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Surface-state conduction throughs-bonded chains
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The surface-state conduction of tfeL1)2X1 surfaces of group-IV semiconductors is studied theoretically.
The conductance between the surfaces and a single tip or double tips is calculated using the Landauer formal-
ism. The calculated conductance shows strong site dependence and polarity asymmetry in the cases of the Si
and Ge surfaces. But they do not appear in the case of the diamond surface. These differences in the conduction
properties reflect the difference in the buckling of the topmost atoms ofrthended chain structures. The
double-tip conductance shows directional anisotropy which is reduced by the buckling.
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I. INTRODUCTION In these studies, we used simple models in order to see
the physical quantities determining the surface-state conduc-
In recent decades, the understanding of the microscopition as clearly as possible by reducing the number of param-
electrical transport has remarkably progressed. The quantumaters. However, the surface states of real surfaces are not
mechanical transport on the submicron scales has extensivedymple as these models. Therefore, in this paper, we study the
been studied in the field of mesoscopic systerhand the surface-state conduction of more realistic surfaces. Among
properties of the atomic-scale electrical conduction havehe realistic surfaces, we choose tfid1)2x1 surfaces of
been revealed by scanning tunneling microsc¢gyM).* group-IV semiconductors because they have relatively
Examples of the advances in recent years are the direct megimple structures.
surement of the conductance through single molecides The (111) surfaces of group-1V elements are fundamental
through atomic wires with simultaneously monitoring the syrfaces and have extensively been studied so far. A famous
atomic structure@.ln these experiments, the distances be-gxample is the $111)7x7 reconstructed surface. While this
tween probes are fixed or varied at best by one order.  reconstruction is the most stable structure amoiigi%) sur-
If we try to investigate the electrical transport continu- 5065 the surface cleaved at room temperature shows a meta-

ously from the macroscopic to microscopic scales, the eXzianie 21 reconstruction. It is now established that the

perimental method using microscopic multiprobes is a PrOMtomic structure of the Gi11)2Xx1 surface is explained by

ising tool/*! In these experiments, probes are contacted e m-bonded chain model proposed by Pantel.is also

parallel on the surfaces of materials and currents flow laterl'fnown that the(111)2x1 surfaces of other group-IV ele-

ally between probes. In such a configuration, the electrica . .
conduction becomes more sensitive to the electronic states treun;fljrslflrgond’ Geq-Sn also have ther-bonded chain

surface regions with decreasing the probe distances. At ext , i i ,
tremely short distances, most currents may flow through the 1h€7-bonded chain structure is characterized by the zig-
conduction channels specific to surfaces. From this point, i£@9 chains in the top two layers. The zigzag chain of the top

is important to clarify the properties of the conduction layer consisting of two atoms in a surface unit ce_II is buckled
through surface states and we have presented theoretidflthe cases of the Si and Ge surfaces, but not in the case of
studies on the ballistic conduction through surface states ithe diamond surface. With increasing the buckling ampli-
previous paper§ 14 tude, the band gap in the surface-state bands increases and
In the first paper, we studied the conduction throughthe atoms of the top layer are ionized by the charge transfer
Tamm surface states using a simple model and discussed thetween them. The absence of buckling in the diamond sur-
following points!? One is the mechanism of the observationface is explained by the strong intraatomic Coulomb repul-
of surface states in STM, which was an unsettledsion preventing the charge transfern other picture, the
problem®® Second is the conduction across steps of surstrong covalent bonding of diamond excels the energy gain
faces, where the differences between surface states and buk occupied surface-state bands lowered by buckling. There
states were clarified. Third are the conduction properties ifis a chemical trend in buckling strength from diamond to
double-tip systems. We found also that the important factor&e*® including Sn*°
determining the surface-state conduction are the localization Up to now the atomic structures and electronic band
strength of wave functions and the bandwidths of surfacestructures of ther-bonded chain surfaces have extensively
state bands. been studied. But the properties of the electrical conduction
In the second paper, we studied the conduction througbf these surfaces were scarcely known. So we study the elec-
the Shockley surface states using sp-hybridized chain  trical conduction through the-bonded chains in this paper.
model’® We solved analytically the wave functions and A main interest in this study is to clarify the differences and
showed how the localization properties of the wave functionsimilarities in the surface-state conduction among the
depend on the physical quantities determining the bullgroup-IV elements. Since the buckling strongly affects the
bands. We found that density of stat€0S) is more impor-  surface states, we expect that the surface-state conduction is
tant than group velocity in the ballistic conduction. sensitive to the buckling strength. The method of calcula-
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(a) 12 tions show that the differences in the surface energy between
the isomers are very smafi.A comparison of quasiparticle
calculations in th&sW approximation with experimental data
suggests that the Si and Ge surfaces have the chain-right and
chain-left structures, respectiveély.So we assume these
structures for the Si and Ge surfaces in this paper. In the case
of the diamond surface, the chain-right and chain-left iso-
mers are identical structures due to the absence of buckling.

The electronic states of the surfaces are expressed using
the sp®s* tight-binding method? in which, in addition to

b 12 the minimal ones and threep orbitals, an additionas orbital
denoted bys* is introduced in order to express accurately
the conduction bands of the bulk semiconductors in the dia-
mond and zinc-blende structures.

At present, it is possible to calculate the electronic states
of these surfaces by more sophisticated methods such as the
density-functional method. However, it has not yet been es-
tablished to calculate the electrical conductance through sur-
face states on nanoscales by the density-functional method.
There are more accurate tight-binding methods taking ac-

(c) 1.2 count of the interactiqns beyond n_earest neighbors. Howev_er,
these methods are intended mainly for the bulk electronic
states and the parameterizations for thdéonded surfaces
are not known. The purpose of the present paper is not to
calculate quantitatively the electrical conductance but to
clarify the qualitative difference in surface-state conduction
among the group-1V semiconductor surfaces. Therefore, it is
enough to express qualitatively the electronic states of these
surfaces. Furthermore, we are interested in the electrical con-
duction on nanoscales such as the double-tip system. There-

FIG. 1. Side views of atomic structures of the diamdgy Si fore, it is desiraple to reduce the basis or parameters express-
(b), and Ge(c) (1112x1 mbonded chain surfaces. Open and INd the electronic states of the surfaces in order to calculate
closed circles show the positions of the atoms on the same planeff}€ conduction of systems as large as possible. So we use the
Labels 1 and 2 denote the numbers of the topmost chain atoms usé®’S* tight-binding method in this paper.
in this paper. While the topmost atoms of the diamond surface do Figure 2 shows the band structures of the diamond, Si,
not buckle, those of the Si and Ge surfaces buckle in the chain-rigrand G€111)2X1 surfaces calculated by trep’s* method.
and chain-left structures, respectively. In the surface band calculations, we use slabs consisting of

ten double layers. The atoms below the third double layer are

tions is shown in Sec. Il. The numerical results and discusplaced in the atomic positions of the bulk crystals. The trans-

sions are presented in Sec lll. fer energies between the atoms in the positions different from
the ideal bulk ones are calculated using the law by Harffson
Il. METHOD OF CALCULATION where the transfer energy is inversely proportional to the

square of the interatomic distance. We neglect the transfer

The method of numerical calculations is similar to thoseenergies between the atoms when the distances between
used in the previous studies of the surface-statehem are larger than 1.2 times of the bulk bond lengths. This
conduction*>~**We consider systems consisting of a surfacesatisfies the condition that the coordination numbers of the
and a single STM tip or double STM tips, and calculate thetopmost chain atoms and others are three and four, respec-
conductance of them using the Landauer formalftst. tively. The dangling bonds on the reverse sides of the slabs

The surfaces studied in this paper are the diamond, Si, anafe terminated with hydrogen atoms in order to remove the
Ge (111)2x1 surfaces in ther-bonded chain structures. The surface states which appear in the fundamental band gaps
atomic structures of these surfaces are shown in Fig. 1. Wand are localized at the reverse sides.
use the atomic positions obtained by a simulation using an In the band calculations, we slightly change the tight-
empirical potential for the diamond surfatepy a low-  binding parameters and atomic positions in order to fit better
energy electron-diffraction experiment for the Si surf&ce, the band structures obtained by density-functional calcula-
and by a density-functional calculation for the Ge surface. tions. In the diamond surface, the on-site energies of the
In the cases of the Si and Ge surfaces the topmost chaibutermost chain atoms are uniformly shifted b2.0 eV in
atoms are buckled and there are two isomers called chaimrder to adjust the positions of the surface-state bands with
right and chain-left structurés.Density-functional calcula- respect to the bulk ones. In the Si surface, the on-site ener-
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10 of conductance, because as stated above we discuss the prop-
(a) erties of the surface-state conduction not depending on the
quantitative details of the band structures. The main conclu-
sions in this paper does not qualitatively change even if the
tight-binding parameters are slightly varied.

In the surface electronic states, we do not take account of
the surface band bending. The band-bending effect appears
0 in various aspects of STM measurements. However, the main
interest in this paper is the conduction through surface states.
Since the wave functions of surface states are localized
within a few layers of surfaces, it can be expected that the
r J K J r band-bending effect is not so important in the surface-state
conduction.

The method of calculating the surface-state conductance
is described in previous papéfs*Since we are interested
in the transport properties on nanoscales, we use the Land-
auer formalism. In the Landauer formalism, conducta@Gce
is given by

Energy (eV)
@)

(b)

Energy (eV)

G=GoX T, (2.2)

wv

whereT ,, is the transmission probability from theth inci-
dent channel to theth scattered channeg, is the quantized
conductance unit &/h.

In the single-tip case, we calculate the transmission prob-
ability from the tip to the surface. In the double-tip case, we
consider the situation that the surface is connected with an
electrode independent of the two tips. The chemical potential
of the first tip injecting electrons into the surface is higher
than that of the surface, and that of the second tip is equal to
the surface chemical potential. So a part of the electrons
injected by the first tip into the surface is ejected through the
second tip and the remaining electrons go out through the
electrode connected with the surface. Then, we calculate the
transmission probability from the first tip to the second tip as
well as to the surface.

We use a single atomic chain as a model of the tip.

FIG. 2. Band structures of the diamora, Si (b), and Ge(c) Though this may not be a realistic model for STM tips, we
surfaces calculated by tiep®s* tight-binding method. The zero in use it for following reasons. First, in the usual experimental
energy corresponds to the top of the bulk valence bands. situation observing normal STM images, the transmission

between a surface and the atom at the apex of an STM tip is
gies of atoms 1 and 2 are shifted by0.45 and—0.8 eV, = mostimportant and the electronic states of the remaining part
respectively, and the buckling of the chain atoms is increasedf the tip is not essential. Second, since we are interested in
by lifting and lowering the positions of the upper and lower the nanoscale transport in surfaces, it is desirable to lighten
atoms, respectively, by 0.08 A perpendicular to the surfacethe load in the numerical calculation of the tip by using a tip
in order to adjust the buckling amplitude to that obtained bymodel as simple as possible.
a recent first-principles calculatidfi.In the Ge surface, the We assume that there is only oserbital in each atom of
atoms in the second layer are shifted in fbh21] direction by  the tip. The on-site and transfer energies are fixed at the top
0.1 A. In the band structure of the Ge surface, the stateef the valence bands of the surfaces atfileV, respectively.
localized at the reverse side of the slab are removed. All the transfer energies between the apex atom of the tip

The calculated band structures reproduce the features &nd thes, p,, s* orbitals of the surface atom connected with
the band structures obtained by the density-functional calcuhe tip are—0.5 eV, wherez is the direction perpendicular to
lations in the local-density approximation for thet®%27=2°  the surface. As shown in the numerical results of the follow-
Si*® and Gé823 surfaces, and by the quasiparticle calcula-ing section, this tip-surface interaction yields conductance
tions in the GW approximation for the $%! and Gé*%?  values corresponding to the point-contact measurements
surfaces. Though the surface band structures calculated bgither than the usual STM experimental situations. In actual
the sp’s* tight-binding method do not quantitatively agree measurements of the surface-state conduction, the point-
with the first-principles ones, we use them in the calculationgontact condition may be useful because large currents im-

Energy (eV)
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tn

prove sensitivity. Since the point-contact condition is as-

sumed, it is not necessary to take account of the energy
dependence of the tip-surface interaction which is important
in the tunneling condition because the tunneling probability

depends exponentially on the square root of energy.

In order to calculate the transmission probability, we solve
the Schrdinger equation on appropriate boundary condi-
tions. The wave function of the tip injecting electrons is ex-
pressed by linear combination of an incident wave and a
reflected wave. The wave function of the second tip in the |
double-tip case has only an outgoing wave. We impose the 0 , , ,
boundary condition of outgoing waves on the surface. In -4 -2 0 2 4
particular, in order to calculate unambiguously the surface- .
state conduction, we impose it on the directions parallel to Bias Voltage (V)
the surface. For this, we define an imaginary hexahedral re- 1
gion in the surfacé? 4

The size of the imaginary region isNy X N, X N5 super-
cell of the unit cell, whereN; and N, are the numbers of
cells parallel to the surface and; is that perpendicular to
the surface. We impose the boundary condition of outgoing
waves on the five faces of the hexahedron except for one
facing the vacuum.

The outgoing waves are obtained by solving generalized
eigenvalue problems of wires, where the cross section of a
wire is the same as that of each face of the hexaheron.
Bloch waves are usually obtained by diagonalizing the trans-
fer matrix which is defined by matrices expressed by using
the on-site energies and transfer energies in the tight-binding Bias Voltage (V)
methods. In the present case, since the determinant of the

(a) C

Conductance (2ez/h)

|®) si

Conductance (2e2/h)

0 2

. L 1
matrix expressed by the transfer energies is zero, the transfer _ |
matrix cannot be defined. Therefore, instead of the transfer = (© Ge
matrix, we define a generalized eigen problem and obtain 8 |
the Bloch states by solving 1. Since the determinant is @
zero, there are solutions that the eigenvalue or its inverse is § |
zero. We discard them and consider only the solutions with ‘g’ 0.5
nonzero and finite eigenvalues. Outgoing Bloch states are S
selected out by cal_c_ulating the groupﬂvglocity. By i_mposing S
the boundary conditions above the Satinger equation of
the tip-surface systems is reduced to a finite coupled linear i
equation and the transmission probability is obtained by (') ' 2
solving it.

Bias Voltage (V)
IIl. NUMERICAL RESULT FIG. 3. Single-tip conductance spectra of the diaméad Si

(b), and Ge(c) surfaces. Solid and dotted lines show spectra when
a tip is put on the topmost atoms labeled by 1 and 2 in Fig. 1,
Figure 3 shows calculated conductance spectra. The latespectively.
eral and vertical sizes of the imaginary hexahedral region are
a 4x7 super cell of the 1 surface unit cell and five double 7-bonded chains. When the tip is put on the atom 1 of the Si
layers, respectively. The tip is put on the topmost chain atsurface, conductance is large and small in the energy regions
oms nearest to the center on the surface of the imaginagf the occupied and unoccupied surface-state bands, respec-
region. Solid and dotted lines show the spectra when the tigively. In the case of the atom 2, the dependence on polarity
is put on the chain atoms labeled by 1 and 2 in Fig. 1js reverse. The spectra of the Ge surface show features simi-
respectively. lar but reverse to those of the Si surface. This is because we
In the case of the diamond surface, the conductance speassume the chain-right and chain-left isomer structures for
tra of the tip positions on the atoms 1 and 2 are almost théhe Si and Ge surfaces, respectively. In both surfaces, the
same and show the one-dimensional DOS feature havingonductance of the occupied states is large when the tip is
peaks at—2.4 and 3.2 V. On the other hand, the spectra ofput on the atom shifting to the vacuum side by buckling. The
the Si and Ge surfaces depend strongly on the tip positiorasymmetry between the occupied and unoccupied states in
This difference reflects the difference in buckling of thethe spectra of the Ge surface is larger than that of the Si

A. Single tip
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5 1 1
§ 7 (a) Si atom 1 ,LLeff—Em( 1+ W) , (3.1
Z
Eg wherew, (k) is a delocalization factor defined by
E Walky)= 2 2, [Cuiu(kp) 2(1=1). (32
- :
0
-2 In the above,n and k; are a band index and a two-
dimensional wave vector in the surface Brillouin zone, re-
Energy (eV) spectively.Cy,(K;) is a coefficient of thevth atomic orbital
5 in a surface unit cell of théth double layer numbered from
g (b) Siatom2 the outermost surface layer. The effective decay constant of
< bulk states calculated using a finite slab with a thicknegs of
A layers is not zero but-1/N. Therefore, we judge that when
T 5 the effective decay constant is larger thaN 2the state is a
&3 surface state.
E 8 A comparison between the conductance spectra and
[=J LDOS shows that the conductance spectra are roughly pro-
G portional to the LDOS. It is well known that the tunneling
3 conductance between an STM tip and a sample surface is
proportional to the LDOS of the sample surféfddowever,
0_2 it is not obvious whether this result holds for the surface-

state conduction also because the current paths in a sample
Energy (eV) are different between the bulk and surface conductions.
FIG. 4. The LDOS of the Si surface at the atonfaland 2(b) ' hough the LDOS of surface states is finite at surfaces, there
shown in Fig. 1. Solid and dotted lines show the surface-state an@'€ cases where conductance is zero because surface states
bulk-state components, respectively. are waves not propagating perpendicular to surfaces. This

. . , rose a question about the mechanism of the surface-state
surface. This reflects the fact that the buckling amplitude o bservation in STM58 In order to discuss the mechanism

the Ge surface is larger than that of the Si surface and the

wave functions localize more on either atom of the topmosf) F the surface-statg obser'vat|on, W? 4ca|culated the surface-
chain atoms state conductance in previous papér¥ and found that the

The STM images of the Si and Ge surfaces were obtaine urface-state conductance is qualitatively proportional to the

experimentally®~*5where the asymmetry of the bright spots DOS if there are conduction paths ?hat allow current to
between the occupied and unoccupied states was clearly oflow .Iaterally. The present result reconfirms the results of the
served on both the surfaces. The local conductance spectra Bf€VIOUS Papers.
these surfaces were also measured directly by using scanning The LDOS shows asymmetry between the valence and
tunneling spectroscop{sTS), but the asymmetry of polarity conduction bands, which is similar to the conductance spec-
is not seen in the STS spectra. This may be due to the artifaéta. But the strength of the asymmetry in the LDOS is
of normalization. In the measured conductance spectra, thgmaller than that in the conductance spectra. Though the fig-
energy dependence of the transmission probability betweenure is not shown, the asymmetry in the LDOS of the Ge
surface and a tip was larger than the energy dependence siirface is also weaker than that in the conductance spectra.
DOS and the structures in DOS were not clear. In order tdn the case of the diamond surface, the asymmetry is not seen
extract the structures in DOS, the conductance spdétd  in the LDOS and the LDOS'’s at the two topmost chain atoms
were normalized by/V. It can be thought that this normal- are also almost the same, which is similar to the conductance
ization hides the polarity asymmetry. If the transmission-spectra.
probability factor is properly extracted from the conductance The surface-state conductance is higher of the order of the
spectra, the spectra may show the polarity asymmetry. Si, Ge, and diamond surfaces. If the surface-state conduc-
Figure 4 shows the local DO8.DOS) at the topmost tance is proportional to the LDOS, the bandwidth of surface
chain atoms of the Si surface. The LDOS is obtained fronmstates and the localization strength of wave functions at sur-
the band calculations shown in Sec. Il. Solid and dotted line§aces are important factors determining the surface-state con-
show the surface-state and bulk-state components, respeddctance. In order to clarify the origin of the material depen-
tively, which are discriminated by using an effective decaydence of the surface-state conductance, we first investigate
constantu.; of a wave function defined by the localization strength.
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2 one-dimensionalsp-hybridized chain model is given by
tsp/ Vltsdppl for smallts,, wheretgg, t,,, andts, are the

>, nearest-neighbor transfer energies betwgands, p andp,
and s and p orbitals, respectively® In this model,Eg is
proportional tots,. So if we estimatetss and t,, by the
widths of the valence bands, the ratiotgf/ \|tsd | is also
about 6:3:2. These results mean that the localization strength
of the surface states of the-bonded surfaces is not ex-
: plained by these simple models.
Lﬂ_ Actually, the localization properties of the ideal dangling-
0= T bond states of thel11) surfaces of group-lV semiconductors
r 7 K yor are not so simple as those of these two-band mdddisvas

FIG. 5. Effective decay constapty; of wave functions of the  shown that the decay constants of the ideal dangling-bond
occupied surface states. Solid, brpken, and_dotted lines show thse(ates are expressed by linear combination of the states near
ef‘fect_lve decay constants of the diamond, Si, and Ge surfaces, Che top of the valence bands and the bottom of the conduc-
spectively. tion bands. Though the states near the top of the valence

Figure 5 shows the effective decay constant defined bands of diamond, Si, and Ge are almost the same, the states

in Eq. (3.1). The effective decay constants of the occupied®@r the bottom of the conduction bands are different. For
surface states are shown. Sineg is calculated using finite €xa@mple, in the ideal dangling-bond states atithgoint in

0.1 show the bulk states. The effective decay constant of th@f the conduction bands is dominant in the case of the dia-
Ge surface is smaller than those of the diamond and Si sufmond surfacé? But, thes state is dominant in the case of the
faces. But the effective decay constants of these surfaces afe surface, and both treand p states are indispensable in
not much different. Though the figure is not shown, the ef-the case of the Si surface. This difference in components is
fective decay constants of the lowest unoccupied surfaceeflected on the physical quantities determining the decay
bands show behavior similar to those of the occupied statesonstants of wave functions and the localization properties of
Since the localization strengths of wave functions do nothe ideal dangling-bond states are complicated. Similarly, the
differ much, the difference in the surface-state conductancéecay behavior of the surface states of theonded chain
can be ascribed mainly to the bandwidth factor. The bandsurfaces is not determined by only the bulk band gaps and

widths of the surface states of the Si and Ge surfaces af@e interpretation of their localization strength is not simple.
narrower than that of the diamond surface. Therefore, the

surface-state conductances of the former are larger than that
of the latter. This result is contrary to the case of the ideal Figure 6 shows the conductance spectra from the first to
dangling-bond stateé¥, where the localization strength is the second tip in the double-tip system. The size of the
more important than the bandwidth. imaginary hexahedral region is the same as the single-tip

The effective decay constant depends on the parallel wavease. Solid and dotted lines show the conductances when the
vector and is large along theK line. In the band structure two tips are positioned parallel and perpendicular to the
of the diamond surface, the occupied and unoccupiedr-bonded chains, respectively. The first tip is put on the top-
surface-state bands touch along this line and their energiesost chain atoms nearest to the center of the surface of the
are located near the center of the bulk band gap. Though iimaginary region. The distances from the first to the second
the cases of the Si and Ge surfaces there is a band gap in thig in the parallel and perpendicular positions are three times
surface bands, the surface states alongJtieline and lo-  the parallel lattice constant and two times the perpendicular
cated also relatively near the center of the bulk band gapone, respectively. The actual parallel and perpendicular dis-
Therefore, there is a tendency that the more surface states a@smces are 7.5 and 8.7 A in the diamond surface, 11.5 and
located near the center of the bulk band gap, the strongel3.3 A in the Si surface, and 12.0 and 13.9 A in the Ge
their localization. This result is consistent with the argumentsurface. So the parallel and perpendicular distances may be
of the decay constant of the states in bulk band gaps in termegarded as nearly equal. The two tips are put on the equiva-
of the complex wave vectd. lent atoms of ther-bonded chains labeled by 1 in Figgah

The effective decay constants of the diamond and Si suré(c), and &e) and by 2 in Figs. @), 6(d), and &f).
faces are not much different. This result means that the lo- The double-tip conductance spectra differ from the single-
calization strength of the surface states of thbonded sur- tip ones. An obvious difference is that the double-tip conduc-
faces is not necessarily related with the bulk band gap. Aance is almost zero outside the energy regions of the
simple analysis using the nearly free-electron approximatiorsurface-state bands. The reason for this is the difference in
shows that the maximum of the decay constant per layer of the contribution of bulk states. In the single-tip case bulk
one-dimensional Shockley state is proportional Ega?, states as well as surface states contribute to conduction chan-
where Eg and a are a band gap and a lattice constant,nels. But in the double-tip case, the transmission probability
respectively’’ The ratio ofEga? is about 6:3:2 for diamond, from the first to the second tip through bulk states is very
Si, and Ge. The decay constant of the Shockley state of amall. Most of the conductance is the surface-state conduc-

Decay Constant
[
|

B. Double tips
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tion in the ballistic regime. This point has been already dis-is highly anisotropic near the zero bias, showing almost one-

cussed in a previous study of the surface-state conductiotimensional conduction. The conduction of the Si and Ge

through Tamm state's. surfaces is less anisotropic than the diamond case, which is
The difference between the single-tip and double-tip con<losely related with the buckling of the-bonded chains as

ductances is significant in the cases of the Si and Ge sudiscussed later.

faces. This is due to the fact that the energy regions where The double-tip conductance is qualitatively explained by

surface and bulk states overlap are large because of the opeghe Green function of the sample surface. Using the second-

ing of the gaps in the surface-state bands by the bucklingorder time-dependent perturbation theory Niual. showed

But the single-tip and double-tip conductances are regardethat the double-tip conductance is expressed in terms of the

similar if the component of the transmission to bulk states igetarded Green function of the sample surf&cahere the

neglected in the single-tip conductance. Actually, theretarded Green function is given by

surface-state components in the LDOS shown in Fig. 4 are

similar to the double-tip conductance spectra. d’nku )¢nkH( )
The double-tip conductance shows strong directional an- g(r.,r;E)= (27)2 Z J' E—En(k)+i6

isotropy. In all the surfaces there is a tendency that the con-

ductance parallel to ther-bonded chain is larger than the In the abovegy (r) andEn(k) are the wave function and

perpendicular one. The conductance of the diamond surfadbe energy of a state in thgh band with a two-dimensional

d’k. (3.3
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40 wherer, andr, are the positions of the first and second tips
g .c; (a) Catom 1 on the surface, respectively.
3 2 Figure 7 shows the squared absolute value of the Green
&3 function. The Green function is obtained from the results of
H :g the band calculations of finite slabs in the way similar to the
T 7 204 calculations of the LDOS. The Green-function spectra quali-
E ":N tatively reproduce the double-tip conductance spectra. The
é h:: asymmetry between the valence and conduction bands of the
g & Si and Ge surfaces is seen in the Green-function spectra. But
© X Y it is weaker than that in the conductance spectra, which is
05 s similar to the difference between the LDOS and the single-

-2 0 2 4 6 tip conductance.
Energy (eV) A Gregn-fgnction sp.ectrum. for a larger d_istance between
the two tips is shown in the figure of the diamond surface.
100 The positions of the two tips are parallel to thebonded
(b) Si atom 1 chain. Though the heights of the peaks at the edges of the
surface-state bands decrease with the distance, the spectrum
in the middle part of the surface-state bands does not change
much, showing the quasi-one-dimensional conduction. The
distance dependence of the Green function varies with mate-
rials. Though the figures are not shown, the Green functions
of the Si and Ge surfaces decrease faster than the inverse of
the distance, which is expected from the behavior of two-
dimensional isotropic surface states. These results suggest
0 . N the difference in dimensionality of the surface-state conduc-
2 0 2 tion between the diamond surface and the Si and Ge sur-
faces.
Energy (eV) Next we discuss the anisotropy in the double-tip conduc-
tance in details. Figure 8 shows energy spectra of the ratio of
the Green function perpendicular to tlebonded chain to

50+

Green-function Spectra
lg (x,r) P (states?/eV?)

LS
—]

g€ (c) Geatoml the parallel one. The energy regions shown correspond to the
?f_a- .§ surface-state bands. Though the ratio depends on the energy,
fg > it is seen as a whole that the conduction of the diamond
g = 201 surface is highly anisotropic and those of the Si and Ge sur-
g faces are less anisotropic.
&> In order to clarify the origin of this difference, we discuss
g = qualitatively the conductance anisotropy. We consider an el-
5 e lipsoidal constant-energy surface as

2 0 2 G

= +—, (3.5
Energy (eV) 2m,  2m,

FIG. 7. Green-function spectra of the diamo@), Si (b), and
Ge(c) surfaces. The squared absolute value of the Green function iwherem, andm, are effective masses of theandy direc-
shown. Both the two positions in the Green function are the sites ofions. An asymptotic expression of the Green function for a
atom 1 in Fig. 1. Solid and dotted lines show the spectra when théarge distance between two tips is given by Niual 3 If we
distances between the two positions are 3 and 2 lattice constants assume that the amplitudes of wave functions of surface
the directions parallel and perpendicular to thébonded chain, states at the surface are the same, the Green function for the
respectively. Broken line ifa) shows the spectrum when the dis- ellipsoidal energy surface is given by
tance is ten lattice constants in the parallel direction.

mym,

rymcogg+mgsir?6’ (38

lg(r,8)|?=

wave vectork parallel to the surface is the area of the
two-dimensional unit cell and is a positive infinitesimal. If
the interactions between a surface and tips are constant, theherer is the distance between tips adds the angle be-
double-tip conductance is proportional to the square of théween thex axis and the direction of the line connecting the
absolute value of the Green function as two tips. Furthermore, if we assume that the interactions be-
tween a surface and tips are independent of orbitals, the an-
isotropy of conductance for a fixed distance between tips is
Gelg(ry,r2;E)l?, (3.4  given by
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diamond surface extend evenly over the topmost two atoms

St

- L 0—.,...7——‘—\\ of the -bonded chains and there are strong conduction paths
=3 \ /0 along the chains. On the other hand, the wave functions of
& N Ji the Si and Ge surfaces localize more at either site of the
E: -E \“ topmost two atoms due to the buckling. As a result, the wave
5 g -3 functions are isolated along the direction parallel to the

E E chains as well as the perpendicular direction and the conduc-
£ 5 tance anisotropy weakens. Since the localization strength at
Eoé either site increases with increasing the buckling, the con-
-

-6- ductance anisotropy also decreases with the buckling. This is
0 0.5 1 consistent with the fact that the band dispersions of the sur-
(E-Emin) / (Emax-Emin) face states of the Si and Ge surfaces are less anisotropic than

those of the diamond surface.
FIG. 8. Anisotropy of the Green-function spectra. The Green-
function spectra are given by the squared absolute value of the

Green function. The distances between the two positions in the

Green function are 3 and 2 lattice constants in the directions parallel

and perpendicular to the-bonded chain, respectively. Anisotropy

is expressed by the logarithm of the ratio of the perpendicular spec- We studied theoretically the surface-state conduction on

tra to the parallel ones. Solid, dotted, and broken lines show thghe (111)2x1 -bonded chain surfaces of group-1V semicon-

anisotropy of the diamond, Si, and Ge surfaces, respectigly.  ductors. We calculated the ballistic conductance of the
andE,,,, are —0.7 and 4.9 eV for the diamond surface(.7 and single-tip and double-tip systems.

0.0 eV for the Si surface, and 0.1 and 0.8 eV for the Ge surface.  \yhile the single-tip conductance spectra of the Si and Ge
surfaces depend on the position of the tip on the two topmost
chain atoms and show asymmetry between the occupied and

(3.7 unoccupied states, those of the diamond surface do not de-
pend on the tip position nor show asymmetry. This is due to
the difference in the buckling of the chain atoms. The

whereG, andG, are the conductances when the two tips aresurface-state conductance is qualitatively proportional to the

positioned parallel to thex and y axes, respectively. This LDOS at the chain atoms. The surface-state conductance is
result means that the smaller the effective mass, the largésarger of the order of the Si, Ge, and diamond surfaces. It
the conductance, which is the same tendency as the bulkas found that the main factor determining these surface-
conductivity. The surface-state bands in Fig. 2 show that thatate conductance of thebonded surfaces is the bandwidth
dispersions parallel to the chains are larger than the perpewnf the surface states rather than the localization strength of
dicular ones, which is consistent with the result that the conwave functions. The localization strength of the surface
ductances parallel to the chains are larger than the perpestates of ther-bonded chain surfaces is not necessarily pro-
dicular ones. portional to the bulk band gap. This is due to the fact that the
Similar results are expected on other surfaces with anisoproperties of Shockley states are determined by bulk states
ropy. For example, th€001) surfaces of group-IV semicon- near the top of valence bands and the bottom of conduction
ductors are reconstructed in the anisotropic dimer structuresands. In the cases of the group-IV semiconductor surfaces,

The band dispersions of the surface states in the directiothere are many bulk bands near the bulk band gaps and the

parallel to the dimer row is larger than those in the perpensurface states are not simple as the two-band models.

dicular direction. Therefore, it is expected that the conduc- The double-tip conductance spectra are different from
tance parallel to the dimer rows is larger than the perpendicuthose of the single-tip ones because most of the conductance
lar one. The strong anisotropy of surface states appeared asthe former is the surface-state conduction. The double-tip
the quasi-one-dimensional standing-wave formation paralletonductance of ther-bonded chain surfaces shows anisot-
to the dimer row of the $001) surface®®*° ropy reflecting the atomic structures. While the conduction

Due to the almost one-dimensional conduction, the conef the diamond surface is highly anisotropic and almost one
ductance of the diamond surface is very small when the twalimensional, those of the Si and Ge surfaces are less aniso-
tips are put on the neighboring chains apart by only oneropic. The origin of this difference is the buckling. Due to
lattice constant. This makes it difficult to measure thethe buckling, the wave functions of the surface states of the
double-tip conductance in real experimental conditions. InSi and Ge surfaces localize more at either site of the topmost
such a case, the conductance may be measured by increastag atoms of ther-bonded chains and the conduction recov-
the contact areas of the tips on surfaces instead of the singlers the isotropy.

atom contact. The double-tip conductance spectra are qualitatively re-

The strength of the conductance anisotropy decreasgsoduced by the Green function of the surfaces. It was shown
with increasing the amplitude of the buckling. This resultusing an ellipsoidal energy surface that the conductance an-
may be explained by the wave functions of the surface statesotropy is given by the square root of the inverse of the
as follows. Due to no buckling, the wave functions of theanisotropy in the effective mass. This result means that the

IV. CONCLUSION

Gy

Gy

3|3

x
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lighter the effective mass, the larger the conductance, which ACKNOWLEDGMENTS
is similar to the bulk conduction.
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