-
rection to thel-V curve of a disordered coherent conductor
R2 2 B°R (3). In a wide range of parameters the theéopyedicts uni-
(=——— ,8+—In( +2'y—,3”, versal logarithmic temperature and voltage dependence of
(R+Rg)? o |[eVIRGC/|R+Rs the interaction correction to the differential conductance. Ex-

(66) actly this dependence was measured in a variety of mesos-
whereas in the limit of high voltageeV|>T,1/ICR, one  COpic conductors, such as, e.g., diffusive metallic briddes,
finds metallic microstripg® multiwalled carbon nanotubé&?’

break junctiong€® and nanoscale metallic contaél¢p men-

R2 Ec [ B°R tion a few. We believe that all these and possibly other co-
(= 5| B+ eV RTR +27—B> . herent mesoscopic coherent conductors can as well be used
(R+Ry) e S for measurements of the current noise in order to experimen-

In the diffusive case the interaction correction to the Fand@lly test the predictions made in this paper.
factor can be both positive and negative depending on the ACKNOWLEDGMENTS
R/Rg ratio.
These results complete our analysis of current fluctuations This work is part of the Kompetenznetz “Funktionelle
in coherent conductors with electron-electron interactions. Nanostructuren” supported by the Landestiftung Baden-
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APPENDIX A: EFFECTIVE ACTION AND OBSERVABLES 1 R R e?
. _ _ . +—f drj dr' (W (r")——W(r')¥(r).
Following Ref. 5 let us combine the effective action 2 [r—r’|

formalisn?*! with the usual Landauer scattering approach. (A1)
Within the latter approach one introducegelatively small

scatterer which connects two bulk reservoirs. The scatterer idere the termW(r) accounts for boundary and impurity po-
described by the scattering matrix. In order to includetentials, external fields, etc. After the standard Hubbard-
electron-electron interactions it is necessary to reckon wittstratonovich decoupling of the interaction term one arrives
the many-body Hamiltonian at the following path integral over an auxiliary fie\{(r,t):

~ t ~ t
JDV(r,t’)(Texp{—iJ dt’Heﬁ[V(r,t’)]}) epo dt’J dr [VV(r,t")]%/8m
e—iﬁt: 0 0

: (A2)
fDV(r,t’)exp{if dt’j dr [VV(r,t")]%/8m
0
|
HereT is the time-ordering operator and pacitanceC appears in the same way as in the derivation of
Ambegaokar-Eckern-SEha(AES) action?>%j.e., it comes
. R v2 ) from the terms
Heff[V(r,t)]:f dr¥r*(r) —ﬁJrW(r)—eV(r,t)}\If(r).
1
(A3) ﬁf dtf dr[VVy A1, 012 (A7)

We choose to define the electron charge-as

The time dynamics of the density matyixs described by  describing the energy of the fluctuating fields in the scatterer
means of the evolution operatdrdefined on the Keldysh region.
contour. In what follows we shall denote the fieldon the The Green-Keldysh matrixc,(X;,X,) [here X=(r,t)]
upper and lower parts of this contour b ,. The general obeys the X2 matrix equation
expression for the density matrix reads

Jd . . “ ~ ~ ~
( i El_ Ho(ry)1+eV(Xy) |Gy(X1,X2) = (X1 = Xz) 07,

(A8)

p(Xqs,Xof vtf):f dXqidXoi I (Xa5, Xo5 3 X1i » Xai 55, )

X p(Xqi , Xoi 1 A4 A .
p(Xai Xai i), A4 whereHy=(—V?/2m)+W(r), V is a diagonal X 2 matrix

whereX the set of relevant quantum degrees of freedom. Wavith componentsf/ij =V;&jj, ando, is the Pauli matrix. The

shall assume that the interaction with the fluctuating fieldsabove equation for the Green-Keldysh function should be

V,,is turned on at a timg=0. The timet; is supposed to supplemented by the initial condition for the density matrix

be large. Making use EqA2) and integrating over the fer- ;(t=0)=p,, wherep, is the equilibrium density matrix of

mionic degrees of freedom, we obtain noninteracting electrons. In what follows we will need the
solution of Eq.(A8), which reads

\]:f DV1DV28XFjS[V1,V2], (A5) i A~ LA A A
Gty t)=—i16(ty—tx)Uq(t1,t5) +1U1(11,0)pU1(0t5),

whereSis the effective action: A A o
Gty ty)=—16(t,—t)Uo(t1,t) +i1U (11,00 poU2(0 L),

. C [t
iS[Vy,V,]=2TrIinG, '+i Ef dt'[Vig,— Virol-
0
(AB)

Gualty,t2)=iU4(t1,0poU(01),

Here we defined/, g;=V,;—Vg; and neglected the spatial Gty ty) = —iU,(t,0[1-po]Us(0t,),  (A9)
dependence of the fieldé_; , and Vg, , inside both the left .
(L) and right(R) reservoirs. The term with the effective ca- whereU, J(t;,t,) are the evolution operators

085317-9



GALAKTIONOQOV, GOLUBEY, AND ZAIKIN PHYSICAL REVIEW B 68, 085317 (2003

~ ty N t
Ul,Z(tl’tZ):TeX%_i\ft dt'[Ho—eVLz(l’,t/)]}. ‘P_(t):fodt’[eVLRl(t,)_eVLRZ(t,)]- (A].Z)

2
(A10) Provided the dimensionless conductance is laggr1,
One should keep in mind that in the operator products lik&uctuations ofe ~(t) are strongly suppressed, so we can ex-
UpU integration over intermediate spatial coordinates is im{pand the exact actioi8[ ¢~ ] in powers ofe~, keeping the
plied. full nonlinearity in ¢ *. Note that the external voltage enters
Instead of specifyingW(r) we will describe electron onlyin¢™ but notine~. Hence, for the system of Fig. 1 we
transfer between the reservoirs by means of the scatteringave to impose the constraint§jgoj+(t)=evxt and
matrix formalism. This procedure is standard and further de§j<pf(t):o_ Here the summation runs over different ele-
tails are provided in Appendix B. In calculating the trace inments in our circuit—i.e., the scatterer and shunt.
Eq. (A6), we shall make an explicit integration over the lon- | et us now define the current operator. The average cur-

gitudinal coordinates. Integration over the transverse coordirent through the scatterer or through the shunt is defined as
nates is replaced by summing over the transmission channegg|iows:

of the scatterer. It is convenient to introduce the phase vari-
ables

<i(t)>=ief Dop* ———eiSle ], (A13)
+ _ t ’ ! ’ 6(P (t)
¢ (t)_fodt [eVra(t) +eVira(t))/2, - (ALD) The noise is defined analogously:
1. . S 1 .
§<l(t)l(t’)+l(t’)l(t)>=Etr[l(t)l(t’)peq+peql(t’)l(t)]
e? 52 52 )
—— | Do T eiSle™]
2f ¢ (&o{(t)a@;(t’) 50, (1) 55 (1)
52 1 52 -
——e2| Po* = iSle~] Al4
¢[ ve (5¢—(t>a¢—(t'>+45¢+<t>5¢+<t'>>e (AL

Here peq is the equilibrium density matrix of the whole sys- Herex s the coordinate along the lead andare the trans-
tem. Employing the properties of the acti®h— ¢, — ¢ ] verse coordinates. The transverse wave functipg(s, ) sat-
=Y ¢ 0], and Jo,—¢ ]=—S*[¢",0 ], one can isfy the equation
show that the term containing?/ ¢ (t) ¢ ™ (t') vanishes.
Thus we arrive at E¢(.18). v?
Below we shall proceed with an explicit calculation of the o Pa(r) FWr)®n(r ) =E,®(ry),  (B3)
action by defining the scattering states.
where the subscript enumerates the transmission channels
(we are considering only channels wih<Eg). The func-
tion x,(x) outside the scatterer region is defined from the
Following the usuaB-matrix approact let us introduce €quation
the transmission channels. We will assume that far from the
scatterer the electron propagation in transverse and longitu- 1 d?

APPENDIX B: TRANSMISSION CHANNELS

dinal directions can be described separately. In this case the ~5m &Xn(X)Z(E— En)Xn(X). (B4)
solution of the Schrdinger equation
v2 Since the electronic states with energeslose to the
— — (1) +W(r) g(r) =E(r) (B1)  Fermi energyEr mainly contribute, it is sufficient to de-
2m scribe the electron dynamics quasiclassically. We define the
_ energyé=E— E; and the particle velocity in theth channel
can be factorized: va=+2(Efr—E,)/m. Then the wave function can be ex-
pressed as
‘ﬂ(r):; Cn®Pn(r1) Xn(X)- (B2) Xn(X) =€MnXfN(x) + e~ IMonXf U x)  |eft reservoir,
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Scatterer

pan—

bL R

FIG. 2. Scattering states.

Xn(X) =€ gRli(x) + e~ Mg (),

right reservoir.
(B5)

PHYSICAL REVIEW B8, 085317 (2003

The unitary matrix S with dimensions K +Ng) X (N,
+Ng) has the block structure

é(g):(F@) f'(f))
to r@)

The diagonal blocks andr’ describe reflection back to the
left and right reservoirs, respectively. The off-diagonal
blocks describe transmission through the scatterer. Later we
shall neglect the dependence of. An appropriate gener-
alization of our approach to the case of energy-dependent
scattering will be published elsewhéﬁ_e.

Let us now combine the inciderft;'(x) and outgoing

(B12)

In this way we have introduced the envelopes of the fasf2"{(x) wave functions belonging to the same channel into

oscillating functions exptimv.x). Consider first the left res-
ervoir. The functiond " (x) andf°"(x) satisfy the following
guasiclassical equations:

d
—ivn—f'”(x) & (),

. d
lvn—f"“t(x) ),

(B6)
with the solutions
' iéxluy, —igxivy
f(x)= Nk fati(x)= N (B7)
Analogously, for the right reservoir we find
_ —iéxlvpy, ol &Xlup
Im(X) = o gn'(x) = o (B8)

The eigenfunction of the whole system with the eneggn
the left reservoir may be expressed as

wg<r>=; [a €™ ™ f 1 (X) + by e M FRU(x) D (r ),
(B9)

while in the right reservoir we get

2 [Dri€ ™R (X) + agie” MG (X) JPK(r, ).
(B10)

The amplitudes of the outgoing, g and incominga, g
states(see Fig. 2 are related via the scattering matﬁX<§):

lﬂg(r

b1 aLg
b, R acn,
=3(¢) (B11)
Pr1 ARy
Pr, arn,

one wave functiony,(x). Namely, we assume that the scat-
terer is located at=0, and for the left reservoirx<0) we

put
( )_{fin“(y),
=] fou—y),

Analogously, for the right reservoix(>0) we define

y<O0,

B13
y>0. (B13

fn(=y),
fout(y)

These new functions are defined in all the range[ —«,
+o] and are equal to

y<O0,

mly)= [ (B14)

y>0.

eigy/vj
VY

Let us emphasize that here the indegnumerates all con-
ducting channels, both in the left and in the right reservoirs
(for convenience, we assume that the left channels are enu-
merated first

In the presence of the fluctuating field(t), the matrix
elements of the Hamiltonian in the reservoirs take the form

i(y)= (B15)

) J
Hij=—|vi5~-

1] &y ev(t)5l 1

(B16)

whereV,=V, for all left channels and&/;=Vy for the right
channels. If at initial timet; the wave function was
Un(t1,y), then at the final time,>t, it becomes

Pn(ty,y) =elenD=enlly 4y y—v(t,—t1),

y<0 or y>v,(t,—ty),

(ﬁn(tZ ,y) = E ei[ﬂon(tz)_ e(t)] —ilen(ta=ylvn) = e(ta—ylvy)]
k

Uk Uk
X Sk U—llfk t11v—y_Uk('[2_'f1) ,
n n

O<y<l}n(t2_tl).

(B17)
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Here s, are the matrix elements of th® matrix and, as
before,pn(t) = [LdteV,(T). On the other hand, by definition
of the evolution operator we have

¢n(t2,Y2):; fd)h Uni(ta,t1;Y2,Y1) ity y1)-

Comparing this expression with Eq817), we find

nk s

Un

Uk . _
n

_t2+tl

(yZ_yl +0(y2) e(vn(tz_tl)_yz)e—i<Pn(t2_y2/Un)

Un

Un(ta,tyyo,y1) = ei‘Pn(tz)[

v ‘
v_kY2_Y1_Uk(t2—t1)) ] e et
n

It is convenient to introduce the new coordinatesy/v,. Finally let us define the equilibrium density matrix for
More precisely, instead of the wave function with the com-noninteracting electrons. It can be written in the form
ponents i,(y) we introduce the functions n,(7)

= Junin(ylvy). The kernels of the operators will also be

transformed. If the two functions are related to each other by dp ePb1—y2)
means of a linear operator ponk(Y1,Y2) = 5nkJ 27 14 Pon/T
p2(y)=2 f dy’ Kndy,y ) ey, (B18) _ Ok sy —yy)— 0 T .
K 2 Y72 og ) Sim{WT(yl_yZ)}
then the corresponding wave functions) and »*) satisfy " Un
the following relation: (B23)

(2) — Y (L)
n (T)_; de Ko, 7) ("), (B19) Performing the transformatiofB20) we obtain

where
~ “ -~ 1 iT ~
Kok(7.7) = Vo oKnwamokm )Wor. (B20) po(71,72) = 5| A=)~ G — | b
In this representation the evolution operator can be simpli- (B24)
fied. We find
2 . APPENDIX C: EXPANSION IN THE PHASE DIFFERENCE
U(ta,ty;72,71)

_ o) (3 Ci5(t= ) We shall expand the effective acti@A6) perturbatively
=0(m— m— o+t &1+ 0(r) 0(— e in ¢~. The fielde " will be taken into account exactly in
& Aaielti—mN a-ie(ty) each term of this expansion. The expansion starts from the
X[S-1]e fe ' (B21) first order ing ™, since for¢™ =0 the contributions from the
forward and backward parts of the Keldysh contour cancel

The matrix¢ is diagonal with respect to the channel indices
¢ 9 P each other. We get from E@A8)

&ik= 6. We also obtain an expression for the
inverse  operator—i.e., the operator defined by
fd 720 (tZtl ) T3T2) 0 71(t2t1 X ’Tle) = 5( T3— 7'1) Lt I’eadS

Goe~

2TrinGy'=2Trin >

1+

(CD

Uty ty;72,71)

=6(1y— To—ty+t ei‘;’(tl) 1+0(r)6(—r e_i‘;’(tl_v) R .
(= ZA J {A (r)6(~72) The Green-Keldysh matrig, is evaluated forp™ =0; i.e.,
X[SF—1]el¢(tz= eIt (B22) itis defined by Eqs(A9) with the evolution operatofB21)
. . taken ato=¢". The fluctuating fieldp~ in Eq. (C1) is a
Equations(B21) and(B22) apply fort,>1t,; in order to con- i matrix in Keldysh space and a diagonal matrix in the

struct the corresponding expressions in the opposite casgyace of conducting channels. Performing the summation
one should just use the propertyJ(tz,t1;72,71)  over the Keldysh indices we arrive at the first ordergn
=U"1(ty,ty; 7, 7). contribution to the actionS():
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is<1>[¢i]=—ifdtj dsf drlf dr,

N _ 1 miT
U(t'o's'”)[; S 7T (7,— 72)]]

X Tr

X U7Y(t,0:75,9) ¢ (1) |. (C2)

For simplicity in Sec. lll we have sdt— . Here we will
keep it finite and use the conditiogs (0)=¢ (t;)=0. The
& functions contained in the matrices of Eq(C2) will lead
to a singularity of the form 1/sidT(m — )] which is cured

PHYSICAL REVIEW B8, 085317 (2003

wherea(7) is defined in Eq(21). Introducing the parameter
B=Tr[r'r' *tt )/ Tr[tt*] we rewrite Eq.(C8) in a more
compact form

o) - Tr[f*f] tg tf
iS¢ )[go*]= — f drlf dra(7mi— 75)
27 Jo 0

X (t)e (){1-B+B
xcof o (1) =@ ()]} (CY

We now proceed to the third-order contributio®® to
the effective action. It reads

as follows. Let us choose close but not exactly equal argu-

mentss; ands,. Expanding the combination

—i f dt f dr, f dr, T 0(t,0;8,,7) 07 4(t,0;7,,8,) 0~ (1)]
(C3)

to the first order ins;—s, and multiplying the result by
1/sinj 7rT(s,—5,)], we obtain

i " | tf ~_ oy ot T
iSMe 1=~ [ TasTHE (9183 (987~ 5 (911
(CH

Making use of the condition Tt *t]=Tr[t' "t’] we get
i "o [t )
iS(l)[gpt]:—;Tr[tth]f de o (Net(7), (CH
0

where ™ (7) = o[ (7) = ¢r(7).

Consider now the contribution to the action of the second

order ing ™. It is defined as
ISP o*]=—TH G0 Gpe 1. (C6)

After a straightforward algebra one obtains

i . t t
|S(2)[€D_]:_JO dTlfo dTZPO(TZ_Tl)PS(Tl_TZ)

XTr{e 6" (¢ N[ 5™ (7))8- 47 ()]
R S CACEES))
(C7
Taking into account the block structure of tBematrix, we

find

. . 1 [t t arins
IS(Z)[(,D—]=—EJO drlfo dra(m— m){[Tr(t’' *1')?

+THE D) e (1)@ (m)+2 THr'r’ Ftt*]
xcodo (m) =@ ()] (T (12)},
(C8

ez | tg t i
iS®=—Tr dt; | dty | dtz6(t;—t,)
2 0 0 0

X (9('[3—tz)ﬁ(tl)ﬁ(tz)ﬁ(tS);’gs}

1 A 0~ A o~
+ETr[(Glz‘P_+GZl(P_)3]- (C10
Here we used the notation
. iT .
as/ . _ _
Po T ) = S G AT (7= )]
F=0"t,0e (1)0(t,0. (c1y

We obtain two terms from EqC10). The first one is

iSﬁ?[cpi]ngr[t*t]fofdr Lo~ (DPe™ (7).
(C12

In deriving this result we employed the same—although
somewhat more involved—regularization procedure as for
the first-order contributios™). This procedure allows us to
determine the correct overall prefactor in EG12). One can
then verify that the resulting effective action satisfies the
requirements of the FDT.

The second term, coming from E@10), has the form

i) .+ 4 R TE 1 1
IS~ ]= g T (tt")“r'r’ ]f dylf dyzf dys
3 0 0 0

X po(Y2—Y1)p5(Y3—Y2) pd(Y1—Ya)
X e (Yo (Y2)e (ya){sine (y,)
—@ (yD)]+siMe  (ys)— e (y2)]

+sine (y1)— e (ya)]}- (C13

Defining the parametery=Tr[(tt*)2r'r'*]/Tr[tt*] and
shifting the phaser* by eV we obtain Eq.(35). Collecting
now all four contributiongC5), (C9), (C12), and(C13) we
arrive at the final result for the effective action:
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S=sM+5@+ 83 +53). (C14 i
7 In[X()\)]=§S[th,—)\].
This action is valid up to the third order ip~, and the

) 4 . .
\(/ng)blego is treated exactly in each of the terms in Eq. It is easy to prove that this relation is exact—i.e., it holds to
It i's instructive to compare our results with the AES all o_rders N\ . . .
actiorf? derived for tunnel junctions—1) to all orders in Finally, let us use the AES actidi€19) in order to illus-
¢~ . Rewriting the actioff in our notation together with the trate th<_a importance of the third order é terms for the
X calculation of the current-current correlation functions. Ap-

capacitive term one has plying Eq. (A14) one gets a contribution stemming from the
double differentiation of the term withy, in the action

(C15:
i 4i (4 tf
|SAES:2_J dtlf dtya(ty—t) 0(t1—t5)
e‘RJo 0
_ _ i
t t ' — ([ — _t! _ ¢! H +
Xsir{w(tl)_w(tz)]sin@ él)COS‘P ;2) 88(t,t") <R0(t t")a (t—t")sin ¢ (t)
(- (t
2 [t [t ot ysin® Ve W e,
- = dtlj dtya(t;—ty) 2
e‘RJo 0
(C16)
e (t) o () N N _ _ _ _ _
Xsin——sin——cog ¢ (ty) —¢ " (t3)] Evaluating this average with the aid of path integrals one has

to keep all nonlinear terms in the preexponent. However, the
i [t . dependence of the cosine term @i in the action in the
2/, dtCe ¢ . (C15  exponent can be neglected providge-1. Applying the
© identity sife” () —¢"(t')]=3,_.vd1e O-¢" N2 we ar-
Here we denotedy,(t;—t,)=&'(t;—t,). This & function  five at the following integral:
should be understood as a smeared one.
Let us expand Eq(C15 in ¢~ and compare with our
results order by order. The first-order terms are exactly the
same for both models. The difference between the models J D<p+exp{iv[go+(t)—<p+(t’)]
shows up in the second-order terms; for our model the pa-
rameterB appears explicitly in the second-order contribution ) C o~
(C9). In the limit B—1 this expression reduces to that ob- _ I—foodNt@*("f) Co(T)— ® (t)}
tained from Eq.(C15. Expanding the actioriC15 to the e?Jo R ’
third order in¢~ one only recovers the term of the form (c17)
(C12 with =1, while another ternC13 cannot be recov-
ered. Contributions of this nature are not contained in the hich vield
AES action at all since they are proportional to higher orderd/Nich yI€lds
of the channel transmissioR, .
It is worthwhile pointing out that a formally exact repre-

sentation for the effective action of a coherent scattéabr _ e 2 - —(t=T)/RC

orders in T, and all orders in¢*) can also be ¢ (t)_E”[g(t_t)(l_e )
derived!?133033However, this formal expression turns out _

to be quite complicated to deal with in the situation ad- —0(t'—1)(1—e (' ~D/RC), (C18

dressed here. Fog=R,/R>1 and provided instanton

2,13 . . . ~
effects?!3 can be neglected all necessary information ISAs was expectedy~ (1) is indeed small fog>1. Combin-

equally contained in a much simpler form of the effectivejq yhe ahove expressions we arrive at the contribution
action derived in the present paper.

We also note that there exists a simple relation between ) ) )
the action derived here and the cumulant generating function oS(t,t") =—e5(t—t")/2RC.
describing the full counting statistics of the charge transport
in noninteracting coherent conductdfsThis relation can be The same contribution multiplied by the factgr was de-
established if one neglects fluctuations of the phaseived in Sec. lll B from the terrrS(BS), Eqg. (31). The above
variable—i.e., sete " =eVtand choose® ™ to be time in- analysis makes the significance of the third ordergin
dependent. By identifyingg™ = —\ and expanding the gen- terms in the action particularly transparent: The kewét)
erating function Ifixy(\)] [defined in Eq.(37) of Ref. 34 in  introduces the time derivative @ YR® which compensates
powers of\ one arrives at the following identity: for an extra smallness 1/g.
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