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Electron transport and energy relaxation in dilute magnetic alloys
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We consider the effect of the Ruderman-Kittel-Kasuya- Yo Y ) interaction between magnetic impu-
rities on the electron relaxation rates in a normal metal. The interplay between the RKKY interaction and the
Kondo effect may result in a nonmonotonic temperature dependence of the electron momentum relaxation rate,
which determines the Drude conductivity. The electron phase relaxation rate, which determines the magnitude
of the weak-localization correction to the resistivity, is also a nhonmonotonic function of temperature. For this
function, we find the dependence of the position of its maximum on the concentration of magnetic impurities.
We also relate the electron energy relaxation rate to the excitation spectrum of the system of magnetic
impurities. The energy relaxation determines the distribution function for the out-of-equilibrium electrons.
Measurement of the electron distribution function thus may provide information about the excitations in the
spin-glass phase.
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I. INTRODUCTION presses the Kondo effettUnlike the uniform Zeeman split-
ting, however, interaction between the spins results in a
Electron transport in normal metals is known to be verybroad spectrum of energies of collective spin states. There-
sensitive to the presence of magnetic impurities in a metaffore, the quantitative manifestations of the RKKY interaction
Scattering of conduction electrons off such impuritiesin the electron transport are different from that of the Zee-
scrambles the electron spin. A tiny concentration of magnetienan energy.
impurities results in an observable effect—low-temperature The difficulty of the low-temperature electron-transport
saturation of the phase relaxation ratelagnetic impurities  problem is associated with the complexity of the spin-glass
apparently also facilitate the energy transfer betweerstate. In this paper, we study in detail the transport at rela-
electrons>® At higher concentrations,a minimum in the tively high temperaturegor electron energy transfers, in the
temperature dependence of the resistivity becomes evidentase of energy relaxatipnVe perform analytical calculation
which is a manifestation of the Kondo effécThese three using the method of the virial expansi8rt’ in the RKKY
observations fit very well with a picture of uncorrelated mag-interaction between magnetic impurities. The method is
netic impurities. based on the following concept. Since the RKKY interaction
Investigation of the resistivity at even higher concentra-quickly decreases as a function of the distance between im-
tion of magnetic impurities reveals deviations from the pic-purities, the impurities have to be close to each other for the
ture of uncorrelated localized magnetic moments. The teminteraction between them to compete with thermal smearing
perature dependence of the resistivity, in addition to theand to affect transport properties of conduction electrons. We
aforementioned minimum, develops a maxiniafat lower  perform the virial expansion to the second order in the den-
temperatures. The electron phase relaxation rate was recensity of magnetic impurities, which corresponds to accounting
measuretP'!! on AuFe alloys with magnetic impurityFe)  for the interaction within impurity pairs.
concentration ranging from 7.1 to 60 ppm. At the upper end Electron scattering off magnetic impurities contributes to
of this range, correlations between the localized spins mathe temperature dependence of the resistivity: due to the
become important, as evidenced by the temperature depeondo effect, the resistivity increases as the temperature is
dence of the resistivity!! lowered. Similar to the Zeeman splitting, the RKKY interac-
In this paper we investigate the effect of correlation be-tion between magnetic impurities may stop the development
tween spins of magnetic impurities on the electronic-of the Kondo effect. The interplay between the RKKY inter-
transport properties of a metal. Specifically, we study theaction and the Kondo effect leads to a maximum in the tem-
Kondo contribution to the Drude resistivity, the weak- perature dependence of the resistiVitylf the characteristic
localization correction to the conductivity, and the electrontemperature of the spin-glass formation exceeds significantly
energy relaxation rate. the Kondo temperaturéhigh concentration of magnetic im-
The leading mechanism of correlations is known to be thepuritiesny), then the resistivity has a maximum at a tempera-
Ruderman-Kittel-Kasuya-Yosida RKKY) interaction be- ture in the region of applicability of the virial expansion. On
tween impurities. The interaction lifts the degeneracy in thethe contrary, at smals the maximum of resistivity occurs at
excitation spectrum of impurities. In this respect, the effectzero temperature.
of the RKKY interaction is somewhat similar to the effect of  Magnetic impurities also affect the magnetoresistance in
an external magnetic field which causes Zeeman splitting ofveak magnetic fields. This magnetoresistance is due to the
the spin states. It is known that the magnetic field reduces thereak-localization (WL) effect!®!® Being an interference
electron relaxation rates at low energié$;**and also sup- phenomenon, the WL is limited by the electron phase relax-
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ation. We calculgte the phase relaxation rate 'gaking_ into aCstatistical averages of impurity spin componer(t%ﬁ@,
count the RKKY interaction between magnetic impurities. Atyith respect to thermodynamic states of the magnetic impu-
high impurity concentration, the phase relaxation rate has gty system. We show that the electron-transport properties in

maximum, similar to the maximum in the resistivity. At low a metal with strong spin-orbit coupling are determined by the
concentration, unlike the Drude resistivity, the phase relaxfo|lowing spin correlator:

ation retains a maximum at a finite temperat(otthe order

of the Kondo tgmpera.tu}e. K(t):<§(o)g(t)>_ (3)

The RKKY interaction lifts the degeneracy of the mag-
netic impurity states. Therefore an out-of-equilibrium elec-In general, the correlation functidf(t) can be rewritten in
tron may lose its energy by exciting the impurity spin de-terms of exact quantum statg of the system of magnetic
grees of freedom. The corresponding relaxation rate is #npurities:
function of the transferred energy. This rate provides infor-
mation abqut th_e spin excitation spectrum. We Qer!ve .the K(w)=27r2 p§|<§|S|§’>|25(E§— Ey— o). (4)
corresponding kinetic equation for the electron distribution o
function. We also make specific predictions for the relaxation _ . .
rate at sufficiently large energy transfers, which may be acHere, E, is the energy of stateé), and p; is the density
counted for by the virial expansion. matrix p<exp(—E,/T). o . ,

Before we proceed, we emphasize that in this paper we 'oF @ free magnetic impurity with spi§ (all spin states
consider the effect of the interaction between Kondo impu2'€ degeneraiethe spin-correlation functiok(t) does not
rities only on kinetic propertiegconductance, energy relax- depend on time and its Fourier transform has the form
ation of electrons in a metal. The interaction between mag- _
netic impurities may also affect thermodynamic propertigs Ki(w)=27S(S+1)d(w). ®)
(such as heat capacity, susceptibility, superconducting transigsing the Fermi golden rule and E¢), we obtain the fol-
tion temperatureof conduction electron®:*"?*#'An analy-  lowing expression for the electron-scattering rate off mag-
sis of the thermodynamic properties of electrons in dilutenetic impurities:
Kondo alloys was performed earlier, see, e.g., Ref. 20.

The paper is organized as follows. In the following sec-
tion, we introduce the model and discuss the effect of inter-
action between magnetic impurities on a spin-correlation
function. In Sec. lll, we perform calculations of the resistiv- Herens is the magnetic impurity concentration per volume.
ity correction due to the electron scattering off magnetic im-The quantityzs is the mean free time of scattering off mag-
purities. Section IV contains analysis of the WL correction tonetic Impurities.
the conductivity. In Sec. V, we derive the kinetic equation for  In metals, the leading interaction between magnetic mo-
the system of magnetic impurities and conduction electrongents of impurities is described by the RKKY mechanism.
and discuss the energy exchange rate between these two sdfie corresponding Hamiltonian has the form
systems. Section VI contains discussions and conclusions.

1
7=2wynJ28(s+ 1). (6)

S

Hrkcy =2 V(iS5 . (7)
Il. MODEL 1]

The scattering of conduction electrons off a magnetic im-1 "€ magnitude of the RKKY interaction is given by the fol-
purity is described by the following Hamiltonian: lowing expression:

.= 75, &) vin =2 eose. ®
r

whereS s the spin operator of a magnetic impurity ands . )
the spin operator of a conduction electron represented iWhere¢ changes quickly on the length scale of the Fermi

. LA A wavelengthA . The interaction constant, may be repre-

terms of the Pauli matricelsr, , 0, ,0,}. The exchange con- . .

. . y . sented in terms of the exchange constant and electron density
stant7 is renormalized due to the Kondo effect and varies as )

o . : of statesv:
a logarithmic function of energy of conduction electrons.
At temperaturdl higher than the Kondo temperaturg, the v T2(r) 2 1
exchange constant for thermal electroais; T, is given by Vo(r)= —~% 7 (N=-——— (9)

v 0 27 Y0 v In[ve/(rTe)]”

The typical value of the RKKY interaction between two im-
2 " . :

purities separated by dlstanceng? (average distance be-

. . . . tween impuritiey is
where v is the Fermi density of states per spin degree of

—2| 1T T>T
j_;n T_K, K

freedom. 2n,
In order to evaluate the effects of electron scattering off Tsg=NgVo(r=ng 13) ~ 5 e . (10
magnetic impurities on electron transport, we introduce the mvin“(veng™/Ty)
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Due to the randomness of the RKKY Hamiltonian

Hgriiy , finding of stateg¢) and corresponding energigs

is a hardly possible task. At sufficiently low temperature a
phase transition into a spin-glass state may occur with ex-

tremely complicated structure of the wave functigés and

energy spectrurff A transition temperature is comparable
with the typical energy of the interaction between magneti

impurities T.
We focus our attention on the high-temperature lifit
>Tsy and calculate the spin-spin correlation functid(t),

Eq. (3), using the virial expansion method. In this method,
the interaction between magnetic impurities is taken into ac-
count only if the splitting of the spin states due to the inter-

PHYSICAL REVIEW B8, 075119 (2003
K(0)=Ky(w)+ | p(N[Ky(@,V(r)=Ki(w)]d,
(14)

wherep(r) is the probability density for two magnetic im-
purities to be at distanae for uniform impurity distribution,

Cp(r)=n5. Averaging over the relative position of two mag-

netic impurities in Eq(14) can be performed in two steps.
First, we make the substitution’=Vycose/(Ty), and then

we perform integration over the quickly varying phaseAs

a result, the spin correlator has the fofm

action exceeds the system temperature; otherwise the inteihere
action does not significantly change the spin-correlation

function. Therefore, the interaction is important only for

magnetic impurities in clusters of the size\[3V,/T. For a

uniform distribution of magnetic impurities in the metal, the

probability for a formation of such a cluster &fimpurities
scales as‘(sg/T)k‘l. We consider only clusters containing
two (k=2) magnetic impurities.

The energy statel§) of two interacting spins are classi-
fied by the total spid (J=0,1, .. .,%) and its projectiorM
on a fixed direction]&)=|J,M). The energy spectrum is
given by

J(JI+1)—2S(S+1)
2

E;=V(r) =V(r)e; (11

and is degenerate with respect to the projeckibrmThe spac-
ing between levels with differend is proportional to the
magnitude of the RKKY interaction, Eg8).

According to Eq.(4), the corresponding spin-correlation
function of a magnetic impurity within distanagefrom an-
other magnetic impurity may be represented in the form

2S
2J+1 .
Ko(t,V)= z Ay eV{I(EJ—EJ/)t—EJ/T}, (12
J,J'=0 Z(V)
where the statistical sui(V) is
2S
Z(V)=D, (23+1)e ValT, (139
J=0
and the matrix element&;; are
Asy=>, (IM|SJI'M'YI'M’|§[IM).  (13b)
M!

K(w)=Ki(w)+ dKy(w), (15
8w T S(S+1) (+=dy
Kolw)=———F— %?[P(w,y)—é(w)],

(163

s 2J+1 e Ve
P(w,Y)=JJZ:0AJJ'mZ(—Ty)&w—TY[Q—fw])-
(16b)

We notice that the spin-correlation function, Ef5), in-
creases as the frequenaydecreases:

K(w)=

8w Tgy

2S
3T > (23+1)

J#J

% (I)EJ )
exp - ———
le;— €y (e3—€;)T

w2 Z(w/(EJ_EJr))

w#0. (17

One may expect that due to thew®/behavior of the spin-
correlation function, Eq.(17), the virial approximation
breaks down even at=Tg,. Nevertheless, due to the prop-
erty P(w,0)= 6(w), see Eq(A4), the integrand in Eq(163
has no singularity ay=0, and the slow modesu(=T) of
the spin system do not affect electron transport.
Equation(15) supplemented with Eq$13) and (16) de-
termines the spin-correlation function at high temperafure
>T,. Below we use these equations to describe the effect of
interaction between magnetic impurities on electron trans-
port in metals.

lll. RESISTIVITY

The conductivity of a metal with isotropic impurities may

The analytical form of the matrix elements is presented iNye calculated according to the standard rules of the diagram-

Appendix A. We emphasize that;;, are independent of the
pair spin projectiori.

As we will see in the following sections, the electron-
transport properties are determined by the spin-correlation

averaged over configurations of mag-

function K(w),
netic impurities. We calculateK(w) within the virial
approximation:

matic technique. Disregarding the interference corrections

we have
ezvﬁJ‘
o=
6

GR(e,p)GA(e,p) dedp
TcosRe/2T  (2m)*

(18

Here
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1 TABLE I. Values of the numerical coefficienig, Eq.(28), for
GRA(e,p)= (19 several values 0§

e—&(p)—XFAe)
, . S 1/2 1 32 2 5/2 3 712
is the retarded or advanced Green’s function averaged over

disorder,&(p) =vg(|p| — pg) is the electron energy, counted as 110 152 18 211 233 252 269
from the Fermi energysR*(¢) is the electron retarded or
advanced self-energy, ang is the Fermi velocity. Perform-
ing the integration over momentum we obtain

ImT(g)= ZfK rerl do 25
i mT(e)=mvJ (w)mﬁ, (29
2 UF 1 d8 (20)
o=ev—
3J Im3A(e) 4T cosife/2T

whereK (w) is the Fourier transform of the spin-correlation
function, defined by EQq.(3). Substituting InT(e) into
with v being the density of states of conduction electrons peEq. (24), we obtain the Kondo contribution to the Drude

one-spin orientation. conductivity:
We assume that the electron self-energy part contains two
components: 3n.72 o do
= zf Kw)g — - (26)
1 T 1—e wlT
IMSA(e)= =—+ndmT(e). (21)
27,

We emphasize that E@26) is valid if the distance between
The first term in Eq.(21), 1/27, represents the effect of impurities is much larger than the Fermi wavelength. At the
elastic scattering off nonmagnetic impurities with being satr)pe time, Eq(26) d%scrlbes tﬁeff?SBt'V't}’ mbmetals with
- _ arbitrary structure and strength of interaction between mag-
the mean free elastic t|me._The second teTgtmT(s) rep netic impurities?® We perform further calculations using the
resents the effect of scattering of electrons with energyf ic impunties. P . using
magnetic impurities. Here the scattering off a particular magSPin-correlation functioi () given by Eq.(15), which was
netic impurity is characterized by thE matrix T(s); the  derived within the virial expansion. .
self-energySR(e) contains T(s), averaged over various  YSingK(w), calculated within the virial expansion, Eq.
impurities. (15), and the Kondo-renormalized exchange constansee
Using the simple relatiop= 1/ between the conductiv- Ed- (2), we obtain
ity o and the resistivityp and Eqs(20) and (21), we repre-
sent the resistivity as a sum of two terms: 127ng S(S+1)

Apk=
€222 IN2(T/Ty)

Ts
1- asf) . (27

p=pet Apk. (22)

The first term is the resistivity of a metal without magnetic
impurities (hs=0), which is produced by elastic scattering
off nonmagnetic impurities:

Here numerical coefficientg is given by the following in-
tegral:

f+°° 1 ZES y(e;—€y)e ¥ (2J+1)Ayy | dy
ag= - -
P _ 1 =268 (23 RS 37 1-eVeme) S(S+1)Z(y) [ y?

e a_e’ e ’ (28)

where D:vﬁre/3 is the diffusion coefficient. The second wheree;, Z(y), andA,; are defined by Eqg11), (133,
term is the contribution to the resistivity due to the scatteringand(13b), respectively. We emphasize that the integral in Eq.

off magnetic impurities: (28) converges neay=0. The values ofrs are presented in
Table I.
3ng — de Equation(27) is similar to the results of Refs. 8 and 17.
APK:e2 ZJ’ |mT(8)m- (249 Unlike Ref. 17, Eq(27) takes into account the Kondo renor-
VUr & malization of the exchange constant, Eg), and of the

RKKY interaction, Eq.(10). The advantage of Eq27) in
comparison with Ref. 8 is in a consistent definition of the
energy scald sqand in an accurate procedure of the averag-
ing over states of magnetic impurities, which allowed us to
calculate the numerical factars.

In metals with low Kondo temperaturé,x<Ty, the

At high temperatureT>T,, the scattering of electrons competition between the Kondo effect and the effect of the
off magnetic impurities is described by the Born approxima-RKKY interaction results in a maximum of the resistivity as
tion with the exchange constant renormalized according t@ function of temperature. Ty <Tgy, then the maximum
Eqg. (2). In this case, thd matrix is (see Appendix B occurs at

The scatteringl matrix in Eq.(24) has different structure in
the limits of high (T>Ty) and low (T<<Ty) temperatures.
We study these two limits below.

A. High concentration of magnetic impurities, T2 T
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as T 1. Spin S=1/2 impurities

* > _S9
= nglnTK ' (29 In this case, the majority of magnetic impurities are com-

pletely screened and the RKKY-type interaction between

see also Refs. 7-9. We notice that temperaftirds within ~ them is absentonly a small partx T,/ T of magnetic im-
the region of applicability of the virial expansion, used in thepurities form coupled states with binding energy exceeding
derivation of Eq.(27). Tx). Therefore, the contribution to the resistivity is deter-
As temperaturel approaches and cross@g,, intrinsic ~ Mined by theT matrix of a single magnetic impurity, which
random magnetic field develops, and the renormalization ol Well studied aff <Ty .>>**We present the resuilts for con-
the exchange constant is stopped/at 2/ vIn(Tsy/Ty)]. Si- ~ Venience. The scattering matrix for the residual interaction
multaneously, the virial expansion breaks down, and the colbe€tween conduction electrons and magnetic impurities has
lective modes of spin system have to be considered in théhe form
derivation of the temperature dependence of the resistivity.
At present, there is no theory of metallic spin glasses,
which would provide us wittK(w) in a broad range ob.
Thus, the explicit form ofApy(T), see EQ.(26), is not o ) )
known. We expect thak py continues to decrease with tem- Substituting Eqs(31) and(32) into Eq.(24) and performing
peratureT decreasing, as the dynamics of the local magneti¢htegration over energy, we obtai
moments gets progressively suppressed at lower tempera-

T (e) = = 27 (3624 72T2). 32)
v 8TZ

tures. In the mean-field picture, each of the spingal is Apw=A 1_9_774 T_2 (33
subject to a finite field, so that such dynamics is fully sup- Pr=2Pu 4 12|
pressed. In this case, the limiting value®p, at T=0 can
be estimated as Here the factor
12 s Apy=a s (34)
N pU=————
Ap(T=0)= ——— (30 Uomet?

ezvév2 InZ(TSg/TK) .
corresponds to the unitary contribution to the resistivity at

[The quenching of the spin flips leads to the replacement of = 0. According to Eq(33) at finite temperature the resis-
S(S+1) factor, see Eq(27), by the factorS? here] The t|V|ty2 cozntams corrections to Eq434), which are proportional
picture leading to Eq(30) cannot be valid for the “tightest” © T/ Tk . S _
pairs of magnetic moments with the characteristic interaction \We also notice that the coefficients in E@3) contain
energy significantly exceediriy,. It is not clear to us at the Small correctionsTs,/ Ty due to magnetic impurities, which
moment even in which direction estimaf7) changes due form coupled states with binding energies exceeding the

to the deviations from the mean-field description. Kondo temperature. Two possibilities exié: if the coupled
state is a singlet, these impurities do not affect electron trans-

_ o - port; (ii) if the coupled state is a triplet, it becomes screened
B. Low concentration of magnetic impurities, Tsg<T and again leads to @2 dependence of the resistivity on

At high temperature T>Ty), the resistivity is described temperaturé> We emphasize that the ratio of the number of
by Eg. (27) even in the limitTy>Tg,. Nevertheless, the such impurities to the total number of magnetic impurities is
effect of interaction between magnetic impurities is smallSmall asTs/Tx . _ .
due to the factolT4/T in Eq. (27), and the maximum of the ~ AS the impurity concentratioms increases, and conse-
resistivity does not occur a>T,. We show that at tem- quentlyTgyincreases, the system of magnetic impurities with
peraturesT =T the resistivity also monotonically increases SPin S=1/2 undergoes a quantum phase transffiao a
as temperature decreases. spin-glass state.

For this purpose, we use the following form of the imagi- - _
nary part of the scattering matrix23 2. Impurities with S>1/2
As was shown in Ref. 24, &<Ty the residual coupling

1 5 of conduction electrons with magnetic impurities is de-
ImT(e)= 7 ImT(e). (31 scribed by the exchange Hamiltonian, Ef), with effective
impurity spin, S=S—1/2, and the renormalized exchange

Here the first term is the contribution to tHematrix in the ~ CO"St@M

unitary limit andT(g) is the T matrix, written for the re- - 2

sidual interaction between conduction electrons and mag- J=m. (39
netic impurities. The form ofi (¢) differs for spin impurity «

S=1/2 (exactly screened magnetic impuritieand for S  This coupling results in the RKKY-like interaction between
>1/2 (underscreened magnetic |mpur|mé§ We consider magnetic impuritieS, which may be written in the form of the
the two cases in more details below. Hamiltonian given by Eq(7) with the effective spirS and
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the strengtiV(R) of the RKKY interaction defined as a so- IV. PHASE RELAXATION RATE

lution of the following equation: Weak magnetic fields suppress the interference contribu-

2 1 tion to the conductivity, the difference
7R3 IN[ T /V(R)]

Using Eq.(36) we estimate the typical value of the interac- in the conductivity at zero magnetic fiel@ & 0) and at suf-
tion between magnetic impurities. Within logarithmic accu-ficiently strong magnetic field§>B,) is called the weak-

V(R)= (36)

Aoy =0(B=0)—o(B>B,) (41)

racy we have localization correction to the conductivity. The characteristic
valueB, of magnetic field, which suppresses the weak local-
_ 2n, ization, is
T — (37
% mvIn?(Tving hc 1
=—\/=—7 42
cf. Eq. (10). ° e VDTA 42

The imaginary part of~th§'(s) matrix is given by Ed. whereA is the cross-section area of the wire. Throughout this
(25) with the impurity spinS=S—1/2, exchange constagt ~ section, we assume that the scattering off magnetic impuri-
given by Eq.(35), and the typical value of the RKKY inter- ties dominates over all other mechanisms of the electron
action between impuritie8, given by Eq.(37). Substituting ~ Phase relaxation.

ImT (&) from Eq. (25) with the modified parameters into Eq. an;"’;r‘fr‘]'g“gﬁ;gﬁ 2:; j‘plri?ga:n""ti:]?snggggegﬁ;r?ﬁgrgiirfglet
31) and using Eqs(26) and (34), we obtain ) : S
S 9 Easi26) 34 componentC, of the Cooperon remains finité,all other

_1/4 T Cooperon components are suppressed by the spin-orbit inter-
Apx=Apy| 1—472 ( 1-—ag_ 1/2—39) (38) action. The weaKanti)localization correction to the conduc-
In?Ty /T T tivity is given by?"28
Unlike the previously analyzed case of high impurity con- L[ &en
cer!trqt[on,Ts?'.l'K, here the_temperature_dependgncg of the €?D [ dedeyde, diq “Sleye q
resistivity remains monotonic. The leading contribution to Aoy =—— ]
the (negative derivativedp/dT in the temperature interval h (2m)®  (2m)Y 2T cosie/2T
T*<T=<Ty comes from the Kondo renormalization of the (43)
EXChange constant; here the characteristic temperﬁﬁjﬁe Neg|ecting the RKKY interaction between magnetic im-
purities, we have the following expression for the Cooperon:
Tx __ E’" k
"= 2 Todn=—. (39 €1, 4728(e1—&,) 8(ey—€5)
sy + ql = 17 €2 178 (44)
s,0! ’ 2] - 2. o ’
Below T*, the derivativedp/dT is determined by the inter- €182 Do =i(e1—e1) +2/7

action between magnetic impurities. where 1f is the electron-scattering rate off magnetic impu-

As temperature approacheky, the virial expansion rities and is defined by Ed6).!8 In calculating the WL cor-
ceases to be valid, and the system may attain a spin-glagsction, we assume that the rate-glis higher than the Kor-
state. Unlike the case of higher impurity concentratidgy( ringa relaxation rate of the magnetic impurities, see Ref. 13
>Tg), here we expect the dependengd) to level off at  for further discussion. Performing integration over the mo-
T=Tgy. This difference stems from the behavior of the scat-mentum g in a one-dimensional casel=1 in Eq. (43),
tering matrix, see Eq31), in the vicinity of the unitary limit.  which adequately describes wires of the cross-sectional area
If each of the local moments is quenched individually, thenA<D 7., we obtain

the saturation would occur at
) e? Drg
,(S— 1/2)] Aowl =5\ 5 (49

40
IN?Ty /T 40

Apy=Apy|1-4m

We study the effect of interaction between spins of mag-

The collective modes existing in the spin-glass state wouldetic impurities on the weak-localization correction to the
result, however, in deviations from E@0). conductivity. As we have already mentioned, the interaction

To summarize Sec. lll, the Kondo contribution to the between magnetic impurities lifts the degeneracy of impurity
Drude resistivity is a nonmonotonic function of temperaturespin states, and therefore it is reminiscent to the Zeeman
only in the case of relatively high concentration of the mag-effect of external magnetic field. The Zeeman splitting of
netic impurities, i.e., al@= Tk . In the opposite case, this spin states of magnetic impurities affects the WL correction
contribution increases monotonically with the decrease ofo the conductivity?!® if the splitting is larger than either
temperature, at any value of the s@@rof magnetic impuri- temperaturel or phase relaxation rate 4/ Similarly, the
ties. RKKY interaction between two impurities starts to affect the
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WL correction if the RKKY interaction strength exceetlsr

elT
e, & e®'+1)6Ky(w
1/7s. We calculate the WL correction at temperatufes 2?( 1)2—47721/n9\72f da,( ) OKalw)
, €

: = &2 eleme)lTyy
higher thanTg, (or Ty, so that only a small number of
magnetic impurity pairs satisfy this condition, and therefore X{8(e1tw—e)d(e—e,— w)
the virial expansion is applicable.
We notice that because of the RKKY interaction between +(e1—e)d(e—er)}. (50)

impurity spins, the scattering processes may change eIeCtrOIFhen, the weak-localization correction to the conductivity is

energy and, particularly, may switch the position of the.obtained by substituting this expression &y (- ;q) into Eq.

Cooperon poles in energy pla_n(_a with respect to the real am%.43) and performing integration over momentupand ener-
These processes result in mixing of the Cooperon compo-

nentsC* andC~ which have different analyticity, see, e.g gies. As we discussed in the preceding section, details of the

Eq. (44). The full equation for the Cooperon is ' " 7777 structure of the spin-correlation functiaiik ,(w) in Eq. (50)
depend on the relation between temperafliré&ondo tem-
peratureTy, and the typical energy of interaction between

~ [€1,82 ~ [€&1,82 impurities Ts,. Some of these limits are discussed below.
CS ' /lq =C’S,O 8’ /!q

€1,€2 1:€2

A. High concentration of magnetic impurities, T2 Ty

+f degdesde,dey - (81’83 q) At temperaturesT>Ty the scattering of electrons off
(2m)* SO\ ]84’ magnetic impurities is described by the Born approximation
with the renormalized exchange constant, &g. We substi-
S €3:84)~ [ €4,82 (46) tute SK,(w) (the first-order term in the RKKY interaction
e5,e4) ° sl’“gé’q : from Eq.(16) into Eq.(50), and using Eqs43) and(49), we
obtain the weak-localization correction to the conductivity
(see Appendix D for more detajlsNVe distinguish three tem-
perature domains for the WL correction to the conductivity

The diagonal elements of thex2 matrix &S areC . The

matrix Ady .
In the highest of the three domaings> 2/, the weak-
. 0 localization correction has the form
N S,O( 'Q)
Cool -, 0= 0 Cool ) (47 e e2 D, . m(4S+1)(4S+3)
IWTomn N 2 1202S+1)  s97s)

(51)
is the Cooperon to the zeroth order in the RKKY interaction, i i
see Eq(44), while the self-energy with the second term in the parentheses coming from the

RKKY interaction. The use of Eq(10) for Ts, and of the
estimate for the Kondo-renormalized electron-spin relaxation

X 20 2X) rate,
2s:( )=

ai, ag (48)
20 1) 1 8wngS(S+1)

—= : (52)
sV In?TITg

contains the higher-order RKKY contributions. I .

To evaluate the first term of the virial expansion, we may@/0WS US t0 estimatd o7 as
account for2 g by the first-order iteration of the solution of 1 I2(T/T,)
Eq. (46). The self-energy. must be calculated up to the first TsgTs € (53

order in the RKKY interaction. In fact, it is sufficient to 4m?S(S+1) In%(veni¥Ty)

evaluate the upper diagonal elemeif(-) of the matrix  \ye see now that the correction due to the RKKY interaction

24(+) and write the Cooperon as only weakly depends on temperature, and is numerically
small.
It is curious to notice that the second term in Esyl) is
= + almost independent afs. This term takes into account the
Dg?+2/rs DQ?+2/7—i(e—&y) fact that the contribution to the phase relaxation rate is sup-
pressed, if a scattering process results in energy exchange
€, 1 larger than 14;. The reduction of the phase relaxation rate
D@2+ 2/r—i(e;—€) leads to the enhancement of the weak-localization correction
S 1 .. .
to the conductivity, as shown in E@51). The number of
(49 impurities with the splitting of energy states larger than,1/
constitute onlyTgg7rs part of the total number of magnetic
with (see Appendix € impurities. We emphasize that the accidental numerical

€,81 ) 1 1

q
€9,&

ci

X3

€92,€

075119-7



M. G. VAVILOV, L. I. GLAZMAN, AND A. |. LARKIN

smallness of the RKKY-induced correctionT s, justifies
the use of the conventional thedfyof the weak localization

PHYSICAL REVIEW B 68, 075119(2003

1. Spin S=1/2

At T=0, the spins of magnetic impurities are completely

in the presence of magnetic impurities in the considered temscreened and do not contribute to the phase relaxation of the

perature domain.
In the second temperature domdig;<T=1/75, the WL
correction equals

e? [Drg as Ty
T ag ng
(1+ 7 ?)

«|ln—
Here the numerical factaks is defined in Eq(28), and T,

Te (54)
is given by Eqgs.(10). The result shown in Eq54) has a

conduction electrons. At finite but small temperatures,
<Tg, the residual local electron-electron interaction facili-
tated by local moments leads to the electron relaxation which
affects the Cooperon pole:

£,8 4125(e—€1)8(e—€5)
Cg:l/Z( )= — =~ . (55
€2,€ Dg—i(e1—¢e)+TI'(¢e)
Here the relaxation rate
~ 97 ng 32+ 72T?
I'(e)= _— (56)

g 2
8 v T2

similar structure to the expression for the resistivity correc-

tion (27). The dependencAoy, vs T has a minimum at
temperatureT* defined in Eq.(29). This minimum results

Because the interaction responsible for the relaxation is lo-
cal, the typical energy transferred in a scattering event is

from the competition between two opposite trends: with theAe~T, and thereford’(s)/As<TTSg/T§<1. Under these

reduction of temperature gets shorter, see E¢62), while
the stronger-bound impurity pairs stop affectitg,, . Note
that due to the relation betwedn, and 1f, see Eq(53),
the second temperature domain is rather wide.

conditions, the Cooperon relaxation rdi€e) is just twice
the one-electron relaxation rate.
SubstitutingC *(-,q) from Eq. (55) into Eq. (43), we

The third temperature domain corresponds to the spin-

glass state of the magnetic impurities. With temperature de-
creasing tol 4, the virial correction becomes large and Eqg.
(54) is no longer applicable. At such temperature a spin-glass

transition is expected. Below the transitioig, is still
determined by the spin-correlation function, E8). Similar

to the discussion of the resistivity in Sec. Ill, we expect a
monotonic increase and saturation of the WL correction. Th

limiting value of Aoy, at T=0 was estimated in Ref. 29,
where quenching of the dynamics e&chof the local mo-

ments was assumed. Deviations from such a simple picture
of the spin-glass state would result in a different value of

B. Low concentration of magnetic impurities, Ts,< Ty

At T>Ty, the weak-localization correction to the con-
ductivity is still given by Eq.(54). However, now the effect
of the RKKY interaction onAoy, is small, and the WL

correction to the conductivity decreases monotonically with

the decrease of temperature.
At temperaturel < Ty the scattering off a single impurity

obtain
N ezf D de 57
o -~ = .
M2at) N T(e) 4T cosRe/2T

According to Eq.(57), in the absence of other phase relax-
ation mechanisms, the weak-localization correction would
vary as 1T at T<T:

e

We notice, that similar to Eq33), there are small correc-
tions of the order off 4/ Ty to the numerical coefficient in
Eq. (568). The corrections originate from the rare configura-
tions of “tight” pairs of magnetic impurities, which form
singlet or triplet states with binding energy exceeding the
Kondo temperature.

2. Spin SS1/2

The residual coupling between conduction electrons and
magnetic impurities witt5>1/2 is still described by the ex-

approaches the unitary limit. The potential scattering characshange Hamiltonian, Eq1), with the reduced spin operator
terizing the unitary limit does not destroy phase coherenc&=S-1/2 and the renormalized exchange constantsee

and thus does not affect the WL correction. Thereforéel at
< Tk only small deviations from the unitary limit determine
Aoy, . In this section, we show thato,, increases mono-
tonically as temperature decreases in the domaT  ; the
details of the temperature dependence are differentSfor
=1/2 andS>1/2.

Comparing the behavior of the WL correction in the do-
mains of low and high temperatures, we conclude that th

correction must have a minimum at- Ty, assuming that

Eq. (35). In this case, the electron-scattering rate is

1 8wng S*—1/4
2T /T

(59

Ts v

The coupling.7 also results in the RKKY interaction be-

dween the partially screened local moments, which is repre-

sented by the Hamiltonian, Eq7), with S replaced byé.

the scattering off magnetic impurities dominates the electrofhe strength of the RKKY interaction is determined by the

phase relaxation.

self-consistent equatiof86).
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To calculate the weak-localization correction to the con-the spin-orbit interaction is strong, in which case the electron
ductivity, we use Eqs43) and(49) with the self-energy.,  distribution is independent of spin orientatiofy(t,r,e\)
in the form of Eq. (50). The spin-correlation function =f (t,r,e)=f(t,r,g).
5K ,(w) in Eq. (50) describes correlations & spins with the First, we consider electron scattering by magnetic impu-
appropriate]y rep|aced exchange constant, (Ba), and the rities belonging to a small-size pair. If the electron distribu-

; = : tion function does not significantly vary on the length scale
typical valueTg, of the RKKY potential, Eq(37). LV :
P 9 P a(37) of the order of the pair size, then the corresponding scatter-

Similar to Sec. Il A, we can define three domains for the’ _ I me
temperature dependence of the weak-localization correctio'd 'at€ can be expressed in terms of the electron distribution

. ~ . ionf(t,r, h iti f th ir,
At high temperaturd =2/75, we obtain unctionf(t,r,2,) at the positior of the pair

JJ
Ao — e Dt L 77(1682—1):[_ - " Yo (1,1 =277%23+1)A;5 (e~ e +E;—Ey)
ow=5m% N 2 |12 s (60 XPy(t,r, V)f(t,r,e)[1—f(t,re0)]. (62
Equation(60) is a counterpart of Eq51). HereP,(t,r,V) is the distribution function for two magnetic
At lower temperaturesTSgsTs 1/7,, we obtain[com- impurities over quantum states characterized by the total spin
pare to Eq(54)] J of the pair,E;=Ve;, see Eq(11), andA;; is defined by
Eq. (13b).

e D74 Having the rateYiﬂ:(r), we can write the kinetic equa-
A‘TWLZZWﬁ - |1t tions for the distribution function of the pail;(V). Per-
forming summation over all initial, @) and final k', «")

We notice that af <Ty, as temperature decreases the weakstates of a scattered electron as well as over the final states of
localization correction to the conductivity increases. We conthe pair, we obtain the following equation:

clude that both the Kondo effect and the effect of interaction

as—qug
2 T

(61)

between magnetic impurities reduce the phase relaxation rate  dP,(t,V) 412 3 33
as temperature decreases.'NNtsTsTK, the temperature dt =~ 23+1 JE deydew (Yige = Yo
dependence of the weak-localization correction to the con- (63)

ductivity is mainly determined by the Kondo effect, and at
lower temperature3 <T*, it is determined by the interac-
tion between magnetic impurities. At temperature beTQW

(we omit the positiorr of the pair in the argument d?).
The normalization condition foP;(t,V) has the form

a spin-glass state may appear. Similar to the behavior of 2S
Apk(T), the weak-localization correction increases mono- 2 (2J+1)Py(t,V)=1. (64)
tonically with the decrease of temperature, and should satu- J=0
rate atT—0. In the stationary state, the distributiéty(t,V)=P;(V) sat-

To summarize Sec. IV, the weak-localization correction to

N ; : isfies the equations
the conductivity is a nonmonotonic function of temperature.

At relatively high concentration of the magnetic impurities,

i.e., at Ts@= Tk, the positions of minimum iM oy, and ff(s)[l—f(erVeJ,Hl)]de

maximum inApy roughly coincide, see Eq$27) and (54). P, 1(V)=P5(V) ,

In the opposite case, the minimum iAoy, occurs j f(e+Ve; ;o) [1—f(e)]de

at TZTK . | (65)
V. ENERGY RELAXATION RATE where we use the shorthand notatieyy = €;— €5/, ande,

is defined by Eq(11). If the system of magnetic impurities
‘and electrons are at equilibrium with temperatiiyghe so-
lution of Eq. (65) is the Gibbs distribution:

Free magnetic impurities are an intermediary for electron
electron scattering with small energy transf&ve show that
the RKKY interaction between magnetic impurities leads to

the electron energy relaxation as a result of a single electron exg — Ve, /T)

scattering off a magnetic impurity. Indeed, if the impurity Py(V)= . (66)
interacts with one or more of its neighbors, a scattering pro- > (23+1)exp(— Ve, /T)

cess is accompanied by the energy exchange between con- J

duction electrons and magnetic impurities.

In this section, we apply the virial expansion method to Next, we write the kinetic equation for the electron distri-
derive kinetic equations for the nonequilibrium distribution bution: function
function of electrons in a dilute magnetic alloy. The virial
expansion is justified for processes with large compared to
Tsq energy transfer from an electron to the system of local-
ized moments; her@, is the typical energy of interaction
between magnetic impurities, see Ef0). We assume that where the electron collision integral has the form

(92

g f(t,r,e)=—1(t,ey,V), (67)

_D_
Pr
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’ ' 2 E/T ~E/T
I(t,e V)= v, f (Yo, =Y de (69 x(E)= 100, e (e D (72)
3 3 E? (3e¥T+1)(3+e"T
with Yﬂﬂ given by Eq.(62). According to Eq.(72) the probability for an electron to scat-

We assume that the electron distribution function changeter with energy gain E<0) is exponentially small afE|
slowly with the coordinate, so that the collision integraf ~ >T, while the rate of scattering with an energy |dss T
may be averaged over a small volume of the metal, wher&cales as a power of transferred energ¥z/E?.
f(t,r,e,) does not change much, but which contains many We notice that because of the relatively slow decay of
magnetic impurities. In this case we can perform averaging((E) with energyE>0, the relaxation of the number of
of the collision integral over the RKKY potential according nonequilibrium electrons occurs differently from the relax-
to ation of their energy. We illustrate the energy transfer from

electrons to the system of magnetic impurities by consider-
4T, [ dV ing the following model problem. Assume that initially the
(I(t,e))= 3 gf —ZI(t,e,V). (69) system of electrons and magnetic impurities is in equilibrium
v at temperaturd, and then instantaneously the electron sub-
system is brought out of equilibrium, so that the new distri-
bution function is characterized by small deviatiof(z)
from the equilibrium. The excess electron enevyyer unit
volume may be defined a&/=2v[e5f(g)de. The energy
W will decrease in time as the result of the energy redistri-
bution between electron and impurity subsystems. Eventu-
) ally, a new equilibrium with new temperature will establish.

Substituting Eq(62) into Eq.(68) and performing averaging
according to Eq(69), we obtain

T

4 2J+1
(T(t.e))=

sg
2 S(S+ 1)AJJ'|€JJ'|

Ts 3+3'

We calculate the reduction of the electron energy at the ini-
tial moment. The result is

xf dE f(1—f )P(t_E
E2 & e—E J ,EJJ/

A-tof. Pyt 2 70 dW 16T, [ dE e®T—1
R e ) dt — 3rs ) E (3eFT+1)(3+eT)
where we use notations;; = e;— €5 and f,=f(t,r,e). In vof(e)sinhe/T 73
the derivation of the collision integral, we tacitly assumed coShE/T+ coshe/T ¢ (

that the transferred ener@yexceeds the width of spin states, o o
given by the Korringa relaxation raté/ r;oTv27%(T). If the distribution of electrons at the initial moment was
The system of equatior(3) and(67), with the scattering Peaked near energy,>T, e.g.,»6f(e)=ad(e —&o), then
rates given by Eq(62), the electron collision integral re- the estimate of the energy reduction rate d8\V/dt
placed by its average, EG70), and with the initial condi- = @Tsg/ 7dn &/T. The characteristic collision rate is 1/7
tions for f(t=0,,r), P,(t=0V) and the boundary condi- and the typical energy transferred in aquI|§|oﬁ'§. How-
tions forf(t,e,r), define completely the kinetics of electrons €Ver. the range of the transferred energies is broad enough to
and spins. In the stationary casef(st=0), one may use resultin a logarithmic dependence op/T. . .
Eq. (65) instead of Eqs(62) and(63). Note that the impurity N conclusion, we emphasize that E(2) is derived
average collision integral, EG70), differs from the conven- Within the virial expansion and is valid for large energy
tional collision integral for the electron-electron scattering.transfer. We expect that beyond the virial expansion the ker-
The 1E2 behavior of the kernel in Eq70) does not imply Nl x(E) remains to be a function d&/Tsq andT/Tsg:
the scaling of the distribution function found in Ref. 2. E T
The collision integral, Eq(70), may be simplified for the X(E)Zf(—,—)- (74)
electron energies>T. As a result, we obtain the following Tsg T
kinetic equation for the distribution of “hot” £>T) elec-

trons: FunctionF characterizes the excitation spectrum of a system

of magnetic impurities at the energy scales relevant for the
azf( 1 dE kinetics of conduction electrons. The study of its properties
e,X . ; ; . _
D = X(E)f(8,) —f(e+E,x)}—. may provide _|mportant |r_1f0rmat|on .ab.out fqrmanon of spin
IX Ts Tsg glass states in metals with magnetic impurities.
(7D

. L . L . . VI. DISCUSSION AND CONCLUSIONS
This equation is a version of a full kinetic equation, defined

by Egs. (63)—(70), which may be used for analysis of the In this paper, we considered the effect of the RKKY in-
high-energy tail of the electron distribution function in a teraction between Kondo impurities in a metal on kinetic
metal with magnetic impurities. The kerne{E) in Eq.(71)  properties of conduction electrons. Specifically, we evaluated
is asymmetric with respect to the energy trandfesind for  the effect of interacting magnetic impurities on the momen-
|E|>Ts4 has the following form: tum relaxation rate and the corresponding contribution to the
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Ao wl

Ao, wl
Apk
j
4
4

Apk

ng T T &

FIG. 1. Schematic picture of the Kondo contribution to the re-  FIG. 2. Schematic picture of the Kondo contribution to the re-
sistivity Apy and of the weak-localization correctianoy, to the  sistivity A py and of the weak-localization correction to the conduc-
conductivity in the limitTe>Ty . Both Apg and Aoy, are ex-  tivity Aoy, in samples with low concentratiol (<Ty) of mag-
pected to saturate dsapproachedqg. netic impurities with spinS>1/2. The solid lines represemtpy

and Aoy, for interacting impurities. Dashed lines shawy and
Drude resistivity of a metah py, the phase relaxation rate as Aow. as if the interaction were absent.
defined by the weak-localization correctiakoy, to the ) i . . )
Drude conductivity, see Eq41), and the energy relaxation nite level, see Fig. 2. W|th|n the S|mp!est model of the spin-
rate, which determines the relaxation of nonequilibrium elec9lass state accepted in Ref. 29, we find

trons injected into a metal. 5 - )
The overall temperature dependence of the momentum Ao = [Drs 1 87ns (S—1/2)

and phase relaxation rates differs for the cases of strong and TWLT o 27 70 v IntT /Ty

weak RKKY interactions between the magnetic impurities. * %

If the interaction'll'/S between the impurities separated by where the temperatur%sg is defined in Eq(37). It is worth
a typical distance, " is strong,Ts> Ty , then the momen-  noting that the saturation occurs at temperatti,,, well
tum and phase relaxation rates are nonmonotonic functionsejow the Kondo temperaturg .
of temperatureT, with the maxima aff=T", see Eq(29  The considered limits off Ty and T;<Tx and the
[here Ty is the Kondo temperature for a single magneticconjecture of Her? allow us to understand the evolution of
impurity, n is the concentration of these impurities, and en-the temperature dependencegfy(T) and Aay, with the

ergy Tsgis defined in Eq(10)]. Therefore, ifTs>Ty then  concentration of impuritiess. The position of the maximum
one expects a maximum of the Kondo contribution to thejn A, (T) shifts continuously toward¥ =0 with the de-
resistivity and a minimum of the weak-localization correc- crease ofng; it reachesT=0 at some finite value oy,

tion Aoy, atT=T*, see Fig. 1. The positions of these eX- yhich corresponds tds~ Tk . Note that such behavior oc-
trema shift towards lower temperatures with the decreasingys jrrespective of the value & Formation of the spin-

concentration of the magnetic impurities. At lower tempera-g|ass With Te<Ty at S>1/2 does not result in the finite-
tures T=T,, when the spin-glass state is formed both theiemperature maximum of the functidvp, . The position of
resistivity and the WL correction to the conductivity saturate.ihe minimum inA ow, also moves to lower values afwith

In the opposite casds;<Ty, the momentum relaxation the gecrease af,. This shift, however, stops @t~ Ty ; thus
rate increases monotonically with the decreasingand  the minimum occurs at a finite temperature even in the limit

eventually saturates dt=0, see the lower curve in_Fig. 2 To<Tk. (Once again, here we assume thais the shortest
The saturation level depends on the value of impurity $pin o, the phase relaxation times.

Thus the Kondo contribution to the Drude conductivity is &  Ejectron scattering off interacting magnetic impurities

mo_notonic function of tempe_rature. The spin-induced contriyeads to the energy transfer from electron to the system of
bution to the phase relaxation rate, on the contrary, has gcalized spins. The rate of collisions with a relatively large
maximum atT'~TK. If this contribution dqmlnates over all energy transfeE can be calculated by means of the virial
other mechanisms of the phase relaxation, then the wealsypansion. The corresponding full system of kinetic equa-
localization correction to the conductivithow,, has @ tions for the electrons and spins is derived in Sec. V. The
minimum atT~Ty, see the upper curve in Fig. 2. The de- cgjlision rate with energy los€ at |E|>maXTe, Ty, T}

tails of the low-temperature inprease Mbry, with the fur-  gcales withe as 6(E) T /(7E?). This asymptote of the rate
ther reduction of temperature in the regidr T« depend on s not sensitive to the formation of the spin-glass state. How-
the level of Kondo screening. In the case of full screeningayer the spin-glass transition affects the electron energy re-
(S=1/2), the phase relaxation rate vanishesTatO, and  |axation for smaller energy transfet&|<T,.

Aoy (T) diverges, see Eq58). If the screening is notcom-  |n most part, the data of existing experimental
plete (5>1/2), then both the phase relaxation rate;Hnd ~ works>®~*3%3 can be understood within the theoretical
the weak-localization correctiod oy, saturate at some fi- framework presented here. The evolution of the temperature

(79
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dependence of the resistivity with the concentration of magnating discussions of experiments, and to C. Chamon, L.
netic impurities was studied in dilute AuFe alloys. The in- Cugliandolo, L. loffe for discussions of spin-glass phenom-
vestigated range of the magnetic impuriBe) concentration ena. This work was supported by NSF Grants Nos. DMR97-
ng covered by the data of Refs. 5,9-11,30 and 31 is ex31756, DMR01-20702, DMR02-37296, and EIA02-10736.
tremely broad, ranging from 3.3 ppm, see Ref. 10, up to a

few percenf’.o For concentrationag= 100 ppm, the function APPENDIX A: MATRIX ELEMENTS Aj;
Apk(T) has a clear maximum® Its positionT ., Moves to _ _ _
lower temperatures as the impurity concentration de- In this appendix, we present the expression for Ayg

creases; the measured, in Ref. 5, dependente,gfon ng is factors in Eq.(12). First we notice that the convenient form
superlinear, in a qualitative agreement with Eg9). The to calculate(JM|§a|J’M '} is to use the basis of spin states
extrapolation of the data of Ref. 5 T,,,,=0 yields the criti-  for two independent spingm;m,), wherem; andm, are the
cal value of Fe concentratiosr50 ppm for the AuFe alloy, spin components along some direction. We have

see also Refs. 10 and 31. Finally, the obsetVedagnetic

hysteresis of the resistivity at,=7 ppm may indicate for- 7(IMI'M')=(IM|S,|I'M")

mation of a spin-glass even for such low impurity concentra-

tions, which is possible &> 1/2, see Sec. Il B 2. _ 2 CrJan <ml|ASa|m:,L>CJ,'M, ,
The weak-localization correction to the conductivity in my . m} 12 MMz

AuFe wires with low impurity concentration ng=7

~60 ppm) was studied in Refs. 10 and 11. There is a propehere the Clebsh-Gordon coefficients are expressed in terms
correspondence between the datr the sample withng ~ Of the Wigner 3 symbols as

=60 ppm, and the datfor ng=10.9 and 7.1 ppm. The

values of 1f found from the weak-localization magnetore- M _ a1
sistance, see Eq&2), (59), and(75), scale roughly linearly Cinym, = v2J 41
with ng. The temperature dependence ofIfbr the inves-

tigated samples is also in accord with the theory; namely, the The matrix elementA;; may be represented in terms
phase relaxation rate exhibits a broad plateau at temperaturet »,, :

around T¢~0.3 K (with the plateau valué of 1/r~6

(A1)

J S S
-M m; my)’

x10°s™! for ng=60 ppm). The plateau is followed by a 2 -

. ; Ay = JMJI' M), A2
decrease of this rate at lower temperatures. The satutation 3 a:;,y,z ME 7al ) (A2)
of 1/7(T) at T<Tg is compatible with the value of impurity i
spinsS>1/2. We find that

We also notice that the data of Ref. 11 for an AuFe alloy (J+1)(25-3)(25+3+2)

with ng=15 ppm are in sharp contrast with other experimen- =

tal data%'*3and with the expectations supported by the St 4(23+1) ’ (33
presented theory. Indeed, Ref. 11 reports the position of the

Drude resistivity maximum afT,~30 mK for the nq J+1)(23+1) A3b
=15 ppm sample, which is indistinguishable from the value W 423+1) (A3b)
of Tax for the ng=60 ppm sample in the same work. This

stability of T, contradicts the dependence Bfy(ny), ex- J(2S—J+1)(25+J+1)

pected from other experimental works and from theory, Asi-1= 423+1) : (A3c)

see Sec. lll. Also, the fourfold difference aof, between the

two sample¥' resulted in a 100-fold decrease of the electronand all other elements vanish. From E¢83) we verify

phase relaxation rate 4/. This drastic change of { with  explicitly that

ns contradicts both the quoted above measurem®atsl the

theoretical estimates, see E¢52) and (59). 5
Measurements of the energy relaxation in nanowires of E (2J+1)A;3=S(S+1)(2S+1)". (Ad)

Au, Cu, and Ag revealed the effect of individual magnetic 30=0

impurities? but there was no systematic study of the effect of

the RKKY interaction on the electron energy relaxation. APPENDIX B: ELECTRON T MATRIX

Measurements of the relaxation rates at energy trantgrs For completeness of the presentation, we show how the

=Tsy may provide information about the excitations in a;mnaginary part of the electrof matrix may be related to the
spin-glass, but we are not aware about such measurements&;in_corremﬂon function, defined by E). In the Matsub-

2S

of yet. ara representation th& matrix is given by the following
expression:
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FIG. 4. The left two diagrams represent the self-energy correc-
tions to the Cooperon and contain the single-elecitonatrix. The
diagram on the right is the vertex correction and is related to the
two-electron counterpart of & matrix.

’](isn)_ f“ﬁ w/C' N dw
'n'ij_ %tanhZ—T (ie, w)ﬂ

) _ _ o o K(w+i0)—K(w—i0) dw
FIG. 3. The contour for calculation of thematrix, Eq.(B4), in +Sgre, COch_T 5 o
the Matsubara representation. The contributions from the dotted - m
parts of the contour vanish. (B6)

where K(iw,) is the Fourier component as,,=27mT of  The imaginary part of th& matrix is given by
the Matsubara spin correlator

e+i0)—1(e—i0
ImT(g)=i X )27( ). (B7)
K(r)=2 pe” G5 g9E))? (B2 _ _ _ _
&’ We substitute Eq:B6) in Eq. (B7), take into account relation
[compare to Eqg3) and(4) for the real time spin correlator K(o+i0)—K(w—i0)
K(t)], and K(w)=i e (B8)
e”'—1
) 1 between the real time spin correlator, £8), and the Mat-
Glien,p)= e 2(p)—3(en) (B3)  subara spin correlator, E¢B2), and obtain Eq(25).
is the electron Green’s function at Matsubara frequesigy APPENDIX C: COOPERON SELF-ENERGY

=m(2n+1)T [compare to Eq(19)]. The integration over The Cooperon self-energy,(-) may be obtained as a

momentum in Eq(B1) gives S

result of the analytical continuation éh‘(i z i 1y, written in
82, 82

) ) ) the Matsubara representation:
Tien)=—imvT?2 K(iop)sgre,— o).  (B4)

Wk

, & g,+i0, &;+i0
22( ' T)= J L e
Next we perform the standard procedure of the analytical €2, &3 g2—10, &,—i0
continuation in Eq(B2). We replace the sum over discreet ) ) )
oy, by the integral over complew: The Cooperon self-energy is related to the scattering matrix

S off a magnetic impurity for two electrons in a singlet state:

do ® YRy
i —i 2s(-)=2mvnS(-). (C2
Tw§m Fliom) |L47Tcothz—_|_]—'(w). (B5) s
In Eq. (C2) Sis averaged over various magnetic impurities.

This procedure is valid for an arbitrary functiof analytic | N€ Singlet componens; is related to the full matrixs of
inside the contoulC of integration. We choos€ to be a  tWO-electron scattering:

circle of infinite radius with two cuts at lm=0 and Imw
=¢g,. Inside the contour of the integration, the function
K(w) is analytic and only the poles of coiii2T contribute
to the integral(Fig. 3). Neglecting the contribution from the
pieces of the circle, and keeping the contribution along theMatrix S, in its turn, contains the contribution from three
cuts, we obtain diagrams, shown in Fig. 4, and has the following form:

1
S =5L8][()+SH)=SH() =Sk (€3
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Here the second term contains the single-elecfranatrix ‘ ® i B
considered in Appendix B. Below we focus on the irreduc- 3
ible component of the scattering matrix of two electrons in a Slmew = &
. 2inT'm
singlet state, represented by * ,
- ® :

. s e P
glgi |81, |81
Vs SO\ ie!l
252\ 1ep, 1y

FIG. 5. The contour for calculation of the vertex correctigrto
the Cooperon. The contributions from the dotted parts of the con-

—EIT r
£ tour vanish.

=0(—e165)0(—e1ep) > ——T
&€’

“+ 00
= f dwd(e,+w—=e1)d(e,— w—eh)2mT?

& &' ;
X ; fglgi(l wm)fgzqé( -l (‘)m) 581+wm,81682,€é+wm1
m

w
(CH) ><{coch—T[(SlCz(wnLiO)—5IC2(w—i0)]
Wheref's';:(i wy,) IS the scattering amplitude of electrons with ©
initial spin states’ to the spin s_tat_e, ac_c_ompanied with the —tanhz—T[alcz(er g1 +i0)— SKy(w+e,—i0)];.
change of the state of magnetic impurities frgmto &. The
summation oveg and &’ runs over all possible states of the (C8
impurity spin andZ == e~ 5¢/T. For scattering amplitudes in _ _ o
the Born approximation we have This expression may be further simplified in the case when
£1=g, with the help of Eq(B8).
£ = KISk Y oy (C6)
We substitute Eq(C6) into Eq.(C5), and use Eq(C3) to APPENDIX D: CALCULATIONS OF THE VIRIAL

write down the singlet component of the vertex part of the CORRECTION TO Aow,
CooperonS matrix: To calculate the WL correction to the conductivity, we

) ) substitute Eq(49) with the self-energy defined by E0)
ey, 1&g into Eq. (43). As a result we obtain
VS( )2\720(—8182)0(—8385)T g ( )

. .
|82, |82

AUWL=A0'\(,S|)_+ AU%,’?)-}-AU%,‘P) . (D1)

x% ORo(10m) B+ 0y, ez e+ oy Here Ao is given by Eq.(45), and the second term is
Next we perform the analytical continuation f (C\;\/Z Ag(la) = Ao%ﬂf Ko(w) o 1 do
" d ' WL T T T ) S(SH1) T 1 e @ 7

consider the case; >0 ande,<0, see Eq(C1). Using Eq.
(B5), we replace the sum over the Matsubara frequencies,
wm, by the integral over a contour in the complex plane. In
the present case the contour of the integration is shown in 2
Fig. 5, and contains three cuts: =z, 0,&1. We notice iy defined by Eq(28), see also Table I. The third term
that the contour parts above the upper cut and below thﬁ Eq. (D1) is
lower cut do not contribute to the integral. The remaining

parts of the contour along the cuts after the continuation

ie;—e;+i0 andie,—e,—10 give Ao{tD) = —

A(Tgsl)_ asTSg
== T (D2a)

AO’\(/SR_ Ko(w) o ¢(w) do
2 JS(St1) Ti—e o™ w°
(D2b)

.10, 81+i0
S

. ;o
e,—10, &,—i0 where
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(@) 1 Imylt+ioryd2 f+°° o(w) 37
ow)y=————F———. w=—T

4 wTsV1+wZT§/4 e @? 32°°

. . and obtain

As w7s—0 function ¢(w) vanishes. Therefore, at low tem-
peratureT <1 only the second termo{\® in Eq. (D1) Al T (45+1)(4S+3) = o Tos1
remains. In the opposite limif,7s>1, we use the following IWL ™ 120 2S+1 owi TsgTs,  T7e 1.
property ofp(w): (D3)
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