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Enhancement of linear and second-order hyperpolarizabilities in wedge-shaped nanostructures
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Analytical solutions for the wave functions for free electrons inside a wedge-shaped quantum dot are
reported. For silver wedge-shaped quantum dots, linear and second-order hyperpolarizabilities are calculated
for various apex angles. It is found that linear and nonlinear hyperpolarizabilities both increase with decreasing

apex angle.
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[. INTRODUCTION been no discussions of the mechanisms of optical nonlinear-

ity in such odd shaped clusters.

Nonlinear optical properties of metallic nanoparticles Higher-order multipole contributions to SHG from spheri-
strongly depend on the local field enhancen@mirovided ~ cal nanoparticles as well as their third-order nonlinearities
by the plasmon resonance. In spherical metal particles thigave been investigated in considerable détdi.'? Since
resonance often occurs in the visible. The resonance frénost experiments and theory of third-order effects deal with
quency is determined by the relatiefiw) + 2¢,=0, where intensity dependent refractive index, mechanisms other than
e(w) is the dielectric function of the metal nanosphere andvirtual excitations often play the dominant paft.~*“In con-
go that of the surrounding medium. The field enhancementirast, in second-order effects the commonest experiment is
factor is given byf=3gy/[(w)+2e0]. The strong en- SHG, where mechanisms involving thermal effects are not
hancement |f|?f?)? of the degenerate four wave mixing re- known. Calculation of optical nonlinearities may be per-
flectivity predicted by this factor has been experimentallyformed at various levels of rigor. For small molecules with a
verified? The local field calculations in the quasi- few atom first principles calculations are possible. A self-
electrostatic limit can easily be extended to ellipsoidal parconsistent field approach is often more effective for larger
ticles but for most other shapes computational methods ar@olecules or nanoparticles. A calculation of nonlinear re-
needed” In the context of nonlinear optics, however, most SpPonse in one-electron approximation with the effective field
of the experimental work has been performed with close t$€€n by an electron calculated in the quasielectrostatic ap-
spherical particles or with particles of unresolved shapesproximation has provided very useful insights into the de-
which are assumed to be spherical. Recently, however, soni€ndence of nonlinear susceptibilities on structure and shape
interesting results have been reported where deviations fro@f the electron density. In particular, such models have pre-
spherical shape plays an important role. Lamprezthal®  dicted that the conjugation length of theelectrons in linear
observed second harmonic generatiSiHG) from touching molecules and judicious substitution of heteroatoms are two
nanoparticles placed at the corners of right angle triangles thnportant  parameters in optimizing their nonlinear
investigate the dephasing of plasmons. Most interestingly€sponse’ Similarly, the particle in a box model together
the second harmoniSH) signal reduced by nearly a factor With local field enhancement calculated in the quasistatic ap-
of 40 when the triangles were placed in a centrosymmetri@roximation has also been used to calculate hyperpolarizabil-
arrangement. Since the distance between the triangles wi¥ of metal particles® and fullerenes®
not very small compared to the light wavelength only partial [N the present work, we report similar calculations for a
cancellation of the SH contributions from oppositely directedwedge-shaped metallic nanostructure. Since this shape lacks
triangles is expected. Much better contrasts in the SHG effian inversion center, it can have a second-order nonlinear re-
ciency should be possible if the triangles are placed closer tgPonse. Secondly, this shape is a very good approximation
each other. In their earlier work, the Graz group have alsdor a triangular-shaped quantum dot. Most important, the
shown that with electron lithography nanometer size discs ofingle particle unperturbed states for this system can be ob-
other shapes could also be produ€edery recently, nano- tained analytically. These solutions are given in Sec. Il. In
prisms have been made from spherical quantum dots b$ec. lll we discuss our calculation of linear and nonlinear
photoinduced shape modificatiérRayleigh scattering was response of these nanostructures. Conclusions are presented
observed in the red from those nanoprisms while the spherin Sec. IV.
cal quantum dots from where they are derived, scattered in
blue. Two distinct quadrupole plasmon resonances were also Il. GENERAL FORMULATION
seen. Nearly triangular shaped nanodisks were prepared by
Keilmannet al® by evaporation masked by a close packing . .
hexagonal layer of polystyrene nanospheres. SHG has alg%a we_dge_shaped region of raduv@and apex an_gleso as
been observed from a monolayer of Ga nanoparticles embed0Wn in Fig. 1. The single particle states are given by
ded in a transparent SjOnatrix? While it is expected that HY = EW 1)
metallic clusters of noncentrosymmetric shapes could have a '
nonvanishing second-order susceptibility, there has so fawith

We consider a system of independent electrons confined
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FIG. 1. Wedge-shaped quantum dot.

ﬁZ
— _ 2
H= 2mV +V(r), (2

whereW is the single particle wave functiomis the effec-
tive mass of electron, and the confining potentgl) is
taken such tha/(r)=0 when |z|<z/2, p<py, and |¢|

<¢ol2 and V(r)=o otherwise. Consequently, the wave
function should satisfy the following boundary conditions:

W(+20/2,,0) =0 (z,p0,$)=0, and\If(Zp,_(Z()) 0.
()

Solving Eq.(1) with these boundary conditions, the normal-

ized single particle wave functions are

v —Es'n<z 4 /2)) ), v=1,2,3
v,nN,S— \/Z_O | ZO (Z Z0 '/’ns(Pa¢ ’ v=14,9...,
(4)
with
_ E\ﬁ; 3 ( )
wns(Pv(l’)_ o0 Wan+1(ans) xn| ¥ns™ gn(d’)
n=12,..., s=12,..., (5)

whereJy,, is the Bessel function of ordefn and a is its
sth zero, with¢, defined as

T

¢0:yl (6)

whereX is an integer. For other values g¢f, Eq.(5) is still
valid. The particular choice o, in Eq. (6) results in the
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computational convenience of dealing with the Bessel func-
tions of the integer order only. The angular part is given by

La(@)=(—1)""D2cosXn¢g when n is odd,
=(—1)"?sinXn¢ when n is even. (7)

The corresponding eigen energies are

E, ns= aﬁSEo—i- v’E,, 8
where
52
B0 2 C)
and
hZ 2
E,= omZ (10

Having obtained the single particle wavefunctions and en-
ergy eigen values for the wedge shape, we turn our attention
on to the optical response properties of those wedge shaped
metal particles. The linear and nonlinear polarizabilities are
calculated using the sum over states perturbation series
expansions® The linear polarizabilitya,,, which describes
the linear refraction and the linear absorption is given by the
formula

_i oL RiRj RiRi
Fou £, Pii'g wjitotiy o;—o—iy;

11)

and the second-order hyperpolarizabilgy,,, for the SHG
by the approximation

S off

Bou(20i0,0)= 2h%e, Tk
W RERY +RERGRY
[wk| 2w WkJ[w“ o—1vji]
R\RER + RERERY
[wjk 20— |7]k][wk|+w+|7k|]
RiRYRY + R I(JR
[wa+2w+|ykJ][w],

JI
o—iyj]

R Rkj “-I—R Rk] ji
[wj|+2w+|'Y]|][wk|+w+|')’k|]
(12

wherei andj represents a set of quantum numbgrs,s}
characterizing the single particle eigenstates; = (E;
—E;j)/h is the energy separation between the two levels
andj, o is the photon frequency angs are the dephasing
time constantss, A andu are Cartesian components?) is

the diagonal density matrix element which corresponds to
the population in the level R} is the dipole moment matrix
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element between the levédlaindj along directionu, andeg _ 1\ 7
is the permittivity of the free space. sinf n+n’+ %2
For the calculations of,,, andf,,,,, We need to compute Pr = (—1)Fn)2— 1
the matrix element&y;, RY,, andRj;. For the matrix ele- T n+n'+—
ments alongk andy directions we note that this matrix ele- X
ment vanishes when’ is not equal tov because of orthogo- 1\ 7 1\ 7
nality of the z part of the wave function. In cylindrical sinn"—n+<|= sinn—-n'+<|=
: ) o X/ 2 X/ 2
coordinates the matrix elements foandy direction can be + 1 +
written as , /
n'=n+s n—n'+s
) 1\ 7
Rij :epn;n’Qns;n’s’ ) (13 sinn+n’'—=| =
X) 2
- |- (17)
whereP,.,, and Qs are the angular and radial part of n+n’'— X
the dipole matrix elements, respectively. The radial part of _ _ o
the transition matrix element for bothandy is given by The angular part for dipole matrix elements algngjrection
is given by
y 2X ([ ml2X
2 PO P’ ,z—f (D) L (P)Sinpd . (18
Qnsn's' = 2 j p?Ixn B ol (& ¢de
PoIxn+ 1(@ng) Ixn +1(a@nrgr) /0

Pﬁ_n, is nonzero only when one of the subscript is even and

P P another is odd. In this case it is given b
X ans_> JXn’(“n’s’ _) dp. (14 g y
Po Po
inl n+n’ 1) i
sin n —-=|=
. . . . y (n+n’+1)/2 X2
The angular part for dipole matrix elements alongjrection Pon=(=1) p 1
is given by n+n'—-
X
) - 1) T ) n 4 1\ 7
2X [ mi2X sinn—-n'+5|% sinn+tn'+5| =
o = f {n(9) Lo ($)cospdd.  (15) N X/2 _ X) 2
' T J— 72X 1 1
-n'+< +n'+ <
n—n'+s n+n'+ 5
It is obvious thatP’r:;n, is nonzero only when both andn’ 1\ 7
are either odd or even integers. Now for the case whand sin( n'—n+ 2) >
n’ are both odd - il _ (19)
I __ + —
n'=n+g
sinl n+n’+ L= For matrix elements along direction it is easy to find the
pX =(_1)(n+n’+2)/2_ X]) 2 conditionsn=n’ andk=k"':
n.n’ T 1
n+n'+ < , 2 (n  (vmz\ [v'wz
X Ri=—] sin——]sin zdz (20
ZoJo Zy Zy
] . N 1\ 7 ) - 1\ =
sy =Sz ST s Zo|cofv—v')m—1 cogv+v')m—1
* + 2 2 2 (22)
n’—n+1 n—n’+l & (v=v") (v+v7)
X X

Using these selections rules and the expressions for the tran-

1 o ' )
sinn+n'— | = sition matrix elements we can calculate the linear and second

+ X) 2 , (16) order hyperpolarizabilities. It follows from the symmetry of
, the wedge considered here the nonzero components of the
n+n—« second order hyperpolarizability 8., Bxyys Bz and
their permutations. In this paper we, however, calculate the
most important components,, andBy,,. From simple scal-
whereas, fom andn’ both even we have ing argument that the dipole matrix element along any direc-
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1 TABLE I. Location and value of the first peak of lmyf,) for

9l T T L i 1 T ]
o | - different apex angles.
2+ 3 A 4

G = 5 3 35 15 0 X po (NM) Peak position(eV) Peak value (nr)
b ‘ /.,»1 1 3 5.05 0.435 13200
of —— - ‘| 1 12 10.10 0.231 46720
L ‘ e . 24 14.28 0.167 56330
£ _ - ° 2 N ¢ i vo" 48 20.20 0.126 89130
p{"=0 for i> Fermilevel. (23

The ground state electron density distributidfp, ¢) is de-
fined as

I I I !
12 14 16 18 20

10
%) D(p,¢)=2 f [Wi(p,d)|?dz, (24
I
FIG. 2. (Color onling Ground-state electron density distribution
in the wedge for 160 electrons and different apex ang@s®,  Wherei runs for all filled levels. We show the electron den-
=7/3. (b) po=1/12. (C) po=1/24. (d) ¢po=/48. sity distribution in Fig. 2 for various values of the apex angle
ranging from/3 to w/48. The corresponding values p§

tion should go as the corresponding length of the wedge, th@® Shown in Table . _ _
ratio | B,yy/ Bxxx Should behave as 7. We will deal with From Eq.'(5) one can see that the single particle states for
this point more quantitatively later in the paper. Extension of2 Wedge with¢o=m/X are a subset of those @bo=m.
the calculation for other directions and other components of/henXincreases the order of Bessel function corresponding
a and g is straight forward. to the lowest energy state also increases. The Bessel function
The wedge shape allows several interesting limiting case$! higher-order peaks at higher values of ghand thus for
The three important lengths in the problem age p,, and hlghgrx the wave function also peaks at higher valqesp of
podo. Confinement effects become significant when theséémaining nearly zero for Iower_val_uespzfAs a resu_lt if we
lengths become comparable to the de Broglie wavelength @!low only one eélectron to be inside the wedge it tends to
electrons at the Fermi level which is essentially the atomiStay away from the apex. This can be understood in terms of
size. Thus forz,~ atomic diameter, the wedge is a two- the uncertainty principle—to minimize the confinement en-

dimensional(2D) system—onlyr=1 levels are involved. ©rgy an electron stays away from the apex. However, as the

The limit ¢y<1, may have some resemblance to a One_number of electrons increases because of the Pauli exclusion

dimensional (1D) situation. However, the real situation is Principle one has to fill the upper levels and hence the elec-
more complicated. The electron charge density does rdfOn tends to occupy the narrow regime also. Thus the uncer-
semble that for a linear atomic chain, but it still has substant@iNty principle and Pauli exclusion principle together decide

tial influence of the asymmetric boundary condition and the"€ shape of electron density distribution inside the wedge.

integrated density of states is not close to that for a 1D casd? @ real physical quantum dot there cannot be any atom in
We will come back to this point later in Sec. Il while dis- e immediate neighborhood of the apex because the size

cussing results on linear and nonlinear polarizability. should be, at least, of the order of the lattice constant. It is
interesting to note that the electron density distribution re-
flects that the electron density is negligible in the edge re-
[ll. RESULTS AND DISCUSSIONS gion. For example, forpg= 7/24, whenp is less than 2.5 nm
the width in they direction is less than the lattice constant of
silver which is 0.408 nm. However, gsincreases beyond
In Fig. 2 we show the electron density for wedges with2.5 nm it becomes possible to accommodate one or more
various apex angles all having 160 electrons with the elecatoms alongy and we have a corresponding increase in the
tron density inside the wedge to be appropriate for bulk Agelectron density.
Dimension of the wedge along tleedirection is taken to be
just sufficient to accommodate a single layer of Ag atoms.
Single particle levels are filled according to the Pauli exclu- .
sion principle. As mentioned earlier for monolayer thickness Next we calculate the linear and second-order hyperpolar-
alongz direction the problem is effectively 2D. The sample izabilities. For the calculation of hyperpolarizabilities near

was assumed to be at 0° K so that all the levels below thé€sonances in addition to matrix elements we require the val-

be 0.005 eV so that we can resolve the resonances. The ex-
) ] ) pressions fora,, and B,.x contain a summation over all
pii =1 for i< Fermilevel, (22)  possible states. However, following the usual practice, we

A. Electron density

B. Linear and nonlinear polarizability
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1500 | R | N ) bersn.ands on the energy, fos>1 using the asymptotic
A (16118 2 (1.16-1.19) B2 behavior of Bessel function we can write
500 l “ L
.......................................... e i fﬂ'
— -500 - ) . ) . ) . ) ans~S7T+ Xn— E) E (28)
€ 4500 [ ] TR Il 1 ' . . o
S ook R dan (b) For largeX the confinement energy in thyedirection is very
= large and the energy levels have a shell structure with shells

P e separated by confinement energy in thalirection which

- - . L : increases as? while energy levels within each shéame

P e L L R L (©) n) increase linearly with the quantum numizerather than
5000 ‘f"»-..' feead) s as they would for a rectangular box. Thus, even for very

: i narrow wedge angle, the coupling of tlkey motion has a

. strong influence on the energy level spectrum. Kerl, 2,
0.4 0.6 0.8 or 3 there is no shell structure as the confinement lengths in

ho (eV) the x andy directions are comparable. FaixX>1, the ex-

o o _ pression for the radial part of dipole matrix elemefs.
FIG. 3. Real(solid line) and imaginary partgdotted lineg of (14)] can be written as

ayy as a function of the photon energy for wedges having same

o

o

o

o
T

apex angle but with different radiiho= 7/48. (a) po=10.1019.(b) P (E,E ,)1/2

po=15.9725.(c) po=20.2038. Qusne = — %, — — 4poEg—
(ang —ang) (Ens —Ens)

perform the summation over a finite number of states deter- (29)

mined by the incident photon energy and the oscillatorand

strength. We also ensure that the results do not change

appreciably when additional states are included in the 1

summation. Qns;nsmpo( 1- 2a

To study the dependence of,, on p, we plot in Fig. 3

the real and imaginary parts of,, for three different value Thus, the oscillator strength between neighboring levels is

of pg, 10.1019, 15.9725, and 20.2038 nm having an apethe largest and decreases rapidly as the energy separation

angle of7/48. The radii of the wedge were chosen such thabetween the two levels increases. In short, for very small

the upper most level is completely filled. In Fig. 3 we havewedge angle most important transition are between the same

also shown some of energies of the stronger transitions aghell and to that extent situation is like that for a one-

bars with the quantum numbensands of levels involved in  dimensional chain.

the transition i,s—n’,s’). We observe that all the stronger It is well known that for 1D electron gas most of the

transitions are between the levels having samdhis is  oscillator strength lies in the first transitidhBecause of the

because the angular contribution of the dipole matrix eleconfinement along the direction, in the wedge of apex

ments given by Eq€16) and(17) both can be approximated, angle w/48 and radius 10.1019 nm the electron density in

for X>1, by the wedge is similar to that of a linear chain. The hyperpo-
larizability 8 is, however, a manifestation of the small devia-

(30

ns

tion from this. As the radius increases, more atoms can be

1 1
Pl .~—| 1+ ——], stacked alongy direction leading to a two-dimensional
"4l axen? ic distributi
atomic distribution.
Next we study the variation of the linear polarizability for
1 different input photon frequencies for wedges having same

volume and thickness but different apex angles. In Fig. 4 we

Pn;n’ 8X3(n’—n)2' 1
show the dependence af, on w for different values ofp.
Thus, When the area of the wedge is kept constant and the apex
angle is reduced the first absorption peak redshifts. The
strength of both real and imaginary partsaf, at the reso-
~2X3(n’'—n)2. (27)  Nhance increases. Ad, is reduced the length of the wedge
along x direction (say L) increases. Since the energy gap
between the given two levels goes approximately~dsL,
Hence the transitions between the states having the sani@nce there is a redshift. For smaller valuesbgf similar to
angular quantum number are the dominant transitions for the earlier case, the strength of the first transition is more
large values ofX. Also one can notice in Fig. 3 that @  than that of the others. But as the apex angle increases the
increases all resonances redshift. The amount of red shift igscillator strength of higher energy transitions also increases.
more for the resonances at higher energies. We see from Efis explained by Eq(27) the oscillator strength of the tran-
(9) that the energy is inversely proportionalpté. Hence the sitions having the same is dominant for the cases having
first resonance red shifts. To see the effect of quantum nunthe higherX but asX reduces there are some stronger tran-

X

X
| I:’n;n
n;n’
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FIG. 4. Real(solid line) and imaginary partgdotted lineg of . S
ay as a function of the photon energy for wedges having different FIG. 6. |Re(B«)| as a function of¢, (solid circles for 160

electrons inside the wedge. The solid line shows the approximate fit
apex angles and 160 electroria) ¢o=w/48. (b) ¢po=m/24. (C) with a functionX -9 with g=l 57 PP
do=ml12. (d) ¢po=7/3. U

sitions between the levels having differantalso. For com- Io%arlthdmflc sca/lze,f ngas_ﬁhs by a facttr(])r (Ij.f 200 ag is
pleteness we present in Table | the peak values of thEeauced trommiz 10 arfac. [Thus, as In Ihe finear case, one
Im( ) and the peak positions. can e_nhance the SHG for a given yolgmg of the m_atenal by

To study the variation of polarizability with the apex redu_cmg the apex anglqe. Once again similar to the linear case
angle in the transparency regime we have calculated the redf I'n(i|Re(fﬁ<>g)|~x W'th IqT:.l'S; As elxli)tehctedﬁ .V?.r'
part of a,, for various values o, for a fixed photon energy es faster with decrease % n Fg. /- we plot the variation
in the low frequency regime. We have taken the photon en(_)f Re(B4y With incident field frequency. The second order
ergy, i w to be 0.02 eV, i.e., below all resonances. The resul yperpolarizability has resonances at the same frequencies as
is sﬁown in Fig. 5. N(’)tice, that the linear polarizability in- he linear polarizability. Fu_rthermore, it has also smaller
creases by an order of magnitude as the apex angle is rg_eaks at t_he_ half frgquenues due to the two photon reso-
duced from /2 to w/48. The figure also shows that the nances. It is interesting to note that the variation of heth
result can be fitted byr,,~X P with p~0.92 and B,xyx as a function of¢, shows a deviation between

XX Je. _ .

As mentioned earlier the main reason for selecting thet‘?so_ /2 tﬁ 4 fram the_ge_net[]alf;rer:q. The p055|tb_le exep:ilfana-
odd shaped quantum dots is that due to their lack of inver.ON May have Its ongin in thetrective asymmetric areal |
sion symmetry they can have nonzero value of even ord N wedgg which contr!butes to these hyperp_olanzabllmes.
hyperpolarizabilies. First we calculate the low frequency he effectlv_e asymmetric area can be deflneq In many ways.
limit of B (for Aw=0.02 eV). This is shown in Fig. 6 in We use a simple recipe to find out the effective asymmetric

area. The wedge-shaped object is foldedatpy/2 perpen-

dicular tox axis and overlapped with the original object. The
1000 ~ 5.0x10° |- (a)
] ool Ay‘v
— ~-5.0x10 . L . L . 1 .
“E <'r> 2.0x10 C (b)
@ mE 0.0 %ﬁv
E | q’g 2.0x10° | . . . . . . .
-~ = i5x10° |
s g . (©
£ 100 & s.0x10* [ [\
] 5.0x10° [—— . : . : L .
- d
. oo (d)
T T LI B R B | T T L B B R R B | . 3 . 1 L 1 L 1 L
0.01 0.1 1 5.0x10 0.2 0.4 0.6 0.8
1/X i (ev)
FIG. 5. Refy,) as a function of¢, (solid circles for 160 FIG. 7. ReB,4 as a function of the photon energy for wedges
electrons inside the wedge. The solid line shows the fit with a funchaving different apex angles and 160 electrdas.¢po= 7/48. (b)
tion X~ P with p=0.92. ¢o=l24. (C) po=m/12. (d) ¢po= /3.
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1000 ¢

@) (b) © ol

FIG. 8. A simple geometrical construction for calculation of the
effective asymmetric area along tleaxis for wedge-shaped ob- 1
jects. The object is folded at=py/2 perpendicular toc axis and

/ﬁ XXXI

overlapped with the original object. The nonoverlapping area gives@? 01k

the asymmetric area which is shown as the unshaded @ex. - ; .

=1. (b) X=1.28.(c) X=2. 001 L

nonoverlapping area gives the asymmetric area. We find tha e[ .
the asymmetric area has a minimunXat 1.28(Fig. 8). This

qualitatively explains the curves for polarizabilities. At this 14 L— ! . ! . ! . !

point it is worth emphasizing that although this simple con- 0 10 20 30 40 50
struction brings out the fact that the degree of asymmetry X

(along x direction shows a nonmonotonic behavior as a
function of X, this is not the only way to define the asymme-
try of shape. However, since another definition of asymmetry

also gave similar results, we believe that this result is robustg el approximated in the quasistatic limit. The local field

As mentioned earlier the ratigByy,y/Bxx should decrease tactor in the quasielectrostatic limit for an ellipsoid of semi-
strongly as X is increased. Figure 9 shows the ratio 5yasq b andc in the x direction is given b}?

| Bxyy! Bxx at zero frequency as a function ¥f The ratio
actually goes aX ™~ *”’. This is because the selection rules for en

P}, andP). , are different. FoiX>1 matrix elements oy fxx:8h+ L(e@)—ep)
is zero forn=n’ and forn#n’ given by Eq.(19) can be
approximated as

FIG. 9. The ratio B,y,/Bxx at zero frequency as a function

(32)

Here, gy, is the dielectric constant of the surrounding medium
in which the wedge is embedded angd(w) is the dielectric

1 constant of the medium in the wedge which is related to the
pﬁ.n@_ — (3D polarizability «,,. L, is the depolarization factor in the
’ mX5(n'—n) direction and is given by
From Egs.(26) and(31) the ratioPﬁ;n, to P}., goes axX 2. abc re dq
In contrast the dominant terms farcomponent of transition Ly=— (33

dipole matrix element correspond iie=n’. Thus the matrix 2 Jo (a*+ )b+ )" c*+a)'?

elements ok dominates ovey. Thus the ratio of B,yy/BxxJ  For a spherical particle the depolarization factor is 1/3. The
will go more or less aX~*. Additional dependence oK fig|q E,, inside the ellipsoid is given by

comes because of the changes in the density of states<with

10
C. Local field factors of

. 10|
So far we have neglected the difference between the ex 4t

ternal applied field and the field inside the wedge. As men- 4,
tioned before this difference in the field inside and the ap- 45!
plied field is an important factor in enhancing the & 4]
nonlinearity of the quantum structure near a plasmon reso™ _; 5|
nance. At nonresonant frequencies the local field factor car
be much smaller than unity due to the screening of the ex-
ternal electric field. The local field factor is analytically cal-
culable only for a few geometries, e.g., sphere and ellipsoid.
Calculation for the local field factor for the wedge shape is
difficult and is not attempted here. However, to have an es-
timate of the local field factor, the wedge-shaped quantum
dot may be approximated by an ellipsoid. This is a good
approximation considering that the electron density at the
tips of the wedge is nearly zer@rig. 2), allowing us to FIG. 10. Reasolid lineg and imaginary partédotted line$ of
neglect any material effects at the tips. For a particle which igocal field enhancement factor as a function of photon energy for
small compared to the wavelength of the light, i<\, wedges having 160 electrons and different apex ang®sp,

the calculated local field correction factor for a dynamic field = 7/48. (b) ¢o=7/24. (C) po=m/12. (d) o= /3.

o (eV)

075319-7



J. JAYABALAN, MANORANJAN P. SINGH, AND K. C. RUSTAGI PHYSICAL REVIEW B68, 075319 (2003

E —f E X (34) cally in the free electron model. We have calculated the elec-
_ ne e o tron density distribution inside such wedge-shaped dots and
whereE, is the external applied electric field. shown that the electron density near edges, especially near

First we fit an ellipse inside the 2D wedge for different he apex is almost zero. We have studied the dependence of
apex anglesr/3, /12, w/24, andw/48 which gives the the jinear polarizability on the radius of the wedge for a
values ofa andb for the ellipsoid. We take the value ofto  given apex angle. It increases as the radius increases. As the
be half of the thickness .of the wedge alpngiirection € apex angle is reduced fromv2 to /48 we find an enhance-
=0.144 nm). By assuming the wedge in free spaeg ( ment of an order of magnitude in linear polarizability in the
=&o) we have calculated the local field factor for various jow-frequency limit and this enhancement is 200 for the case
frequencies. We show the variation of the local field factorgf second-order hyperpolarizability. We have also estimated
with the energy of incident photons for various apex angleshe |ocal field factor for the wedge-shaped quantum dots ap-
in Fig. 10. It can be seen from E32) that whenever the proximating these by the equivalent ellipsoids.
value ofe,,(w) becomes such that To determine the structure property relationship for hyper-

1 polarizability B, it is quite appropriate to consider the low
Sxx(w)=8h( 1— ™ (35)  frequency limit. However, in the same limit the local field
x factor is rather small making the effective nonlinear suscep-

the local field factor will become large. Thus the field inside {iPility also quite small. Large nonlinearities would occur

the wedge becomes much higher than the applied extern@NlY close to the plasmon resonances. For very small apex
electric field. angles the field enhancement is large far away from the main

resonance inB,,x Whereas for larger apex angles wedges
both can be simultaneously large. Our calculation also sug-
gest that the organic molecules with large conjugated linear

In conclusion we have shown that the single particlechain with a polarizable unit similar to a phenyl group at one
states for a wedge-shaped quantum dot can be found analygénd are expected to have large

IV. CONCLUSION
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