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Minimal charge gap in the ionic Hubbard model
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We study the ionic Hubbard model at temperaftireO within the mean-field approximation, and show that
the charge gap does not close completely at the ionic-band insulator to antiferromagnetic insulator transition,
contrary to previous expectations. Furthermore, we find an intermediate phase for on-site replifsidpfor
different lattices, and calculate the phase diagram for the ionic Hubbard model with altetdatiogespond-
ing to a Cu-O lattice.
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[. INTRODUCTION sumably close. In what follows, we will show that there are
actually two phase transitions in the mean-field decoupling
The generalization of the Hubbard model with differentscheme. Furthermore, it will be shown that the solution in
on-site energies on the neighboring sites has been named thdaich the gap for one spin species vanishes is thermody-
ionic Hubbard mode(lHM), namically unstable, the charge-gap consequently does not
close at any point in the phase diagram.
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@ Application of the mean-field decoupling

which is characterized by a nearest-neighbor hopping ampli-
tudet, an on-site Coulomb-repulsidg, and a site-dependent
on-site energy+ E,. Here|i|=even/odd respectively foh nmnmEr (Ni,—)Ni o= (N (NG ) 2
andB sites on a bipartite lattice. ‘

The IHM is used in two contextsa) For a, description of  |e5yes us with the system of equations
the neutral-ionic transitiofNIT) (Ref. 1) in organic mixed-
stack charge-transfé€T) crystals. The stacks in CT crystals
form quasi-one-dimensional insulating chains with alternat- A =— fwdeD(e)
ing donor and acceptor molecules. The charges on the accep- 7 0
tor p and on the donof-p characterize the crystal state. For
p<0.5 the crystal is said to be neutral-like, otherwise it isfor the two order parameters, defined through the respec-
ionlike. The transition from one region to the other due to thetive spin-densitie®i, g, = 1/2+ A, on A andB sites.D(¢) is
change of temperature or pressure is called the MjTThe  a free-particle density of stat¢®OS). In what follows, one-
IHM has also been used in the context of ferroelectrics andiimensional DOSs will be used, but qualitatively the same
superconductivity in the transition-metal oxidek.has been  results have been obtained for flat and semicircular DOSs.
argued that the influence of the underlying lattice on the Quasiparticle states are accommodated in four bands with a
electronic system could be large in the critical region, lead-dispersion
ing to a nonlinear electronic polarizability.

The phase diagram of E¢fl) was discussed previously by U
several authors. Oritet al. found a single phase transition in Nao(€)= 75+ aVe’+(EgtUA,)?, a=+*1. (4
a mean-field study using a one-dimensional density of

states’ The transition takes place between paramagnetic ang, the ground-state the=—1 bands are filled. The thermo-

antiferromagnetic states. The point where it takes place has @ namic stability of a possible self-consistent solution of Eq.
special role with respect to the electrical conductivity. 3) is determined, aT =0, by the total energy
Whereas the system is a semimetal at this point, at otheﬁ ’ ’

points of the phase diagram it is an insulator. The possibility E
of a semimetallic transition point involving antiferromag- —
netism has also been discussed in a local density approxima- N
tion study?
Gidopouloset al. performed a mean-field decouplingﬁfor

tTV\r/]ZS }r:l:a:j Iglcg Isggpc?;|$a|i%ia§ f;n;j gri]\(/)gﬁ éﬁ]%r:]gby Zie(r:_es'The above_ equations are valid for the half-filled system. Use
nationE,. The first denotes the phase transition where magpf the particle-hole symmetry
netic order sets in, at the second special value of the one-site _

repulsionU, the charge gap for one spin species would pre- CiolFBy=(—D)lI*dl,;  Jo), (6)

Il. ORDER PARAMETERS
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FIG. 1. Phase diagram for the one-dimensional DOS. Bor Ut
< U, the intermediate phag® is thermodynamically not stable and
the transition from the antiferromagneti&F+CO) to paramag- FIG. 3. Charge gap as a function 0fon the first order transi-

netic phaséCO) is of the first-order. Th&)>U_ region has a stable tion point (AF+CO)—(l) for U>U_ and (AF+CO)—(CO) for
| phase. The transition between the two magnetic phéses-CO U<U,. In the left plot we zoom in on the curves showing the
and ) is of the first order; the | phase goes into the CO phasebehavior of the gaps in the region of the parameter space where the
through the second order phase transition. The inset show8F+CO phase shrinks rapidly.
asymptotic behavior of the phase border for small
of a first order phase transition. The jumps define a region of
where |FB) denotes a full band anfD);, a hole vacuun, mg; for which the system is unstable, illustrated by the light
shows thater=U/2. Together with the dispersion of the shaded area in Fig. 2. Wheuh>U, there is no direct tran-
bands, this implies that the number of each spin species isition from the lowE, (AF+CO) phase to the higlt, (CO)
the same. phase which is characterized by,=0. The AF-CO phase
now shares a border with the | phase. The jump in the stag-
gered magnetization vanishes asymptoticallyUabecomes
large. The transition from | to CO is, on the other hand, of
The phase diagram of the IHM is shown in Fig. 1. Re-the second order. From the magnetization curves it is also
garding theU axis, it has two separate regions. RbxcU,  transparent that the width of | rises as one increabsédus-
~4.25 one finds two phases: the charge-ordei@®) phase trated by the dark-shaded areas in Fig. 2
and a mixture of the charge ordered and the antiferromag- The first-order nature of the transition between the
netic phasgAF+CO). In the U>U, region there are three AF+CO phase realized for low values Bf and the CO and
phases. Beside the CO and the-+AEO phases, we find an- | phases, respectively, shows up in a jump of the charge gap,
other phase which we will call the intermediate | phase. Theas shown in Fig. 3. The discontinuity in the charge gap is
| phase has the same order parameters as theQ® phase. manifested by two different curves of the gap as a function
The phases shown in Fig. 1 can be observed clearly in thef U for the two sides of the transition, respectively.
curves for the staggered magnetization,= |A1_AT|v A difference between | and AFCO phases appears in the
shown in Fig. 2 as a function &, and various values df.  behavior of the charge gap as a functionkf see Fig. 4.
We notice a jump in the curves for all valuesfindicative ~ The transition point between the ARCO and | phases is
characterized by a minimum in the charge gap; see Fig. 2.
| : . : Even though the gap is close to zero, it remains finite. In the

] AF+CO phasdFig. 4(a)], the charge gap, as a function of
Ey, decreases while it increases in the | phidsg. 4b)]. As
\ 7 expected, this increase proceeds in the CO pHaige 4(c)].

Ill. PHASE DIAGRAM

IV. THERMODYNAMIC STABILITY

A self-consistent solution of Eq3) with finite values for
the order parameters ; is not a guarantee that the corre-
sponding phase is indeed realized in the system. The condi-
tion for the stability of a phase ofi=0 is that it has a
minimal energy with respect to the energies of the other
phases. This fact is important in the case of (hE+CO)-(1)

FIG. 2. Staggered magnetization curves for differers. The transition. There, the AFCO and | solutions show a hyster-
blank, inclosed region contains jumps of thg,. Shaded regions esis effect, and the ground state is determined on the basis of
are placed under the magnetization curves of the | phase. the minimum energy principle.
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UDRBRAREE N | | L ' For U=3.2/2 t>U, the results are given in Fig.(5).
@ 2N 0 1 +© 1 Part of the | phase is now stable.

61 A 1 T— w1 7| Stable solutions have been obtained by iterating By.
1 F 1 F|--- spindown| T directly, and the unstable solutions by fixing ode and

-+ . allowing Eq to change. The fixed order parametey has
1t . been chosen such that it is in the range which is not covered
-+ . by the stable solutions. We have also tried to use a fided
1t _ but the self-consistency map, for the parameters we exam-
JdL i ined, did not turn out to be attractive and thus useful. Lim-
ok i iting casesi(1) E,=0 and(2) U=0 assure us that in these
) limits we found all solutions. Thus, possible solutions with
weakly attractive self-consistency map are a possibility in
the intermediate range of parameters. We cannot exclude the
possibility of their existence, but due to a few self-
N consistency arrangements we find them improbable.
0 05 1 1.5 2 2486 251 254 2567 2.6 2.65 The charge gap vanishes whap= —E;/U for one spin
Eyt species ana _ .= 0 for the other species. The energy of this

solution is given in Figs. ®) and 8b), and is denoted by an
empty triangle. It turned out to be unstable in the calculations
done. Furthermore, from the performed calculatiee Fig.
5) we see that the vanishing-gap solution always has
AF+CO and CO companions with a smaller energy. This
leads us to extend the conclusions obtained from our results
to the whole parameter region, including an interuait
< 0.5 which we have not investigated numerically. Thus, the
charge gap closes only in the polag=U=0.

Finally, we would like to mention that the three stable

FIG. 4. Evolution of the gaps for each spin direction as a func-
tion of Ey, for fixed U =4./2t. The smaller gap is equivalent to the
charge gap(a) AF+CO phase; the charge gap decreaé®d. state;
the charge gap increasés) CO phase; the gap for both spin direc-
tions is the same.

The examination of the energy space for the chke
<U, is shown on Fig. ). On this figure one sees the
energy[Eq. (5)] for the four different solutions which solve

the self-consistency equatiai@) for the order parameters - ;

. ) phases CO, |, and COAF are characterized by different
A, . They are the three solutiot&F +CO line), (CO, large distributions of the charge densities;g,=1/2~A, on A
filled circles and intermediate phadg small filled circles andB sites. We findA,= A, for the CO ShaseAﬁUAl and

which we h:.;lve.already discussed, together with the fourttATAPo for the | phase, and\,A,<0 for the AF+CO
solution, which is always unstablempty squares The en- phase

ergy of the | phase is larger than the one of the+tATO
phase in the whole interval of its existence. The | phase is

thus unstable.. Crossing of the energy curves of-ATO and V. ALTERNATING U IONIC HUBBARD MODEL (AIHM )

CO phases discloses an underlying first order phase transi-

tion. The lower inset shows the energies of all phases in the A natural generalization of the ionic Hubbard model is the
whole E, interval. model where the on-site Coulomb interaction on the atdms

(2) U=4.,1t () U=4.525t

@—® Charge order(CO)
—— Antiferromagnetic(AF+CO)

-0.2
{(f
< 045
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FIG. 5. (a) Energy of the various states as a functiorEgf U=2.92t<U_ is chosen such that the | phase is unstable. The main panel
is a blowup of the energies shown in the inset, transformed by the subtraction of a suitably chosen straight line so that the particular
transitions can be more easily visualized. The large empty triangle denotes the position of the vanishing charge gap in the thermodynamically
unstable solution(b) U=3.2\/§t>Uc, so that part of the | phase is stable.
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andB is not the same. The Hamiltonian of the new system ' ' ' ' ' ' ' ' '

may be written as s O3 co
1
B AF+CO

HAIHM:HIHM+Ei dU(—l)lilniTnil- (7) py

For simplicity, here we consider the extreme case where the
Coulomb interaction disappears on sieThis impliesdU
=—U and a value of P for the Coulomb repulsion on site
B. This model is than equivalent to the Cu-O lattice mddel 2
with correlatedB sites (copper, lower on-site energynd
uncorrelatedA sites(oxygen, higher on-site energy

Let us writeEq=U/2+e; and u=U/2+ ', whereu is
the chemical potential for the half-filled system. The trans- r s
formations ol I . I s L s L s L

3_

Et

—
I

EO: U/2+ eo—> E(,): U/2_ eO
FIG. 6. Phase diagram of the half-filled AIHM with the one-
dimensional, density of states. It contains three phases. The charge
_ , _ o ordered(CO) phase is given by a white area. The dotted area rep-
p=U2+p' —p=UR2-p resents a mixture of the antiferromagnetic and the charge ordered

leave us with an equivalent Hamiltonian. This can be showPhase(AF+CO), and the black region covers a parameter range

by performing a canonical particle-hole transformatiqr;, where the intermediatél) phase appears. The symmetry of the
—(- 1)‘”d-T It yields ' phase diagram is denoted by the dash-dotted line.

ot

and

. Let us define a singlet gap as the minimal energy needed
- 1 h ~h

H_<i]2>0 tdj,udi,a+2i UL (=D i for a transfer of the electron in an empty state without a
o spin-flip and a triplet gap as the minimal energy of the tran-

i U h sition where the spin is flipped and the tofl changes. In
+§ (=D 5 +e& N, the mean-field formulation these gaps are given My
' —2|B,] andA=|A. +|B;|+|B;| - A|.
2 i U A oh , A distinct property of the AIHM is the closing of the
T (=DM 5+ ni +2Nu'. ®  triplet gap in the AR-CO phase. This is illustrated in Fig. 7.

The IHM case with a uniforn is shown in Fig. 7a). In Fig.

The difference with respect to the original Hamiltonian 7(c) we see that the triplet gap vanishes t5=0 andUg
(7) lies in the constant termNw’. This, together with the =2U. A necessarybut not sufficient condition for the van-
fact that the order parameter operators preserve the sanf&ing of the triplet gap can be derived from E§) and
form in the hole picture, implies that the phase diagram of
Eq. (7) is symmetric with respect to the lifg,=U/2 in the — triplet ---- singlet
parametelE, and fordU=—U.

The self-consistency equation, derived under the assump
tion that the ferromagnetic order parameter vanishes, is giver

by

I|I|II’I|I
i T R

[

” B,
A, fo deD(e)\/€2+—B‘27, 9
whereB,=E,+UA__,+dU/2.

The energy spectrum has a formk. ,(e)=A,
+ €2+ B2, whereA,=U/2+dUA_, . 25

In Fig. 6 we present the phase diagram of the AIHM. It &
contains the same phases as the IHM phase diagram. Th 1
dash-dotted line in Fig. 6 indicates the symmetry axis. On it ¢
the system is antiferromagnetic with a vanishing charge-
order parametefAF phaseé. In the region around the sym-
metry line the system is in the ARCO phase which, folJ FIG. 7. Singlet(dashed curveand triplet(full curve) gaps as a
<U., makes a transition into the pure charge-ordered stat@unction of the on-site chemical potential amplitudig for U
For U>U_ the transition takes place into the | phase and=6t. (a) U is the same for both atom speci¢ls) Uy<Ug. (c) U
than into the CO phase. on siteA vanishes.
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expressed in the formd;A;<0. This is the case in the dimensional ionic Hubbard model. DMRG and QMC results
CO+AF phaseA;A >0, and the triplet gap is nonvanish- indicaté"*° that this bond-ordereddimerized insulating
ing, as can be seen in Fig. 7. The exception to the conditiophase extends to arbitrarily large values Wf due to the
A;A| <0 for the disappearance of the triplet gap is a solutiorinstability of the one-dimensional Mott-Hubbard insulator

A;=A,=0, which exists folEy= 3. towards dimerization. DMRG studies of the one-dimensional
model®®® found indications of a “strange” metallic point
VI. DISCUSSION with a finite charge gap at the transition from the band insu-

) ) ) o lator to the correlated insulating state. We may speculate that
Previous mean-field studies of the ionic Hubbard modelyr mean-field result of two distinct phase transitions reflects
found a vanishing charge gap at the transition point betweethe occurence of magnetic long-range order possible in di-
antiferromagnetic and paramagnetic stdte@ contrast to  mensions larger than one. We note, in this context, that the

our result for a minimal charge gap. The presented data wefigtermediate phasé) evidenced in Figs. 1 and 6 does not
obtained for a one-dimensional one-electron density okhow a spontaneous dimerization.

states. For comparison we have also carried out a calculation
for the flat and semicircular densities of states. The results
changed only quantitatively; all major features discussed pre-
viously remain valid.

It is interesting to compare with the one-dimensional ionic  The mean-field decoupling scheme is an approximation of
Hubbard model, which was studied by Resta and Sdrellaa full evaluation of the Hamiltonian. Its validity is restricted
using the boundary-condition-integration techniudy  to the small U limit and a large dimension where it is quali-
Bruneet al. using the density matrix renormalization group tatively correct:* We have found, however, that the stability
(DMRG),® and by Wilkins and Martin using the quantum analysis for the various solutions possible for the ionic Hub-
Monte Carlo(QMC).!° Fehskeet al. considered the dynami- bard model is highly nontrivial. Here we have presented two
cal IHM coupled to phonons- results:(i) a nonvanishing charge gap for all parameters, and

Fabrizioet al, in a bosonization stud? proposed the ex- (i) the existence of two distinct phase transitions for larger
istence of a dimerized intermediate phase in the onevalues ofU.

VII. CONCLUDING REMARKS
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