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Minimal charge gap in the ionic Hubbard model
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~Received 23 December 2002; revised manuscript received 30 May 2003; published 14 August 2003!

We study the ionic Hubbard model at temperatureT50 within the mean-field approximation, and show that
the charge gap does not close completely at the ionic-band insulator to antiferromagnetic insulator transition,
contrary to previous expectations. Furthermore, we find an intermediate phase for on-site repulsionsU.Uc for
different lattices, and calculate the phase diagram for the ionic Hubbard model with alternatingU, correspond-
ing to a Cu-O lattice.
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I. INTRODUCTION

The generalization of the Hubbard model with differe
on-site energies on the neighboring sites has been name
ionic Hubbard model~IHM !,

H5t (
^ i , j &,s

cj ,s
† ci ,s1

U

2 (
i ,s

ni ,sni ,2s1E0(
i ,s

~21! u i uni ,s ,

~1!

which is characterized by a nearest-neighbor hopping am
tudet, an on-site Coulomb-repulsionU, and a site-dependen
on-site energy6E0. Here u i u5even/odd respectively forA
andB sites on a bipartite lattice.

The IHM is used in two contexts:~a! For a, description of
the neutral-ionic transition~NIT! ~Ref. 1! in organic mixed-
stack charge-transfer~CT! crystals. The stacks in CT crysta
form quasi-one-dimensional insulating chains with altern
ing donor and acceptor molecules. The charges on the ac
tor r and on the donor2r characterize the crystal state. F
r,0.5 the crystal is said to be neutral-like, otherwise it
ionlike. The transition from one region to the other due to
change of temperature or pressure is called the NIT.~b! The
IHM has also been used in the context of ferroelectrics
superconductivity in the transition-metal oxides.2 It has been
argued2 that the influence of the underlying lattice on th
electronic system could be large in the critical region, le
ing to a nonlinear electronic polarizability.

The phase diagram of Eq.~1! was discussed previously b
several authors. Oritzet al. found a single phase transition i
a mean-field study using a one-dimensional density
states.3 The transition takes place between paramagnetic
antiferromagnetic states. The point where it takes place h
special role with respect to the electrical conductivi
Whereas the system is a semimetal at this point, at o
points of the phase diagram it is an insulator. The possib
of a semimetallic transition point involving antiferroma
netism has also been discussed in a local density approx
tion study.4

Gidopouloset al. performed a mean-field decoupling fo
two-dimensional bipartite square and honeycomb lattic5

They found two special values ofU for a given energy alter-
nationE0. The first denotes the phase transition where m
netic order sets in, at the second special value of the one
repulsionU, the charge gap for one spin species would p
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sumably close. In what follows, we will show that there a
actually two phase transitions in the mean-field decoupl
scheme. Furthermore, it will be shown that the solution
which the gap for one spin species vanishes is thermo
namically unstable, the charge-gap consequently does
close at any point in the phase diagram.

II. ORDER PARAMETERS

Application of the mean-field decoupling

ni↑ni↓→(
s

^ni ,2s&ni ,s2^ni ,↑&^ni ,↓& ~2!

leaves us with the system of equations

Ds52E
0

`

deD~e!
E01UD2s

Ae21~E01UD2s!2
~3!

for the two order parametersDs defined through the respec
tive spin-densitiesnA/Bs51/27Ds on A andB sites.D(e) is
a free-particle density of states~DOS!. In what follows, one-
dimensional DOSs will be used, but qualitatively the sa
results have been obtained for flat and semicircular DO
Quasiparticle states are accommodated in four bands w
dispersion

las~e!5
U

2
1aAe21~E01UDs!2, a561. ~4!

In the ground-state thea521 bands are filled. The thermo
dynamic stability of a possible self-consistent solution of E
~3! is determined, atT50, by the total energy

E

N
5(

a,s
E

0

`

deD~e!las~e!Q@eF2las~e!#

2~U/41UD↑D↓ .! ~5!

The above equations are valid for the half-filled system. U
of the particle-hole symmetry

cj suFB&5~21! u j 11udj 11,2s
† u0&h ~6!
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where uFB& denotes a full band andu0&h a hole vacuum,6

shows thateF5U/2. Together with the dispersion of th
bands, this implies that the number of each spin specie
the same.

III. PHASE DIAGRAM

The phase diagram of the IHM is shown in Fig. 1. R
garding theU axis, it has two separate regions. ForU,Uc
'4.25t one finds two phases: the charge-ordered~CO! phase
and a mixture of the charge ordered and the antiferrom
netic phase~AF1CO!. In the U.Uc region there are three
phases. Beside the CO and the AF1CO phases, we find an
other phase which we will call the intermediate I phase. T
I phase has the same order parameters as the AF1CO phase.

The phases shown in Fig. 1 can be observed clearly in
curves for the staggered magnetizationmst5uD↓2D↑u,
shown in Fig. 2 as a function ofE0 and various values ofU.
We notice a jump in the curves for all values ofU, indicative

FIG. 1. Phase diagram for the one-dimensional DOS. FoU
,Uc the intermediate phase~I! is thermodynamically not stable an
the transition from the antiferromagnetic~AF1CO! to paramag-
netic phase~CO! is of the first-order. TheU.Uc region has a stable
I phase. The transition between the two magnetic phases~AF1CO
and I! is of the first order; the I phase goes into the CO ph
through the second order phase transition. The inset sh
asymptotic behavior of the phase border for smallU.

FIG. 2. Staggered magnetization curves for differentU ’s. The
blank, inclosed region contains jumps of themst . Shaded regions
are placed under the magnetization curves of the I phase.
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of a first order phase transition. The jumps define a region
mst for which the system is unstable, illustrated by the lig
shaded area in Fig. 2. WhenU.Uc there is no direct tran-
sition from the low-E0 ~AF1CO! phase to the high-E0 ~CO!
phase which is characterized bymst50. The AF1CO phase
now shares a border with the I phase. The jump in the s
gered magnetization vanishes asymptotically asU becomes
large. The transition from I to CO is, on the other hand,
the second order. From the magnetization curves it is a
transparent that the width of I rises as one increasesU ~illus-
trated by the dark-shaded areas in Fig. 2!.

The first-order nature of the transition between t
AF1CO phase realized for low values ofE0 and the CO and
I phases, respectively, shows up in a jump of the charge g
as shown in Fig. 3. The discontinuity in the charge gap
manifested by two different curves of the gap as a funct
of U for the two sides of the transition, respectively.

A difference between I and AF1CO phases appears in th
behavior of the charge gap as a function ofE0; see Fig. 4.
The transition point between the AF1CO and I phases is
characterized by a minimum in the charge gap; see Fig
Even though the gap is close to zero, it remains finite. In
AF1CO phase@Fig. 4~a!#, the charge gap, as a function o
E0, decreases while it increases in the I phase@Fig. 4~b!#. As
expected, this increase proceeds in the CO phase@Fig. 4~c!#.

IV. THERMODYNAMIC STABILITY

A self-consistent solution of Eq.~3! with finite values for
the order parametersDs is not a guarantee that the corr
sponding phase is indeed realized in the system. The co
tion for the stability of a phase onT50 is that it has a
minimal energy with respect to the energies of the ot
phases. This fact is important in the case of the~AF1CO!-~I!
transition. There, the AF1CO and I solutions show a hyste
esis effect, and the ground state is determined on the bas
the minimum energy principle.

e
s

FIG. 3. Charge gap as a function ofU on the first order transi-
tion point ~AF1CO!→~I! for U.Uc and (AF1CO)→(CO) for
U,Uc . In the left plot we zoom in on the curves showing th
behavior of the gaps in the region of the parameter space wher
AF1CO phase shrinks rapidly.
6-2
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The examination of the energy space for the caseU
,Uc is shown on Fig. 5~a!. On this figure one sees th
energy@Eq. ~5!# for the four different solutions which solv
the self-consistency equation~3! for the order parameter
Ds . They are the three solutions~AF1CO,line!, ~CO, large
filled circles! and intermediate phase~I, small filled circles!
which we have already discussed, together with the fou
solution, which is always unstable~empty squares!. The en-
ergy of the I phase is larger than the one of the AF1CO
phase in the whole interval of its existence. The I phase
thus unstable. Crossing of the energy curves of AF1CO and
CO phases discloses an underlying first order phase tra
tion. The lower inset shows the energies of all phases in
whole E0 interval.

FIG. 4. Evolution of the gaps for each spin direction as a fu
tion of E0, for fixed U54A2t. The smaller gap is equivalent to th
charge gap.~a! AF1CO phase; the charge gap decreases.~b! I state;
the charge gap increases.~c! CO phase; the gap for both spin dire
tions is the same.
08510
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For U53.2A2 t.Uc the results are given in Fig. 5~b!.
Part of the I phase is now stable.

Stable solutions have been obtained by iterating Eq.~3!
directly, and the unstable solutions by fixing oneDs and
allowing E0 to change. The fixed order parameterDs has
been chosen such that it is in the range which is not cove
by the stable solutions. We have also tried to use a fixedU,
but the self-consistency map, for the parameters we ex
ined, did not turn out to be attractive and thus useful. Li
iting cases:~1! E050 and~2! U50 assure us that in thes
limits we found all solutions. Thus, possible solutions w
weakly attractive self-consistency map are a possibility
the intermediate range of parameters. We cannot exclude
possibility of their existence, but due to a few se
consistency arrangements we find them improbable.

The charge gap vanishes whenDs52E0 /U for one spin
species andD2s50 for the other species. The energy of th
solution is given in Figs. 5~a! and 5~b!, and is denoted by an
empty triangle. It turned out to be unstable in the calculatio
done. Furthermore, from the performed calculations~see Fig.
5! we see that the vanishing-gap solution always h
AF1CO and CO companions with a smaller energy. T
leads us to extend the conclusions obtained from our res
to the whole parameter region, including an intervalU/t
,0.5 which we have not investigated numerically. Thus,
charge gap closes only in the pointE05U50.

Finally, we would like to mention that the three stab
phases CO, I, and CO1AF are characterized by differen
distributions of the charge densitiesnA/Bs51/27Ds on A
andB sites. We findD↑5D↓ for the CO phase,D↑ÞD↓ and
D↑D↓.0 for the I phase, andD↑D↓,0 for the AF1CO
phase.

V. ALTERNATING U IONIC HUBBARD MODEL „AIHM …

A natural generalization of the ionic Hubbard model is t
model where the on-site Coulomb interaction on the atomA

-

anel
particular
namically
FIG. 5. ~a! Energy of the various states as a function ofE0 . U52.9A2t,Uc is chosen such that the I phase is unstable. The main p
is a blowup of the energies shown in the inset, transformed by the subtraction of a suitably chosen straight line so that the
transitions can be more easily visualized. The large empty triangle denotes the position of the vanishing charge gap in the thermody
unstable solution.~b! U53.2A2t.Uc , so that part of the I phase is stable.
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and B is not the same. The Hamiltonian of the new syst
may be written as

HAIHM5HIHM 1(
i

dU~21! u i uni↑ni↓ . ~7!

For simplicity, here we consider the extreme case where
Coulomb interaction disappears on siteA. This impliesdU
52U and a value of 2U for the Coulomb repulsion on sit
B. This model is than equivalent to the Cu-O lattice mod3

with correlatedB sites ~copper, lower on-site energy! and
uncorrelatedA sites~oxygen, higher on-site energy!.

Let us writeE05U/21e0 andm5U/21m8, wherem is
the chemical potential for the half-filled system. The tran
formations

E05U/21e0→E085U/22e0

and

m5U/21m8→m5U/22m8

leave us with an equivalent Hamiltonian. This can be sho
by performing a canonical particle-hole transformationcj ,s

→(21)u j udj ,2s
† . It yields

H5 (
^ i , j &,s

tdj ,s
† di ,s1(

i
U@12~21! u i u#ni↑

h ni↓
h

1(
i ,s

~21! u i uS U

2
1e0Dni ,s

h

2(
i ,s

~21! u i uS U

2
1m8Dni ,s

h 12Nm8. ~8!

The difference with respect to the original Hamiltonia
~7! lies in the constant term 2Nm8. This, together with the
fact that the order parameter operators preserve the s
form in the hole picture, implies that the phase diagram
Eq. ~7! is symmetric with respect to the lineE05U/2 in the
parameterE0 and fordU52U.

The self-consistency equation, derived under the assu
tion that the ferromagnetic order parameter vanishes, is g
by

Ds52E
0

`

deD~e!
Bs

Ae21Bs
2

, ~9!

whereBs5E01UD2s1dU/2.
The energy spectrum has a forml6,s(e)5As

6Ae21Bs
2, whereAs5U/21dUD2s .

In Fig. 6 we present the phase diagram of the AIHM.
contains the same phases as the IHM phase diagram.
dash-dotted line in Fig. 6 indicates the symmetry axis. O
the system is antiferromagnetic with a vanishing char
order parameter~AF phase!. In the region around the sym
metry line the system is in the AF1CO phase which, forU
,Uc , makes a transition into the pure charge-ordered st
For U.Uc the transition takes place into the I phase a
than into the CO phase.
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Let us define a singlet gap as the minimal energy nee
for a transfer of the electron in an empty state withou
spin-flip and a triplet gap as the minimal energy of the tra
sition where the spin is flipped and the totalSz changes. In
the mean-field formulation these gaps are given byDs
52uBsu andD t5uA↑1uB↑u1uB↑u2A↓u.

A distinct property of the AIHM is the closing of the
triplet gap in the AF1CO phase. This is illustrated in Fig. 7
The IHM case with a uniformU is shown in Fig. 7~a!. In Fig.
7~c! we see that the triplet gap vanishes forUA50 andUB
52U. A necessary~but not sufficient! condition for the van-
ishing of the triplet gap can be derived from Eq.~9! and

FIG. 6. Phase diagram of the half-filled AIHM with the one
dimensional, density of states. It contains three phases. The ch
ordered~CO! phase is given by a white area. The dotted area r
resents a mixture of the antiferromagnetic and the charge ord
phase~AF1CO!, and the black region covers a parameter ran
where the intermediate~I! phase appears. The symmetry of th
phase diagram is denoted by the dash-dotted line.

FIG. 7. Singlet~dashed curve! and triplet~full curve! gaps as a
function of the on-site chemical potential amplitudeE0 for U
56t. ~a! U is the same for both atom species.~b! UA,UB . ~c! U
on siteA vanishes.
6-4
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expressed in the formD↑D↓,0. This is the case in the
CO1AF phase.D↑D↓.0, and the triplet gap is nonvanish
ing, as can be seen in Fig. 7. The exception to the condi
D↑D↓,0 for the disappearance of the triplet gap is a solut
D↑5D↓50, which exists forE05 U

2 .

VI. DISCUSSION

Previous mean-field studies of the ionic Hubbard mo
found a vanishing charge gap at the transition point betw
antiferromagnetic and paramagnetic states,3,5 in contrast to
our result for a minimal charge gap. The presented data w
obtained for a one-dimensional one-electron density
states. For comparison we have also carried out a calcula
for the flat and semicircular densities of states. The res
changed only quantitatively; all major features discussed
viously remain valid.

It is interesting to compare with the one-dimensional io
Hubbard model, which was studied by Resta and Sore7

using the boundary-condition-integration technique,8 by
Brune et al. using the density matrix renormalization grou
~DMRG!,9 and by Wilkins and Martin using the quantu
Monte Carlo~QMC!.10 Fehskeet al. considered the dynami
cal IHM coupled to phonons.11

Fabrizioet al., in a bosonization study,12 proposed the ex-
istence of a dimerized intermediate phase in the o
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dimensional ionic Hubbard model. DMRG and QMC resu
indicate9,10 that this bond-ordered~dimerized! insulating
phase extends to arbitrarily large values ofU, due to the
instability of the one-dimensional Mott-Hubbard insulat
towards dimerization. DMRG studies of the one-dimensio
model,9,13 found indications of a ‘‘strange’’ metallic poin
with a finite charge gap at the transition from the band in
lator to the correlated insulating state. We may speculate
our mean-field result of two distinct phase transitions refle
the occurence of magnetic long-range order possible in
mensions larger than one. We note, in this context, that
intermediate phase~I! evidenced in Figs. 1 and 6 does n
show a spontaneous dimerization.

VII. CONCLUDING REMARKS

The mean-field decoupling scheme is an approximation
a full evaluation of the Hamiltonian. Its validity is restricte
to the small U limit and a large dimension where it is qua
tatively correct.14 We have found, however, that the stabili
analysis for the various solutions possible for the ionic Hu
bard model is highly nontrivial. Here we have presented t
results:~i! a nonvanishing charge gap for all parameters, a
~ii ! the existence of two distinct phase transitions for larg
values ofU.
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