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Resonant tunneling theory of planar quantum dot structures
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The ballistic transport in the semiconductor, planar, circular quantum dot structures is studied theoretically.
The transmission probabilities show apparent resonant tunneling peaks, which correspond to energies of bound
states in the dot. By use of structures with different angles between the inject and exit channels, the resonant
peaks can be identified very effectively. The perpendicular magnetic field has obvious effect on the energies of
bound states in the quantum dot, and thus the resonant peaks. The treatment of the boundary conditions
simplifies the problem to the solution of a set of linear algebraic equations. The theoretical results in this paper
can be used to design planar resonant tunneling devices, whose resonant peaks are adjustable by the angle
between the inject and exit channels and the applied magnetic field. The resonant tunneling in the circular dot
structures can also be used to study the bound states in the absence and presence of magnetic field.
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[. INTRODUCTION tized conductance phenomerfohinspired by the prospect
of building devices based on the quantum interference effect,

In the past few years, self-assembled dots have attractegany authors have proposed various strucfuneade from
considerable interest because their atomlike properties maKk#égh mobility modulation-doped AlGaAs/GaAs heterostruc-
them ideal for studying the physics of confined carriers andures. The most prominent advantage of the quantum inter-
many-body effects. They could also lead to novel devicederence device lies in the fact that its operation is controlled
applications in fields such as quantum cryptography, quanPy the relative phase of the electron waves and a very high
tum computing, optics, and optoelectronics. Altering growthswitching speed can be achieved. In this paper, we study a
condition, Garciaet al® fabricated quantum dots with a ring Planar circular quantum dot structure with outer potential
Shape_ The decisive difference between quantum rings arhﬁrl’ier, which is schematically illustrated in Fig. 1. We first
quantum dots is their topology—the hole in their middle— study the electronic states of an isolated planar quantum dot
becomes dominant when an external magnetic field is aph the absence and presence of perpendicular magnetic field.
plied. The magnetic flux that penetrates the interior of thefhen we study the transport property: the electron wave is
ring will then determine the nature of the electronic statesinjected in the channel at the righ#<0), the wave partly
Warburtonet al? reported how the optical emissigphoto- ~ €xits out in the channel at the angle, and the rest is re-
luminescenceof a single ring changes abruptly whenever anflected back in the original channel. It is found that if the
electron is added to the ring, and that the sizes of the jumpenergy of the injected electron equals the eigenenergy of the
reveal a shell structure. Lorket al3 employed capacitance bound state in the quantum dot, there will occur strong reso-
spectroscopy and infrared-absorption spectroscopy to invegant tunneling, similar to that in usual quantum well struc-
tigate both the ground states and the excitations of thes@éires with double potential barriers. The theoretical method
rings. Applying a magnetic field perpendicular to the planeused is the mode-matching method. By treating the boundary
of the rings, they found that, when on flux quantum threadgonditions with the method proposed by“use can transfer
the interior of each ring, a change in the ground state fronthe problem to the solution of a set of linear algebraic equa-
angular momentunm=0 to m=—1 takes place. Theoreti- tions with complex coefficients.
cally, Llorenset al? studied the electronic states of quantum
rings under applied lateral electric field. Xia anc kialcu-
lated the electronic structure and transport properties of
guantum rings in a magnetic field.

In this paper, we study theoretically the electronic struc-
ture and the transport property of one kind of quantum dot
structure, planar quantum dots, whose height is much smaller
than their lateral size, so that we can use the adiabatic ap-
proximation where the motion along theaxis is decoupled
from that in thex-y plane, and we only consider the confined
states in thex-y plane. Recent technological advances in
nanometer-scale lithography and atomic-layer epitaxy which
can provide semiconductor planar microstructures, whose
size is smaller than the inelastic and elastic mean scattering
lengths, have attracted much attention to the study of meso- FIG. 1. Schematic illustration of the circular quantum dot and
scopic systems, especially after the discovery of the quarnesonant tunneling structure.
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Section Il explains the theoretical model, Sec. Ill presents 2 lmy
the calculated results and discussion, and Sec. IV is a sum- d(y)= \[asinT, (9)
mary.
%2 [la\2
Il. THEORETICAL MODEL E = (_) (10)
2m* | d

The equation of the radial movement of electrons in the
planar quantum dot structures is given in Ref. 5. The conwhered is the width of channel, is the propagation wave

finement potential for the quantum ddtig. 1) is vector for thelth transverse mode:
0, OSrSrl 2m*(E_E|)
V(r)=4 Vo, risr=r, (1) ki= \/ 52 ! (12)
o, r>rs,

with E the electron energy, ard can be imaginary.
whereV, is the potential barrier height. In the absence of The wave function for the quantum dot regigfig. 1) can
magnetic field, the wave functio#,(r) can be written as ~ be written as

n(r)=Jn(kr), 0 : 2 . i
pn()=Jn(kr), 0<r<ry @ Vo= 3 codn(re2m, (12)

Dn(1) = aply(Kr) + B KL (Kr),  1<r<r,, ©)

wherel ,(x) andK,,(x) are the Bessel functions of imaginary
argument,

where ¢,(r) is the radial wave functio3). In real calcula-
tion, we use the numerical integration to calculate the radial

functions.
" At the interface between the channel and the central re-
K= 2m*E (4) gion, the wave functions have to satisfy the boundary condi-
B2’ tions.
N N
* — ’ ! ’
ke /2 (VomE) 5 >, (@b di(y)+ 2 (al+b))di(y’)
hz . =1 =1
d d ined by the bound diti h <
ay, and B, are determined by the boundary conditions at the _ c r)ein? /2 13
inner radius of the barrier region,. The energy of bound ngo nénlr2) V2, 13
states is determined by
N N
aml m(Kr2) + BuKm(Kr) =0, m=0,1,... M, () 2, iki(@=b) ¢i(y)+ 2, ikiaf ~=b{)i(y")
which demands that the wave function equals zero at the v
outer boundary of the potential barrier region. In the pres- B , ing, A
ence of perpendicular magnetic field, the wave functions in _nZO Cnepn(r2) e/ V2, (14

the quantum dot are given by the degenerate hypergeometric
functions instead of the Bessel functions. But here we use wherer, is the outside radius,, b, anda, , b are coeffi-
cients of wave functions in the electron going in and out

V2 channels, respectively. According to the method in Ref. 9, we
— m K
‘/’n_rZJ (" Im(anr/rs) (M multiply the two sides of Eq(13) by e~ ™% 27 and inte-
m n

grate for @ from O to 27. Here we neglect the difference
as the basic function to expand the wave function, wherdetween the straight line of the channel and the arc line of
Jm(X) is the Bessel function afith order,a] is its nth zero  the ring, the coordinaty can be changed to,6, and the

point. normalization constant of the transverse wave funct®ns
For the transport problem, the wave functions in the chanchanged toy2r,/d. The two sides of the two channels cor-
nel region can be written as respond to angleg, and d,, 65 and 6,, respectively, then
" we obtain
V=2, (ae+be Mg (y), ®) N
I=1

N

2, (@bl it 2, (@] b)) = Crnb(r2),
wherex is the coordinate along the channel outward from the

central region and is the transverse coordinate,(y) is m=0+1+2 .. .+M. (15)
the transverse confined wave function with eigenenergy

E, and N is the number of transverse modes involved inBy multiplying the two sides of Eq14) by ¢,(y) and inte-
the transport: grating for 6 from 6, to 6,, we obtain
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M
ikn(a,—by)= E_O Cnbm(T) s N=1,2,... N.
(16)

And by multiplying the two sides of Eq14) by ¢,(y') and
integrating for@ from 65 to 6,, we obtain

M ey
ikn(ah—bl)= > cmdr(t)lly,  N=12,...N,
m=0
17

r 0 nmro(6— 0 .
|mn=\/—2j s 20700 magy (1)
’Tl'd 01 d

o /r—zf(usi naro( 60— 63) dmig g (19 FIG. 2. Electron momentum as a function of the angular mo-
mn dJo, n d ' mentumm in b=0. The curves from down to up correspond to the
ground, the first excited, the second excited states, etc., respectively.
If there are 21 + 1 Bessel functions involved in the sum-
mation of Eq.(12) and N transverse states involved in the calculation is five for the chann¢Eq. (8)], and the wave
summation of Eq(8), then we obtain ®+2N+1 equa- function for the central regiofEq. (12)] is expanded up to
tions. In Egs.(15)—(17), b, andb/, are coefficients of elec- twentieth order of angular momentum quantum number.
tron waves traveling inwards or increasing exponentially
with x (for imaginaryk,), which are all set to be zero ac- [ll. RESULTS AND DISCUSSION
cording to a physical consideration, except one coefficient

: . . In the calculation, we use the width of the chandeds
b;=1/\k;, representing the amplitude of one injected wave, : ’ . .
There are 31+ 2N+ 1 unknown coefficients in Eq¢15)— the unit of length, the energy of the first transverse state in

07 35 (=12 ) andoy (=01, =), e SAEINCA €09 3 e untofencrof e
therefore the set of equations is complete and unique. N P o

Solving the set of equations we obtain the coefficientsunItS 0f ), and

a,,a,, which are related to the transmission and reflection heB
amplitudes, b= 1Eq (29

where

m*c
r' .
an:%a (20 as the unit of magnetic-field strength. For definition, we cal-
culated the planar quantum dot with the inner and outside
radiir;=2.5,r,=3, andV,=5.

’ tni
an=k—. (21)
n A. Electronic states
The total transmission and reflection probabilities are given Figure 2 shows the electron momentunas functions of
by the angular momenturm in the absence of magnetic field.
From Fig. 2, we see that vary basically linearly withm.
TZZ |tij|2, (22 Figure 3 shows« as functions of the magnetic fieldl for
ij

m=0 and=*7 states. From Fig. 3, we see thatat 0, « of

m= *7 states are degenerate, and larger than thosa of
R= Ir |2, (23) =0 state, as shown in Fig. 2. Asincreases, the degeneracy

] ! of =m states is lifted, and al-m states(including m=0

statg approach to a common limit. It occurs at abtwt 2.

Figure 4 showsc as functions of the angular momentum
T+R=N,, (24) in the magnetic field ob=1 andb=4, respectively. Erom

Fig. 4, we see that fob=4, « of —m states are basically
where the summation is over all the traveling states in theonstant, independent of m value, while forb=1 « of
channel, i.e., for all states witg;<E, E; is given by Eq. —m states are different, dependent on then value. This
(10). N, is the number of traveling states. The coefficienis  result was found early by Sikorski and MefRiwho studied
are simultaneously obtained, which give the wave function invariation of the energy levels of InSb quantum dot with mag-
the central region for a definite ener§y[Eq. (12)]. In our  netic field, using parabolic potential as the confinement po-
calculation, the numbers of excited states involved in theential. They obtained the eigenenergy

and
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FIG. 5. Coulomb energies of two electrons as functions of the
FIG. 3. Electron momentum as a function of the magnetic fieldmagnetic fieldb for m=0 andm=4 states.

b for m=0 and=* 7 states.

lomb energy. The increase &, of the m=0 state is larger
than that of then=4 state. It is noticed that in the presence
of magnetic field, though the eigenenergy) (s different for
+m states, the wave functions are the same, therefore the
wherew?= w?+4wj, o, andw, are circular frequencies of Coulomb energies are also the same-fan states. Figure 6
the magnetic field and the confinement potential, respecshowsE, as functions ofnfor b=0 andb=4, respectively.
tively. From Eq.(26), we see that whem > wq, E,—(N From Fig. 6, we see that the Coulomb enerdiesdecrease
+3)w, for m=0 states. This result is also valid for other with m increasing, and the ones in the presence of magnetic
circular quantum dots with arbitrary confinement potential. field (b=4) are much larger than thoselat0. The wave
function of a largem state is distributed in the outer region,
B. Coulomb energy of two electrons while the wave function of a smallen state is distributed in
the center region, therefore the Coulomb energy of the
smallerm state is larger than that of the largarstate.

Im/ 1
n+—+=

Enm: 2 2

m
w+ 5 @ (26)

Figure 5 shows the Coulomb energies of two electiBns
as functions of the magnetic field for m=0 and m=4
states, respectively. The unit of the Coulomb energy is ) _
e’/eod. From Fig. 5, we see that the Coulomb enerdies C. Resonant tunneling properties
increase with the magnetic field increasing. Because the Figure 7 shows the transmission probabilitiess func-
magnetic field produces a parabolic potential, the larger isions of « for the circular dot structure with= 7, 0.5z, and
the magnetic field, the closer is the electron wave fUﬂCtiOfD_?Sﬂ-, respectively. Becaus€ varies by several orders of
located in the center region, resulting in increase of the Coumagnitude, we take lqg(T) as the ordinate. From Fig. 7, we

see thail shows a series of sharp peaks, which are similar to

7 resonant tunneling peaks in usual quantum well structures
6
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FIG. 4. Electron momentum as a function of the angular mo- FIG. 6. Coulomb energies of two electrons as functions of the
mentumm for b=1 andb=4. angular momentunm for b=0 andb=4.
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FIG. 7. Transmission probabilities as functions of the electron b
momentum for the circular dot structure witly=, 0.5, and FIG. 9. Transmission probabilities as functions of the magnetic
0.757 inb=0. The curves of=0.57 and 0.75r are shifted down-  fie|q b for the circular dot structure with= 7 and electron momen-
wards in order for clarity. tum x=1.2.

with double potential barriers. It can be proved that the enFig. 8, we see that with the variation of the magnetic-field
ergy of the peaks corresponds to the energy of the boungtrength the position of the resonant peaks will change. At
states in the circular quantum dot. Comparing with Fig. 2, wep=4, there is no resonant peak. There is also correspon-
can identify the peaks in Fig. 7 with the bound states in thelence between the energies of the resonant peaks and bound
circular dot, where the first number denotes the angulagtates in quantum dot. From Fig. 4, we see thdi-a#, the
quantum numbem and the second number denotes the ordeenergies ) of bound states increase so that only ground
of bound states. states of—m states have the same energies1.413, which
Because the bound state in the circular dot has angulaje in the range of & x<2. Figure 9 showd as functions of
relation €™’ we can use thd values from the structures the magnetic field for k=1.2. From Fig. 9, we see that the
with different angles? between the inject and exit channels height of the resonant peak decreases Withcreasing, and
to check the identification. For the casetst 7/2, Thas the  whenb=1.5 there is no resonant tunneling peak. The reso-
angular relation|cos(m/2)|*> which equals zero form  nant peaks in the quantum dot do not have a definite period,
=13,5..., i.e, the resonance will not occur for these unlike the A-B ring. It is because that in tha-B ring the
states. From Fig. 7, we see that all peaks wit 1,3,5 are  oscillation of T is caused by the magnetic flux through the
restrained. Similarly for the case éf=3/4, the resonance ring, which makes the phase difference of electron waves
will not occur for states om=2,6,1Q . ... From Fig. 7, we  traveling in up and down arms changing periodically. In the
also see that all peaks with=2,6 are restrained. circular dot structures, the magnetic field changes the energy
Figure 8 showsT as functions ofk in the magnetic-field of bound states, resulting in the shift of the resonant peaks.
strengthb=0, 1, and 4 for the circular dot with= 7. From  Therefore the resonant tunneling in the circular dot structures
can be used to study the bound states in the absence and
-2 presence of magnetic field.

IV. SUMMARY

In this paper, we studied theoretically the ballistic trans-
port in the semiconductor, planar, circular quantum dot struc-
tures. The transmission probabilities show apparent resonant
tunneling peaks, which correspond to energies of bound
states in the dot. By use of structures with different angles
between the inject and exit channels, the resonant peaks can
be identified very effectively. The perpendicular magnetic
field has obvious effect on the energies of bound states in the
quantum dot, and thus the resonant peaks. The treatment of
-12 : : : : the boundary conditions simplifies the problem to the solu-

' ' ' ' ' tion of a set of linear algebraic equations. The theoretical
results in this paper can be used to design planar resonant

FIG. 8. Transmission probabilities as functions of the electrontunneling devices, whose resonant peaks are adjustable by
momentumk for the circular dot structure with= in b=0 (solid  the angle between the inject and exit channels and the ap-
line), b=1 (dashed ling andb=4 (dotted ling. plied magnetic field. The resonant tunneling in the circular

log,(T)
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dot structures can also be used to study the bound states firices of all segment3The effect of the soft wall is consid-
the absence and presence of magnetic field. For example, veged in Ref. 11, where the resonant peaks are shifted related
take the width of the channeall=20 nm; the outside radius to those in the hard wall case, but the whole structure has not
r,=60 nm; the effective mags* =0.067n,. Hence the en- changed. Therefore we expect that in our case for the soft
ergy unitEy=14 meV,b=0.4 corresponds to the magnetic- wall potential, the confined energy will decrease somewhat
field strengthB=3.25 T. All these physical quantities are and the resonant peaks are moved to the low momentum
accessible experimentally with present nanometer-scale livalue.
thography technique and other techniques.
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