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Enhancement of linear and second-order hyperpolarizabilities in wedge-shaped nanostructures
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Analytical solutions for the wave functions for free electrons inside a wedge-shaped quantum dot are
reported. For silver wedge-shaped quantum dots, linear and second-order hyperpolarizabilities are calculated
for various apex angles. It is found that linear and nonlinear hyperpolarizabilities both increase with decreasing
apex angle.
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I. INTRODUCTION

Nonlinear optical properties of metallic nanoparticl
strongly depend on the local field enhancement1,2 provided
by the plasmon resonance. In spherical metal particles
resonance often occurs in the visible. The resonance
quency is determined by the relation«(v)12«050, where
«(v) is the dielectric function of the metal nanosphere a
«0 that of the surrounding medium. The field enhancem
factor is given by f 53«0 /@«(v)12«0#. The strong en-
hancement (u f u2f 2)2 of the degenerate four wave mixing re
flectivity predicted by this factor has been experimenta
verified.2 The local field calculations in the quas
electrostatic limit can easily be extended to ellipsoidal p
ticles but for most other shapes computational methods
needed.3,4 In the context of nonlinear optics, however, mo
of the experimental work has been performed with close
spherical particles or with particles of unresolved shap
which are assumed to be spherical. Recently, however, s
interesting results have been reported where deviations f
spherical shape plays an important role. Lamprechtet al.5

observed second harmonic generation~SHG! from touching
nanoparticles placed at the corners of right angle triangle
investigate the dephasing of plasmons. Most interestin
the second harmonic~SH! signal reduced by nearly a facto
of 40 when the triangles were placed in a centrosymme
arrangement. Since the distance between the triangles
not very small compared to the light wavelength only par
cancellation of the SH contributions from oppositely direct
triangles is expected. Much better contrasts in the SHG e
ciency should be possible if the triangles are placed close
each other. In their earlier work, the Graz group have a
shown that with electron lithography nanometer size disc
other shapes could also be produced.6 Very recently, nano-
prisms have been made from spherical quantum dots
photoinduced shape modification.7 Rayleigh scattering was
observed in the red from those nanoprisms while the sph
cal quantum dots from where they are derived, scattere
blue. Two distinct quadrupole plasmon resonances were
seen. Nearly triangular shaped nanodisks were prepare
Keilmannet al.8 by evaporation masked by a close packi
hexagonal layer of polystyrene nanospheres. SHG has
been observed from a monolayer of Ga nanoparticles em
ded in a transparent SiOx matrix.9 While it is expected that
metallic clusters of noncentrosymmetric shapes could ha
nonvanishing second-order susceptibility, there has so
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been no discussions of the mechanisms of optical nonlin
ity in such odd shaped clusters.

Higher-order multipole contributions to SHG from sphe
cal nanoparticles as well as their third-order nonlinearit
have been investigated in considerable detail.2,10–12 Since
most experiments and theory of third-order effects deal w
intensity dependent refractive index, mechanisms other t
virtual excitations often play the dominant part.1,12–14In con-
trast, in second-order effects the commonest experimen
SHG, where mechanisms involving thermal effects are
known. Calculation of optical nonlinearities may be pe
formed at various levels of rigor. For small molecules with
few atom first principles calculations are possible. A se
consistent field approach is often more effective for larg
molecules or nanoparticles. A calculation of nonlinear
sponse in one-electron approximation with the effective fi
seen by an electron calculated in the quasielectrostatic
proximation has provided very useful insights into the d
pendence of nonlinear susceptibilities on structure and sh
of the electron density. In particular, such models have p
dicted that the conjugation length of thep electrons in linear
molecules and judicious substitution of heteroatoms are
important parameters in optimizing their nonline
response.13 Similarly, the particle in a box model togethe
with local field enhancement calculated in the quasistatic
proximation has also been used to calculate hyperpolariza
ity of metal particles14 and fullerenes.15

In the present work, we report similar calculations for
wedge-shaped metallic nanostructure. Since this shape l
an inversion center, it can have a second-order nonlinea
sponse. Secondly, this shape is a very good approxima
for a triangular-shaped quantum dot. Most important,
single particle unperturbed states for this system can be
tained analytically. These solutions are given in Sec. II.
Sec. III we discuss our calculation of linear and nonline
response of these nanostructures. Conclusions are pres
in Sec. IV.

II. GENERAL FORMULATION

We consider a system ofN independent electrons confine
to a wedge shaped region of radiusr0 and apex anglef0 as
shown in Fig. 1. The single particle states are given by

HC5EC, ~1!

with
©2003 The American Physical Society19-1
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H52
\2

2m
¹21V~r !, ~2!

whereC is the single particle wave function,m is the effec-
tive mass of electron, and the confining potentialV(r ) is
taken such thatV(r )50 when uzu,z0/2, r,r0, and ufu
,f0/2 and V(r )5` otherwise. Consequently, the wav
function should satisfy the following boundary conditions

C~6z0/2,r,f!50,C~z,r0 ,f!50, and CS z,r,6
f0

2 D50.

~3!

Solving Eq.~1! with these boundary conditions, the norma
ized single particle wave functions are

Cn,n,s5
A2

Az0

sinS np

z0
~z1z0/2! Dcns~r,f!, n51,2,3, . . . ,

~4!

with

cns~r,f!5
2

r0
AX

p

1

JXn11~ans!
JXnS ans

r

r0
D zn~f!,

n51,2, . . . , s51,2, . . . , ~5!

whereJXn is the Bessel function of orderXn and ans is its
sth zero, withf0 defined as

f05
p

X
, ~6!

whereX is an integer. For other values off0, Eq. ~5! is still
valid. The particular choice off0 in Eq. ~6! results in the

FIG. 1. Wedge-shaped quantum dot.
07531
computational convenience of dealing with the Bessel fu
tions of the integer order only. The angular part is given

zn~f!5~21!(n11)/2cosXnf when n is odd,

5~21!n/2 sinXnf when n is even. ~7!

The corresponding eigen energies are

Enns5ans
2 E01n2Ez , ~8!

where

E05
\2

2mr0
2

~9!

and

Ez5
\2p2

2mz0
2
. ~10!

Having obtained the single particle wavefunctions and
ergy eigen values for the wedge shape, we turn our atten
on to the optical response properties of those wedge sha
metal particles. The linear and nonlinear polarizabilities
calculated using the sum over states perturbation se
expansions.16 The linear polarizabilityasm which describes
the linear refraction and the linear absorption is given by
formula

asm5
1

«o
(
i j

r i i
(0)1

\ H Ri j
s Rji

m

v j i 1v1 ig i j
1

Ri j
mRji

s

v j i 2v2 ig i j
J ,

~11!

and the second-order hyperpolarizabilitybsml for the SHG
by the approximation

bsml~2v;v,v!5
1

2\2«o
(
i jk

r i i
(0)

3H Rik
s Rk j

m Rji
l 1Rik

s Rk j
l Rji

m

@vki22v2 igki#@v j i 2v2 ig j i #

1
Rik

l Rk j
s Rji

m1Rik
m Rk j

s Rji
l

@v jk22v2 ig jk#@vki1v1 igki#

1
Rik

m Rk j
s Rji

l 1Rik
l Rk j

s Rji
m

@vk j12v1 igk j#@v j i 2v2 ig j i #

1
Rik

l Rk j
m Rji

s 1Rik
m Rk j

l Rji
s

@v j i 12v1 ig j i #@vki1v1 igki#
J ,

~12!

where i and j represents a set of quantum numbers$n,n,s%
characterizing the single particle eigenstates.v i j 5(Ei
2Ej )/\ is the energy separation between the two levei
and j, v is the photon frequency andg ’s are the dephasing
time constants.s, l andm are Cartesian components.r i i

(0) is
the diagonal density matrix element which corresponds
the population in the leveli, Ri j

m is the dipole moment matrix
9-2
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element between the levelsi and j along directionm, and«0

is the permittivity of the free space.
For the calculations ofasm andbsml we need to compute

the matrix elementsRi j
x , Ri j

y , andRi j
z . For the matrix ele-

ments alongx andy directions we note that this matrix ele
ment vanishes whenn8 is not equal ton because of orthogo
nality of the z part of the wave function. In cylindrica
coordinates the matrix elements forx andy direction can be
written as

Ri j 5ePn;n8Qns;n8s8 , ~13!

wherePn;n8 and Qns;n8s8 are the angular and radial part o
the dipole matrix elements, respectively. The radial part
the transition matrix element for bothx andy is given by

Qns;n8s85
2

r0
2JXn11~ans!JXn811~an8s8!

E
0

r0
r2JXn

3S ans

r

r0
D JXn8S an8s8

r

r0
Ddr. ~14!

The angular part for dipole matrix elements alongx direction
is given by

Pn;n8
x

5
2X

p E
2p/2X

p/2X

zn~f!zn8~f!cosfdf. ~15!

It is obvious thatPn;n8
x is nonzero only when bothn andn8

are either odd or even integers. Now for the case whenn and
n8 are both odd

Pn;n8
x

5~21!(n1n812)/2
1

p F sinS n1n81
1

XD p

2

n1n81
1

X

1

sinS n82n1
1

XD p

2

n82n1
1

X

1

sinS n2n81
1

XD p

2

n2n81
1

X

1

sinS n1n82
1

XD p

2

n1n82
1

X

G , ~16!

whereas, forn andn8 both even we have
07531
f

Pn;n8
x

5~21!(n1n8)/2
1

p F 2

sinS n1n81
1

XD p

2

n1n81
1

X

1

sinS n82n1
1

XDp

2

n82n1
1

X

1

sinS n2n81
1

XD p

2

n2n81
1

X

2

sinS n1n82
1

XD p

2

n1n82
1

X

G . ~17!

The angular part for dipole matrix elements alongy direction
is given by

Pn;n8
y

5
2X

p E
2p/2X

p/2X

zn~f!zn8~f!sinfdf. ~18!

Pn;n8
y is nonzero only when one of the subscript is even a

another is odd. In this case it is given by

Pn;n8
y

5~21!(n1n811)/2
1

p F sinS n1n82
1

XD p

2

n1n82
1

X

1

sinS n2n81
1

XD p

2

n2n81
1

X

2

sinS n1n81
1

XD p

2

n1n81
1

X

2

sinS n82n1
1

XD p

2

n82n1
1

X

G . ~19!

For matrix elements alongz direction it is easy to find the
conditionsn5n8 andk5k8:

Ri j
z 5

2

z0
E

0

z0
sinS npz

z0
D sinS n8pz

z0
D zdz ~20!

5
z0

p2 Fcos~n2n8!p21

~n2n8!2
2

cos~n1n8!p21

~n1n8!2 G . ~21!

Using these selections rules and the expressions for the
sition matrix elements we can calculate the linear and sec
order hyperpolarizabilities. It follows from the symmetry o
the wedge considered here the nonzero components o
second order hyperpolarizability arebxxx , bxyy , bxzz, and
their permutations. In this paper we, however, calculate
most important componentsaxx andbxxx . From simple scal-
ing argument that the dipole matrix element along any dir
9-3
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tion should go as the corresponding length of the wedge,
ratio ubxyy /bxxxu should behave as 1/X2. We will deal with
this point more quantitatively later in the paper. Extension
the calculation for other directions and other components
a andb is straight forward.

The wedge shape allows several interesting limiting ca
The three important lengths in the problem arez0 , r0, and
r0f0. Confinement effects become significant when th
lengths become comparable to the de Broglie wavelengt
electrons at the Fermi level which is essentially the atom
size. Thus forz0; atomic diameter, the wedge is a two
dimensional~2D! system—onlyn51 levels are involved.
The limit f0!1, may have some resemblance to a o
dimensional~1D! situation. However, the real situation
more complicated. The electron charge density does
semble that for a linear atomic chain, but it still has subst
tial influence of the asymmetric boundary condition and
integrated density of states is not close to that for a 1D c
We will come back to this point later in Sec. III while dis
cussing results on linear and nonlinear polarizability.

III. RESULTS AND DISCUSSIONS

A. Electron density

In Fig. 2 we show the electron density for wedges w
various apex angles all having 160 electrons with the e
tron density inside the wedge to be appropriate for bulk A
Dimension of the wedge along thez direction is taken to be
just sufficient to accommodate a single layer of Ag atom
Single particle levels are filled according to the Pauli exc
sion principle. As mentioned earlier for monolayer thickne
alongz direction the problem is effectively 2D. The samp
was assumed to be at 0° K so that all the levels below
Fermi level are filled and above are empty:

r i i
(0)51 for i< Fermi level, ~22!

FIG. 2. ~Color online! Ground-state electron density distributio
in the wedge for 160 electrons and different apex angles.~a! f0

5p/3. ~b! f05p/12. ~c! f05p/24. ~d! f05p/48.
07531
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r i i
(0)50 for i . Fermi level. ~23!

The ground state electron density distributionD(r,f) is de-
fined as

D~r,f!5(
i
E uC i~r,f!u2dz, ~24!

wherei runs for all filled levels. We show the electron de
sity distribution in Fig. 2 for various values of the apex ang
ranging fromp/3 to p/48. The corresponding values ofr0
are shown in Table I.

From Eq.~5! one can see that the single particle states
a wedge withf05p/X are a subset of those off05p.
WhenX increases the order of Bessel function correspond
to the lowest energy state also increases. The Bessel fun
of higher-order peaks at higher values of ther and thus for
higherX the wave function also peaks at higher values or
remaining nearly zero for lower values ofr. As a result if we
allow only one electron to be inside the wedge it tends
stay away from the apex. This can be understood in term
the uncertainty principle—to minimize the confinement e
ergy an electron stays away from the apex. However, as
number of electrons increases because of the Pauli exclu
principle one has to fill the upper levels and hence the e
tron tends to occupy the narrow regime also. Thus the un
tainty principle and Pauli exclusion principle together dec
the shape of electron density distribution inside the wed
In a real physical quantum dot there cannot be any atom
the immediate neighborhood of the apex because the
should be, at least, of the order of the lattice constant. I
interesting to note that the electron density distribution
flects that the electron density is negligible in the edge
gion. For example, forf05p/24, whenr is less than 2.5 nm
the width in they direction is less than the lattice constant
silver which is 0.408 nm. However, asr increases beyond
2.5 nm it becomes possible to accommodate one or m
atoms alongy and we have a corresponding increase in
electron density.

B. Linear and nonlinear polarizability

Next we calculate the linear and second-order hyperpo
izabilities. For the calculation of hyperpolarizabilities ne
resonances in addition to matrix elements we require the
ues of decay constants. We have taken all the values ofg ’s to
be 0.005 eV so that we can resolve the resonances. The
pressions foraxx and bxxx contain a summation over a
possible states. However, following the usual practice,

TABLE I. Location and value of the first peak of Im(axx) for
different apex angles.

X r0 ~nm! Peak position~eV! Peak value (nm3)

3 5.05 0.435 13200
12 10.10 0.231 46720
24 14.28 0.167 56330
48 20.20 0.126 89130
9-4
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ENHANCEMENT OF LINEAR AND SECOND-ORDER . . . PHYSICAL REVIEW B 68, 075319 ~2003!
perform the summation over a finite number of states de
mined by the incident photon energy and the oscilla
strength. We also ensure that the results do not cha
appreciably when additional states are included in
summation.

To study the dependence ofaxx on r0 we plot in Fig. 3
the real and imaginary parts ofaxx for three different value
of r0, 10.1019, 15.9725, and 20.2038 nm having an a
angle ofp/48. The radii of the wedge were chosen such t
the upper most level is completely filled. In Fig. 3 we ha
also shown some of energies of the stronger transition
bars with the quantum numbersn ands of levels involved in
the transition (n,s→n8,s8). We observe that all the stronge
transitions are between the levels having samen. This is
because the angular contribution of the dipole matrix e
ments given by Eqs.~16! and~17! both can be approximated
for X@1, by

Pn;n
x '

1

4 S 11
1

4X2n2D , ~25!

Pn;n8
x '2

1

8X3~n82n!2
. ~26!

Thus,

U Pn;n
x

Pn;n8
x U'2X3~n82n!2. ~27!

Hence the transitions between the states having the s
angular quantum numbern are the dominant transitions fo
large values ofX. Also one can notice in Fig. 3 that asr0
increases all resonances redshift. The amount of red sh
more for the resonances at higher energies. We see from
~9! that the energy is inversely proportional tor0

2. Hence the
first resonance red shifts. To see the effect of quantum n

FIG. 3. Real~solid line! and imaginary parts~dotted lines! of
axx as a function of the photon energy for wedges having sa
apex angle but with different radii.f05p/48. ~a! r0510.1019.~b!
r0515.9725.~c! r0520.2038.
07531
r-
r
ge
e

x
t

as

-

me

is
q.

-

bersn and s on the energy, fors@1 using the asymptotic
behavior of Bessel function we can write

ans'sp1S Xn2
1

2D p

2
. ~28!

For largeX the confinement energy in they direction is very
large and the energy levels have a shell structure with sh
separated by confinement energy in they direction which
increases asn2 while energy levels within each shell~same
n) increase linearly with the quantum numbers rather than
s2 as they would for a rectangular box. Thus, even for ve
narrow wedge angle, the coupling of thex-y motion has a
strong influence on the energy level spectrum. ForX51, 2,
or 3 there is no shell structure as the confinement length
the x and y directions are comparable. FornX@1, the ex-
pression for the radial part of dipole matrix elements@Eq.
~14!# can be written as

Qns;ns8'2
4r0ansans8

~ans8
2

2ans
2 !2

,524r0E0

~EnsEns8!
1/2

~Ens82Ens!
2

~29!

and

Qns;ns'r0S 12
1

2ans
D . ~30!

Thus, the oscillator strength between neighboring levels
the largest and decreases rapidly as the energy separ
between the two levels increases. In short, for very sm
wedge angle most important transition are between the s
shell and to that extent situation is like that for a on
dimensional chain.

It is well known that for 1D electron gas most of th
oscillator strength lies in the first transition.17 Because of the
confinement along they direction, in the wedge of apex
angle p/48 and radius 10.1019 nm the electron density
the wedge is similar to that of a linear chain. The hyperp
larizability b is, however, a manifestation of the small devi
tion from this. As the radius increases, more atoms can
stacked alongy direction leading to a two-dimensiona
atomic distribution.

Next we study the variation of the linear polarizability fo
different input photon frequencies for wedges having sa
volume and thickness but different apex angles. In Fig. 4
show the dependence ofaxx on v for different values off0.
When the area of the wedge is kept constant and the a
angle is reduced the first absorption peak redshifts. T
strength of both real and imaginary parts ofaxx at the reso-
nance increases. Asf0 is reduced the length of the wedg
along x direction ~say L) increases. Since the energy ga
between the given two levels goes approximately as;1/L,
hence there is a redshift. For smaller values off0, similar to
the earlier case, the strength of the first transition is m
than that of the others. But as the apex angle increases
oscillator strength of higher energy transitions also increa
As explained by Eq.~27! the oscillator strength of the tran
sitions having the samen is dominant for the cases havin
the higherX but asX reduces there are some stronger tra

e

9-5
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sitions between the levels having differentn also. For com-
pleteness we present in Table I the peak values of
Im(axx) and the peak positions.

To study the variation of polarizability with the ape
angle in the transparency regime we have calculated the
part ofaxx for various values off0 for a fixed photon energy
in the low frequency regime. We have taken the photon
ergy,\v to be 0.02 eV, i.e., below all resonances. The res
is shown in Fig. 5. Notice that the linear polarizability in
creases by an order of magnitude as the apex angle is
duced fromp/2 to p/48. The figure also shows that th
result can be fitted byaxx;X2p with p'0.92.

As mentioned earlier the main reason for selecting
odd shaped quantum dots is that due to their lack of inv
sion symmetry they can have nonzero value of even o
hyperpolarizabilies. First we calculate the low frequen
limit of b ~for \v50.02 eV). This is shown in Fig. 6 in

FIG. 4. Real~solid line! and imaginary parts~dotted lines! of
axx as a function of the photon energy for wedges having differ
apex angles and 160 electrons.~a! f05p/48. ~b! f05p/24. ~c!
f05p/12. ~d! f05p/3.

FIG. 5. Re(axx) as a function off0 ~solid circles! for 160
electrons inside the wedge. The solid line shows the fit with a fu
tion X2p with p50.92.
07531
e

al

-
lt

re-

e
r-
er
y

logarithmic scale.b increases by a factor of 200 asf0 is
reduced fromp/2 to p/48. Thus, as in the linear case, on
can enhance the SHG for a given volume of the material
reducing the apex angle. Once again similar to the linear c
we find uRe(bxxx)u;X2q with q'1.57. As expected,b var-
ies faster with decrease inf0. In Fig. 7 we plot the variation
of Re(bxxx) with incident field frequency. The second ord
hyperpolarizability has resonances at the same frequencie
the linear polarizability. Furthermore, it has also smal
peaks at the half frequencies due to the two photon re
nances. It is interesting to note that the variation of bothaxx
and bxxx as a function off0 shows a deviation betwee
f05p/2 to p from the general trend. The possible explan
tion may have its origin in theeffective asymmetric areaof
the wedge which contributes to these hyperpolarizabiliti
The effective asymmetric area can be defined in many wa
We use a simple recipe to find out the effective asymme
area. The wedge-shaped object is folded atx5r0/2 perpen-
dicular tox axis and overlapped with the original object. Th

t

-

FIG. 6. uRe(bxxx)u as a function off0 ~solid circles! for 160
electrons inside the wedge. The solid line shows the approximat
with a functionX2q with q51.57.

FIG. 7. Re(bxxx) as a function of the photon energy for wedg
having different apex angles and 160 electrons.~a! f05p/48. ~b!
f05p/24. ~c! f05p/12. ~d! f05p/3.
9-6
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ENHANCEMENT OF LINEAR AND SECOND-ORDER . . . PHYSICAL REVIEW B 68, 075319 ~2003!
nonoverlapping area gives the asymmetric area. We find
the asymmetric area has a minimum atX51.28~Fig. 8!. This
qualitatively explains the curves for polarizabilities. At th
point it is worth emphasizing that although this simple co
struction brings out the fact that the degree of asymme
~along x direction! shows a nonmonotonic behavior as
function ofX, this is not the only way to define the asymm
try of shape. However, since another definition of asymme
also gave similar results, we believe that this result is rob
As mentioned earlier the ratioubxyy /bxxxu should decrease
strongly as X is increased. Figure 9 shows the rat
ubxyy /bxxxu at zero frequency as a function ofX. The ratio
actually goes asX24.7. This is because the selection rules f
Pn;n8

x andPn;n8
y are different. ForX@1 matrix elements ofy

is zero forn5n8 and for nÞn8 given by Eq.~19! can be
approximated as

Pn;n8
y '2

1

pX2~n82n!2
. ~31!

From Eqs.~26! and~31! the ratioPn;n8
y to Pn;n

x goes asX22.
In contrast the dominant terms forx component of transition
dipole matrix element correspond ton5n8. Thus the matrix
elements ofx dominates overy. Thus the ratio ofubxyy /bxxxu
will go more or less asX24. Additional dependence onX
comes because of the changes in the density of states wiX.

C. Local field factors

So far we have neglected the difference between the
ternal applied field and the field inside the wedge. As m
tioned before this difference in the field inside and the
plied field is an important factor in enhancing th
nonlinearity of the quantum structure near a plasmon re
nance. At nonresonant frequencies the local field factor
be much smaller than unity due to the screening of the
ternal electric field. The local field factor is analytically ca
culable only for a few geometries, e.g., sphere and ellips
Calculation for the local field factor for the wedge shape
difficult and is not attempted here. However, to have an
timate of the local field factor, the wedge-shaped quant
dot may be approximated by an ellipsoid. This is a go
approximation considering that the electron density at
tips of the wedge is nearly zero~Fig. 2!, allowing us to
neglect any material effects at the tips. For a particle whic
small compared to the wavelength of the light, i.e.,r0!l,
the calculated local field correction factor for a dynamic fie

FIG. 8. A simple geometrical construction for calculation of t
effective asymmetric area along thex axis for wedge-shaped ob
jects. The object is folded atx5r0/2 perpendicular tox axis and
overlapped with the original object. The nonoverlapping area g
the asymmetric area which is shown as the unshaded area.~a! X
51. ~b! X51.28. ~c! X52.
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is well approximated in the quasistatic limit. The local fie
factor in the quasielectrostatic limit for an ellipsoid of sem
axesa, b, andc in the x direction is given by18

f xx5
«h

«h1Lx~«xx~v!2«h!
. ~32!

Here,«h is the dielectric constant of the surrounding mediu
in which the wedge is embedded and«xx(v) is the dielectric
constant of the medium in the wedge which is related to
polarizability axx . Lx is the depolarization factor in thex
direction and is given by

Lx5
abc

2
E

0

` dq

~a21q!3/2~b21q!1/2~c21q!1/2. ~33!

For a spherical particle the depolarization factor is 1/3. T
field EW in inside the ellipsoid is given by

FIG. 9. The ratioubxyy /bxxxu at zero frequency as a function
of X.

FIG. 10. Real~solid lines! and imaginary parts~dotted lines! of
local field enhancement factor as a function of photon energy
wedges having 160 electrons and different apex angles.~a! f0

5p/48. ~b! f05p/24. ~c! f05p/12. ~d! f05p/3.
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J. JAYABALAN, MANORANJAN P. SINGH, AND K. C. RUSTAGI PHYSICAL REVIEW B68, 075319 ~2003!
EW in5 f xxEW out, ~34!

whereEout is the external applied electric field.
First we fit an ellipse inside the 2D wedge for differe

apex anglesp/3, p/12, p/24, andp/48 which gives the
values ofa andb for the ellipsoid. We take the value ofc to
be half of the thickness of the wedge alongz direction (c
50.144 nm). By assuming the wedge in free space«h
5«0) we have calculated the local field factor for vario
frequencies. We show the variation of the local field fac
with the energy of incident photons for various apex ang
in Fig. 10. It can be seen from Eq.~32! that whenever the
value of«xx(v) becomes such that

«xx~v!.«hS 12
1

Lx
D ~35!

the local field factor will become large. Thus the field insi
the wedge becomes much higher than the applied exte
electric field.

IV. CONCLUSION

In conclusion we have shown that the single parti
states for a wedge-shaped quantum dot can be found an
s
.
pt

B

pl

nd

nd
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cally in the free electron model. We have calculated the e
tron density distribution inside such wedge-shaped dots
shown that the electron density near edges, especially
the apex is almost zero. We have studied the dependenc
the linear polarizability on the radius of the wedge for
given apex angle. It increases as the radius increases. A
apex angle is reduced fromp/2 to p/48 we find an enhance
ment of an order of magnitude in linear polarizability in th
low-frequency limit and this enhancement is 200 for the c
of second-order hyperpolarizability. We have also estima
the local field factor for the wedge-shaped quantum dots
proximating these by the equivalent ellipsoids.

To determine the structure property relationship for hyp
polarizability b, it is quite appropriate to consider the lo
frequency limit. However, in the same limit the local fie
factor is rather small making the effective nonlinear susc
tibility also quite small. Large nonlinearities would occu
only close to the plasmon resonances. For very small a
angles the field enhancement is large far away from the m
resonance inbxxx whereas for larger apex angles wedg
both can be simultaneously large. Our calculation also s
gest that the organic molecules with large conjugated lin
chain with a polarizable unit similar to a phenyl group at o
end are expected to have largeb.
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