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Electron-electron scattering in strong magnetic fields in quantum well systems
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We have developed a theory of the electron-electron scattering in quantum well structures in the presence of
a magnetic field. The scattering rate is obtained from the second-order expansion of the electron self-energy.
We show that the rate oscillates as a function of the magnetic field, so that a strong suppression of the
scattering can be expected in some ranges of high magnetic fields. Our theory also provides an easy tool for
distinguishing this two-electron scattering process from other possible scattering mechanisms.
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[. INTRODUCTION tory behavior, is the possibility of distinguishing between
two-electron and single-electron scattering processes. We
The electron-electron scattering processes in homogédiave already shown that this oscillatory behavior can be used
neous electron systems are well understbéar quantum — as a diagnostic for the presence(ahd comparative impor-
well systems, such scattering has been considered throug@nce of the electron-electron scattering in quantum well
simplified approache%? as well as through a random-phase Structures, as compared to other single-electron scattering
approximationRPA) treatment which included effects of dy- processes.
namical screenings® In this paper we examine the effects of ~ We develop the formalism for electron-electron scattering
an applied magnetic field on electron-electron scattering i the presence oB, in Sec. Il, provide detailed computa-
quantum well systems. tions and results for typical quantum well structures in Sec.
Intersubband electron-electron scattering can be an impotll, and discuss the experimental implications and conclu-
tant carrier relaxation channel in quantum nanostructuressions in Sec. IV.
This, for example, is the case in the current driven two sub-
band GaAs quantum wells, with heavy injectign intp thg up- Il. FORMALISM
per and extraction from the lower subband, in which inter-
subband separation is less than 36 meV. This energy To investigate how Landau-leveéll) quantization of
represents the onset of very strong relaxation though L@lectron states affects electronic lifetimes, we develop a self-
phonon excitations. Smaller subband separations imply tha&nergy formalism for electron-electron transitions in the
those excitations cannot be generated by electrons scatteripgesence of a magnetic field.
between these subbands. In the absence of the electron-LO- The imaginary part of the self-energy provides the
phonon scattering, the intersubband electron-electron procestectron-electron scattering rate. Our earlier work ese
can dominate the dynamics, or at least be comparable to trggattering without &-field led us to the conclusion that in
electron-defect scattering, if there is a sufficient electron denmany cases it is sufficient to work with only the first two
sity in the structure. This can be the case in structures used déagrams*?in the RPA expansion. We make a similar ap-
active regions of devices designed for emission of radiationproximation here by using second-order perturbation theory.
in the THz frequency rand®&:® Knowledge of the electron- Since the first term is real, we need to consider only the
electron scattering rates is therefore crucial in determininggecond term. Using the Matsubara formalism, the second-
the electrical and thermal transport properties of such strugerder self-energy can be written as
tures. Typically, these operate in a nonequilibrium steady

state, and in some cases carry a large electron population in 1

the active region. Then the electron-electron scattering be-  2(rq,rz,ioy) = ] > Go(ry,ra,iogti)
comes an important factor to be considered for achieving b Jras

population inversion. Of obvious interest here is the possi- Xv(r1,r3)xo(rs.faiw)v(rs,ry), (1)

bility of reducing those electron-electron scattering rates.
One way to accomplish this is to apply a strong magnetiGyhere the electron Green’s function is
field in the growth direction of the quantum well structure.
Classically, the electrons execute cyclotron orbits of small U (F) (1)
size, proportional to the inverse of the magnetic field; thus Gol(ry,Tpiw) = 2 rm 2
increasingB reduces the electron-electron scattering cross m log—Entu
section. We have developed here a full quantum-mechanical
treatment, and show that the electron-electron scattering idere ¢, and E,, are the electron eigenfunctions and eigen-
indeed reduced for larg8. In addition, it oscillates as a values,w=m(2k+1)kgT and w;=72lkgT are Fermi and
function of B. Thus a reduction in scattering strength is Bose Matsubara frequencies, andr,,r,)=e%€||r;—r|
achievable for particular ranges of the magnetic field. with e the dielectric constant of the semiconductor. Since we
Another important conclusion, arising from this oscilla- retain only the second-order contribution to the self-energy,
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Xo is the bare bubble a hole and two electrons and the second term represents an
electron and two holes in the intermediate state.
Xo(r3,ra,0)=(=2IB)2,Go(r3,r4,wp)Go(r4,r3,0p+ @) Now we consider a quantum welQW) system, in which

a magnetic field is applied in thedirection. The motion of

which reduces to electrons is given by

. 1(h_ e \2
XO(r31r41| w|): - ZmEp lﬂp(r3) w;(r4)¢m(r4) lzbrn(r3) ﬁ(l_v_ EA) lﬂ(xiylz)'f'v(z)lﬁ(xy%z) = Ew(xlyuz)l
9
[nF(Em)_nF(Ep)] . - .
- (3)  whereV(2) is the confining potential of the QW. We employ
tor+En—Ep here the Landau gaugk=(0,Hx,0). The allowed electron

after performing the fermion Matsubara sum Wave functions areys(x,y,z)=exp(By)d(ulx—x(B)]
(1B) = h(iwy) =2R(z)Ne(z;) where the functionh(z) wh_eres is the subband index,the Landau level |r_1dex, and
has poles at complex frequenciesvith residuesR(z,). This B is a quasimomentum. The temx(3|) =% 8 /Mw, in terms
introduces the Fermi occupation factors(E)=1/(e#(E-#  of the cyclotron frequency.=eH/mc where the quantum

+1). The remaining Matsubara sum in Ed) can be per- numberp, is quantized in units Z/L, L being the sample
formed in similar fashion, yielding size in they direction. The wave functioru;(x)=N,exp

(— a®I2)H,(ax) with H, the Hermite polynomials and nor-
_ malization N, = (a2'l!/J7)Y? with a=\chleH. ¢4(2) is
E(rl,rz,lwk)=2%‘, (TP (r2) p(ra) iy (ra) the solution to the one-dimensiondllD) Schralinger
ymp Jrg,ry .
equation,
X hml(Fa) Yn(r3)v(ry,r3)v(ry,ro) 52 g2

Fom “om g2 S D TV(@ b2 =edi(2), (10

Xz
|(1)k+Em_Ep_E|+IM,

(4)

and the electron energy is them=Eq = (I + 3)hw.+ €. For
where the all-important level occupation of the intermediate®2ChEsi the states are degenerate with respegsto

states is accounted for by The main effect of thé field (B= u,H) is that the sub-
band electrons re-distribute between the multiply degenerate
Fpmi=Ne(En)[1—ng(Ep)I[1—ng(E)] Landau levels. The inter-Landau-level separation decreases
with B, so that forB=0 one recovers a continuum of states.
+[1-ne(Em) INe(Ep)ne(E)). 5) As an illustration of this formalism, consider a simple two

subband scenario with = e,— €;. The energy conservation
condition in Eq.(8) then introduces a strong constraint in the
electron-electron intersubband scattering process.B=60
the Landau levels form in both subbands, and the electron-
electron scattering vanishes when the argument of the delta
function is nonzero. If we consider two electron transitions
Im(E(rl,rz,Ek»:f G(r) M= (rq,r,,E) ¢ (1) from the upper to the lower subband, the delta function ar-
rif2 gument represents the energy balance condition where the
energy gain of one electraffior example, scattering frork

We now analytically continu&;(r,r,,iwy) to 2(r,r,,w
+i0") and then use I4+i0")=P1/x—imd(x) to evaluate
the imaginary part. The lifetime in stafg, due to electron-
electron scattering is proportional to the expectation value,

=—27 2 Vg *Fp.mi to l), is balanced by the energy loss of the otfemattering
,m.p from mto p). The argument of the delta function in E®)
X 8(Ext Em—Ep—E)), (6) then vanishe§i.e., electron-electron scattering takes p)ate
where the transition amplitude is expressed in terms of the (I—=K)+ (p—m)= 24 (11)
electron wave functions through hoc
or
Vk|,mp=f () g(r )y (t) - (7) 2A
e ﬁwczT (12)
and one can define the total scattering rate out of &ate
with n=1—k+p—m, an integer.

4 ) For a given intersubband separatidn such electron-
YT I%p IViimpl “Fm,p, 8(Ex T Em—Ep—Ey),  (8) electron scattering events can occur only for these quantized
values ofB=B*/n with B* = ug2Amc/Aae. The intersub-
which could have been obtained from Fermi’s golden rule adand scattering rate for this process is giver{$se Eq(8)]
well, with proper inclusion of occupation factors. 4
TheF factor in Eq.(8) has two terms. The first describes kK _—7 2 _
a physical process in which thig-state electron scatters into Yaam g, I%m Vidmpl“Fmpi 924 =foc) (13
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with the matrix element 20— T T T

V= [ [ axax | [ azazg3 21622102

; 15
(]
X ¢ (2" ) u X=x(B) Ju[x" —x(B))] %
X U X=X(Bm) JUp[ X' —X(Bp) 126K o[ ( Bk~ Br) S ol
£
X=X+ (2=2)?18(Bict Brm— Bp = B). :
(14 B s |
Note that each state represented by an irfjdexthe gen-
eral formalism of Eq(8) has three indices, as explained be-
low Eg. (9): the first is the band indeg, the second is the Q) R
Landau-level index, and the third is the corresponding wave 0
number 8; [see Eq.(9)]. Equations(13) and (14), for ex- B

ample, already have the specific barsgs2,1 indicated, and
the matrix element indexes refer to the Landau-level indexes
j, as well as, the corresponding set of quasimom@ntg in - pjficantly reduce our computing time. To firkl(z) we solve

the occupation factdf also refers tg andg;, whileninthe  gq (g) for a realistic potentiaV(z) of the experimental
delta function is only composed of the Landau level indexeg;yantum well structure used in 0Be=0 calculations. Vari-
I.k,p, andm. The summation is over all stat¢sand Bj,  ous benchmark tests were carried out to check the numerical

consistent with the delta function constraint. Carrying out theconvergence and the accuracy of the numerical computa-
summations over the two final state indiggs S,, and the  {jgns.

initial state indexB,, of the other electron, and averaging | the occupied LL is partially filled, then the strength of

over the initial electron indey, in Eq. (13), the scattering the & function[Eq. (15)] is to be multiplied byu/% .. Then
rate reduces to the total contribution to the scattering rate is given by

FIG. 1. Calculated scattering rate vs magnetic field.

4 4
V1o l%)m Wit mGmpi 8(2A—fiwen),  (15) =2 %ané(ZA— o). (18)
Py n C

where the indices now refer only to the LL. The occupation

factor G in Eq. (15) is given by For a typical structure, the scattering rate as a function of

the applied magnetic field is displayed in Fig. 1, where the
G _ % 1= i lh 1— u It 1 energy conserving delte_l functions are replgced by Lorentz-
mpt = (um/hod) (1= lhwc) (1= pplhoc), (16 ians of width 2 meV, typical of experiments in quantum well
where u; /hw. is the population fraction on Li. Wis the  structures.

result of integratingV|? over the indicess;, Bm, Bp and The scattering rate is seen to be highly oscillatory, with
averaging over the initial state indg . Note that it is still  wide regions of negligible scattering in the higrange. At
dependent on the LL indicddmp smallerB, the oscillation amplitudes are diminished and the
peaks are more and more closely spaced. The mean value
. NUMERICAL CALCULATIONS seems to approach a definite limit Bs~0. Figure 1 does

not show the results beyomd=9 since the computation time
As an example, we consider a two subband system whefigcreases rapidly with increasing However, we can ana-
only the lowest Landau level of the upper subband is occutytically evaluate what that limit should be in our formalism.
pied, and the lower subband is empty. Such a scenario would The summation oven in Eq (18) can be forma”y carried
be experimentally realized if there is narrow injection into out by replacing the sum by an integral. This leads to
upper subband, and heavy extraction from the lower

subband:™ We calculate the scattering rate using Etf). Am o 1 1
The strength of thé-function peak for a given is given by Y heol e, =28/, (19
which can also be rewritten as
2= 2 Woi gy (17
T U

: . , , y=— ->(n?a,)|n- : (20
if we take the occupied LL to be full. The matrix element is A A2 n/In=2Alw,
evaluated employing the Gaussian integration forxhex’
andz—2z' integration. In order to avoid singularities Kf, In the limit B— 0, we haven— o, and thus we obtain the

we choose a set of Gaussian mesh points and weight factossattering rate at zero magnetic field from our formalism via
as discrete values for summation. Also, we apply the condiEq. (20) by evaluating the limit of §%a,) asn—o. This is
tion of the overlap of wave functions in our system to sig-displayed in Fig. 2 for two different structures.
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b T T T ] IV. CONCLUSIONS

to o a ] In this paper we have provided the detailed formalism for
the study of the electron-electron scattering in strong mag-
[ ] netic fields in quantum well systems. We had already dis-
of o ] cussed a specific experimént in our earlier publicationd,
€.y e ] and showed how the occurrence of peaks for admbnsti-
] tutes the signature of electron-electron scattering in a given
% ] structure. In that experiment, only the=1 peak was visible,
_ . 1 indicating weak electron-electron scattering processes com-
2F ¢ 1 pared to the single-electron processes.
; ] The situation could change for structures and scenarios
1k ] where higher currents flow and higher populations prevail in
r the active region. Since,. scales withu [Eq. (18)], the
[ ] subband population, we could see a considerable enhance-
T S T T T e T T T s T T ment of the odd peaks under these higher density scenarios.
B (T) Since these co_ntributions are on_Iy QUe to the two electron
transfer scattering, we can quantitatively determine the sub-
FIG. 2. Calculated values ofa, vs magnetic field for struc- ~ band populations by applying our formalism to analyze the
tures with two different intersubband separatiofrcles and ~ experimental results. Based on that, we can also determine
squares Arrows indicate the corresponding values in the zerothe electron-electron scattering contribution to even peaks.
magnetic-field limit. These are the processes like 2221, where only one electron
changes the subband. Then subtracting this calculated
amount from the total observed rates at the even peaks, we

an determine the contribution of all the oth&ingle-

on .tWO different curves.wh|ch show convergence o the Samglectron scattering processes such as electron-surface scat-
limit (for each respective casasn goes to infinity. These tering, electron-LO phonon scattering, etc

agree well with our direct calculations for the scattering rates Al this can be extended to multisubband systems. Many
without any magnetic field, shown by the two arrows on the,, ;.o peaks occufone complete series for each pair of sub-

\(ertical ax_is. 'ghese di_rect_ calculati_ons are b_ased On OUr €afandg, and for smalleiB there may not be sufficient resolu-
lier formalism?” but using just the first two diagrams in the tjon to identify these. However, for sufficiently large fields it
RPA expansion of the self-energy, instead of the full RPA, Snay be possible to identify tha=1 andn=2 peaks for
as to correspond to the level of treatment here. This comparkach pair of subbands. Such a situation allows us to obtain
son serves as a physical benchmark test of our formalismhe detailed subband structure for a given system for each
We also note that the two limiténdicated by the two ar- specific bias. One can also determine the subband popula-
rows) are approximately in the ratio of the subband separations from such data. It may be necessary to go beyond the
tions for the two cases displayed in Fig. 2. treatment outlined here, to a full RPA calculation, to properly
The field-dependence in Fig. 1, resembles thetake into account the enhanced screening in the higher den-
Shubnikov—de Haas oscillations, however, we note that isity situations.
Shubnikov—de Haas oscillations tHénelastio scattering Currently strong magnetic fields up to 50 T are available
time is constant while the resistance oscillates with field duén the pulsed mode operation in a few laboratories. These
to modulation of the effective DOS as the Landau levelssuffice to study intersubband separations up to about 40 meV,
sweep through the Fermi energy. In Fig. 1, we plot the scatl? GaAs quantum wells. Even highé&rfields in the pulsed
tering due teelasticintersubband transitions between Landau™ode can be obtained in special circumstances. ,
levels of different subbands. The primary field dependence of . I this paper and in Ref. 9 we have provided an effective
the scattering rate is due to tBedependence of the energetic di2gnostic technique for learning about inesitu scattering
alignment of Landau levels of different subbands. In addi_phenomena in actual experimental structures.
tion, we represent inelastic scattering by broadening the
energy-conservation delta functions in E§8) with a con-
stant inelastic scattering rate in full analogy to the typical This work was supported in part by U.S. Army Research
treatment of the Shubnikov—de Haas case. Office Grant No. DAAD 19-00-1-0108.

nza_(mev)*

In each case, the values of4a,,) for odd and evem, fall
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