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Spin and energy transfer in nanocrystals without tunneling

A. O. Govorov
Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA

~Received 27 April 2003; published 25 August 2003!

We describe a mechanism of spin transfer between individual quantum dots without tunneling. Incident
circularly polarized photons create interband excitons with nonzero electron spin in the first quantum dot.
When the quantum-dot pair is properly designed, this excitation can be transferred to the neighboring dot via
the Coulomb interaction withconservationor flipping of electron spin. The second dot can radiate circularly
polarized photons at smaller energy. Selection rules for spin transfer are determined by the resonant conditions
and by the strong spin-orbit interaction in the valence band of nanocrystals. Coulomb-induced energy and spin
transfer in pairs and chains of dots can become very efficient under resonant conditions. The electron can
preserve its spin orientation even in randomly oriented nanocrystals.

DOI: 10.1103/PhysRevB.68.075315 PACS number~s!: 78.67.Hc, 72.25.Fe, 73.21.La
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Manipulation of spins in nanostructures is presently
tracting a tremendous amount of interest.1–3 Since spins in
solids have relatively long lifetimes, they can be exploited
qubits—basic elements of quantum computers.4 Spin-
polarized states of electrons in crystals can be gener
optically5–7 by driving current through spin-dependent bar
ers or by injecting electrons from ferromagnetic materials1,2

In most cases, spin transport across a crystal occurs eithe
tunneling or injection. This would not be the case for s
called colloidal quantum dots~QD’s!, where individual
nanocrystals strongly confine carriers and do not permit
ficient tunnel coupling.8–10 However, instead of direct tunne
coupling, the colloidal QD’s permit long-range Coulom
induced transfer of optically excited excitons.8–10Such trans-
port has been observed in several recent experiments a
often referred to as Fo¨rster energy transfer.11 Theoretically,
Förster-like transfer in nanocrystals has been discusse
connection with exciton dynamics in QD arrays and quant
computing.12

Here we develop a theory of electron spin transfer
tween individual nanocrystals without tunneling, involvin
optically excited excitons and the Coulomb interaction.
far, spin transport in nanostructures has been considere
most exclusively in relation to direct transport of charge1,2

Since the spin orientation in the conduction band of se
conductors can be efficiently created with the circularly p
larized light pumping,5,6 it is interesting to study the poss
bility of spin transfer between individual dots withou
transfer of charge. In such a transfer process, the optical
spin selection rules would be dictated by the strong sp
orbit interaction in the valence band. The typical experim
tal scheme related to Fo¨rster transport involves pairs of quan
tum dots with different sizes@Figs. 1~a!–1~c!#. An incident
photon creates an exciton in the small dot 1 with a lar
optical gap@Figs. 1~a!–1~c!#. Then, the exciton is transferre
via the Förster-like mechanism into the large dot 2 with
smaller optical gap. Due to fast energy relaxation in dot
the exciton becomes trapped and contribute to the phot
minescence~PL! at the dot-2 energy. If electrons in dot 1 a
created by circularly polarized light, they become spin po
ized due to the spin-orbit interaction in the valence band5,6

Here we will focus on the dynamics of excitons generated
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circularly polarized photons and develop principles f
electron-spin transport in QD pairs without tunneling. W
will show that the spin orientation can be efficiently tran
ported between QD’s via the Coulomb interaction. This b
comes possible thanks to the strong spin-orbit interaction
the valence bands of QD’s. The spin-transfer selection ru
strongly depend on geometry and resonance conditions
the resonance regime, the transfer can lead to either con
vation or flipping of spin.

Pairs of semiconductor QD’s can be grown by using se
organization technology.13 In such stacked QD’s, the sizes o
dots and interdot separation are well controlled. Anoth
method to fabricate a system with QD pairs is colloid
synthesis.8–10 In a solid of colloidal QD’s with two distinct
sizes, QD pairs are randomly oriented.8,9 In monolayers of
QD’s @Fig. 3~a!#, the orientation of pairs is directional.9,10

Another possibility to avoid a randomness is to study
single QD pair bound to a surface.10,14

In what follows, we will use several simplifications re
lated to the time scales. In particular, we will assume t
te-spin, texc@tenergy, th-spin, where texc is the exciton life-
time in a single QD related to radiational and nonradiatio
transitions,tenergy is the energy relaxation time of exciton
within a dot,te-spin is the electron spin lifetime, andth-spin is
the momentum relaxation time of holes. In other words,
suppose~1! fast intradot relaxation of the angular momentu
of holes and~2! fast energy relaxation to the ground state
the dots.

Disk-shaped dots with a cubic lattice.First we consider a
pair of oblate~disk-shaped! quantum dots~Fig. 1! with di-
mensionsai!bi , whereai is the QD size in thez direction,
bi is the in-plane diameter, andi is the dot index (i 51,2).
For simplicity, we assume that the QD potential has infin
walls. In such a model, a single QD is quasi two dimensio
~2D! and its valence-band structure is similar to that in a
quantum well.15 To find the wave functions, we first quantiz
the motion of heavy and light holes in thez direction; it
provides us with the Bloch functions. Then we can introdu
weak quantization in thex-y plane involving effective
masses of holes. The wave functions in the conduction
valence bands for the dots 1 and 2 take a form
©2003 The American Physical Society15-1
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C i
e,↑(↓),n,l5u↑(↓)Fn,l

( i ) ~r uu ,z!,

C i
hh,63/2,n,l5u63/2Fn,l

( i ) ~r uu ,z!,

C i
lh,61/2,n.l5u61/2Fn,l

( i ) ~r uu ,z!, ~1!

wherei 51,2 andr uu5(x,y); u↑(↓) , u63/2, andu61/2 are the
Bloch functions of electrons, heavy holes~hh!, and light
holes ~lh!, respectively;Fn,l

( i ) (r uu ,z)5 f 0
( i )(z)Rn,l

( i ) (r uu) are the
envelope functions, where thef 0

( i )(z) is the ground-state
function for motion in thez direction,Rn,l

( i ) (r uu) are Bessel’s
functions describing the in-plane motion, and (n,l ) are the
radial and azimuthal quantum numbers of the in-plane m
tion, respectively;n51,2, . . . andl 50,71,62, . . . . In our
simplified approach all types of carriers are described w
the same set of envelope wave functionsFn,l(r uu ,z).

In the geometry shown in Fig. 1, the optical operator
the exciton in dot 1 can be written as follows:V̂1,1

opt5e1p̂
5cos(u1)p̂x1ip̂y1sin(u1)p̂z, where p̂ and e1 are the mo-
mentum operator and polarization vector, respectively. Us
this operator, the probability of interband optical transitio
for dot 1 takes a formP1

s,m5u^C1
s,n,l uV̂1,1

optuC1
m,n,l&u2, where

s5↑(↓) andm563/2,61/2. Emission of dot 2 is describe

FIG. 1. Sketch of a quantum-dot molecule~a!. Energy diagrams
of intradot and interdot transitions in the transfer process~b!, ~c!;
the label (g2e;n,l ) denotes the exciton composed of holeg and
electron, whereg can behh or lh, and (n,l ) are envelope-function
indices.
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in a similar way with the operatorV̂26

opt5cos(u2)p̂x6ip̂y

2sin(u2)p̂z, where the signs6 relate to the different polar-
izations of the secondary photon~7\!. For simplicity, we
consider the case when the linear momenta of both pho
lie in the x-z plane.

The interdot transfer is described by the Coulomb ope
tor which can be expanded into an infinite series of multip
terms. However, it is natural to assume that the dipole-dip
interaction will provide the leading term,

V̂Coul5
e2

eR3
~r1r223z1z2!, ~2!

where r1(2) are the radius vectors related to the dots@Fig.
1~a!#, e is the averaged dielectric constant, andR is the dis-
tance between the dots. Below, we will generalize our res
including multipole interactions. The Fo¨rster-like probability
of an interdot transition takes the form

Wb1
5

2p

\ (
b2

u^b1uV̂Coulub2&u2d~Eb1
2Eb2

!, ~3!

where the indicesb1(2) denote the exciton states in the do
b15(s1 ,m1 ,n1 ,l 1) andb25(m2 ,s2 ,n2 ,l 2). Because of fast
intradot energy relaxation, the functionub1& in Eq. ~3! de-
scribes the ground-state exciton in dot 1 withs15↑,↓ and
m1563/2, and (n1 ,l 1)5(1,0). In the spirit of Fo¨rster
theory thed function in Eq.~3! should be replaced by th
spectral overlap integralJb1 ,b2

5*rb1
(E)rb2

(E)dE which

involves normalized line shapesrb i
(E)5p21Gb i

/@(E

2Eb i
)21Gb i

2 #, whereGb i
is the homogeneous broadening

the excitonb i . Lorentzians were utilized for simplicity.
By using Eqs.~1!–~3!, we now compute the mean spi

in the dots and the degree of polarization of secondary p
tons. To be specific, we consider the resonant dipole-allow
absorption process of incident photons in dot 1 that invol
a heavy-hole level@Fig. 1~b!#; in other words, the incident-
photon energy is taken below the first interband transit
related to the light hole. The meanz component of electron
spin polarization in dot 1 is determined by the probabiliti
P1

s,m and is equal toS15(P1
↑2P1

↓)/(P1
↑1P1

↓)522 cos(u1)/
@cos(u1)

211#, wherePi
↑(↓)}uPcvu2@cos(u1)71#2 is the prob-

ability of the electron being in the state↑~↓! and Pcv
5^Su p̂xuX& is the interband optical matrix element. In th
optical matrix elements, the operatorp̂ was involved only in
integrals with Bloch functions. For the next step, we calc
late the Coulomb matrix elements under resonance co
tions. In the regime of interdot resonance, the ground-s
exciton energy of dot 1 is equal to the energy of the exci
dipole-active exciton in dot 2. The latter state can be co
posed of either a heavy hole or light hole. We start w
the resonance between heavy-hole states in the dots@Fig.
1~b!#. The probability to create an exciton withs25↑ in dot
2 is given by P2

↑5(1/2)P1
↑Wb1→b2

5P1
↑w0Jb1 ,b2

/2, where

b15(↑,3/2,1,0) andb25(↑,3/2,n2 ,l 2); the factor of 1/2
is the probability to find a heavy hole in either state~63/2!
in dot 1; this is due to fast momentum relaxation of hole
5-2
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Besides,Wb1→b2
is the probability of Fo¨rster-like transfer

between the statesb1 and b2. A coefficient w0

52pd0
4(e4/e2R6\), whered05^XuxuS& is the atomic dipole

moment. For spin↓ we have a similar equationP2
↓

5P1
↓w0Jb1 ,b2

/2. Again, the operatorr was involved only in
integrals with Bloch functions. The spin polarization of dot
is given by

S285
P2

↑2P2
↓

P2
↑1P2

↓ 5S152
2 cos~u1!

@cos~u1!211#
. ~4!

If u150, the system has axial symmetry, the transfer proc
conserves the total momentum, and thereforeS28521. Thus,
Förster transportpreserves spin polarizationin the regime of
interdot resonance between heavy-hole levels. Now we
sume that the parameters of dots are chosen to satisfy
condition of interdot resonance between heavy and li
holes@Fig. 1~c!#. It is easy to see that Coulomb transfer r
sults inspin flipping. For example, the probabilityP2

↑ is now
expressed viaP1

↓ : P2
↑5(1/2)P1

↓Wb1→b2
5P1

↓w0Jb1 ,b2
/6,

where b25(↑,1/2,n2 ,l 2). Similarly, P2
↓5P1

↑w0Jb1 ,b2
/6.

Thus, we obtain the effect of spin flipping:

S2952S1 . ~5!

So far, we considered strongly resonant conditions. In
general case, the mean spin in dot 2 is calculated as

S25

(
b1 ,b2

P2
↑~b1→b2!2P2

↓~b1→b2!

(
b1 ,b2

P2
↑~b1→b2!1P2

↓~b1→b2!

, ~6!

where the summation involves all pairs of states; the in
b1 is related to thehh ground state of dot 1:b15(↑(↓),
63/2,1,0!. The degree of circular polarization of seconda
photons at the dot-2 ground-exciton energy is now written

Pcirc5
I 12I 2

I 11I 2
52S2

2 cos~u2!

@cos~u2!211#
, ~7!

where I 6 are the light intensities given byI 15P2
↑P1(↑)

1P2
↓P1(↓) andI 25P2

↑P2(↑)1P2
↓P2(↓). Here, the optical

transition ratePs(s) describes the emission process in whi
an electron with spins in dot 2 creates a photon with circula
polarizations, wheres can be1 or 2. The degree of cir-
cular polarization~7! strongly depends on the resonance co
ditions between the QD’s@Fig. 2~a!#. If u1(2)50, the system
has axial symmetry and the electron spin is either conse
or flipped in the resonant-transfer process@Fig. 2~a!#. The
latter comes from conservation of the total angular mom
tum in the Coulomb matrix elements. Besides, the rate
exciton transfer, 1/t trans5Wb1

, is strongly enhanced unde
the interdot resonance conditions@Fig. 2~b!#. Note that the
total angular momentum is not conserved in the three-s
process shown in Figs. 1~b! and 1~c! because of fast relax
ation of angular momentum for the hole.
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Spherical quantum dots with a cubic lattice.In spherical
dots, the symmetry of a single QD is high and both hea
and light holes will contribute to the transfer rate for th
given interdot resonance. The multicomponent wave fu
tions for the holes in a model with infinite walls are we
known:16

C i
M5 (

l ,m,m
Cl ,m,m,MRl

( i )~r !Ylm
( i )~V!um . ~8!

Here i is the QD number (i 51,2), M is thez component of
the total angular momentum,Ylm

( i )(V) are spherical harmonic
functions, Rl

( i )(r ) are functions of radial motion,16 and
m561/2,63/2. Calculation of the spin orientation in dots
and 2 is straightforward. The meanz components of spin in
dots are written asS152cos(u1)/2 and S25S1/2. The de-
gree of circular polarization of emitted light takes the for
Pcirc52S2cos(u2)/25cos(u1)cos(u2)/8. At the anglesu1(2)
50, the polarization of emitted light is maximal and equal
Pcirc51/8. The degree of polarization, 1/8, appears as a
sult of the three-step process. According to the theory of s
orientation in 3D crystals, the degree of polarization in t
two-step process is 1/4.5 Since the band structure of cub
spherical dots is isotropic, electron spin transfer does
depend on the type of interdot resonance and the elec
spin is not flipped.

Oblate quantum dots with cubic and wurtzite lattice
Quantum dots can be anisotropic due to both shape and c

FIG. 2. ~a! Calculated degree of circular polarization of photo
emitted by dot 2 as a function of the dot-1 diameter;u1(2)50. The
sizes of dot 2 are kept constant, whereas the diameter of dot
varied.~b! Calculated rate of exciton transfer from dot 1 into dot
Insets show diagrams of interband transitions. The crystal par
eters correspond to InP quantum dots; effective masses:me

50.077m0 , mlh50.12m0 , mhh50.6m0 ; R580 Å, a15a2

525 Å, b25100 Å, and 50,b1,100 Å. The low-temperature
broadening of the ground state of excitons in dot 1 is taken a
meV; the broadening of all excited states in dot 2 is assumed to
5 meV.
5-3
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tal lattice. Such an anisotropy strongly affects the valen
band structure, giving rise to splitting between heavy- a
light-hole levels. In nearly spherical crystals, anisotropy c
be taken into account with perturbation theory.16 The four-
fold degeneracy of the hole states is split into 2 twofo
degenerate states. The splitting can be written asD5Dcr
1Dshape, whereDcr is the crystal field splitting in a hex
agonal lattice~like in CdSe! andDshapeis the splitting due to
the shape. The Kramers doublet of hole states has quan
numbersuM u51/2 anduM u53/2. First, we consider two ob
late dots forming a molecule with axial symmetry. In such
molecule,c1uuc2uuz, where c1(2) are the symmetry axes o
dots @Fig. 3~b!#. To be more specific, we assume that t
ground state of holes has the angular momentauM u53/2,
like in dots based on InP. Using the wave functions~8! it is
easy to show that all results for disk-shaped QD’s hold in
case of oblate dots withc1uuc2uuz.

Randomly oriented QD pairs.It is natural to suppose tha
the randomness of nanocrystal axes in a QD solid w
change the spin-transfer rates. To calculate the spin trans
rates in a pair of arbitrary oriented dots, one can use
matrices of rotation for spin and spatial functions17 and in-
troduce Eulerian angles for the dots,f i

(1) ,f i
(2) ,f i

(3) , where
i 51,2 @Fig. 3~b!#. By using the matrices of rotation, the co
ordinate system (x,y,z) is transformed into the system
(xi8 ,yi8 ,zi8) where individual dots have the symmetry of o
late ellipsoids. The spin-transfer probabilities for oblate d
depend only on the anglesf i

(1) andf i
(2) . Under resonance

conditions the mean spins in the dots are connected by
equation

FIG. 3. ~a! Schematic of a system with two monolayers of do
Similar systems were studied experimentally in Refs. 9 and 10.~b!,
~c! Sketches of a pair of randomly oriented dots and a quantum
chain.
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S25S1

Wa2Wb

Wa1Wb
, ~9!

where Wa5W↑→↑5W↓→↓ and Wb5W↑→↓5W↑→↓ . The
coefficientsWa(b) describe probabilities of interdot trans
tions with conservation~flipping! of spin and are compli-
cated functions off i

(1) andf i
(2) . In a system with randomly

oriented molecules, spin transfer does not vanish; it can s
by calculating the averaged probabilities W̄

5^W&f
1
(1) ,f

1
(2) ,f

2
(1) ,f

2
(2) and spinsS̄i5^Si&f

1
(1) ,f

1
(2) ,f

2
(1) ,f

2
(2).

The ratio between averaged probabilities,W̄a /W̄b , depends
on the type of interdot resonance:W̄a /W̄b51.61 for the
hh-hh resonance andW̄a /W̄b51/1.61 for the resonance be
tweenhh and lh states. Thus, thehh-hh transfer conserves
partially the spin orientation, whereas thehh-lh interdot cou-
pling leads to a flipping of spin. For the case shown in F
3~b!, u15u250 and the calculated mean spin in dot 1
given by S̄1520.586. The dot-2 spin becomesS̄2520.22
and 0.22 in the case ofhh-hh andhh-lh resonances, respec
tively. Experimentally, the spin orientation in dot 2 can
observed by measuring the degree of circular polariza
of secondary photons. We find thatP̄circ

hh-hh50.13 andP̄circ
hh-lh

520.25.
Quantum-dot chains.If cylindrical dots form an ideally

oriented chain@like in self-assembled monolayers, Fig. 3~a!#
and all dots are under resonance conditions, the spin ca
transferred along the chain without losses,SN56S1, where
S1 and SN are the mean spins in the first andNth dots,
respectively@Fig. 3~c!#. The sign6 in the above relation
depends on the types of interdot resonances. If an ideal c
is formed of spherical dots, the transferred spin rapidly
creases with the number of dots,SN5S1/2N. In disordered
chains, there is an additional mechanism of spin random
tion. For oblate crystals with randomly oriented axes a
under interdot resonance conditions, we can estimate the
cay of spin using the averaged probabilitiesW̄a,b . This leads
to SN;0.2NS1.

The dipole-dipole interaction~2! provides the main con-
tribution to the transfer rate. At the same time, the high
multipole terms of the Coulomb operator can certainly aff
the magnitude of transfer rate and lead to additional inter
resonances which should be consistent with symmetry. H
ever, the spin-transfer selection rules established above
hold beyond the dipole-dipole approximation because th
rules come from axial symmetry in a QD pair. Namely, t
hh-hhandhh-lh interdot resonances will result in the conse
vation and flipping of spin, respectively.

Experimentally, the most preferable systems to obse
spin transport are the system with QD monolayers9,10 or a
single QD pair10 on a surface. In the first case, all QD pai
have the same orientation of the molecular axisR @Fig. 3~a!#.
If QD’s are spherical, the spin polarization in dots 2 will b
S1/2. In the case of oblate QD’s with randomly oriented Q
axes, the spin orientation will remain nonzero under inter
resonance conditions. Another suitable system is a single
molecule bound to a surface which can be studied by av
able methods of single-dot spectroscopy.14

.
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Another important issue related to exciton transport is
strength of dipole transitions. In this paper, we assumed
the ground-state excitons in dots are optically active. T
would not be the case for CdSe dots where a strong interb
exchange interaction splits exciton levels. The resulting
citon ground state becomes dark. Our results are fully ap
cable to QD’s with optically active excitons. For examp
excitons in the ground state are optically active in InP na
crystals where the exchange interaction is weak.20 Besides,
the exciton ground states are optically active in se
assembled QD’s which are usually lens shaped.13 The case
with optically inactive ground states of excitons should
considered specially. In addition, we considered excit
within the single-particle approximation ignoring the intrad
Coulomb interaction. This approximation is justified for o
dot parameters since the typical energy of in-plane quant
tion is greater than the intradot Coulomb interaction.21

To observe spin transfer between QD’s, one should ha
sufficiently long spin-relaxation time. A moderate magne
field can favor spin transport because it induces spin split
and strongly enlarges the degree of circular polarization
emitted photons.18,19 In the system with monolayers, th
magnetic field can be applied parallel to the molecular a
R. The spin-relaxation times found in experiments on
bulk semiconductors and QD’s range from 100 ps to 1
ms.7,22,23The exciton-transfer times in nanocrystals, recen
measured in Refs. 8 and 9, are in the range from 700 ps t
ns. This tells us that suitable conditions to observe spin tra
port of electrons can be found experimentally. By analyz
the rate equations, one can see that the mean spin in d
depends mostly on the ratiot trans/te-spin, wherete-spin is the
spin relaxation time for the electron andt trans is the interdot
transfer time of excitons. At the same time, the emiss
intensity of dot 2 is determined by the ratiot trans/texc. Spin
and energy transfers become efficient ift trans<te-spin and
t trans<texc, respectively. The latter was satisfied in rece
experiments.8–10
a

.
re

ya
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The rate of energy transfer between QD’s can stron
depend on temperature and resonance conditions. We
assume that the QD pair is designed to satisfy the reso
conditionE1

05E2
exc, whereE1

0 is the ground-state energy o
excitons in dot 1 andE2

exc is related to the excited excito
state in dot 2. In the case ofhh-hh interdot resonance, the
transfer time can be estimated ast trans51/(w0J). Here we
will use the parameters of InP:d056 Å ande512.6. At low
temperatures, homogeneous broadenings of excitons are
tively small andG1

0!G2
exc, whereG1

0 andG2
exc are the broad-

enings of exciton levels in dots 1 and 2, respectively. W
obtain t trans;120 ps, taking the parametersG1

051 meV,
G2

exc55 meV, andR570 Å. At room temperature, we find
t trans;1 ns withG1

0;G2
exc;20 meV.

To calculate the spin orientation in nanocrystals, we
sumed that the time of angular momentum relaxation for
holes is much shorter that the spin-relaxation time for
electrons. This relation is typical for experiments. The m
mentum relaxation time of holes in solids and nanostructu
is often short because of stronghh-lh mixing in the valence
band and due to relatively weak quantization of energy lev
of holes.15

To conclude, we have studied spin transfer in nanocrys
which does not involve the transport of charge. It has be
demonstrated that the spins can be efficiently transferred
tween quantum dots via the Coulomb interaction. In t
transfer process the electron spin can be conserved
flipped. The transferred spin polarization survives even
randomly oriented QD pairs and chains.

The author acknowledges Garnett Bryant for enlighten
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