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Electron transport and energy relaxation in dilute magnetic alloys
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We consider the effect of the Ruderman-Kittel-Kasuya-Yosida~RKKY ! interaction between magnetic impu-
rities on the electron relaxation rates in a normal metal. The interplay between the RKKY interaction and the
Kondo effect may result in a nonmonotonic temperature dependence of the electron momentum relaxation rate,
which determines the Drude conductivity. The electron phase relaxation rate, which determines the magnitude
of the weak-localization correction to the resistivity, is also a nonmonotonic function of temperature. For this
function, we find the dependence of the position of its maximum on the concentration of magnetic impurities.
We also relate the electron energy relaxation rate to the excitation spectrum of the system of magnetic
impurities. The energy relaxation determines the distribution function for the out-of-equilibrium electrons.
Measurement of the electron distribution function thus may provide information about the excitations in the
spin-glass phase.
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I. INTRODUCTION

Electron transport in normal metals is known to be ve
sensitive to the presence of magnetic impurities in a me
Scattering of conduction electrons off such impuriti
scrambles the electron spin. A tiny concentration of magn
impurities results in an observable effect—low-temperat
saturation of the phase relaxation rate.1 Magnetic impurities
apparently also facilitate the energy transfer betwe
electrons.2,3 At higher concentrations,1 a minimum in the
temperature dependence of the resistivity becomes evid
which is a manifestation of the Kondo effect.4 These three
observations fit very well with a picture of uncorrelated ma
netic impurities.

Investigation of the resistivity at even higher concent
tion of magnetic impurities reveals deviations from the p
ture of uncorrelated localized magnetic moments. The te
perature dependence of the resistivity, in addition to
aforementioned minimum, develops a maximum5–9 at lower
temperatures. The electron phase relaxation rate was rec
measured10,11 on AuFe alloys with magnetic impurity~Fe!
concentration ranging from 7.1 to 60 ppm. At the upper e
of this range, correlations between the localized spins m
become important, as evidenced by the temperature de
dence of the resistivity.5,11

In this paper we investigate the effect of correlation b
tween spins of magnetic impurities on the electron
transport properties of a metal. Specifically, we study
Kondo contribution to the Drude resistivity, the wea
localization correction to the conductivity, and the electr
energy relaxation rate.

The leading mechanism of correlations is known to be
Ruderman-Kittel-Kasuya-Yosida~RKKY ! interaction be-
tween impurities. The interaction lifts the degeneracy in
excitation spectrum of impurities. In this respect, the eff
of the RKKY interaction is somewhat similar to the effect
an external magnetic field which causes Zeeman splitting
the spin states. It is known that the magnetic field reduces
electron relaxation rates at low energies,3,12–14and also sup-
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presses the Kondo effect.15 Unlike the uniform Zeeman split-
ting, however, interaction between the spins results in
broad spectrum of energies of collective spin states. Th
fore, the quantitative manifestations of the RKKY interacti
in the electron transport are different from that of the Ze
man energy.

The difficulty of the low-temperature electron-transpo
problem is associated with the complexity of the spin-gla
state. In this paper, we study in detail the transport at re
tively high temperatures~or electron energy transfers, in th
case of energy relaxation!. We perform analytical calculation
using the method of the virial expansion16,17 in the RKKY
interaction between magnetic impurities. The method
based on the following concept. Since the RKKY interacti
quickly decreases as a function of the distance between
purities, the impurities have to be close to each other for
interaction between them to compete with thermal smea
and to affect transport properties of conduction electrons.
perform the virial expansion to the second order in the d
sity of magnetic impurities, which corresponds to account
for the interaction within impurity pairs.

Electron scattering off magnetic impurities contributes
the temperature dependence of the resistivity: due to
Kondo effect, the resistivity increases as the temperatur
lowered. Similar to the Zeeman splitting, the RKKY intera
tion between magnetic impurities may stop the developm
of the Kondo effect. The interplay between the RKKY inte
action and the Kondo effect leads to a maximum in the te
perature dependence of the resistivity.7–9 If the characteristic
temperature of the spin-glass formation exceeds significa
the Kondo temperature~high concentration of magnetic im
puritiesns), then the resistivity has a maximum at a tempe
ture in the region of applicability of the virial expansion. O
the contrary, at smallns the maximum of resistivity occurs a
zero temperature.

Magnetic impurities also affect the magnetoresistance
weak magnetic fields. This magnetoresistance is due to
weak-localization ~WL! effect.18,19 Being an interference
phenomenon, the WL is limited by the electron phase rel
©2003 The American Physical Society19-1
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ation. We calculate the phase relaxation rate taking into
count the RKKY interaction between magnetic impurities.
high impurity concentration, the phase relaxation rate ha
maximum, similar to the maximum in the resistivity. At lo
concentration, unlike the Drude resistivity, the phase rel
ation retains a maximum at a finite temperature~of the order
of the Kondo temperature!.

The RKKY interaction lifts the degeneracy of the ma
netic impurity states. Therefore an out-of-equilibrium ele
tron may lose its energy by exciting the impurity spin d
grees of freedom. The corresponding relaxation rate i
function of the transferred energy. This rate provides inf
mation about the spin excitation spectrum. We derive
corresponding kinetic equation for the electron distribut
function. We also make specific predictions for the relaxat
rate at sufficiently large energy transfers, which may be
counted for by the virial expansion.

Before we proceed, we emphasize that in this paper
consider the effect of the interaction between Kondo im
rities only on kinetic properties~conductance, energy relax
ation! of electrons in a metal. The interaction between m
netic impurities may also affect thermodynamic propert
~such as heat capacity, susceptibility, superconducting tra
tion temperature! of conduction electrons.16,17,20,21An analy-
sis of the thermodynamic properties of electrons in dil
Kondo alloys was performed earlier, see, e.g., Ref. 20.

The paper is organized as follows. In the following se
tion, we introduce the model and discuss the effect of in
action between magnetic impurities on a spin-correlat
function. In Sec. III, we perform calculations of the resisti
ity correction due to the electron scattering off magnetic i
purities. Section IV contains analysis of the WL correction
the conductivity. In Sec. V, we derive the kinetic equation
the system of magnetic impurities and conduction electr
and discuss the energy exchange rate between these two
systems. Section VI contains discussions and conclusion

II. MODEL

The scattering of conduction electrons off a magnetic
purity is described by the following Hamiltonian:

Ĥe5JŜŝ, ~1!

whereŜ is the spin operator of a magnetic impurity andŝ is
the spin operator of a conduction electron represented
terms of the Pauli matrices$ŝx ,ŝy ,ŝz%. The exchange con
stantJ is renormalized due to the Kondo effect and varies
a logarithmic function of energy« of conduction electrons
At temperatureT higher than the Kondo temperatureTK , the
exchange constant for thermal electrons,«;T, is given by

J5
2

n
ln21

T

TK
, T@TK , ~2!

where n is the Fermi density of states per spin degree
freedom.

In order to evaluate the effects of electron scattering
magnetic impurities on electron transport, we introduce
07511
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statistical averages of impurity spin components,^ŜaŜb&,
with respect to thermodynamic states of the magnetic im
rity system. We show that the electron-transport propertie
a metal with strong spin-orbit coupling are determined by
following spin correlator:

K~ t !5^Ŝ~0!Ŝ~ t !&. ~3!

In general, the correlation functionK(t) can be rewritten in
terms of exact quantum statesuj& of the system of magnetic
impurities:

K~v!52p(
jj8

rju^juSuj8&u2d~Ej2Ej82v!. ~4!

Here Ej is the energy of stateuj&, and rj is the density
matrix rj}exp(2Ej /T).

For a free magnetic impurity with spinS ~all spin states
are degenerate!, the spin-correlation functionK(t) does not
depend on time and its Fourier transform has the form

K1~v!52pS~S11!d~v!. ~5!

Using the Fermi golden rule and Eq.~5!, we obtain the fol-
lowing expression for the electron-scattering rate off ma
netic impurities:

1

ts
52pnnsJ 2S~S11!. ~6!

Herens is the magnetic impurity concentration per volum
The quantityts is the mean free time of scattering off ma
netic impurities.

In metals, the leading interaction between magnetic m
ments of impurities is described by the RKKY mechanis
The corresponding Hamiltonian has the form

ĤRKKY5(
i j

V~r i j !ŜiŜj . ~7!

The magnitude of the RKKY interaction is given by the fo
lowing expression:

V~r !5
V0~r !

r 3
cosw, ~8!

wherew changes quickly on the length scale of the Fer
wavelengthlF . The interaction constantV0 may be repre-
sented in terms of the exchange constant and electron de
of statesn:

V0~r !5
nJ 0

2~r !

2p
, J0~r !5

2

n

1

ln@vF /~rTK!#
. ~9!

The typical value of the RKKY interaction between two im
purities separated by distance 1/ns

1/3 ~average distance be
tween impurities! is

Tsg5nsV0~r 5ns
21/3!.

2ns

pn ln2~vFns
1/3/TK!

. ~10!
9-2
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Due to the randomness of the RKKY Hamiltonia
ĤRKKY , finding of statesuj& and corresponding energiesEj

is a hardly possible task. At sufficiently low temperature
phase transition into a spin-glass state may occur with
tremely complicated structure of the wave functionsuj& and
energy spectrum.22 A transition temperature is comparab
with the typical energy of the interaction between magne
impuritiesTsg.

We focus our attention on the high-temperature limitT
@Tsg and calculate the spin-spin correlation functionK(t),
Eq. ~3!, using the virial expansion method. In this metho
the interaction between magnetic impurities is taken into
count only if the splitting of the spin states due to the int
action exceeds the system temperature; otherwise the i
action does not significantly change the spin-correlat
function. Therefore, the interaction is important only f
magnetic impurities in clusters of the size;A@3V0 /T. For a
uniform distribution of magnetic impurities in the metal, th
probability for a formation of such a cluster ofk impurities
scales as (Tsg/T)k21. We consider only clusters containin
two (k52) magnetic impurities.

The energy statesuj& of two interacting spins are class
fied by the total spinJ (J50,1, . . . ,2S) and its projectionM
on a fixed direction:uj&5uJ,M &. The energy spectrum i
given by

EJ5V~r !
J~J11!22S~S11!

2
[V~r !eJ ~11!

and is degenerate with respect to the projectionM. The spac-
ing between levels with differentJ is proportional to the
magnitude of the RKKY interaction, Eq.~8!.

According to Eq.~4!, the corresponding spin-correlatio
function of a magnetic impurity within distancer from an-
other magnetic impurity may be represented in the form

K2~ t,V!5 (
J,J850

2S

AJJ8

2J11

Z~V!
eV$ i (eJ2eJ8)t2eJ /T%, ~12!

where the statistical sumZ(V) is

Z~V!5 (
J50

2S

~2J11!e2VeJ /T, ~13a!

and the matrix elementsAJJ8 are

AJJ85(
M8

^JMuŜuJ8M 8&^J8M 8uŜuJM&. ~13b!

The analytical form of the matrix elements is presented
Appendix A. We emphasize thatAJJ8 are independent of the
pair spin projectionM.

As we will see in the following sections, the electro
transport properties are determined by the spin-correla
function K(v), averaged over configurations of ma
netic impurities. We calculateK(v) within the virial
approximation:
07511
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K~v!5K1~v!1E p~r !@K2„v,V~r !…2K1~v!#d3r,

~14!

wherep(r ) is the probability density for two magnetic im
purities to be at distancer; for uniform impurity distribution,
p(r )5ns. Averaging over the relative position of two mag
netic impurities in Eq.~14! can be performed in two steps
First, we make the substitutionr 35V0cosw/(Ty), and then
we perform integration over the quickly varying phasew. As
a result, the spin correlator has the form17

K~v!5K1~v!1dK2~v!, ~15!

where

dK2~v!5
8p

3

TsgS~S11!

T E
2`

1`dy

y2
@P~v,y!2d~v!#,

~16a!

P~v,y!5 (
JJ850

2S

AJJ8

2J11

S~S11!

e2yeJ

Z~Ty!
d~v2Ty@eJ2eJ8# !.

~16b!

We notice that the spin-correlation function, Eq.~15!, in-
creases as the frequencyv decreases:

K~v!5
8p

3

Tsg

T (
JÞJ8

2S

~2J11!

3AJJ8

ueJ2eJ8u

v2

expS 2
veJ

~eJ2eJ8!T
D

Z„v/~eJ2eJ8!…
,

vÞ0. ~17!

One may expect that due to the 1/v2 behavior of the spin-
correlation function, Eq.~17!, the virial approximation
breaks down even atT*Tsg. Nevertheless, due to the prop
erty P(v,0)5d(v), see Eq.~A4!, the integrand in Eq.~16a!
has no singularity aty50, and the slow modes (v&T) of
the spin system do not affect electron transport.

Equation~15! supplemented with Eqs.~13! and ~16! de-
termines the spin-correlation function at high temperatureT
@Tsg. Below we use these equations to describe the effec
interaction between magnetic impurities on electron tra
port in metals.

III. RESISTIVITY

The conductivity of a metal with isotropic impurities ma
be calculated according to the standard rules of the diagr
matic technique. Disregarding the interference correcti
we have

s5
e2vF

2

6 E GR̄~«,p!GĀ~«,p!

T cosh2«/2T

d«dp

~2p!4
. ~18!

Here
9-3
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GR,Ā~«,p!5
1

«2j~p!2SR,A~«!
~19!

is the retarded or advanced Green’s function averaged
disorder,j(p)5vF(upu2pF) is the electron energy, counte
from the Fermi energy,SR,A(«) is the electron retarded o
advanced self-energy, andvF is the Fermi velocity. Perform-
ing the integration over momentump, we obtain

s5e2n
vF

2

3 E 1

ImSA~«!

d«

4T cosh2«/2T
~20!

with n being the density of states of conduction electrons
one-spin orientation.

We assume that the electron self-energy part contains
components:

ImSA~«!5
1

2te
1nsImT~«!. ~21!

The first term in Eq.~21!, 1/2te, represents the effect o
elastic scattering off nonmagnetic impurities withte being
the mean free elastic time. The second termnsImT(«) rep-
resents the effect of scattering of electrons with energy« off
magnetic impurities. Here the scattering off a particular m
netic impurity is characterized by theT matrix T(«); the
self-energySR(«) contains T(«), averaged over variou
impurities.

Using the simple relationr51/s between the conductiv
ity s and the resistivityr and Eqs.~20! and~21!, we repre-
sent the resistivity as a sum of two terms:

r5re1DrK . ~22!

The first term is the resistivity of a metal without magne
impurities (ns50), which is produced by elastic scatterin
off nonmagnetic impurities:

re5
1

se
, se52e2nD, ~23!

where D5vF
2te/3 is the diffusion coefficient. The secon

term is the contribution to the resistivity due to the scatter
off magnetic impurities:

DrK5
3ns

e2nvF
2E ImT~«!

d«

4T cosh2«/2T
. ~24!

The scatteringT matrix in Eq.~24! has different structure in
the limits of high (T@TK) and low (T!TK) temperatures.
We study these two limits below.

A. High concentration of magnetic impurities, TsgšTK

At high temperatureT@TK , the scattering of electron
off magnetic impurities is described by the Born approxim
tion with the exchange constant renormalized according
Eq. ~2!. In this case, theT matrix is ~see Appendix B!
07511
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ImT~«!5pnJ 2E K~v!
11e«/T

11e(«2v)/T

dv

2p
, ~25!

whereK(v) is the Fourier transform of the spin-correlatio
function, defined by Eq.~3!. Substituting ImT(«) into
Eq. ~24!, we obtain the Kondo contribution to the Drud
conductivity:

DrK5
3nsJ 2

2e2vF
2E K~v!

v

T

dv

12e2v/T
. ~26!

We emphasize that Eq.~26! is valid if the distance between
impurities is much larger than the Fermi wavelength. At t
same time, Eq.~26! describes the resistivity in metals wit
arbitrary structure and strength of interaction between m
netic impurities.22 We perform further calculations using th
spin-correlation functionK(v) given by Eq.~15!, which was
derived within the virial expansion.

Using K(v), calculated within the virial expansion, Eq
~15!, and the Kondo-renormalized exchange constantJ, see
Eq. ~2!, we obtain

DrK5
12pns

e2vF
2n2

S~S11!

ln2~T/TK!
S 12aS

Tsg

T D . ~27!

Here numerical coefficientaS is given by the following in-
tegral:

aS5E
2`

1`S 12(
JJ8

2S
y~eJ2eJ8!e

2yeJ

12e2y(eJ2eJ8)

~2J11!AJJ8
S~S11!Z~y!D dy

y2
,

~28!

whereeJ , Z(y), and AJJ8 are defined by Eqs.~11!, ~13a!,
and~13b!, respectively. We emphasize that the integral in E
~28! converges neary50. The values ofaS are presented in
Table I.

Equation~27! is similar to the results of Refs. 8 and 1
Unlike Ref. 17, Eq.~27! takes into account the Kondo reno
malization of the exchange constant, Eq.~2!, and of the
RKKY interaction, Eq.~10!. The advantage of Eq.~27! in
comparison with Ref. 8 is in a consistent definition of t
energy scaleTsg and in an accurate procedure of the avera
ing over states of magnetic impurities, which allowed us
calculate the numerical factoraS .

In metals with low Kondo temperature,TK&Tsg, the
competition between the Kondo effect and the effect of
RKKY interaction results in a maximum of the resistivity a
a function of temperature. IfTK!Tsg, then the maximum
occurs at

TABLE I. Values of the numerical coefficientaS , Eq. ~28!, for
several values ofS.

S 1/2 1 3/2 2 5/2 3 7/2

aS 1.10 1.52 1.85 2.11 2.33 2.52 2.69
9-4
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T* .
aS

2
Tsgln

Tsg

TK
, ~29!

see also Refs. 7–9. We notice that temperatureT* is within
the region of applicability of the virial expansion, used in t
derivation of Eq.~27!.

As temperatureT approaches and crossesTsg, intrinsic
random magnetic field develops, and the renormalization
the exchange constant is stopped atJ.2/@n ln(Tsg/TK)#. Si-
multaneously, the virial expansion breaks down, and the
lective modes of spin system have to be considered in
derivation of the temperature dependence of the resistiv

At present, there is no theory of metallic spin glass
which would provide us withK(v) in a broad range ofv.
Thus, the explicit form ofDrK(T), see Eq.~26!, is not
known. We expect thatDrK continues to decrease with tem
peratureT decreasing, as the dynamics of the local magn
moments gets progressively suppressed at lower temp
tures. In the mean-field picture, each of the spins atT50 is
subject to a finite field, so that such dynamics is fully su
pressed. In this case, the limiting value ofDrK at T50 can
be estimated as

DrK~T50!5
12pns

e2vF
2n2

S2

ln2~Tsg/TK!
. ~30!

@The quenching of the spin flips leads to the replacemen
S(S11) factor, see Eq.~27!, by the factorS2 here.# The
picture leading to Eq.~30! cannot be valid for the ‘‘tightest’’
pairs of magnetic moments with the characteristic interac
energy significantly exceedingTsg. It is not clear to us at the
moment even in which direction estimate~27! changes due
to the deviations from the mean-field description.

B. Low concentration of magnetic impurities, Tsg™TK

At high temperature (T@TK), the resistivity is described
by Eq. ~27! even in the limit TK@Tsg. Nevertheless, the
effect of interaction between magnetic impurities is sm
due to the factorTsg/T in Eq. ~27!, and the maximum of the
resistivity does not occur atT.TK . We show that at tem-
peraturesT&TK the resistivity also monotonically increase
as temperature decreases.

For this purpose, we use the following form of the imag
nary part of the scatteringT matrix:23

ImT~«!5
1

pn
2ImT̃~«!. ~31!

Here the first term is the contribution to theT matrix in the
unitary limit and T̃(«) is the T matrix, written for the re-
sidual interaction between conduction electrons and m
netic impurities. The form ofT̃(«) differs for spin impurity
S51/2 ~exactly screened magnetic impurities! and for S
.1/2 ~underscreened magnetic impurities!.23 We consider
the two cases in more details below.
07511
of

l-
e

.
,

ic
ra-

-

of

n

ll

g-

1. Spin SÄ1Õ2 impurities

In this case, the majority of magnetic impurities are co
pletely screened and the RKKY-type interaction betwe
them is absent~only a small part}Tsg/TK of magnetic im-
purities form coupled states with binding energy exceed
TK). Therefore, the contribution to the resistivity is dete
mined by theT matrix of a single magnetic impurity, which
is well studied atT!TK .23,24We present the results for con
venience. The scattering matrix for the residual interact
between conduction electrons and magnetic impurities
the form

ImT̃~«!5
1

n

9p

8TK
2 ~3«21p2T2!. ~32!

Substituting Eqs.~31! and~32! into Eq. ~24! and performing
integration over energy«, we obtain23

DrK5DrUF12
9p4

4

T2

TK
2 G . ~33!

Here the factor

DrU5
3

p

ns

e2n2vF
2

~34!

corresponds to the unitary contribution to the resistivity
T50. According to Eq.~33! at finite temperature the resis
tivity contains corrections to Eq.~34!, which are proportional
to T2/TK

2 .
We also notice that the coefficients in Eq.~33! contain

small correctionsTsg/TK due to magnetic impurities, which
form coupled states with binding energies exceeding
Kondo temperature. Two possibilities exist:~i! if the coupled
state is a singlet, these impurities do not affect electron tra
port; ~ii ! if the coupled state is a triplet, it becomes screen
and again leads to aT2 dependence of the resistivity o
temperature.25 We emphasize that the ratio of the number
such impurities to the total number of magnetic impurities
small asTsg/TK .

As the impurity concentrationns increases, and conse
quentlyTsg increases, the system of magnetic impurities w
spin S51/2 undergoes a quantum phase transition26 to a
spin-glass state.

2. Impurities with SÌ1Õ2

As was shown in Ref. 24, atT!TK the residual coupling
of conduction electrons with magnetic impurities is d
scribed by the exchange Hamiltonian, Eq.~1!, with effective
impurity spin, S̃5S21/2, and the renormalized exchang
constant

J̃5
2

n ln TK /T
. ~35!

This coupling results in the RKKY-like interaction betwee
magnetic impurities, which may be written in the form of th
Hamiltonian given by Eq.~7! with the effective spinS̃ and
9-5
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the strengthV(R) of the RKKY interaction defined as a so
lution of the following equation:

V~R!5
2

pnR3

1

ln2@TK /V~R!#
. ~36!

Using Eq.~36! we estimate the typical value of the intera
tion between magnetic impurities. Within logarithmic acc
racy we have

T̃sg.
2ns

pn ln2~TKn/ns!
, ~37!

cf. Eq. ~10!.
The imaginary part of theT̃(«) matrix is given by Eq.

~25! with the impurity spinS̃5S21/2, exchange constantJ
given by Eq.~35!, and the typical value of the RKKY inter
action between impuritiesT̃sg given by Eq.~37!. Substituting
ImT̃(«) from Eq.~25! with the modified parameters into Eq
~31! and using Eqs.~26! and ~34!, we obtain

DrK5DrUF124p2
S221/4

ln2TK /T
S 12aS21/2

T̃sg

T
D G . ~38!

Unlike the previously analyzed case of high impurity co
centration,Tsg@TK , here the temperature dependence of
resistivity remains monotonic. The leading contribution
the ~negative! derivativedr/dT in the temperature interva
T̃* &T&TK comes from the Kondo renormalization of th
exchange constant; here the characteristic temperatureT̃* is

T̃* .
aS21

2
T̃sgln

TK

T̃sg

. ~39!

Below T* , the derivativedr/dT is determined by the inter
action between magnetic impurities.

As temperature approachesT̃sg, the virial expansion
ceases to be valid, and the system may attain a spin-g
state. Unlike the case of higher impurity concentration (Tsg
@TK), here we expect the dependencer(T) to level off at
T&Tsg. This difference stems from the behavior of the sc
tering matrix, see Eq.~31!, in the vicinity of the unitary limit.
If each of the local moments is quenched individually, th
the saturation would occur at

DrK5DrUF124p2
~S21/2!2

ln2TK /Tsg
G . ~40!

The collective modes existing in the spin-glass state wo
result, however, in deviations from Eq.~40!.

To summarize Sec. III, the Kondo contribution to th
Drude resistivity is a nonmonotonic function of temperatu
only in the case of relatively high concentration of the ma
netic impurities, i.e., atTsg*TK . In the opposite case, thi
contribution increases monotonically with the decrease
temperature, at any value of the spinS of magnetic impuri-
ties.
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IV. PHASE RELAXATION RATE

Weak magnetic fields suppress the interference contr
tion to the conductivity, the difference

DsWL5s~B50!2s~B@Bo! ~41!

in the conductivity at zero magnetic field (B50) and at suf-
ficiently strong magnetic field (B@Bo) is called the weak-
localization correction to the conductivity. The characteris
valueBo of magnetic field, which suppresses the weak loc
ization, is

Bo5
\c

e
A 1

DtsA
, ~42!

whereA is the cross-section area of the wire. Throughout t
section, we assume that the scattering off magnetic imp
ties dominates over all other mechanisms of the elect
phase relaxation.

We calculateDsWL of a metal with magnetic impurities
and strong spin-orbit coupling. In this case only the sing
componentCs of the Cooperon remains finite,18 all other
Cooperon components are suppressed by the spin-orbit i
action. The weak-~anti!localization correction to the conduc
tivity is given by27,28

DsWL5
e2D

\ E d«d«1d«2

~2p!3

ddq

~2p!d

C s
1S «,«1

«2 ,«
;qD

2T cosh2«/2T
.

~43!

Neglecting the RKKY interaction between magnetic im
purities, we have the following expression for the Cooper

C s,0
6 S «1 ,«2

«18 ,«28
;qD 5

4p2d~«12«2!d~«182«28!

Dq27 i ~«12«18!12/ts

, ~44!

where 1/ts is the electron-scattering rate off magnetic imp
rities and is defined by Eq.~6!.18 In calculating the WL cor-
rection, we assume that the rate 1/ts is higher than the Kor-
ringa relaxation rate of the magnetic impurities, see Ref.
for further discussion. Performing integration over the m
mentum q in a one-dimensional case,d51 in Eq. ~43!,
which adequately describes wires of the cross-sectional
A&Dts, we obtain

DsWL
(0) 5

e2

2p\
ADts

2
. ~45!

We study the effect of interaction between spins of ma
netic impurities on the weak-localization correction to t
conductivity. As we have already mentioned, the interact
between magnetic impurities lifts the degeneracy of impu
spin states, and therefore it is reminiscent to the Zeem
effect of external magnetic field. The Zeeman splitting
spin states of magnetic impurities affects the WL correct
to the conductivity,12,13 if the splitting is larger than eithe
temperatureT or phase relaxation rate 1/ts. Similarly, the
RKKY interaction between two impurities starts to affect t
9-6
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WL correction if the RKKY interaction strength exceedsT or
1/ts. We calculate the WL correction at temperaturesT

higher thanTsg ~or T̃sg), so that only a small number o
magnetic impurity pairs satisfy this condition, and therefo
the virial expansion is applicable.

We notice that because of the RKKY interaction betwe
impurity spins, the scattering processes may change elec
energy and, particularly, may switch the position of t
Cooperon poles in energy plane with respect to the real a
These processes result in mixing of the Cooperon com
nentsC 1 andC 2 which have different analyticity, see, e.g
Eq. ~44!. The full equation for the Cooperon is

ĈsS «1 ,«2

«18 ,«28
,qD 5 Ĉs,0S «1 ,«2

«18 ,«28
,qD

1E d«3d«38d«4d«48

~2p!4
Ĉs,0S «1 ,«3

«18 ,«38
,qD

3ŜS «3 ,«4

«38 ,«48
D ĈsS «4 ,«2

«48 ,«28
,qD . ~46!

The diagonal elements of the 232 matrix Ĉs are C s
6 . The

matrix

Ĉs,0~•,q!5S Ĉs,0
1 ~•,q! 0

0 Ĉs,0
2 ~•,q!D ~47!

is the Cooperon to the zeroth order in the RKKY interactio
see Eq.~44!, while the self-energy

Ŝs~• !5S Ss
rr~• ! Ss

ra~• !

Ss
ar~• ! Ss

aa~• !D ~48!

contains the higher-order RKKY contributions.
To evaluate the first term of the virial expansion, we m

account forŜs by the first-order iteration of the solution o
Eq. ~46!. The self-energyŜ must be calculated up to the firs
order in the RKKY interaction. In fact, it is sufficient t
evaluate the upper diagonal elementSs

rr(•) of the matrix
Ŝs(•) and write the Cooperon as

C s
1S «,«1

«2 ,«
,qD 5

1

Dq212/ts

1
1

Dq212/ts2 i ~«2«2!

3Ss
rrS «,«1

«2 ,« D 1

Dq212/ts2 i ~«12«!
,

~49!

with ~see Appendix C!
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Ss
rrS «, «1

«2 , «
D 524p2nnsJ 2E dv

~e«/T11!dK2~v!

e(«2v)/T11

3$d~«11v2«!d~«2«22v!

1d~«12«!d~«2«2!%. ~50!

Then, the weak-localization correction to the conductivity
obtained by substituting this expression forC s

1(•;q) into Eq.
~43! and performing integration over momentumq and ener-
gies. As we discussed in the preceding section, details of
structure of the spin-correlation functiondK2(v) in Eq. ~50!
depend on the relation between temperatureT, Kondo tem-
peratureTK , and the typical energy of interaction betwee
impuritiesTsg. Some of these limits are discussed below.

A. High concentration of magnetic impurities, TsgšTK

At temperaturesT@TK the scattering of electrons of
magnetic impurities is described by the Born approximat
with the renormalized exchange constant, Eq.~2!. We substi-
tute dK2(v) ~the first-order term in the RKKY interaction!
from Eq.~16! into Eq.~50!, and using Eqs.~43! and~49!, we
obtain the weak-localization correction to the conductiv
~see Appendix D for more details!. We distinguish three tem
perature domains for the WL correction to the conductiv
DsWL .

In the highest of the three domains,T@2/ts, the weak-
localization correction has the form

DsWL5
e2

2p\
ADts

2 S 11
p~4S11!~4S13!

120~2S11!
TsgtsD ,

~51!

with the second term in the parentheses coming from
RKKY interaction. The use of Eq.~10! for Tsg and of the
estimate for the Kondo-renormalized electron-spin relaxat
rate,

1

ts
5

8pns

n

S~S11!

ln2T/TK

, ~52!

allows us to estimateTsgts as

Tsgts5
1

4p2S~S11!

ln2~T/TK!

ln2~vFns
1/3/TK!

. ~53!

We see now that the correction due to the RKKY interact
only weakly depends on temperature, and is numeric
small.

It is curious to notice that the second term in Eq.~51! is
almost independent ofns. This term takes into account th
fact that the contribution to the phase relaxation rate is s
pressed, if a scattering process results in energy excha
larger than 1/ts. The reduction of the phase relaxation ra
leads to the enhancement of the weak-localization correc
to the conductivity, as shown in Eq.~51!. The number of
impurities with the splitting of energy states larger than 1ts
constitute onlyTsgts part of the total number of magneti
impurities. We emphasize that the accidental numer
9-7
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smallness of the RKKY-induced correction}Tsgts justifies
the use of the conventional theory18 of the weak localization
in the presence of magnetic impurities in the considered t
perature domain.

In the second temperature domainTsg&T&1/ts, the WL
correction equals

DsWL5
e2

2p\
ADts

2 S 11
aS

2

Tsg

T D
} ln

T

TK
S 11

aS

2

Tsg

T D . ~54!

Here the numerical factoraS is defined in Eq.~28!, andTsg
is given by Eqs.~10!. The result shown in Eq.~54! has a
similar structure to the expression for the resistivity corr
tion ~27!. The dependenceDsWL vs T has a minimum at
temperatureT* defined in Eq.~29!. This minimum results
from the competition between two opposite trends: with
reduction of temperature,ts gets shorter, see Eq.~52!, while
the stronger-bound impurity pairs stop affectingDsWL . Note
that due to the relation betweenTsg and 1/ts, see Eq.~53!,
the second temperature domain is rather wide.

The third temperature domain corresponds to the s
glass state of the magnetic impurities. With temperature
creasing toTsg, the virial correction becomes large and E
~54! is no longer applicable. At such temperature a spin-gl
transition is expected. Below the transition,DsWL is still
determined by the spin-correlation function, Eq.~3!. Similar
to the discussion of the resistivity in Sec. III, we expec
monotonic increase and saturation of the WL correction. T
limiting value of DsWL at T50 was estimated in Ref. 29
where quenching of the dynamics ofeachof the local mo-
ments was assumed. Deviations from such a simple pic
of the spin-glass state would result in a different value
DsWL (T50).

B. Low concentration of magnetic impurities, Tsg™TK

At T@TK , the weak-localization correction to the co
ductivity is still given by Eq.~54!. However, now the effec
of the RKKY interaction onDsWL is small, and the WL
correction to the conductivity decreases monotonically w
the decrease of temperature.

At temperatureT!TK the scattering off a single impurity
approaches the unitary limit. The potential scattering cha
terizing the unitary limit does not destroy phase cohere
and thus does not affect the WL correction. Therefore, aT
!TK only small deviations from the unitary limit determin
DsWL . In this section, we show thatDsWL increases mono
tonically as temperature decreases in the domainT!TK ; the
details of the temperature dependence are different foS
51/2 andS.1/2.

Comparing the behavior of the WL correction in the d
mains of low and high temperatures, we conclude that
correction must have a minimum atT;TK , assuming that
the scattering off magnetic impurities dominates the elect
phase relaxation.
07511
-

-

e

-
e-
.
s

e

re
f

h

c-
e

e

n

1. Spin SÄ1Õ2

At T50, the spins of magnetic impurities are complete
screened and do not contribute to the phase relaxation o
conduction electrons. At finite but small temperatures,T
!TK , the residual local electron-electron interaction fac
tated by local moments leads to the electron relaxation wh
affects the Cooperon pole:

C s,1/2
1 S «,«1

«2 ,«
;qD 5

4p2d~«2«1!d~«2«2!

Dq22 i ~«12«!1G̃~«!
. ~55!

Here the relaxation rate

G̃~«!5
9p

8

ns

n

3«21p2T2

TK
2

. ~56!

Because the interaction responsible for the relaxation is
cal, the typical energy transferred in a scattering even
D«;T, and thereforeG̃(«)/D«!TTsg/TK

2 !1. Under these
conditions, the Cooperon relaxation rateG̃(«) is just twice
the one-electron relaxation rate.

SubstitutingC 1(•,q) from Eq. ~55! into Eq. ~43!, we
obtain

DsWL5
e2

2p\EA D

G̃~«!

d«

4T cosh2«/2T
. ~57!

According to Eq.~57!, in the absence of other phase rela
ation mechanisms, the weak-localization correction wo
vary as 1/T at T&TK :

DsWL'0.022
e2

\
AnD

ns

TK

T
. ~58!

We notice, that similar to Eq.~33!, there are small correc
tions of the order ofTsg/TK to the numerical coefficient in
Eq. ~58!. The corrections originate from the rare configur
tions of ‘‘tight’’ pairs of magnetic impurities, which form
singlet or triplet states with binding energy exceeding
Kondo temperature.

2. Spin SÌ1Õ2

The residual coupling between conduction electrons
magnetic impurities withS.1/2 is still described by the ex
change Hamiltonian, Eq.~1!, with the reduced spin operato
S̃5S21/2 and the renormalized exchange constantJ̃, see
Eq. ~35!. In this case, the electron-scattering rate is

1

t̃s

5
8pns

n

S221/4

ln2TK /T
. ~59!

The couplingJ̃ also results in the RKKY interaction be
tween the partially screened local moments, which is rep

sented by the Hamiltonian, Eq.~7!, with Ŝ replaced byŜ̃.
The strength of the RKKY interaction is determined by t
self-consistent equation~36!.
9-8
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To calculate the weak-localization correction to the co
ductivity, we use Eqs.~43! and~49! with the self-energyS rr
in the form of Eq. ~50!. The spin-correlation function
dK2(v) in Eq. ~50! describes correlations ofS̃ spins with the
appropriately replaced exchange constant, Eq.~35!, and the
typical valueT̃sg of the RKKY potential, Eq.~37!.

Similar to Sec. III A, we can define three domains for t
temperature dependence of the weak-localization correc
At high temperatureT*2/t̃s, we obtain

DsWL5
e2

2p\
AD t̃s

2 F11
p~16S221!

240S
T̃sgt̃sG . ~60!

Equation~60! is a counterpart of Eq.~51!.
At lower temperatures,T̃sg&T&1/t̃s, we obtain @com-

pare to Eq.~54!#

DsWL5
e2

2p\
AD t̃s

2
F11

aS21/2

2

T̃sg

T
G . ~61!

We notice that atT!TK , as temperature decreases the we
localization correction to the conductivity increases. We c
clude that both the Kondo effect and the effect of interact
between magnetic impurities reduce the phase relaxation
as temperature decreases. AtT̃* &T&TK , the temperature
dependence of the weak-localization correction to the c
ductivity is mainly determined by the Kondo effect, and
lower temperaturesT&T̃* , it is determined by the interac
tion between magnetic impurities. At temperature belowT̃sg,
a spin-glass state may appear. Similar to the behavio
DrK(T), the weak-localization correction increases mon
tonically with the decrease of temperature, and should s
rate atT→0.

To summarize Sec. IV, the weak-localization correction
the conductivity is a nonmonotonic function of temperatu
At relatively high concentration of the magnetic impuritie
i.e., at Tsg*TK , the positions of minimum inDsWL and
maximum inDrK roughly coincide, see Eqs.~27! and ~54!.
In the opposite case, the minimum inDsWL occurs
at T.TK .

V. ENERGY RELAXATION RATE

Free magnetic impurities are an intermediary for electr
electron scattering with small energy transfer.3 We show that
the RKKY interaction between magnetic impurities leads
the electron energy relaxation as a result of a single elec
scattering off a magnetic impurity. Indeed, if the impuri
interacts with one or more of its neighbors, a scattering p
cess is accompanied by the energy exchange between
duction electrons and magnetic impurities.

In this section, we apply the virial expansion method
derive kinetic equations for the nonequilibrium distributio
function of electrons in a dilute magnetic alloy. The viri
expansion is justified for processes with large compared
Tsg energy transfer from an electron to the system of loc
ized moments; hereTsg is the typical energy of interaction
between magnetic impurities, see Eq.~10!. We assume tha
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the spin-orbit interaction is strong, in which case the elect
distribution is independent of spin orientation,f ↑(t,r,«k)
5 f ↓(t,r,«k)[ f (t,r,«k).

First, we consider electron scattering by magnetic imp
rities belonging to a small-size pair. If the electron distrib
tion function does not significantly vary on the length sca
of the order of the pair size, then the corresponding sca
ing rate can be expressed in terms of the electron distribu
function f (t,r,«k) at the positionr of the pair,

Ykk8
JJ8~ t,r!52pJ 2~2J11!AJJ8d~«k2«k81EJ2EJ8!

3PJ~ t,r,V! f ~ t,r,«k!@12 f ~ t,r,«k8!#. ~62!

HerePJ(t,r,V) is the distribution function for two magneti
impurities over quantum states characterized by the total
J of the pair,EJ5VeJ , see Eq.~11!, andAJJ8 is defined by
Eq. ~13b!.

Having the rateYkk8
JJ8(r), we can write the kinetic equa

tions for the distribution function of the pairsPJ(V). Per-
forming summation over all initial (k,a) and final (k8,a8)
states of a scattered electron as well as over the final stat
the pair, we obtain the following equation:

dPJ~ t,V!

dt
52

4n2

2J11 (
J8

E d«kd«k8~Ykk8
JJ82Yk8k

J8J
!

~63!

~we omit the positionr of the pair in the argument ofP).
The normalization condition forPJ(t,V) has the form

(
J50

2S

~2J11!PJ~ t,V!51. ~64!

In the stationary state, the distributionPJ(t,V)[PJ(V) sat-
isfies the equations

PJ11~V!5PJ~V!
E f ~«!@12 f ~«1VeJ,J11!#d«

E f ~«1VeJ,J11!@12 f ~«!#d«

,

~65!

where we use the shorthand notationeJ,J85eJ2eJ8 , andeJ
is defined by Eq.~11!. If the system of magnetic impuritie
and electrons are at equilibrium with temperatureT, the so-
lution of Eq. ~65! is the Gibbs distribution:

PJ~V!5
exp~2VeJ /T!

(
J

~2J11!exp~2VeJ /T!

. ~66!

Next, we write the kinetic equation for the electron dist
bution: function

F ]

]t
2D

]2

]2r
G f ~ t,r,«!52I~ t,«k ,V!, ~67!

where the electron collision integral has the form
9-9
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I~ t,«k ,V!5n(
JJ8

E ~Ykk8
JJ82Yk8k

J8J
!d«k8 ~68!

with Ykk8
JJ8 given by Eq.~62!.

We assume that the electron distribution function chan
slowly with the coordinater, so that the collision integralI
may be averaged over a small volume of the metal, wh
f (t,r,«k) does not change much, but which contains ma
magnetic impurities. In this case we can perform averag
of the collision integral over the RKKY potential accordin
to

^I~ t,«!&5
4Tsg

3 E dV

V2
I~ t,«,V!. ~69!

Substituting Eq.~62! into Eq.~68! and performing averaging
according to Eq.~69!, we obtain

^I~ t,«!&5
4Tsg

3ts
(

JÞJ8

2J11

S~S11!
AJJ8ueJJ8u

3E dE

E2 H f «~12 f «2E!PJS t,
2E

eJJ8
D

2~12 f «! f «2EPJ8S t,
2E

eJJ8
D J , ~70!

where we use notationseJJ85eJ2eJ8 and f «5 f (t,r,«). In
the derivation of the collision integral, we tacitly assum
that the transferred energyE exceeds the width of spin state
given by the Korringa relaxation rate,\/tT}Tn2J 2(T).

The system of equations~63! and~67!, with the scattering
rates given by Eq.~62!, the electron collision integral re
placed by its average, Eq.~70!, and with the initial condi-
tions for f (t50,«,r), PJ(t50,V) and the boundary condi
tions for f (t,«,r), define completely the kinetics of electron
and spins. In the stationary case (] f /]t50), one may use
Eq. ~65! instead of Eqs.~62! and~63!. Note that the impurity
average collision integral, Eq.~70!, differs from the conven-
tional collision integral for the electron-electron scatterin
The 1/E2 behavior of the kernel in Eq.~70! does not imply
the scaling of the distribution function found in Ref. 2.

The collision integral, Eq.~70!, may be simplified for the
electron energies«@T. As a result, we obtain the following
kinetic equation for the distribution of ‘‘hot’’ («@T) elec-
trons:

D
]2f ~«,x!

]x2
5

1

ts
E x~E!$ f ~«,x!2 f ~«1E,x!%

dE

Tsg
.

~71!

This equation is a version of a full kinetic equation, defin
by Eqs. ~63!–~70!, which may be used for analysis of th
high-energy tail of the electron distribution function in
metal with magnetic impurities. The kernelx(E) in Eq. ~71!
is asymmetric with respect to the energy transferE and for
uEu@Tsg has the following form:
07511
s

re
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x~E!5
16

3

Tsg
2

E2

eE/T~eE/T11!

~3eE/T11!~31eE/T!
. ~72!

According to Eq.~72! the probability for an electron to sca
ter with energy gain (E,0) is exponentially small atuEu
@T, while the rate of scattering with an energy lossE@T
scales as a power of transferred energy,}Tsg

2 /E2.
We notice that because of the relatively slow decay

x(E) with energy E.0, the relaxation of the number o
nonequilibrium electrons occurs differently from the rela
ation of their energy. We illustrate the energy transfer fro
electrons to the system of magnetic impurities by consid
ing the following model problem. Assume that initially th
system of electrons and magnetic impurities is in equilibriu
at temperatureT, and then instantaneously the electron su
system is brought out of equilibrium, so that the new dis
bution function is characterized by small deviationd f («)
from the equilibrium. The excess electron energyW per unit
volume may be defined asW52n*«d f («)d«. The energy
W will decrease in time as the result of the energy redis
bution between electron and impurity subsystems. Even
ally, a new equilibrium with new temperature will establis
We calculate the reduction of the electron energy at the
tial moment. The result is

dW

dt
5

16Tsg

3ts
E dE

E

e2E/T21

~3eE/T11!~31eE/T!

3E nd f ~«!sinh«/T

coshE/T1cosh«/T
d«. ~73!

If the distribution of electrons at the initial moment wa
peaked near energy«0@T, e.g.,nd f («)5ad(«2«0), then
the estimate of the energy reduction rate isdW/dt
5aTsg/tsln «0 /T. The characteristic collision rate is;1/ts
and the typical energy transferred in a collision isTsg. How-
ever, the range of the transferred energies is broad enoug
result in a logarithmic dependence on«0 /T.

In conclusion, we emphasize that Eq.~72! is derived
within the virial expansion and is valid for large energ
transfer. We expect that beyond the virial expansion the k
nel x(E) remains to be a function ofE/Tsg andT/Tsg:

x~E!5FS E

Tsg
,

T

Tsg
D . ~74!

FunctionF characterizes the excitation spectrum of a syst
of magnetic impurities at the energy scales relevant for
kinetics of conduction electrons. The study of its propert
may provide important information about formation of spi
glass states in metals with magnetic impurities.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we considered the effect of the RKKY i
teraction between Kondo impurities in a metal on kine
properties of conduction electrons. Specifically, we evalua
the effect of interacting magnetic impurities on the mome
tum relaxation rate and the corresponding contribution to
9-10
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Drude resistivity of a metalDrK , the phase relaxation rate a
defined by the weak-localization correctionDsWL to the
Drude conductivity, see Eq.~41!, and the energy relaxatio
rate, which determines the relaxation of nonequilibrium el
trons injected into a metal.

The overall temperature dependence of the momen
and phase relaxation rates differs for the cases of strong
weak RKKY interactions between the magnetic impuritie

If the interactionTsg between the impurities separated
a typical distancens

21/3 is strong,Tsg@TK , then the momen-
tum and phase relaxation rates are nonmonotonic funct
of temperatureT, with the maxima atT.T* , see Eq.~29!
@here TK is the Kondo temperature for a single magne
impurity, ns is the concentration of these impurities, and e
ergy Tsg is defined in Eq.~10!#. Therefore, ifTsg@TK then
one expects a maximum of the Kondo contribution to
resistivity and a minimum of the weak-localization corre
tion DsWL at T.T* , see Fig. 1. The positions of these e
trema shift towards lower temperatures with the decreas
concentration of the magnetic impurities. At lower tempe
tures T&Tsg when the spin-glass state is formed both t
resistivity and the WL correction to the conductivity satura

In the opposite case,Tsg!TK , the momentum relaxation
rate increases monotonically with the decreasingT, and
eventually saturates atT50, see the lower curve in Fig. 2
The saturation level depends on the value of impurity spinS.
Thus the Kondo contribution to the Drude conductivity is
monotonic function of temperature. The spin-induced con
bution to the phase relaxation rate, on the contrary, ha
maximum atT;TK . If this contribution dominates over a
other mechanisms of the phase relaxation, then the w
localization correction to the conductivity,DsWL , has a
minimum atT;TK , see the upper curve in Fig. 2. The d
tails of the low-temperature increase ofDsWL with the fur-
ther reduction of temperature in the regionT&TK depend on
the level of Kondo screening. In the case of full screen
(S51/2), the phase relaxation rate vanishes atT→0, and
DsWL(T) diverges, see Eq.~58!. If the screening is not com
plete (S.1/2), then both the phase relaxation rate 1/t̃s and
the weak-localization correctionDsWL saturate at some fi

FIG. 1. Schematic picture of the Kondo contribution to the
sistivity DrK and of the weak-localization correctionDsWL to the
conductivity in the limit Tsg@TK . Both DrK and DsWL are ex-
pected to saturate asT approachesTsg.
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nite level, see Fig. 2. Within the simplest model of the sp
glass state accepted in Ref. 29, we find

DsWL5
e2

2p\
AD t̃s

2
,

1

t̃s

.
8pns

n

~S21/2!2

ln2TK /T̃sg

, ~75!

where the temperatureT̃sg is defined in Eq.~37!. It is worth
noting that the saturation occurs at temperature;T̃sg, well
below the Kondo temperatureTK .

The considered limits ofTsg@TK and Tsg!TK and the
conjecture of Hertz26 allow us to understand the evolution o
the temperature dependence ofDrK(T) andDsWL with the
concentration of impuritiesns. The position of the maximum
in DrK(T) shifts continuously towardsT50 with the de-
crease ofns; it reachesT50 at some finite value ofns,
which corresponds toTsg;TK . Note that such behavior oc
curs irrespective of the value ofS. Formation of the spin-
glass withTsg!TK at S.1/2 does not result in the finite
temperature maximum of the functionDrK . The position of
the minimum inDsWL also moves to lower values ofT with
the decrease ofns. This shift, however, stops atT;TK ; thus
the minimum occurs at a finite temperature even in the li
Tsg!TK . ~Once again, here we assume thatts is the shortest
of the phase relaxation times.!

Electron scattering off interacting magnetic impuriti
leads to the energy transfer from electron to the system
localized spins. The rate of collisions with a relatively lar
energy transferE can be calculated by means of the viri
expansion. The corresponding full system of kinetic eq
tions for the electrons and spins is derived in Sec. V. T
collision rate with energy lossE at uEu@max$Tsg,TK ,T%
scales withE asu(E)Tsg/(tsE

2). This asymptote of the rate
is not sensitive to the formation of the spin-glass state. Ho
ever the spin-glass transition affects the electron energy
laxation for smaller energy transfers,uEu&Tsg.

In most part, the data of existing experiment
works5,9–11,30,31 can be understood within the theoretic
framework presented here. The evolution of the tempera

- FIG. 2. Schematic picture of the Kondo contribution to the
sistivity DrK and of the weak-localization correction to the condu
tivity DsWL in samples with low concentration (Tsg!TK) of mag-
netic impurities with spinS.1/2. The solid lines representDrK

and DsWL for interacting impurities. Dashed lines showDrK and
DsWL as if the interaction were absent.
9-11
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dependence of the resistivity with the concentration of m
netic impurities was studied in dilute AuFe alloys. The i
vestigated range of the magnetic impurity~Fe! concentration
ns covered by the data of Refs. 5,9–11,30 and 31 is
tremely broad, ranging from 3.3 ppm, see Ref. 10, up t
few percent.30 For concentrationsns*100 ppm, the function
DrK(T) has a clear maximum.5,30 Its positionTmax moves to
lower temperatures as the impurity concentrationns de-
creases; the measured, in Ref. 5, dependence ofTmax on ns is
superlinear, in a qualitative agreement with Eq.~29!. The
extrapolation of the data of Ref. 5 toTmax50 yields the criti-
cal value of Fe concentration'50 ppm for the AuFe alloy,
see also Refs. 10 and 31. Finally, the observed10 magnetic
hysteresis of the resistivity atns57 ppm may indicate for-
mation of a spin-glass even for such low impurity concent
tions, which is possible atS.1/2, see Sec. III B 2.

The weak-localization correction to the conductivity
AuFe wires with low impurity concentration (ns57
;60 ppm) was studied in Refs. 10 and 11. There is a pro
correspondence between the data11 for the sample withns
560 ppm, and the data10 for ns510.9 and 7.1 ppm. The
values of 1/ts found from the weak-localization magnetor
sistance, see Eqs.~52!, ~59!, and~75!, scale roughly linearly
with ns. The temperature dependence of 1/ts for the inves-
tigated samples is also in accord with the theory; namely,
phase relaxation rate exhibits a broad plateau at tempera
around TK'0.3 K ~with the plateau value11 of 1/ts'6
31010 s21 for ns560 ppm). The plateau is followed by
decrease of this rate at lower temperatures. The saturat11

of 1/ts(T) at T,TK is compatible with the value of impurity
spinsS.1/2.

We also notice that the data of Ref. 11 for an AuFe al
with ns515 ppm are in sharp contrast with other experime
tal data5,10,11,31and with the expectations supported by t
presented theory. Indeed, Ref. 11 reports the position of
Drude resistivity maximum atTmax'30 mK for the ns
515 ppm sample, which is indistinguishable from the va
of Tmax for the ns560 ppm sample in the same work. Th
stability of Tmax contradicts the dependence ofTsg(ns), ex-
pected from other experimental works5,31 and from theory,
see Sec. III. Also, the fourfold difference ofns between the
two samples11 resulted in a 100-fold decrease of the electr
phase relaxation rate 1/ts. This drastic change of 1/ts with
ns contradicts both the quoted above measurements10 and the
theoretical estimates, see Eqs.~52! and ~59!.

Measurements of the energy relaxation in nanowires
Au, Cu, and Ag revealed the effect of individual magne
impurities,2 but there was no systematic study of the effect
the RKKY interaction on the electron energy relaxatio
Measurements of the relaxation rates at energy transfersuEu
&Tsg may provide information about the excitations in
spin-glass, but we are not aware about such measuremen
of yet.
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APPENDIX A: MATRIX ELEMENTS AJJ8

In this appendix, we present the expression for theAJJ8
factors in Eq.~12!. First we notice that the convenient form
to calculatê JMuŜauJ8M 8& is to use the basis of spin state
for two independent spins:um1m2&, wherem1 andm2 are the
spin components along some direction. We have

ha~JMJ8M 8!5^JMuŜauJ8M 8&

5 (
m1 ,m2 ,m18

Cm1m2

JM ^m1uŜaum18&Cm
18m2

J8M8 ,

where the Clebsh-Gordon coefficients are expressed in te
of the Wigner 3j symbols as

Cm1m2

JM 5A2J11S J S S

2M m1 m2
D . ~A1!

The matrix elementAJJ8 may be represented in term
of ha :

AJJ85 (
a5x,y,z

(
M8

ha
2~JMJ8M 8!. ~A2!

We find that

AJ,J115
~J11!~2S2J!~2S1J12!

4~2J11!
, ~A3a!

AJ,J5
J~J11!~2J11!

4~2J11!
, ~A3b!

AJ,J215
J~2S2J11!~2S1J11!

4~2J11!
, ~A3c!

and all other elements vanish. From Eqs.~A3! we verify
explicitly that

(
J,J850

2S

~2J11!AJJ85S~S11!~2S11!2. ~A4!

APPENDIX B: ELECTRON T MATRIX

For completeness of the presentation, we show how
imaginary part of the electronT matrix may be related to the
spin-correlation function, defined by Eq.~3!. In the Matsub-
ara representation theT matrix is given by the following
expression:

T~ i«n!5J 2T(
vm

E dp

~2p!3
K~ ivm!G„i ~«n2vm!,p…,

~B1!
9-12
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whereK( ivm) is the Fourier component atvm52pmT of
the Matsubara spin correlator

K~t!5(
jj8

rje
2(Ej2Ej8)tu^juSuj8&u2 ~B2!

@compare to Eqs.~3! and~4! for the real time spin correlato
K(t)], and

G~ i«n ,p!5
1

i«n2j~p!2S~«n!
~B3!

is the electron Green’s function at Matsubara frequency«n
5p(2n11)T @compare to Eq.~19!#. The integration over
momentum in Eq.~B1! gives

T~ i«n!52 ipnJ 2(
vk

K~ ivm!sgn~«n2vm!. ~B4!

Next we perform the standard procedure of the analyt
continuation in Eq.~B2!. We replace the sum over discre
vm by the integral over complexv:

T(
vm

F~ ivm!5 i E
C

dv

4p
coth

v

2T
F~v!. ~B5!

This procedure is valid for an arbitrary functionF, analytic
inside the contourC of integration. We chooseC to be a
circle of infinite radius with two cuts at Imv50 and Imv
5«n . Inside the contour of the integration, the functio
K(v) is analytic and only the poles of cothv/2T contribute
to the integral~Fig. 3!. Neglecting the contribution from the
pieces of the circle, and keeping the contribution along
cuts, we obtain

FIG. 3. The contour for calculation of theT matrix, Eq.~B4!, in
the Matsubara representation. The contributions from the do
parts of the contour vanish.
07511
l

e

T~ i«n!

pnJ 2
52E

2`

1`

tanh
v

2T
K~ i«n1v!

dv

2p

1sgn«nE
2`

1`

coth
v

2T

K~v1 i0!2K~v2 i0!

2

dv

2p
.

~B6!

The imaginary part of theT matrix is given by

ImT~«!5 i
T~«1 i0!2T~«2 i0!

2
. ~B7!

We substitute Eq.~B6! in Eq. ~B7!, take into account relation

K~v!5 i
K~v1 i0!2K~v2 i0!

ev/T21
~B8!

between the real time spin correlator, Eq.~3!, and the Mat-
subara spin correlator, Eq.~B2!, and obtain Eq.~25!.

APPENDIX C: COOPERON SELF-ENERGY

The Cooperon self-energyS rr(•) may be obtained as a

result of the analytical continuation ofS(
i«2, i«

28

i«2, i«18), written in

the Matsubara representation:

Ss
rrS «1 , «18

«2 , «28
D 5SsS «11 i0, «181 i0

«22 i0, «282 i0
D . ~C1!

The Cooperon self-energy is related to the scattering ma
S off a magnetic impurity for two electrons in a singlet sta

Ss~• !52pnnsS~• !. ~C2!

In Eq. ~C2! S is averaged over various magnetic impuritie
The singlet componentSs is related to the full matrixŜ of
two-electron scattering:

Ss~• !5
1

2
@S ↓↓

↑↑~• !1S ↑↑
↓↓~• !2S ↑↓

↓↑~• !2S ↓↑
↑↓~• !#. ~C3!

Matrix S, in its turn, contains the contribution from thre
diagrams, shown in Fig. 4, and has the following form:

d

FIG. 4. The left two diagrams represent the self-energy corr
tions to the Cooperon and contain the single-electronT matrix. The
diagram on the right is the vertex correction and is related to
two-electron counterpart of aT matrix.
9-13
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S
§2§

28

§1§18S i«1 , i«18

i«2 , i«28
D

5V
§2§

28

§1§18S i«1 , i«18

i«2 , i«28
D 2

T~ i«1!2T~ i«2!

2p in

3u~2«1«2!sgn«1d«1«
18
d«2«

28
d§1§

18
d§2§

28
. ~C4!

Here the second term contains the single-electronT matrix
considered in Appendix B. Below we focus on the irredu
ible component of the scattering matrix of two electrons i
singlet state, represented by

V
§2§

28

§1§18S i«1 , i«18

i«2 , i«28
D

5u~2«1«2!u~2«18«28!(
jj8

e2Ej /T

Z
T

3(
vm

f
§1§

18
jj8 ~ ivm! f

§2§
28

jj8 ~2 ivm!d«11vm ,«
18
d«2 ,«

281vm
,

~C5!

wheref §§8
kk8( ivm) is the scattering amplitude of electrons wi

initial spin state§8 to the spin state§, accompanied with the
change of the state of magnetic impurities fromj8 to j. The
summation overj andj8 runs over all possible states of th
impurity spin andZ5(je

2Ej /T. For scattering amplitudes in
the Born approximation we have

f §§8
jj85J^kuŜuk8&ŝ§§8 . ~C6!

We substitute Eq.~C6! into Eq. ~C5!, and use Eq.~C3! to
write down the singlet component of the vertex part of t
CooperonS matrix:

VsS i«1 , i«18

i«2 , i«28
D 5J 2u~2«1«2!u~2«18«28!T

3(
vm

dK2~ ivm!d«11vm ,«
18
d«2 ,«

281vm
.

~C7!
Next we perform the analytical continuation ofVs . We

consider the case«18.0 and«2,0, see Eq.~C1!. Using Eq.
~B5!, we replace the sum over the Matsubara frequenc
vm , by the integral over a contour in the complex plane.
the present case the contour of the integration is show
Fig. 5, and contains three cuts: Imv5«2 , 0, «18 . We notice
that the contour parts above the upper cut and below
lower cut do not contribute to the integral. The remaini
parts of the contour along the cuts after the continuat
i«18→«181 i0 andi«2→«22 i0 give

VsS «11 i0, «181 i0

«22 i0, «282 i0
D

07511
-
a

s,

in

e

n

5E
2`

1`

dvd~«11v2«18!d~«22v2«28!2pJ 2

3H coth
v

2T
@dK2~v1 i0!2dK2~v2 i0!#

2tanh
v

2T
@dK2~v1«181 i0!2dK2~v1«22 i0!#J .

~C8!

This expression may be further simplified in the case wh
«185«2 with the help of Eq.~B8!.

APPENDIX D: CALCULATIONS OF THE VIRIAL
CORRECTION TO DsWL

To calculate the WL correction to the conductivity, w
substitute Eq.~49! with the self-energy defined by Eq.~50!
into Eq. ~43!. As a result we obtain

DsWL5DsWL
(0) 1DsWL

(1,a)1DsWL
(1,b) . ~D1!

HereDsWL
(0) is given by Eq.~45!, and the second term is

DsWL
(1,a)52

DsWL
(0)

4 E dK2~v!

S~S11!

v

T

1

12e2v/T

dv

p

5
DsWL

(0)

2

aSTsg

T
, ~D2a!

with aS defined by Eq.~28!, see also Table I. The third term
in Eq. ~D1! is

DsWL
(1,b)52

DsWL
(0)

2 E dK2~v!

S~S11!

v

T

w~v!

12e2v/T

dv

p
,

~D2b!

where

FIG. 5. The contour for calculation of the vertex correctionV̂s to
the Cooperon. The contributions from the dotted parts of the c
tour vanish.
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w~v!5
1

4
2

ImA11 ivts/2

vtsA11v2ts
2/4

.

As vts→0 functionw(v) vanishes. Therefore, at low tem
peratureTts!1 only the second termDsWL

(1,a) in Eq. ~D1!
remains. In the opposite limit,Tts@1, we use the following
property ofw(v):
n

p

a

e

ys

s.

s

07511
E
2`

1` w~v!

v2
dv5

3p

32
ts

and obtain

DsWL
(1,b)'

p

120

~4S11!~4S13!

2S11
DsWL

(0) Tsgts, Tts@1.

~D3!
,
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