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Resonant tunneling theory of planar quantum dot structures
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The ballistic transport in the semiconductor, planar, circular quantum dot structures is studied theoretically.
The transmission probabilities show apparent resonant tunneling peaks, which correspond to energies of bound
states in the dot. By use of structures with different angles between the inject and exit channels, the resonant
peaks can be identified very effectively. The perpendicular magnetic field has obvious effect on the energies of
bound states in the quantum dot, and thus the resonant peaks. The treatment of the boundary conditions
simplifies the problem to the solution of a set of linear algebraic equations. The theoretical results in this paper
can be used to design planar resonant tunneling devices, whose resonant peaks are adjustable by the angle
between the inject and exit channels and the applied magnetic field. The resonant tunneling in the circular dot
structures can also be used to study the bound states in the absence and presence of magnetic field.
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I. INTRODUCTION

In the past few years, self-assembled dots have attra
considerable interest because their atomlike properties m
them ideal for studying the physics of confined carriers a
many-body effects. They could also lead to novel devi
applications in fields such as quantum cryptography, qu
tum computing, optics, and optoelectronics. Altering grow
condition, Garciaet al.1 fabricated quantum dots with a rin
shape. The decisive difference between quantum rings
quantum dots is their topology—the hole in their middle
becomes dominant when an external magnetic field is
plied. The magnetic flux that penetrates the interior of
ring will then determine the nature of the electronic stat
Warburtonet al.2 reported how the optical emission~photo-
luminescence! of a single ring changes abruptly whenever
electron is added to the ring, and that the sizes of the jum
reveal a shell structure. Lorkeet al.3 employed capacitanc
spectroscopy and infrared-absorption spectroscopy to in
tigate both the ground states and the excitations of th
rings. Applying a magnetic field perpendicular to the pla
of the rings, they found that, when on flux quantum threa
the interior of each ring, a change in the ground state fr
angular momentumm50 to m521 takes place. Theoreti
cally, Llorenset al.4 studied the electronic states of quantu
rings under applied lateral electric field. Xia and Li5 calcu-
lated the electronic structure and transport properties
quantum rings in a magnetic field.

In this paper, we study theoretically the electronic stru
ture and the transport property of one kind of quantum
structure, planar quantum dots, whose height is much sm
than their lateral size, so that we can use the adiabatic
proximation where the motion along thez axis is decoupled
from that in thex-y plane, and we only consider the confine
states in thex-y plane. Recent technological advances
nanometer-scale lithography and atomic-layer epitaxy wh
can provide semiconductor planar microstructures, wh
size is smaller than the inelastic and elastic mean scatte
lengths, have attracted much attention to the study of me
scopic systems, especially after the discovery of the qu
0163-1829/2003/68~7!/075310~6!/$20.00 68 0753
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tized conductance phenomenon.6,7 Inspired by the prospec
of building devices based on the quantum interference eff
many authors have proposed various structures8 made from
high mobility modulation-doped AlGaAs/GaAs heterostru
tures. The most prominent advantage of the quantum in
ference device lies in the fact that its operation is control
by the relative phase of the electron waves and a very h
switching speed can be achieved. In this paper, we stud
planar circular quantum dot structure with outer poten
barrier, which is schematically illustrated in Fig. 1. We fir
study the electronic states of an isolated planar quantum
in the absence and presence of perpendicular magnetic fi
Then we study the transport property: the electron wave
injected in the channel at the right (u50), the wave partly
exits out in the channel at theu angle, and the rest is re
flected back in the original channel. It is found that if th
energy of the injected electron equals the eigenenergy of
bound state in the quantum dot, there will occur strong re
nant tunneling, similar to that in usual quantum well stru
tures with double potential barriers. The theoretical meth
used is the mode-matching method. By treating the bound
conditions with the method proposed by us,9 we can transfer
the problem to the solution of a set of linear algebraic eq
tions with complex coefficients.

FIG. 1. Schematic illustration of the circular quantum dot a
resonant tunneling structure.
©2003 The American Physical Society10-1



nt
u

th
on

o

ry

th

th
es

i
e
e

er

an

th

rg
in

ial

re-
di-

ut
we

e
of

r-

JIAN-BAI XIA AND SHU-SHEN LI PHYSICAL REVIEW B 68, 075310 ~2003!
Section II explains the theoretical model, Sec. III prese
the calculated results and discussion, and Sec. IV is a s
mary.

II. THEORETICAL MODEL

The equation of the radial movement of electrons in
planar quantum dot structures is given in Ref. 5. The c
finement potential for the quantum dot~Fig. 1! is

V~r !5H 0, 0<r<r 1

V0 , r 1<r<r 2

`, r .r 2 ,

~1!

where V0 is the potential barrier height. In the absence
magnetic field, the wave functionfn(r ) can be written as

fn~r !5Jn~kr !, 0,r ,r 1 , ~2!

fn~r !5anI n~Kr !1bnKn~Kr !, r 1,r ,r 2 , ~3!

whereI n(x) andKn(x) are the Bessel functions of imagina
argument,

k5A2m* E

\2
, ~4!

K5A2m* ~V02E!

\2
. ~5!

an andbn are determined by the boundary conditions at
inner radius of the barrier regionr 1. The energy of bound
states is determined by

amI m~Kr 2!1bmKm~Kr 2!50, m50,1, . . . ,M , ~6!

which demands that the wave function equals zero at
outer boundary of the potential barrier region. In the pr
ence of perpendicular magnetic field, the wave functions
the quantum dot are given by the degenerate hypergeom
functions instead of the Bessel functions. But here we us

cn5
A2

r 2Jm11~an
m!

Jm~an
mr /r 2! ~7!

as the basic function to expand the wave function, wh
Jm(x) is the Bessel function ofmth order,an

m is its nth zero
point.

For the transport problem, the wave functions in the ch
nel region can be written as

Cc5(
l 51

N

~ale
iklx1ble

2 ikl x!f l~y!, ~8!

wherex is the coordinate along the channel outward from
central region andy is the transverse coordinate.f l(y) is
the transverse confined wave function with eigenene
El and N is the number of transverse modes involved
the transport:
07531
s
m-

e
-

f

e

e
-
n
tric

e

-

e

y

f l~y!5A2

d
sin

lpy

d
, ~9!

El5
\2

2m*
S lp

d D 2

, ~10!

whered is the width of channel,kl is the propagation wave
vector for thel th transverse mode:

kl5A2m* ~E2El !

\2
, ~11!

with E the electron energy, andkl can be imaginary.
The wave function for the quantum dot region~Fig. 1! can

be written as

Ca5 (
n52M

M

cnfn~r !einu/A2p, ~12!

wherefn(r ) is the radial wave function~3!. In real calcula-
tion, we use the numerical integration to calculate the rad
functions.

At the interface between the channel and the central
gion, the wave functions have to satisfy the boundary con
tions.

(
l 51

N

~al1bl !f l~y!1(
l 51

N

~al81bl8!f l~y8!

5 (
n50

M

cnfn~r 2!einu/A2p, ~13!

(
l 51

N

ikl~al2bl !f l~y!1(
l 51

N

ikl~al82bl8!f l~y8!

5 (
n50

M

cnfn8~r 2!einu/A2p, ~14!

wherer 2 is the outside radius,al , bl andal8 , bl8 are coeffi-
cients of wave functions in the electron going in and o
channels, respectively. According to the method in Ref. 9,
multiply the two sides of Eq.~13! by e2 imu/A2p and inte-
grate for u from 0 to 2p. Here we neglect the differenc
between the straight line of the channel and the arc line
the ring, the coordinatey can be changed tor 2u, and the
normalization constant of the transverse wave function~9! is
changed toA2r 2 /d. The two sides of the two channels co
respond to anglesu1 and u2 , u3 and u4, respectively, then
we obtain

(
l 51

N

~al1bl !I 2ml1(
l 51

N

~al81bl8!I 2ml8 5cmfm~r 2!,

m50,61,62, . . . ,6M . ~15!

By multiplying the two sides of Eq.~14! by fn(y) and inte-
grating foru from u1 to u2, we obtain
0-2
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ikn~an2bn!5 (
m50

M

cmfm8 ~r 2!I mn , n51,2, . . . ,N.

~16!

And by multiplying the two sides of Eq.~14! by fn(y8) and
integrating foru from u3 to u4, we obtain

ikn~an82bn8!5 (
m50

M

cmfm8 ~r 2!I mn8 , n51,2, . . . ,N,

~17!

where

I mn5A r 2

pdEu1

u2
sin

npr 2~u2u1!

d
eimudu, ~18!

I mn8 5A r 2

pdEu3

u4
sin

npr 2~u2u3!

d
eimudu. ~19!

If there are 2M11 Bessel functions involved in the sum
mation of Eq.~12! and N transverse states involved in th
summation of Eq.~8!, then we obtain 2M12N11 equa-
tions. In Eqs.~15!–~17!, bn andbn8 are coefficients of elec
tron waves traveling inwards or increasing exponentia
with x ~for imaginarykn), which are all set to be zero ac
cording to a physical consideration, except one coeffici
bi51/Aki , representing the amplitude of one injected wa
There are 2M12N11 unknown coefficients in Eqs.~15!–
~17!: an ,an8 (n51,2, . . . ,N) and cm (m50,61, . . . ,6M ),
therefore the set of equations is complete and unique.

Solving the set of equations we obtain the coefficie
an ,an8 , which are related to the transmission and reflect
amplitudes,

an5
r ni

kn
, ~20!

an85
tni

kn
. ~21!

The total transmission and reflection probabilities are giv
by

T5(
i j

ut i j u2, ~22!

R5(
i j

ur i j u2, ~23!

and

T1R5Nt , ~24!

where the summation is over all the traveling states in
channel, i.e., for all states withEi,E, Ei is given by Eq.
~10!. Nt is the number of traveling states. The coefficientscm
are simultaneously obtained, which give the wave function
the central region for a definite energyE @Eq. ~12!#. In our
calculation, the numbers of excited states involved in
07531
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calculation is five for the channel@Eq. ~8!#, and the wave
function for the central region@Eq. ~12!# is expanded up to
twentieth order of angular momentum quantum number.

III. RESULTS AND DISCUSSION

In the calculation, we use the width of the channeld as
the unit of length, the energy of the first transverse state
the channel@n51 in Eq. ~9!# as the unit of energyE0, the
electron momentumk5AE to represent the energyE ~in
units of E0), and

b5
\eB

m* c
/E0 ~25!

as the unit of magnetic-field strength. For definition, we c
culated the planar quantum dot with the inner and outs
radii r 152.5, r 253, andV055.

A. Electronic states

Figure 2 shows the electron momentumk as functions of
the angular momentumm in the absence of magnetic field
From Fig. 2, we see thatk vary basically linearly withm.
Figure 3 showsk as functions of the magnetic fieldb for
m50 and67 states. From Fig. 3, we see that atb50, k of
m567 states are degenerate, and larger than those om
50 state, as shown in Fig. 2. Asb increases, the degenerac
of 6m states is lifted, and all2m states~including m50
state! approach to a common limit. It occurs at aboutb52.
Figure 4 showsk as functions of the angular momentumm
in the magnetic field ofb51 andb54, respectively. From
Fig. 4, we see that forb54, k of 2m states are basically
constant, independent of2m value, while for b51 k of
2m states are different, dependent on the2m value. This
result was found early by Sikorski and Merkt,10 who studied
variation of the energy levels of InSb quantum dot with ma
netic field, using parabolic potential as the confinement
tential. They obtained the eigenenergy

FIG. 2. Electron momentum as a function of the angular m
mentumm in b50. The curves from down to up correspond to t
ground, the first excited, the second excited states, etc., respect
0-3
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Enm5S n1
umu
2

1
1

2Dv1
m

2
vc , ~26!

wherev25vc
214v0

2 , vc andv0 are circular frequencies o
the magnetic field and the confinement potential, resp
tively. From Eq.~26!, we see that whenvc@v0 , Enm→(n
1 1

2 )vc for m<0 states. This result is also valid for oth
circular quantum dots with arbitrary confinement potentia

B. Coulomb energy of two electrons

Figure 5 shows the Coulomb energies of two electronsEc
as functions of the magnetic fieldb for m50 and m54
states, respectively. The unit of the Coulomb energy
e2/«0d. From Fig. 5, we see that the Coulomb energiesEc
increase with the magnetic fieldb increasing. Because th
magnetic field produces a parabolic potential, the large
the magnetic field, the closer is the electron wave funct
located in the center region, resulting in increase of the C

FIG. 3. Electron momentum as a function of the magnetic fi
b for m50 and67 states.

FIG. 4. Electron momentum as a function of the angular m
mentumm for b51 andb54.
07531
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lomb energy. The increase ofEc of the m50 state is larger
than that of them54 state. It is noticed that in the presen
of magnetic field, though the eigenenergy (k) is different for
6m states, the wave functions are the same, therefore
Coulomb energies are also the same for6m states. Figure 6
showsEc as functions ofm for b50 andb54, respectively.
From Fig. 6, we see that the Coulomb energiesEc decrease
with m increasing, and the ones in the presence of magn
field (b54) are much larger than those atb50. The wave
function of a largerm state is distributed in the outer region
while the wave function of a smallerm state is distributed in
the center region, therefore the Coulomb energy of
smallerm state is larger than that of the largerm state.

C. Resonant tunneling properties

Figure 7 shows the transmission probabilitiesT as func-
tions ofk for the circular dot structure withu5p, 0.5p, and
0.75p, respectively. BecauseT varies by several orders o
magnitude, we take log10(T) as the ordinate. From Fig. 7, w
see thatT shows a series of sharp peaks, which are simila
resonant tunneling peaks in usual quantum well structu

d

-

FIG. 5. Coulomb energies of two electrons as functions of
magnetic fieldb for m50 andm54 states.

FIG. 6. Coulomb energies of two electrons as functions of
angular momentumm for b50 andb54.
0-4
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with double potential barriers. It can be proved that the
ergy of the peaks corresponds to the energy of the bo
states in the circular quantum dot. Comparing with Fig. 2,
can identify the peaks in Fig. 7 with the bound states in
circular dot, where the first number denotes the angu
quantum numberm and the second number denotes the or
of bound states.

Because the bound state in the circular dot has ang
relation eimu, we can use theT values from the structure
with different anglesu between the inject and exit channe
to check the identification. For the case ofu5p/2, T has the
angular relation ucos(mp/2)u2 which equals zero form
51,3,5, . . . , i.e., the resonance will not occur for thes
states. From Fig. 7, we see that all peaks withm51,3,5 are
restrained. Similarly for the case ofu53p/4, the resonance
will not occur for states ofm52,6,10, . . . . From Fig. 7, we
also see that all peaks withm52,6 are restrained.

Figure 8 showsT as functions ofk in the magnetic-field
strengthb50, 1, and 4 for the circular dot withu5p. From

FIG. 7. Transmission probabilities as functions of the elect
momentumk for the circular dot structure withu5p, 0.5p, and
0.75p in b50. The curves ofu50.5p and 0.75p are shifted down-
wards in order for clarity.

FIG. 8. Transmission probabilities as functions of the elect
momentumk for the circular dot structure withu5p in b50 ~solid
line!, b51 ~dashed line!, andb54 ~dotted line!.
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Fig. 8, we see that with the variation of the magnetic-fie
strength the position of the resonant peaks will change.
b54, there is no resonant peak. There is also corresp
dence between the energies of the resonant peaks and b
states in quantum dot. From Fig. 4, we see that atb54, the
energies (k) of bound states increase so that only grou
states of2m states have the same energiesk51.413, which
lie in the range of 1,k,2. Figure 9 showsT as functions of
the magnetic fieldb for k51.2. From Fig. 9, we see that th
height of the resonant peak decreases withb increasing, and
whenb>1.5 there is no resonant tunneling peak. The re
nant peaks in the quantum dot do not have a definite per
unlike theA-B ring. It is because that in theA-B ring the
oscillation of T is caused by the magnetic flux through th
ring, which makes the phase difference of electron wa
traveling in up and down arms changing periodically. In t
circular dot structures, the magnetic field changes the en
of bound states, resulting in the shift of the resonant pea
Therefore the resonant tunneling in the circular dot structu
can be used to study the bound states in the absence
presence of magnetic field.

IV. SUMMARY

In this paper, we studied theoretically the ballistic tran
port in the semiconductor, planar, circular quantum dot str
tures. The transmission probabilities show apparent reso
tunneling peaks, which correspond to energies of bou
states in the dot. By use of structures with different ang
between the inject and exit channels, the resonant peaks
be identified very effectively. The perpendicular magne
field has obvious effect on the energies of bound states in
quantum dot, and thus the resonant peaks. The treatme
the boundary conditions simplifies the problem to the so
tion of a set of linear algebraic equations. The theoreti
results in this paper can be used to design planar reso
tunneling devices, whose resonant peaks are adjustabl
the angle between the inject and exit channels and the
plied magnetic field. The resonant tunneling in the circu

n

n

FIG. 9. Transmission probabilities as functions of the magne
field b for the circular dot structure withu5p and electron momen-
tum k51.2.
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dot structures can also be used to study the bound stat
the absence and presence of magnetic field. For example
take the width of the channel,d520 nm; the outside radiu
r 2560 nm; the effective massm* 50.067m0. Hence the en-
ergy unitE0514 meV,b50.4 corresponds to the magneti
field strengthB53.25 T. All these physical quantities ar
accessible experimentally with present nanometer-scale
thography technique and other techniques.

For the quantum dot of irregular shape, we can divide
region into many small segments. Each segment can be
as a rectangular region with small width, and the total tra
fer matrix is evaluated by multiplication of the transfer m
g

.
re

ia

n

m
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trices of all segments.9 The effect of the soft wall is consid
ered in Ref. 11, where the resonant peaks are shifted rel
to those in the hard wall case, but the whole structure has
changed. Therefore we expect that in our case for the
wall potential, the confined energy will decrease somew
and the resonant peaks are moved to the low momen
value.
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