
PHYSICAL REVIEW B 68, 085113 ~2003!
Some consequences of the Luttinger theorem: The Luttinger surfaces in non-Fermi liquids
and Mott insulators

Igor Dzyaloshinskii
Department of Physics and Astronomy, University of California, Irvine, California 92697, USA

~Received 30 January 2003; published 27 August 2003!

Landau and Luttinger have shown that the properties of so-called Fermi liquids are determined by the Fermi
surface of their excitations. The present analysis of mathematics of the Luttinger paper proves that non-Fermi
liquids where there are no well-defined excitations and Mott insulators are essentially characterized by the
Fermi-surface analog—the Luttinger surface, a feature of particle’s propagator.
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I. INTRODUCTION

About five decades ago, Landau1 formulated a concept o
the Fermi liquid~FL! claiming that thermodynamic and k
netic properties of a system of~bare! fermions in FL state are
fundamentally the same as those of a weakly interacting
of Fermi excitations~dressed fermions! notwithstanding the
actual strength of interactions between bare fermions. S
sequently, all Landau claims were proven correct~see, e.g.,
Ref. 2!.

The present paper concerns the most fundamental of L
dau’s claims: that the number of bare articles in FL’s~at
given chemical potentialm) is equal to the number of Ferm
excitations, specifically, what is the relation between
number of bare fermions~actual density! and the system ex
citationsif there is a gap in the excitation spectrum, the
called Mott insulator~MI !, or if there are no well-defined
Fermi excitations at the chemical potential level@the so-
called non-Fermi liquid~NFL!#. The proper tool to use her
is the so-called Luttinger theorem. Regretfully, nowadays
contents of the theorem are so densely clouded by folk
that it is sensible to begin with a statement what is me
when I say ‘‘the Luttinger theorem.’’

Back in 1960, Luttinger3 gave an alternative proof of th
Landau conjecture concerning density of particles and e
tations in FL’s. However, the method he designed revea
deep relation between density and some properties of re
malized fermion propagatorG(e,p) which transcends FL
limitations and can be applied to Mott insulators and NFL
The relation runs,3 see also Ref. 2,

N

V
52E

G(0,p).0

d3p

~2p!3
. ~1!

The integral in momentum space is taken over the reg
where the propagator at the chemical-potential levele50,
G(e50,p) is positive. Picking the FL propagator

G~e,p!'
Z

e2eex~p!
, ~2!

one immediately comes to the Landau statement: den
equals number of excitations below Fermi surfaceupu
5PF :eex(PF)50.
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The author applied4 the Luttinger theorem in its most gen
eral form ~1! to NFL’s where there is no fermionic excita
tions ate50, and consequently no pole~2! in the propaga-
tor. Now the theorem claims that density is equal to t
volume bound by what I called Luttinger surface~LS! upu
5PL , the Luttinger momentumPL defines the point where
G(0,p) changes sign passing through either infinity or ze

Finally, one may apply formula~1! to a MI. Now there is
a gap in excitation spectrumeex(p) and imaginary part of
propagatorG9(e,p) has zero value in a finite range aroun
chemical potentiale50. Due to analytic properties of propa
gators,G ~see Sec. II below! cannot have singularities on rea
axis inside the gap and zeros ofG(0,p) are required to ac-
count for bare particle’s density according to form~1!. It
defines the Luttinger surfaceupu5PL by G(0,PL)50. A
model propagator of this kind is

G~e,p!5
e1v~ upu2PL!

e22D22v2~ upu2PL!2
, ~3!

easily recognizable as BCS electron propagator withv andD
being the Fermi velocity and superconducting gap andPL
coinciding with the Fermi momentumPF . Unfortunately
there is no meaningful analog of the Luttinger theorem
superfluid states due to breaking of the particle number c
servation law~phase or gauge-invariance breaking!.

Obviously there are two types of insulating states. Firs
compressibleinsulator wherePL and the density are smoot
functions of the chemical potentialm. This state is reminis-
cent of a superconductor or a superfluid state in liquid H
albeit without Bose condensation. Second, a physical me
nism may fix the density at which a gap is opened. Only o
such incompressibleinsulator is known in a genuine liquid
the quantum liquid of fractional quantum Hall effect whe
the famous Laughlincommensurabilitybetween density and
magnetic flux is the reason. Of course, commensurability
also be provided by the underlying crystalline lattice.
known example is a one-dimensional metal at half filli
where Umklapp scattering opens the gap and fixes the d
sity.

Simple as it is, this approach to MI’s is no
irreproachable.5,6 The trouble is that the zeros ofG on real
axis signify poles in self-mass operatorS(e,p) and the Lut-
tinger derivation of Eq.~1! ~see Sec. II! involves integration
©2003 The American Physical Society13-1
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of S over frequenciese. Obviously the result depends o
how these singular integrals are regularized. Altshuleret al.5

employed a regularization which amounts to radical red
nition of the ground state introducing a sort of chir
anomaly in the theory and as a result derived a formula
density different from Eq.~1!.

In what follows I present another regularization. My wa
is to start at a finite temperatureT and to perform the Lut-
tinger calculations in Euclidean sector of energy–momen
space~imaginary energies! where there areno polesin self-
mass. At the end, by turningT to zero I arrive at the old
Luttinger result~1!. Of course, this does not mean that t
state of Altshuleret al. is impossible, but that it exists only a
zero temperature and may be reached only via ze
temperature phase transition.

In Sec. II the Luttinger formula~1! is derived for fermi-
onic liquids and crystals. In Sec. III some consequences
MI’s and NFL’s are discussed.

II. THE LUTTINGER THEOREM

The Luttinger derivation of formula~1! is substantially
based on analytic properties of propagators in the energe
complex plane. We will use three kinds of propagators
finite temperature; the retarded propagatorGr(e,p) analytic
in the upper half plane of complexe, the advanced propaga
tor analyticGa(e,p) analytic in the bottom half plane, an
the special finite temperature Matsubara propaga
M (jn ,p) defined at discrete ‘‘imaginary energies’’i jn
5 ipT(2n11); where n are integers.@The corresponding
definitions and inter-relations are easily available, see, e
Ref. 2.#

Actually all three have a common Hilbert representatio

Gr ,a~e!5
1

pE2`

` r~x!

x2e
dx;

Ime.0
Ime,0. ~4!

The real functionr(x) is obviously connected with imagi
nary parts ofGr ,a at real energiese:

r~e!5Gr9~e!52Ga9~e!. ~5!

For fermions,Gr9 andr arenegativefor all energies2 and as
a consequenceGr(e) does not have zeros in upper half pla
andGa(e) is zeroless in bottom half plane~see Appendix A!.
Finally, the Matsubara propagator is given by

M ~jn!5H Gr~ i jn!, jn.0

Ga~ i jn!, jn,0.
~6!

The densityN/V as a function of chemical potential an
temperature is~see Ref. 2!

N

V
~m,T!5

2T

~2p!3 (
n

ei jntE d3p M~jn ,p,T!, ~7!

where t→10. At zero temperature the summation overn
goes into integration:
08511
-

r

m

o-

or

t

r

.,

:

N

V
~m!5

2

~2p!4E2`

`

djE d3p ei jtM ~j,p,0!. ~8!

The sum in Eq.~7! converges to Eq.~8! smoothly enough if
there is no phase transition atT50 ~see Appendix B!.

Now we may transpose step by step the calculations d
by Luttinger2,3 in the framework of the Feynman field theor
at real time to the Matsubara field theory at imaginary tim
Density ~8! is expressed as

N

V
52

2i

~2p!4E2`

`

dj ei jtE d3p M~j,p!

3S ]

]j
M 21~j,p!1

]s

]j
~j,p! D , ~9!

where s(j,p) is the self-mass in the Matsubara theor
M 215 i j2e(p)2s. The integral of the second term he
actually is zero as it was in the real time version. Namel

E djd
3p M

]s

]j
5E djdp

]

]j
Ms2E djdps

]M

]j
.

The above integration by parts is perfectly legal here beca
even in the case of a Mott insulator the Mitsubara self-ene
s doesnot have poles in2`,j,` and the objections of
Altshuleret al.5 are not held. The first integral on the right
zero because atj→` propagator M→1/i j→0 and s
→const. The second integral disappearance is proven by
same effective arguments of Luttinger.2,3 M ands being non-
singular the Luttinger construction is solid.

Thus, we arrive at the formula for density:

N

V
5

2i

~2p!4E2`

`

djei jtE d3p
]

]j
lnM . ~10!

Formula~10! may be rewritten in terms of an integral alon
a path in complex energye plane of two analytic propagator
Gr(e) andGa(e). Namely,

N

V
5

2i

~2p!4E d3pH E
C1

eetde
]

]e
lnGr~e!

1E
C2

eetde
]

]e
lnGa~e!J , ~11!

whereC1 andC2 are correspondingly the top and the bo
tom half of the imaginary axis~Fig. 1!.

The exponential factoreet in Eq. ~11! permits to turn the
pathsC6 to the left. Moreover, lnGr and lnGa being analytic
in the respective half planes (Gr ,a do not have zeros, se
above! there are no obstacles on the way and the integrat
in Eq. ~11! are reduced to the integrations just above (C01)
and just below (C01) the negative half of real axis. We hav
3-2
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N

V
5

2i

~2p!4E d3pE
2`

0

de
d

de
ln

Gr

Gr*

52
2

p~2p!3E d3pE
2`

0

de
d

de
f r

5
2

~2p!3E d3p
1

p
@f r~2`!2f r~0!#, ~12!

where f r is the phase of retarded propagator.Gr(2`) is
obviously real and negative (f r5p) and we arrive at the
Luttinger theorem~1!.

Strictly speaking the absence of winding is implicit he
but it is precluded by the fact thatI mGr does not change sig
on the way from2` to 0.

The proof just presented is good for any state of our s
tem: FL, NFL, or MI@in other words, either of poles or zero
can be used to change the sign ofGr in Eq. ~1!#. The only
way to incapacitate the Luttinger theorem in form~1! is to
assume that the limitT→0 is discontinuous. Actually, one
has to require that the whole lineT50 is a line of phase
transitions.

Extension of the above considerations to crystalline sta
of fermions is a mere technicality.3 Propagators become ma
trices Ĝr ,a(e,k) in the space of Bloch functionscnk(x),
wherek is corresponding quasimomentum andn50,1, . . .
numerates bands. We will use the single notationn for both
band numbern and spin projections:n5(ns), thus in the
case of a liquidĜr ,a are matrices in spin variables only.

Actually the Bloch setcnk may be chosen at one’s con
venience~see below!. The important thing here is that in th
large energies limit propagators are unity matrices:

Ĝ~e,k!.
1

e
1̂, e→6`. ~13!

FIG. 1. Integration path in Eq.~11!.
08511
-

s

The physical density now is an average over the unit-c
volumev. In terms of the Matsubara propagator density,

N

V
5(

s
E

v

d3x

v
1

2pE2`

`

ei jtdjMss~x,x;j!

[
1

~2p!4E d3kE
2`

`

ei jtdj TrM ~j,k!; ~14!

Tr here includes the summation over spin projection.
The above Luttinger procedure gives here

N

V
5

i

~2p!4E dj ei jtE d3k(
n,m

~Mnm
21!

]

]j
M̂mn

or using determinant algebra,

N

V
5

i

~2p!4E2`

`

djei jtE d3k
]

]j
ln det M̂ . ~15!

It is shown in Appendix C that determinants detĜr ,a(e) do
not have zeros in the corresponding half planes at comp
energies, which again permits to turn pathsC6 in Fig. 1 into
pathsC06 without obstacles. Finally, we arrive at the fo
mula analogous to Eq.~12!:

N

V
5

i

~2p!4E2`

0

deE d3k
]

]e
ln

det Ĝr

det Ĝa

. ~16!

Now it is the time to follow Luttinger3 and to make a choice
of the Bloch setcnk . The matricesĜr ,a at zero energy are
Hermitian and have real eigenvaluesGnn

L (0,k) corresponding
to the diagonalizing setcnk

L , L stands for Luttinger here. The
procedure brings us to the trivial generalization of formu
~1!,

N

V
5

1

~2p!3 (
n
E

Gnn
L (0,k).0

d3k. ~17!

Together with the definition of bandscnk
L , formula ~17! rep-

resents the general Luttinger theorem.

III. NON-FERMI LIQUIDS AND MOTT INSULATORS

The case of Fermi liquids was extensively discussed
the original Luttinger paper.3 Propagators of NFL’s are given
by a general scaling formula~see, e.g., Ref. 4!

G~e,p!5
1

e12a
f S upu2PL

e1/k D ;

G~0,p!5
const

~ upu2pL!k(12a)
,

G~e,pL!5
const

e12a
, ~18!
3-3
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wherea,k are positive scaling exponents. For simplicity w
confine ourselves tok51.

At 0,a,1 the propagator at the chemical-potential lev
e50 in Eq. ~1! changes sign when it crosses the LSupu
5PL . On the surface itselfG is infinite but singularities are
somewhat weaker than in a genuine Fermi liquida50.

At larger a, 1,a,2, the propagator is nullified on th
LS but its behavior close to the LS remains substantia
singular.

Finally, ata.2 the propagator close to the LS is virtual
analytic:

ReGr~e,p!.Ae1B~ upu2pL!1•••,

Im Gr~e,p!.C e21•••. ~19!

In the case of a liquid Mott insulator~if it really exists!
imaginary part ofG is zero inside a gap:2D2,e,D1 and
close to the LS,

Ga~e,p!5Gr~e,p!.Ae1B~ upu2pL!. ~20!

As it was discussed above, the Luttinger theorem is va
for both NFL’s and MI’s and Eqs.~18!–~20! give for density

N

V
5

pL
3

3p2
; ~21!

for FL’s the Luttinger momentumpL coincides with the
Fermi momentumpF . Now the question is how the Lut
tinger momentumpL can be measured, if at all. Its value
FL’s—the Fermi momentumpF—is conveniently detectable
by angle-resolved photoemission, which gives so-ca
spectral densityS(p,e) @being just imaginary part of propaga
tor G9(p,e)]. At a fixed p,pF and close enough topF the
spectral densityS as a function of energye exhibits sharp
maximum ate5vF(p2pF) @see Fig. 2~a!#. The maximum’s
width is defined by the excitations lifetime and its area by
residueZ of the FL propagator@see form~2!#.

The tails in Fig. 2~a! at e.0 and ate!vF(p2pF) testify
to residual particle interactions.

In NFL states, there are no maxima that sharp as in Fi
and a substantial part of spectral density atp,pL is trans-
ferred above the chemical-potential levele50.

Finally, in NFL’s with zeros in propagators@Gr(0,pL)
50, see form~17!# and in MI’s roughly 50% of spectra
density atp'pL is transferred across the chemical-poten
level e50 across the gap in MI’s, see Figs. 3~a,b!. This can
be seen directly from the spectral representation~3!, written
say, for MI’s:

Gr~p,0!5
1

pE2`

2D2Gr9~p,x!

x
dx1

1

pED1

` Gr9~p,x!

x
dx.

~22!

A zero at the left-hand side atp5pL implies the complete
compensation of the negative (x,0) and the positive inte-
grals (x.0) at the right-hand side@Gr9(e)<0 for all e].

Granted, thereal measurement ofpL requires the com-
plete knowledge of spectral density for all values ofp ande.
08511
l

y

d

d

e

2

l

Nevertheless, the massive spectral density shift on the
tinger surface seems to be a valid qualitative indicator.

The case of electrons in crystals does not entail com
cations: one discusses the states listed above: FL, NFL,
MI for each of the Luttinger bands in form~17!. The case of
atomic quantum Fermi crystals, notably He3, deserve
comment. In a genuine quantum crystal there is no reaso
require that each crystal site~unit cell! is fully occupied, the
occupation numbers may well be less than 1 and the co
sponding density less than the volume of unit cell of rec
rocal lattice being necessarily equal to the volume confin
by the Luttinger surface in Eq.~17!.

The Luttinger surface, of course, may turn out just t
Fermi surface of a Fermi-liquid state which was visualiz
decades ago as a gas of quantum-mechanically deloca
vacancies. The signature of such a state is the existenc
mass flow always absent in a classical harmonic crystal.

In a MI state a mass flow is forbidden. One may say t
the above-mentioned vacancies are quantum mechani
~not classically! localized. Intermediate NFL states will ex
hibit a variety of peculiar nonstationary mass flow pheno
ena.

To conclude, the Luttinger surface as defined by Eq.~1! or

FIG. 2. Energy dependence of spectral densityS(e,p) at fixed
momentump for ~a! FL state,~b! NFL state with small exponen
a,1.
3-4
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~17! is a meaningful concept. Not being as sharp and m
surable feature as the Fermi surface it is easily recogniz
by the massive spectral density transfer in its vicinity and
believe, has nonzero heuristic potential.

APPENDIX A: Absence of zeros ofGr ,a in complex plane ofe

The easiest way to prove the absence of zeros is the d
use of representation~3!. If e5e81 i e9 is a complex zero,
Gr ,a(e)50, then

E
2`

` ~x2e8!r~x!dx

~x2e8!21~e9!2
50,

E
2`

` r~x!dx

~x2e8!21~e9!2
50.

These two lines are obviously incompatible ifr is negative
for all x.

APPENDIX B: The temperature dependence in formula„6…

The sum over Matsubara frequenciesn in Eq. ~6! may be
written as a complex integral:

FIG. 3. Energy dependence of spectral densityS(e,p) at fixed
momentump close topL for ~a! NFL state with largea.1, ~b! MI
state.
08511
a-
le
I

ct

T(
n

ei jntM ~jn ,T!5
1

4p i EA1r1A1L

eetGr~e,T!tanh
e

2
de

1
1

4p i EA2r1A2 l

eetGa~e,T!tanh
e

2T
de.

~B1!

The pathsA6r ,l are shown in Fig. 4 where dots indicate th
points i jn5 i2pT(2n11). Relations~5! betweenM (j) and
Gr ,a(j) were used here.

Subtracting the integral in Eq.~7!,

1

2pE2`

`

dj ei jtM ~j,0!,

from the right-hand side of Eq.~B1! and using relations~5!
again we represent the temperature-dependent part of
~B1! as

1

4p i EA1L

S Gr~e,T!tanh
e

2T
1Gr~e,0! Dde

1
1

4p i EA2L

S Ga~e,T!tanh
e

2T
1Ga~e,0! Dde

1
1

4p i EA1r

S Gr~e,T!tanh
e

2T
2Gr~e,0! Dde

1
1

4p i EA2r

S Ga~e,T!tanh
e

2T
2Ga~e,0! Dde.

Now we are in a position to turn left pathsA6L towards
negative real axis and right pathsA6r towards positive real
axis. The final results for the temperature dependence of d
sity are

FIG. 4. Integration path in Eq.~B1!.
3-5
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N

V
~T,m!52E dj

2p

d3p

~2p!3
ei jtM ~j,p,0!

12E
2`

0 de

2pE d3p

~2p!3 S Gr9~e,p,T!tanh
e

2T

1Gr9~e,p,0! D12E
0

` de

2pE d3p

~2p!3

3S Gr9~e,p,T!tanh
e

2T
2Gr9~e,p,0! D . ~B2!

The temperature-dependent integrals in Eq.~B2! appar-
ently converge to zeroif there is no phase transition atT
50.

APPENDIX C: Analyticity of ln det Ĝr„e…

We have to prove that detĜr does not have zeros in th
upper half plane ofe knowing that the matrixĜr(e) and
correspondingly the propagator in coordinate-frequency r
resentationGr(x,x8,e) are operators analytical in the upp
half plane.

Let us pick up a function ofx2C(x) and define a con-
voluted operatorC(e) depending only one:

C~euC!5E dx dx8C* ~x!Gr~x,x8,e!C~x8!. ~C1!

The functionC(e) is analytic in our domain. The definition
of Gr in terms of field operators ensures thatC(e) is repre-
sented by the same Hilbert type formula~3! with negative
density~see, e.g., Ref. 2!. Thus,C(e,C) does not have zero
at complex energiese.
08511
p-

Assume that detĜr might be zero at some complexe0 and
consider the eigenvalue problem:

E dx8 Gr~x,x8,e0!Cn~x8,e0!5ln~e0!Cn~x,e0!.

~C2!

Eigenvaluesln are complex becauseGr(e0) is not a Hermit-
ian operator. From Eq.~C2! it follows that

ln~e0!E dxuCn~x,e0!u2

5E dxdx8Cn* ~x,e0!Gr~x,x8,e0!Cn~x8,e0!

[C„e0uCn~e0!…. ~C3!

Now the convoluted function

C„euCn~e0!…

is zeroless for any complexe including e0:

C„e0uCn~e0!…Þ0

and ~C3! gives

ln~e0!Þ0.

Finally,

detĜr~e0![)
n

ln~e0!,

which completes the proof.
,
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