
PHYSICAL REVIEW B 68, 085302 ~2003!
Electron-electron scattering in strong magnetic fields in quantum well systems

K. Kempa, Y. Zhou, J. R. Engelbrecht, and P. Bakshi
Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, USA

~Received 27 November 2002; published 7 August 2003!

We have developed a theory of the electron-electron scattering in quantum well structures in the presence of
a magnetic field. The scattering rate is obtained from the second-order expansion of the electron self-energy.
We show that the rate oscillates as a function of the magnetic field, so that a strong suppression of the
scattering can be expected in some ranges of high magnetic fields. Our theory also provides an easy tool for
distinguishing this two-electron scattering process from other possible scattering mechanisms.
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I. INTRODUCTION

The electron-electron scattering processes in homo
neous electron systems are well understood.1 For quantum
well systems, such scattering has been considered thro
simplified approaches,2,3 as well as through a random-pha
approximation~RPA! treatment which included effects of dy
namical screening.4,5 In this paper we examine the effects
an applied magnetic field on electron-electron scattering
quantum well systems.

Intersubband electron-electron scattering can be an im
tant carrier relaxation channel in quantum nanostructu
This, for example, is the case in the current driven two s
band GaAs quantum wells, with heavy injection into the u
per and extraction from the lower subband, in which int
subband separation is less than 36 meV. This ene
represents the onset of very strong relaxation though
phonon excitations. Smaller subband separations imply
those excitations cannot be generated by electrons scatt
between these subbands. In the absence of the electron
phonon scattering, the intersubband electron-electron pro
can dominate the dynamics, or at least be comparable to
electron-defect scattering, if there is a sufficient electron d
sity in the structure. This can be the case in structures use
active regions of devices designed for emission of radia
in the THz frequency range.6–8 Knowledge of the electron
electron scattering rates is therefore crucial in determin
the electrical and thermal transport properties of such st
tures. Typically, these operate in a nonequilibrium stea
state, and in some cases carry a large electron populatio
the active region. Then the electron-electron scattering
comes an important factor to be considered for achiev
population inversion. Of obvious interest here is the pos
bility of reducing those electron-electron scattering rat
One way to accomplish this is to apply a strong magne
field in the growth direction of the quantum well structur
Classically, the electrons execute cyclotron orbits of sm
size, proportional to the inverse of the magnetic field; th
increasingB reduces the electron-electron scattering cr
section. We have developed here a full quantum-mechan
treatment, and show that the electron-electron scatterin
indeed reduced for largeB. In addition, it oscillates as a
function of B. Thus a reduction in scattering strength
achievable for particular ranges of the magnetic field.

Another important conclusion, arising from this oscill
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tory behavior, is the possibility of distinguishing betwee
two-electron and single-electron scattering processes.
have already shown that this oscillatory behavior can be u
as a diagnostic for the presence of~and comparative impor-
tance of! the electron-electron scattering in quantum w
structures, as compared to other single-electron scatte
processes.9

We develop the formalism for electron-electron scatter
in the presence ofB, in Sec. II, provide detailed computa
tions and results for typical quantum well structures in S
III, and discuss the experimental implications and conc
sions in Sec. IV.

II. FORMALISM

To investigate how Landau-level~LL ! quantization of
electron states affects electronic lifetimes, we develop a s
energy formalism for electron-electron transitions in t
presence of a magnetic field.

The imaginary part of the self-energy provides t
electron-electron scattering rate. Our earlier work one-e
scattering without aB-field led us to the conclusion that i
many cases it is sufficient to work with only the first tw
diagrams5,10 in the RPA expansion. We make a similar a
proximation here by using second-order perturbation the
Since the first term is real, we need to consider only
second term. Using the Matsubara formalism, the seco
order self-energy can be written as

S~r1 ,r2 ,ivk!5
1

b (
l
E

r3 ,r4

G0~r1 ,r2 ,ivk1 iv l !

3v~r1 ,r3!x0~r3 ,r4 ,iv l !v~r4 ,r2!, ~1!

where the electron Green’s function is

G0~r1 ,r2 ,ivk!5(
m

cm~r1!cm* ~r2!

ivk2Em1m
. ~2!

Herecm andEm are the electron eigenfunctions and eige
values,vk5p(2k11)kBT and v l5p2lkBT are Fermi and
Bose Matsubara frequencies, andv(r1 ,r2)5e2/euur12r2u
with e the dielectric constant of the semiconductor. Since
retain only the second-order contribution to the self-ener
©2003 The American Physical Society02-1
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x0 is the bare bubble

x0~r3 ,r4 ,v l !5~22/b!(pG0~r3 ,r4 ,vp!G0~r4 ,r3 ,vp1v l !

which reduces to

x0~r3 ,r4 ,iv l !522(
m,p

cp~r3!cp* ~r4!cm~r4!cm* ~r3!

3
@nF~Em!2nF~Ep!#

iv l1Em2Ep
~3!

after performing1 the fermion Matsubara sum
(1/b)(ph( ivp)5( iR(zi)nF(zi) where the functionh(z)
has poles at complex frequencieszi with residuesR(zi). This
introduces the Fermi occupation factorsnF(E)51/(eb(E2m)

11). The remaining Matsubara sum in Eq.~1! can be per-
formed in similar fashion, yielding

S~r1 ,r2 ,ivk!52 (
l ,m,p

E
r3 ,r4

c l~r1!c l* ~r2!cp~r3!cp* ~r4!

3cm~r4!cm* ~r3!v~r1 ,r3!v~r4 ,r2!

3
Fp,m,l

ivk1Em2Ep2El1m
, ~4!

where the all-important level occupation of the intermedi
states is accounted for by

Fp,m,l5nF~Em!@12nF~Ep!#@12nF~El !#

1@12nF~Em!#nF~Ep!nF~El !. ~5!

We now analytically continueS(r1 ,r2 ,ivk) to S(r1 ,r2 ,v
1 i01) and then use 1/(x1 i01)5P1/x2 ipd(x) to evaluate
the imaginary part. The lifetime in stateEk due to electron-
electron scattering is proportional to the expectation valu

Im^S~r1 ,r2 ,Ek!&5E
r1 ,r2

ck~r1!Im S~r1 ,r2 ,Ek!ck* ~r2!

522p (
l ,m,p

uVkl,mpu2Fp,m,l

3d~Ek1Em2Ep2El !, ~6!

where the transition amplitude is expressed in terms of
electron wave functions through

Vkl,mp5E
r ,r8

ck* ~r !c l~r !v~r ,r 8!cm~r 8!cp* ~r 8! ~7!

and one can define the total scattering rate out of statek,1

gk5
4p

\ (
l ,m,p

uVkl,mpu2Fm,p,ld~Ek1Em2Ep2El !, ~8!

which could have been obtained from Fermi’s golden rule
well, with proper inclusion of occupation factors.

The F factor in Eq.~8! has two terms. The first describe
a physical process in which theck-state electron scatters int
08530
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a hole and two electrons and the second term represen
electron and two holes in the intermediate state.

Now we consider a quantum well~QW! system, in which
a magnetic field is applied in thez direction. The motion of
electrons is given by

1

2m S \

i
¹2

e

c
AD 2

c~x,y,z!1V~z!c~x,y,z!5Ec~x,y,z!,

~9!

whereV(z) is the confining potential of the QW. We emplo
here the Landau gaugeA5(0,Hx,0). The allowed electron
wave functions arecsl(x,y,z)5exp(ibly)fs(z)ul@x2x(bl)#
wheres is the subband index,l the Landau level index, and
b l is a quasimomentum. The termx(b l)5\b l /mvc in terms
of the cyclotron frequencyvc5eH/mc where the quantum
numberb l is quantized in units 2p/L, L being the sample
size in the y direction. The wave functionul(x)5Nlexp
(2a2x2/2)Hl(ax) with Hl the Hermite polynomials and nor
malization Nl5(a2l l !/Ap)1/2 with a5Ac\/eH. fs(z) is
the solution to the one-dimensional~1D! Schrödinger
equation,

2
\2

2m

d2

dz2 fs~z!1V~z!fs~z!5esfs~z!, ~10!

and the electron energy is thenE5Esl5( l 1 1
2 )\vc1es . For

eachEsl the states are degenerate with respect tob l .
The main effect of theB field (B5moH) is that the sub-

band electrons re-distribute between the multiply degene
Landau levels. The inter-Landau-level separation decrea
with B, so that forB50 one recovers a continuum of state

As an illustration of this formalism, consider a simple tw
subband scenario withD5e22e1. The energy conservation
condition in Eq.~8! then introduces a strong constraint in th
electron-electron intersubband scattering process. ForBÞ0
the Landau levels form in both subbands, and the electr
electron scattering vanishes when the argument of the d
function is nonzero. If we consider two electron transitio
from the upper to the lower subband, the delta function
gument represents the energy balance condition where
energy gain of one electron~for example, scattering fromk
to l ), is balanced by the energy loss of the other~scattering
from m to p). The argument of the delta function in Eq.~8!
then vanishes~i.e., electron-electron scattering takes place! if

~ l 2k!1~p2m!5
2D

\vc
~11!

or

\vc5
2D

n
~12!

with n5 l 2k1p2m, an integer.
For a given intersubband separationD, such electron-

electron scattering events can occur only for these quant
values ofB5B* /n with B* 5m02Dmc/\e. The intersub-
band scattering rate for this process is given by@see Eq.~8!#

g21,21
k 5

4p

\ (
l ,p,m

uVkl,mpu2Fm,p,ld~2D2\vcn! ~13!
2-2
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with the matrix element

Vkl,mp5E E dxdx8E E dzdz8f2* ~z!f2~z8!f1~z!

3f1* ~z8!uk@x2x~bk!#ul@x82x~b l !#

3um@x2x~bm!#up@x82x~bp!#2e2K0@~bk2bm!

3A~x2x8!21~z2z8!2#d~bk1bm2bp2b l !.

~14!

Note that each state represented by an indexj in the gen-
eral formalism of Eq.~8! has three indices, as explained b
low Eq. ~9!: the first is the band indexs, the second is the
Landau-level indexj, and the third is the corresponding wav
numberb j @see Eq.~9!#. Equations~13! and ~14!, for ex-
ample, already have the specific bandss52,1 indicated, and
the matrix element indexes refer to the Landau-level inde
j, as well as, the corresponding set of quasimomentab j . j in
the occupation factorF also refers toj andb j , while n in the
delta function is only composed of the Landau level inde
l ,k,p, and m. The summation is over all statesj and b j ,
consistent with the delta function constraint. Carrying out
summations over the two final state indicesb l , bp , and the
initial state indexbm of the other electron, and averagin
over the initial electron indexbk in Eq. ~13!, the scattering
rate reduces to

g21,21
k 5

4p

\ (
l ,p,m

Wkl,mpGm,p,ld~2D2\vcn!, ~15!

where the indices now refer only to the LL. The occupati
factor G in Eq. ~15! is given by

Gm,p,l5~mm /\vc!~12m l /\vc!~12mp /\vc!, ~16!

wherem j /\vc is the population fraction on LLj. W is the
result of integratinguVu2 over the indicesb l , bm , bp and
averaging over the initial state indexbk . Note that it is still
dependent on the LL indicesklmp.

III. NUMERICAL CALCULATIONS

As an example, we consider a two subband system wh
only the lowest Landau level of the upper subband is oc
pied, and the lower subband is empty. Such a scenario w
be experimentally realized if there is narrow injection in
upper subband, and heavy extraction from the low
subband.9,11 We calculate the scattering rate using Eq.~15!.
The strength of thed-function peak for a givenn is given by

an5(
lP

W0l ,0p ~17!

if we take the occupied LL to be full. The matrix element
evaluated employing the Gaussian integration for thex2x8
andz2z8 integration. In order to avoid singularities ofK0,
we choose a set of Gaussian mesh points and weight fa
as discrete values for summation. Also, we apply the con
tion of the overlap of wave functions in our system to s
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nificantly reduce our computing time. To findfs(z) we solve
Eq. ~9! for a realistic potentialV(z) of the experimental
quantum well structure used in ourB50 calculations.5 Vari-
ous benchmark tests were carried out to check the nume
convergence and the accuracy of the numerical comp
tions.

If the occupied LL is partially filled, then the strength o
thed function@Eq. ~15!# is to be multiplied bym/\vc . Then
the total contribution to the scattering rate is given by

g5
4p

\ (
n

m

\vc
and~2D2n\vc!. ~18!

For a typical structure, the scattering rate as a function
the applied magnetic field is displayed in Fig. 1, where
energy conserving delta functions are replaced by Lore
ians of width 2 meV, typical of experiments in quantum we
structures.

The scattering rate is seen to be highly oscillatory, w
wide regions of negligible scattering in the highB range. At
smallerB, the oscillation amplitudes are diminished and t
peaks are more and more closely spaced. The mean v
seems to approach a definite limit asB→0. Figure 1 does
not show the results beyondn59 since the computation time
increases rapidly with increasingn. However, we can ana
lytically evaluate what that limit should be in our formalism

The summation overn in Eq. ~18! can be formally carried
out by replacing the sum by an integral. This leads to

g5
4p

\

m

\vc
an

1

\vc
un52D/\vc

~19!

which can also be rewritten as

g5
p

\

m

D2~n2an!un52D/\vc
. ~20!

In the limit B→0, we haven→`, and thus we obtain the
scattering rate at zero magnetic field from our formalism
Eq. ~20! by evaluating the limit of (n2an) asn→`. This is
displayed in Fig. 2 for two different structures.

FIG. 1. Calculated scattering rate vs magnetic field.
2-3
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In each case, the values of (n2an) for odd and evenn, fall
on two different curves which show convergence to the sa
limit ~for each respective case! as n goes to infinity. These
agree well with our direct calculations for the scattering ra
without any magnetic field, shown by the two arrows on t
vertical axis. These direct calculations are based on our
lier formalism,5 but using just the first two diagrams in th
RPA expansion of the self-energy, instead of the full RPA,
as to correspond to the level of treatment here. This comp
son serves as a physical benchmark test of our formal
We also note that the two limits~indicated by the two ar-
rows! are approximately in the ratio of the subband sepa
tions for the two cases displayed in Fig. 2.

The field-dependence in Fig. 1, resembles
Shubnikov–de Haas oscillations, however, we note tha
Shubnikov–de Haas oscillations the~inelastic! scattering
time is constant while the resistance oscillates with field d
to modulation of the effective DOS as the Landau lev
sweep through the Fermi energy. In Fig. 1, we plot the sc
tering due toelasticintersubband transitions between Land
levels of different subbands. The primary field dependenc
the scattering rate is due to theB dependence of the energet
alignment of Landau levels of different subbands. In ad
tion, we represent inelastic scattering by broadening
energy-conservation delta functions in Eq.~18! with a con-
stant inelastic scattering rate in full analogy to the typi
treatment of the Shubnikov–de Haas case.

FIG. 2. Calculated values ofn2an vs magnetic fieldB for struc-
tures with two different intersubband separations~circles and
squares!. Arrows indicate the corresponding values in the ze
magnetic-field limit.
.
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IV. CONCLUSIONS

In this paper we have provided the detailed formalism
the study of the electron-electron scattering in strong m
netic fields in quantum well systems. We had already d
cussed a specific experiment9,11 in our earlier publication,9

and showed how the occurrence of peaks for oddn consti-
tutes the signature of electron-electron scattering in a gi
structure. In that experiment, only then51 peak was visible,
indicating weak electron-electron scattering processes c
pared to the single-electron processes.

The situation could change for structures and scena
where higher currents flow and higher populations prevai
the active region. Sincegee scales withm @Eq. ~18!#, the
subband population, we could see a considerable enha
ment of the odd peaks under these higher density scena
Since these contributions are only due to the two elect
transfer scattering, we can quantitatively determine the s
band populations by applying our formalism to analyze
experimental results. Based on that, we can also determ
the electron-electron scattering contribution to even pea
These are the processes like 2221, where only one elec
changes the subband. Then subtracting this calcula
amount from the total observed rates at the even peaks
can determine the contribution of all the other~single-
electron! scattering processes such as electron-surface s
tering, electron-LO phonon scattering, etc.

All this can be extended to multisubband systems. Ma
more peaks occur~one complete series for each pair of su
bands!, and for smallerB there may not be sufficient resolu
tion to identify these. However, for sufficiently large fields
may be possible to identify then51 and n52 peaks for
each pair of subbands. Such a situation allows us to ob
the detailed subband structure for a given system for e
specific bias. One can also determine the subband pop
tions from such data. It may be necessary to go beyond
treatment outlined here, to a full RPA calculation, to prope
take into account the enhanced screening in the higher
sity situations.

Currently strong magnetic fields up to 50 T are availa
in the pulsed mode operation in a few laboratories. Th
suffice to study intersubband separations up to about 40 m
in GaAs quantum wells. Even higherB fields in the pulsed
mode can be obtained in special circumstances.

In this paper and in Ref. 9 we have provided an effect
diagnostic technique for learning about thein situ scattering
phenomena in actual experimental structures.
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