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Some consequences of the Luttinger theorem: The Luttinger surfaces in non-Fermi liquids
and Mott insulators
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Landau and Luttinger have shown that the properties of so-called Fermi liquids are determined by the Fermi
surface of their excitations. The present analysis of mathematics of the Luttinger paper proves that non-Fermi
liquids where there are no well-defined excitations and Mott insulators are essentially characterized by the
Fermi-surface analog—the Luttinger surface, a feature of particle’s propagator.
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[. INTRODUCTION The author applietthe Luttinger theorem in its most gen-
eral form (1) to NFL's where there is no fermionic excita-
About five decades ago, Landdiormulated a concept of tions ate=0, and consequently no po(@) in the propaga-
the Fermi liquid(FL) claiming that thermodynamic and ki- tor. Now the theorem claims that density is equal to the
netic properties of a system @fare fermions in FL state are volume bound by what | called Luttinger surfa@eS) |p|
fundamentally the same as those of a weakly interacting gas P, , the Luttinger momentun®, defines the point where
of Fermi excitationgdressed fermionsnotwithstanding the G(0,p) changes sign passing through either infinity or zero.
actual strength of interactions between bare fermions. Sub- Finally, one may apply formulél) to a MIl. Now there is
sequently, all Landau claims were proven corregte, e.g., a gap in excitation spectrura.,(p) and imaginary part of
Ref. 2. propagatorG”(e,p) has zero value in a finite range around
The present paper concerns the most fundamental of Larchemical potentiaé=0. Due to analytic properties of propa-
dau’s claims: that the number of bare articles in F&d  gators,G (see Sec. Il beloywcannot have singularities on real
given chemical potentigk) is equal to the number of Fermi axis inside the gap and zeros G{0,p) are required to ac-
excitations, specifically, what is the relation between thecount for bare particle’s density according to foid. It
number of bare fermionactual densityand the system ex- defines the Luttinger surfacgp|=P, by G(0,P.)=0. A
citationsif there is a gap in the excitation spectrum, the so-model propagator of this kind is
called Mott insulator(Ml), or if there are no well-defined
Fermi excitations at the chemical potential leyéie so-
called non-Fermi liquidNFL)]. The proper tool to use here G(e,p)= ,
is the so-called Luttinger theorem. Regretfully, nowadays the €= A%—v?*(|p|—Pp)?
contents of the theorem are so densely clouded by folklore
that it is sensible to begin with a statement what is meangasily recognizable as BCS electron propagator wigmdA
when | say “the Luttinger theorem.” being the Fermi velocity and superconducting gap &pd
Back in 1960, LuttingeYgave an alternative proof of the coinciding with the Fermi momentur®. Unfortunately
Landau conjecture concerning density of particles and excithere is no meaningful analog of the Luttinger theorem in
tations in FL's. However, the method he designed reveals auperfluid states due to breaking of the particle number con-
deep relation between density and some properties of renogervation lawm(phase or gauge-invariance breaking
malized fermion propagato&(e,p) which transcends FL Obviously there are two types of insulating states. First, a
limitations and can be applied to Mott insulators and NFL's.compressiblénsulator whereP, and the density are smooth

etu(|p|—Py)

()

The relation runs,see also Ref. 2, functions of the chemical potential. This state is reminis-
cent of a superconductor or a superfluid state in liquid He3,
N d3p albeit without Bose condensation. Second, a physical mecha-
— = f . ) nism may fix the density at which a gap is opened. Only one
v cop>0 (2m)° suchincompressiblénsulator is known in a genuine liquid:

) ] ] _ the quantum liquid of fractional quantum Hall effect where

The integral in momentum space is taken over the regiomhe famous Laughliommensurabilitpetween density and

where the propagator at the chemical-potential lexel0,  magnetic flux is the reason. Of course, commensurability can

G(e=0,p) is positive. Picking the FL propagator also be provided by the underlying crystalline lattice. A
known example is a one-dimensional metal at half filling
where Umklapp scattering opens the gap and fixes the den-

e @

€—€c(P) sity.

Simple as it is, this approach to Ml's is not
one immediately comes to the Landau statement: densityreproachabl&® The trouble is that the zeros & on real
equals number of excitations below Fermi surfalqg axis signify poles in self-mass operafb(e,p) and the Lut-
=Pr € (Pr)=0. tinger derivation of Eq(1) (see Sec. )linvolves integration

G(e,p)~
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of 3 over frequencies. Obviously the result depends on N o _
how these singular integrals are regularized. Altshateal® v(,u): AJ dgf d®p €M (£,p,0). (8)
employed a regularization which amounts to radical redefi- (2m)"J) ==

nition of the ground state introducing a sort of chiral
anomaly in the theory and as a result derived a formula fohe sum in Eq(7) converges to Eq.8) smoothly enough if
density different from Eq(1). there is no phase transition =0 (see Appendix R

In what follows | present another regularization. My way ~ Now we may transpose step by step the calculations done
is to start at a finite temperatufeand to perform the Lut- by Luttingefin the framework of the Feynman field theory
tinger calculations in Euclidean sector of energy—momentunat real time to the Matsubara field theory at imaginary time.
space(imaginary energigswhere there ar@o polesin self-  Density (8) is expressed as
mass. At the end, by turning to zero | arrive at the old
Luttinger result(1). Of course, this does not mean that the

state of Altshuleet al.is impossible, but that it exists only at E =_ 2 f dgeigff d3p M(&,p)
zero temperature and may be reached only via zero- v (2m)4) -«
temperature phase transition.
In Sec. Il the Luttinger formuldl) is derived for fermi- X iM—l(g p)+ ‘9_0(5 p)) 9
onic liquids and crystals. In Sec. Il some consequences for 23 ’ g > m)”

MI's and NFL's are discussed.
where o(&,p) is the self-mass in the Matsubara theory:
Il. THE LUTTINGER THEOREM M 1=i¢—e(p)—o. The integral of the second term here
actually is zero as it was in the real time version. Namely,
The Luttinger derivation of formuldl) is substantially
based on analytic properties of propagators in the energy oo P oM
complex plane. We will use three kinds of propagators at f dgd?’p M—:f dgdp—Mg'—f d.dpo——.
finite temperature; the retarded propagd®fe,p) analytic JI& I& 9¢
in the upper half plane of complex the advanced propaga- . ) ]
tor analyticG,(e,p) analytic in the bottom half plane, and The a_bove integration by parts is perfectly legal here because
the special finite temperature Matsubara propagatofVen in the case of a Mptt insulator the M|tsubara sglf-energy
M(&,,p) defined at discrete “imaginary energies’s, ¢ doesnot ha\5/e poles in—o<£< and the objections of
—imT(2n+1); wheren are integers[The corresponding Altshuleret al” are not held. The first integral on the right is
definitions and inter-relations are easily available, see, e.gZ€0 because at—o propagatorM—1/i¢{—0 and o
Ref. 2] —const. The second integral disappearance is proven by the

Actually all three have a common Hilbert representation:same effective arguments of LuttingetM ando- being non-
singular the Luttinger construction is solid.

1 (= p(X) Ime>0 Thus, we arrive at the formula for density:
Gr,a(€)=; 7ocX—6dX; Ime<0° (4)
N_ 2 fwd ilJ’Tfoﬁau\/l 10
The real functionp(x) is obviously connected with imagi- V. 2mt) - e pag ni. (10

nary parts ofG, , at real energies:

Formula(10) may be rewritten in terms of an integral along
a path in complex energy plane of two analytic propagators
G,(€) andG,(€). Namely,

p(e)=G/(e)=—Gl(e). (5)

For fermions,G! andp arenegativefor all energie$and as
a consequencg, (e) does not have zeros in upper half plane

andG,(e€) is zeroless in bottom half plarieee Appendix A N 2i J
f ®p J e“"de——InG(e)

Finally, the Matsubara propagator is given by v (2m)°

G(i&n), £.>0
Ga(ién),  £n<0.

The densityN/V as a function of chemical potential and
temperature igsee Ref. 2

M(§n)=[ (6) + L e”de%lnGa(é)}, 11)

whereC, andC_ are correspondingly the top and the bot-
tom half of the imaginary axigFig. 1).
N - The exponential factoe” in Eq. (11) permits to turn the
N _ ienr | 43 pathsC.. to the left. Moreover, I, and InG, being analytic
V('“’T)_ (2m)3 En: € jd P M(&n.p,T), 0 in the respective half planess{ , do not have zeros, see
above there are no obstacles on the way and the integrations
where 7— +0. At zero temperature the summation over in Eq.(11) are reduced to the integrations just abo@ ()
goes into integration: and just below Cy;) the negative half of real axis. We have
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The physical density now is an average over the unit-cell
@ volumew. In terms of the Matsubara propagator density,

N d3X 1 © X
v |5 5] esemoonn

v C+ _ 1 f d3kfx SE7dETIM(£,K):; (14)
(2m)* — ’
Cox - Tr here includes the summation over spin projection.
- The above Luttinger procedure gives here
Co-
N i . J .
Vi d e'fff k> (MM
= ) C- e 2 (Mom) g
or using determinant algebra,

N_ F dgeiszJ d3kﬁ In detM (15)

Voo@2mt)-= 23 '
FIG. 1. Integration path in Eq11). It is shown in Appendix C that determinants d&t ,(e) do

not have zeros in the corresponding half planes at complex
N 2 s [© d G, energies, which again permits to turn pa@s in Fig. 1 into
v (2m)* d°p %dfa'”G_* pathsCy. without obstacles. Finally, we arrive at the for-
' mula analogous to Eq12):
2 J' & fo q d 4 det &
=- p €e— N i 0 d detG
w(2m)? dege N_ f def L N ST
Voo@2m)t) = Je detG,
1
= :J d3p—[ &, (—%)— ¢,(0)], (12 Now it is the time to follow Luttinget and to make a choice
(27) ™

of the Bloch sety,, . The matricesf?-,,a at zero energy are

where ¢, is the phase of retarded propagatGr.(—«) is Hermitian and have real eigenvalud, (0k) corresponding
i i - i he diagonalizing sef, , L stands for Luttinger here. The
obviously real and negativegt =) and we arrive at the 0 the diagons g Sefy, L sta ing
Luttinger theorent1). procedure brings us to the trivial generalization of formula
Strictly speaking the absence of winding is implicit here (1),
but it is precluded by the fact thi},G, does not change sign
on the way from— to 0. N 1
The proof just pre.sented is good fpr any state of our sys- Vo (2m)3 7 Jat (on>0
tem: FL, NFL, or MI[in other words, either of poles or zeros
can be used to change the sign®f in Eq. (1)]. The only  Together with the definition of bandg,,, formula(17) rep-
way to incapacitate the Luttinger theorem in foffy) is to  resents the general Luttinger theorem.
assume that the limiT—O0 is discontinuous. Actually, one
has to require that the whole linE=0 is a line of phase 1. NON-FERMI LIQUIDS AND MOTT INSULATORS
transitions.
Extension of the above considerations to crystalline states The case of Fermi liquids was extensively discussed in
of fermions is a mere technicalifyPropagators become ma- the original Luttinger papetPropagators of NFL's are given

trices Gr,a(e,k) in the space of Bloch functiongr,,(x), by a general scaling formulsee, e.g., Ref.)4

d3k. (17

wherek is corresponding quasimomentum anet0,1, . . .
numerates bands. We will use the single notatidior both G(e,p)= 1 £ p[—PL .
band numben and spin projectiorr:n=(nc), thus in the ' el~@ el |’
case of a quuiofSr,a are matrices in spin variables only.
Actually the Bloch set/,, may be chosen at one’s con- const
venience(see below The important thing here is that in the G(0p)= pl—po<i-a’
large energies limit propagators are unity matrices: (Ipl=pu)
R 1. const
Glek)=—1, exe. (13 G(e,pL)= e (18)
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wherea, k are positive scaling exponents. For simplicity we
confine ourselves ta=1.

At 0<a<1 the propagator at the chemical-potential level
€=0 in Eq. (1) changes sign when it crosses the 8
=P, . On the surface itself is infinite but singularities are
somewhat weaker than in a genuine Fermi liqaig 0.

At larger @, 1<a<2, the propagator is nullified on the
LS but its behavior close to the LS remains substantially
singular.

Finally, ata>2 the propagator close to the LS is virtually
analytic:

S
(@)

P<D;

ReG,(e,p)=Ae+B(|p|—p.)+---,

IMmG,(€,p)=C €+ --. (19 vePpp) 0 €
In the case of a liquid Mott insulatdif it really exists
imaginary part ofG is zero inside a gap-A_<e<A, and

close to the LS, S (b)
Ga(erp) = Gr(eap)2A6+ B(| p| - pL)

As it was discussed above, the Luttinger theorem is valid
for both NFL's and MI's and Eq918)—(20) give for density

(20

<

N P 21 PR
Vo 372 @)
for FL's the Luttinger momentunp, coincides with the
Fermi momentumpg. Now the question is how the Lut-
tinger momentunp, can be measured, if at all. Its value in
FL's—the Fermi momentunp-—is conveniently detectable 0 €
by angle-resolved photoemission, which gives so-called
spectral density,, ., [being just imaginary part of propaga-
tor G”(p,€)]. At a fixed p<pg and close enough tpg the
spectral densitys as a function of energy exhibits sharp
maximum ate=v(p— pg) [see Fig. 2a)]. The maximum'’s
width is defined by the excitations lifetime and its area by theNevertheless, the massive spectral density shift on the Lut-
residueZ of the FL propagatofsee form(2)]. tinger surface seems to be a valid qualitative indicator.

The tails in Fig. 2a) at >0 and ate<vg(p— pg) testify The case of electrons in crystals does not entail compli-
to residual particle interactions. cations: one discusses the states listed above: FL, NFL, and

In NFL states, there are no maxima that sharp as in Fig. Ml for each of the Luttinger bands in forii17). The case of
and a substantial part of spectral densitypatp, is trans- atomic quantum Fermi crystals, notably He3, deserves a
ferred above the chemical-potential levet0. comment. In a genuine quantum crystal there is no reason to

Finally, in NFL's with zeros in propagatorG,(0,p,) require that each crystal sitanit cell) is fully occupied, the

FIG. 2. Energy dependence of spectral denSity,p) at fixed
momentump for (a) FL state,(b) NFL state with small exponent
a<l

=0, see form(17)] and in MI's roughly 50% of spectral

occupation numbers may well be less than 1 and the corre-

density atp~p, is transferred across the chemical-potentialSponding density less than the volume of unit cell of recip-

level e=0 across the gap in MI's, see Figgad). This can
be seen directly from the spectral representat®)nwritten
say, for MI’s:

1 [(-A-G/(p,x 1 (= G/(p,x
G,(p,O)z;f r(—p)der—f de

—o0 X T Ay X

(22

A zero at the left-hand side qi=p, implies the complete
compensation of the negative<0) and the positive inte-
grals (x>0) at the right-hand sidgG; (€)<0 for all €].
Granted, thereal measurement op, requires the com-
plete knowledge of spectral density for all valuepafnde.

rocal lattice being necessarily equal to the volume confined
by the Luttinger surface in Eq17).

The Luttinger surface, of course, may turn out just the
Fermi surface of a Fermi-liquid state which was visualized
decades ago as a gas of quantum-mechanically delocalized
vacancies. The signature of such a state is the existence of
mass flow always absent in a classical harmonic crystal.

In a Ml state a mass flow is forbidden. One may say that
the above-mentioned vacancies are quantum mechanically
(not classically localized. Intermediate NFL states will ex-
hibit a variety of peculiar nonstationary mass flow phenom-
ena.

To conclude, the Luttinger surface as defined by Egor
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FIG. 3. Energy dependence of spectral denSity,p) at fixed
momentunp close top, for (a) NFL state with largex>1, (b) Ml
state.
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FIG. 4. Integration path in EqB1).

€
e”Gr(e,T)tanhzde

4l AsrtAgL

1

€
+m A,,+A,,e Ga(e,T)tanhZ—Tde.

(B1)

The pathsA. | are shown in Fig. 4 where dots indicate the
pointsi¢,=i27T(2n+1). Relationg5) betweenM (¢) and
G, a(€) were used here.

Subtracting the integral in Edq7),

(17) is a meaningful concept. Not being as sharp and mea-

surable feature as the Fermi surface it is easily recognizable
by the massive spectral density transfer in its vicinity and, |

believe, has nonzero heuristic potential.

APPENDIX A: Absence of zeros ofG, , in complex plane ofe

1 (= .
oo | aeemico,

from the right-hand side of EdB1) and using relation$5)
again we represent the temperature-dependent part of Eq.

(B1) as

The easiest way to prove the absence of zeros is the direct

use of representatio(8). If e=¢’+i€” is a complex zero,

G, a(€)=0, then
fw (x—€")p(x)dx
- T 0
% (X_6/)2+(6N)2

J% p(x)dx
> (X_E/)2+(6//)2
These two lines are obviously incompatiblepifis negative
for all x.

APPENDIX B: The temperature dependence in formula(6)

The sum over Matsubara frequencies Eq. (6) may be
written as a complex integral:

( Gr(e,T)tan% 4 Gr(e,O)) de

i AL
€
+m A_L(Ga(e,T)tanhz—T-i-Ga(e,O))de
! G,(e,T < G,(€,0) |d
+4_77i . (€, )tanhZ_T_ ((€,0) |de

1
tam ) (Ga(e,T)tan%—Ga(e,O))de.

r

Now we are in a position to turn left paths., towards
negative real axis and right patids., towards positive real
axis. The final results for the temperature dependence of den-
sity are
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o —2f 4€ 9P emiepo

v(Tw= 77 2 (£,p,0)
2 ° dff d3p G// T €
o) on (2m)3 {(e.p, Ttanh=
G/(€,p,0 2f°°d6f d*p
+G/(€,p,0) |+ om P

X

G’r’(e,p,T)tan%—G;’(e,p,O)). (B2)

The temperature-dependent integrals in EBR) appar-
ently converge to zerd there is no phase transition &t
=0.

APPENDIX C: Analyticity of In det G, (€)

We have to prove that d&t does not have zeros in the

upper half plane ofe knowing that the matrixG,(e) and

correspondingly the propagator in coordinate-frequency rep-
resentation,(x,x’,e) are operators analytical in the upper

half plane.
Let us pick up a function ok—W¥(x) and define a con-
voluted operatoC(e) depending only ore:

C(e|\lf)=fdx dX¥* (X)G,(x,x",e)¥(x"). (C1

The functionC(e€) is analytic in our domain. The definition
of G, in terms of field operators ensures tl@te) is repre-
sented by the same Hilbert type formu@ with negative
density(see, e.g., Ref.)2Thus,C(€,¥) does not have zeros
at complex energies.

PHYSICAL REVIEW B 68, 085113 (2003

Assume that dé, might be zero at some compley and
consider the eigenvalue problem:

f dx" G, (X,X",€0) W(X', €0) = Nn(€0) Wn(X, €).
(C2

Eigenvalues\, are complex becausg, (eg) is not a Hermit-
ian operator. From E(qC2) it follows that

Al 0) f XV (. €0)|2

= f dxdX Wy (X, €0) G (X,X',€0) V(X' €p)

= C(eo|¥n( o). (C3)

Now the convoluted function

C(el¥n(eo))

is zeroless for any complex including ey:

C(€O|\Pn(€0))7&0

and (C3) gives
)\n( Eo) * O
Finally,
deG(eo) =11 Ma(eo),

which completes the proof.
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