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Non-Fermi liquid in a truncated two-dimensional Fermi surface
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Using perturbation theory and the field theoretical renormalization group approach we consider a two-
dimensional anisotropic truncated Fermi Surface~FS! with both flat and curved sectors which approximately
simulates the ‘‘cold’’ and ‘‘hot’’ spots in the cuprate superconductors. We calculate the one-particle two-loop
irreducible functionsG (2) andG (4) as well as the spin, the charge and pairing response functions up to one-loop
order. We find nontrivial infrared stable fixed points and we show that there are important effects produced by
the mixing of the existing scattering channels in higher order of perturbation theory. Our results indicate that

the ‘‘cold’’ spots are turned into a non-Fermi liquid with divergents]S0 /]p0 and]S0 /] p̄, a vanishingZ, and
either a finite or zero ‘‘Fermi velocity’’ at the FS when the effects produced by the flat portions are taken into
account.
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I. INTRODUCTION

The appearance of high-Tc superconductivity focused ev
eryone’s attention on the properties of strongly interact
two-dimensional electron systems. Basically the high-Tc cu-
prates are characterized by a doping parameter which r
lates the amount of charge concentration in the CuO2 planes.
As one varies the doping concentration and temperature
finds an antiferromagnetic phase, a pseudo-gap phase
anomalous metallic phase and ad-wave superconductor.

The standard model to describe these phenomena is
two-dimensional (2d) Hubbard model. Starting either from
the so-called weak coupling limit or from the largeU limit
instead one can reproduce at least in qualitative terms
those phases by varying only a small number of appropr
parameters.1 In particular, for the underdoped and optimal
doped compounds, motivated by the experimental res
coming from angle-resolved photoemission~ARPES! experi-
ments which demonstrated among other things the pres
of an anisotropic electronic spectra characterized by
pseudogap and flat bands ink space several workers hav
related some of these anomalies to the existence of a
conventional Fermi surface~FS! in these materials.2 As is
well known for the half-filled 2d-Hubbard model the FS be
ing perfectly square the perfect nesting and the presenc
van Hove singular points allow the mapping of this syst
onto perpendicular sets of one-dimensional chains3 produc-
ing infrared divergences in both particle-particle a
particle-hole channels, already at one-loop level. The ph
cal system in this case shows a non-Fermi-liquid behav
However, as doping is increased the FS immediately acqu
curved sectors and this opens up a possibility for Fer
liquid-like behavior around certain regions ofk space. This
feature seemed to be confirmed early on by the ARPES
for the underdoped and optimally doped Bi2212 and YBC
compounds.4 In the electronic spectra of these materials th
appears an anisotropic pseudogap and flat bands aro
(6p,0) and (0,6p) and traces of gapless single-partic
band dispersions around the (6p/2,6p/2) regions of the
0163-1829/2003/68~7!/075115~16!/$20.00 68 0751
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Brillouin zone ~BZ!. This agrees qualitatively well with the
phenomenological picture of a FS composed of ‘‘hot’’ a
‘‘cold’’ spots put forwarded by Hlubina and Rice and Pin
and co-workers.5 In that picture the ‘‘cold’’ spots associate
with correlated quasiparticle states are located along the
diagonals. In contrast the ‘‘hot’’ spots centered arou
(6p,0) and (0,6p) are related to the pseudogap and oth
anomalies of the cuprate normal phase. However, recent
toemission experiments6 which have a much better resolutio
than before put into doubt the applicability of Fermi liqu
theory even along the (0,0)- (p,p) direction. Using their
data on momentum widths as a function of temperature
different points of FS, in optimally doped Bi2212, Vall
et al. show that the imaginary part of the self-energy ImS
scales linearly with the binding energy along that directi
independent of the temperature. Similarly, Kaminskiet al.
show that the half-width-half-maximum of the spectral fun
tion A(p,v) single particle peak varies linearly withv above
Tc . They claim this to be analogous to both the observ
linear temperature behavior of the electrical resistivity a
the scattering rate. Those results are very different from w
is expected from a Fermi liquid and support a margin
Fermi-liquid phenomenology even near the (p/2,p/2) points
of the Brillouin zone.

In this work we consider a two-dimensional electron g
with a truncated FS composed of four symmetric patc
with both flat and conventionally curve arcs ink space.
These patches for simplicity are located around (6kF,0) and
(0,6kF) respectively~Fig. 1!. The Fermi-liquid-like states
are defined around the patch center. In contrast the bo
regions are taken to be flat. As a result in this region
electron dispersion law is one dimensional.7 In this way in
each patch there are conventional two-dimensional electr
states sandwiched by single-particles with a flat FS to sim
late the ‘‘cold’’ and ‘‘hot’’ spots scenario described earlier o
Flat FS sectors and single-particle with linear dispers
were also used earlier on by Dzyaloshinskii and co-worke8

to produce logarithmic singularities and non-Fermi-liqu
behavior. In their model the quasiparticle propagators dep
explicitly only on the momenta perpendicular to the Fer
©2003 The American Physical Society15-1



ri
t e

y o
th
a-

-
se
n
a
th

e
r t
a
x
in

ua
c

ibu
he

e
b-
in
l
s
d
n
r
n
e

y
x

is
w

a
t
ou-
d

RG
-

e
oint

v-
ter,
ec-
at-
ult.
the
ey
the
mi-
he

es
-
d

tates
w-

s no
in

oper
e
ns.

ne-
sec-
’’

le-

ters
l-
ce

h

or-

A. FERRAZ PHYSICAL REVIEW B 68, 075115 ~2003!
surface. The longitudinal momenta called by them ‘‘fast va
ables’’ are used to guarantee momentum conservation a
ery scattering process. By means of a symmetrization
those variables they distinguish betweens- and d-wave su-
perconductivities.

Here the flat sectors are mainly used to test the stabilit
the two-dimensional Fermi-liquid states associated with
‘‘curved’’ parts of FS. We use the field theory renormaliz
tion group~RG! method to regularize the infrared~IR! sin-
gularities produced by the ‘‘Cooper,’’ ‘‘exchange,’’ and ‘‘for
ward’’ loops at every order of perturbation theory. The
singular loops depend on the value of the external mome
as well as on the spin arrangements of the legs directly
sociated with them. Since these diagrams diverge at
Fermi surface the vertices acquire an explicit dependenc
the values of the momenta along the FS in a way simila
what is done in the parquet type approach. However, in
dition to considering two-loop order corrections we take e
plicit account of self-energy effects. This allows us to obta
nontrivial fixed points which are used to solve the RG eq
tion for the single-particle propagator near the Fermi surfa
We then use this result to calculate the momentum distr
tion functionn( p̄) and distinguish between those parts of t
FS which remain metallic from the ones which are not.

Other RG methods were used recently by several work
to test the weak-coupling limit of the two-dimensional Hu
bard model with and without next-nearest-neighbor hopp
against superconducting and magnetic ordering as wel
Pomenranchuk instabilities at different doping regime9

However due to the difficulty in implementing their metho
in higher orders they do not go beyond one-loop and
self-energy effects are taken into account by them. As a
sult the coupling functions always have divergent flows a
there is never any sign of the presence of nontrivial fix
points.

The scope of this work is the following. We begin b
reviewing briefly the model used in our calculations. Ne
we calculate the one-particle irreducible functionsG↑

(2) and
G↑↓;↑↓

(4) up to two-loop order. Our regularization scheme
introduced and discussed in detail. Using this procedure
demonstrate that the quasiparticle weightZ for the two-

FIG. 1. Truncated Fermi surface model.
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dimensional Fermi liquid state can vanish identically as
result of the interaction of the ‘‘cold’’ particles with the fla
sectors. We solve the RG equation for the renormalized c
pling in two-loop order and we find a nontrivial stable fixe
point. From there we go on to solve the corresponding
equation for the renormalizedG↑

(2) and to calculate the renor
malized spectral functionA(p,v) when the physical system
acquires its critical condition. UsingA(p,v) we calculate the
momentum distribution functionn( p̄) and discuss the natur
of the Fermi surface region associated the chosen fixed p
value. Depending on the analytical properties of]n( p̄)/] p̄
we can distinguish a metallic from an insulating-like beha
ior at the corresponding sector of the renormalized FS. La
going beyond two-loops we estimate higher-order corr
tions. We take full account of the mixing of the various sc
tering channels and show how it affects our two-loop res
We conclude by emphasizing that our results indicate
instability of two-dimensional Fermi-liquid states when th
are renormalized by the interaction with the flat sectors of
Fermi surface and by arguing that the resulting non-Fer
liquid state may well be used to describe qualitatively t
pseudogap phase of the cuprate superconductors.

II. TWO-DIMENSIONAL MODEL FERMI SURFACE

Consider a 2d FS consisting of four disconnected patch
centred around (6kF,0) and (0,6kF). Let us assume to be
gin with that they are Fermi-liquid-like. The disconnecte
arcs separate occupied and unoccupied single-particle s
along the direction perpendicular to the Fermi surface. Ho
ever as we approach any patch along the arc itself there i
sharp resolution of states in the vicinity of the gaps located
the border regions. We assume that these regions are pr
for non-Fermi-liquid ~NFL! behavior. To represent thos
NFL features we take the FS to be flat in the border regio
In this way the single-particle states which are a 2d Fermi
liquid around the center of the patch acquire an o
dimensional dispersion as we approach those flat border
tors. They represent the ‘‘hot’’ spots sandwiching the ‘‘cold
spots in our model.

In order to be more quantitative consider the sing
particle Lagrangian density

L5(
s

cs
†~x!S i ] t̄1

¹2

2
1 «̄FDcs~x!

2Ūc↑
†~x!c↓

†~x!c↓~x!c↑~x!, ~1!

wherex5( t̄ ,x), «̄F5kF
2/2, t̄ 215m* t21, andŪ5m* U with

m* being the effective mass. The Fermi surface parame
are nowkF , l, andD. When we proceed with our renorma
ization scheme in the vicinity of a given FS point we repla
kF by the corresponding barekF

05Z21v1/2k̄F whereZ is the

quasiparticle weight,k̄F is dimensionless andv is an energy
scale parameter. In this wayk̄F can be nonzero even if bot
Z and v→0. The other Fermi surface parametersl and D
suffers the same kind of renormalization. Naturally the ren
5-2
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NON-FERMI LIQUID IN A TRUNCATED TWO- . . . PHYSICAL REVIEW B 68, 075115 ~2003!
malization of the FS is in general much more intricate th
this. Here we follow this route for simplicity. We can do th
as long as we restrict the renormalization of those parame
to two-loop order and neglect the contribution of the const
Hartree term. In practice this is done simply by concentrat
our attention in the most divergent contribution of the se
energyS as we show later on. We leave the discussion of
full implementation of a more general FS renormalization
a later work. Notice that in our scheme the coupling const
Ū scales asv12d/2 in d spatial dimensions. Here the fermio
fields are nonzero only in a slab of width 2l around the four
symmetric patches of FS. Thus in momentum space
single-particle«(p) is defined according to the sector and F
patch under consideration. For example, in the vicinity of
central zone of the patch defined around the FS point
2kF), since there is a nonzero curvature in the FS we h
that

«~p!>
kF

2

2
2kF~py1kF!1

px
2

2
, ~2!

with 2D<px<D. In contrast in the border regions of th
same patch where the FS is flat we find instead

«~p!>
kF

2

2
2kFS py1kF2

D2

2kF
D , ~3!

for D<px<l or 2l<px<2D. In this case only the single
particle dispersion depends exclusively on the momen
component perpendicular to the FS. We follow the sa
scheme to define«(p) in all other patches of the FS.

In setting up our perturbation theory scheme two qua
ties appear frequently: the particle-hole and the partic
particle bubble diagrams. In zeroth order they are defin
respectively, as

x↑↓
(0)~P!52E

q
G↑

(0)~q!G↓
(0)~q1P! ~4!

and

P↑↓
(0)~P!5E

q
G↑

(0)~q!G↓
(0)~2q1P!, ~5!

where

G↑
(0)~q0 ,q!5

u@«̄~q!#

q02 «̄~q!1 id
1

u@2 «̄~q!#

q02 «̄~q!2 id
~6!

with «̄(q)5«(q)2kF
2/2, *q52 i *(dq0/2p)*@dq/(2p)2#,

andq5(q0 ,q).
It turns out thatx (0) is singular only if theG(o)’s refer to

flat sectors in whichq andq1P are points from correspond
ing antipodal border regions of the FS. In the case, in wh
e.g.,P5(0,2kF2 D2/kF) we find

x↑↓
(0)~P;P0!5

~l2D!

4p2kF
F lnS V1P02 id

P02 id D1 lnS V2P02 id

2P02 id D G
~7!

with V52kFl.
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In contrastP (0) is singular for particles located in bot
‘‘cold’’ and ‘‘hot’’ spots whenever they are involved in a
Cooper scattering channel. Here for, e.g.,P5(0,0) we obtain

P↑↓
(0)~P;P0!5

l

p2kF
F lnS V1P02 id

P02 id D1 lnS V2P02 id

2P02 id D G .
~8!

As is well known the Cooper channel singularity drives t
system towards its superconducting instability. However
one-loop for a repulsive interaction the renormalized co
pling in that channel approaches the trivial Fermi liquid fix
point instead.10 As opposed to that the singularity inx (0)

produced by the one-loop exchange channel drives the ph
cal system towards a nonperturbative regime. This non
turbative behavior might be indicative of either the failure
the one-loop truncation or the inadequacy of perturbat
theory itself to deal with that situation. To find out what is
fact the case we consider the effect of higher-order contri
tions in both one-particle irreducible functionsG (2)(p) and
G (4)(p).

III. ONE-PARTICLE IRREDUCIBLE FUNCTIONS

Let us initially consider the one-particle irreducible fun
tion G↑

(2)(p0 ,p) for a p located in the vicinity of a ‘‘cold’’
spot point ofFS such asp* 5(D,2kF1D2/2kF). We can
write G (2) in this case as

G↑
(2)~p0 ,p!5p01kFS py1kF2

D2

kF
D2S↑~p0 ,p!, ~9!

where, using perturbation theory, the two-loop self-ene
S↑ is given by

S↑~p0 ,p!5
2Ul2

p2
22U2E

q
G↓

(0)~q!x↑↓
(0)~q2p!. ~10!

The constant term produces at this order a constant shi
kF which leads to the renormalization of the Fermi surfa
parametersl andD. Since the renormalization of the Ferm
surface is a problem in itself we postpone the discussion
its full implementation to a later work. Here for simplicit
we ignore the presence of the constant term and concen
our attention in the two-loop diagram which produces a n
analiticity at FS. As a result the renormalized Fermi surfa
parametersl and D relate to their bare counterparts in th
same way askF : l5Zl0 andD5ZD0.

Evaluating the integrals overq we obtain11
5-3
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A. FERRAZ PHYSICAL REVIEW B 68, 075115 ~2003!
S↑~p0 ,p!>2
3U2

64p4 S l2D

kF
D 2Fp01kFS py1kF2

D2

2kF
D G

3F lnS V1p02 id

2kFS py1kF2
D2

2kF
D1p02 idD

1 lnS V2p02 id

2kFS py1kF2
D2

2kF
D2p02 idD G .

~11!

Clearly both]S↑ /]py and ]S↑ /]p0 are divergent at the
FS. In fact it gives the marginal Fermi-liquid result12 for py
52kF1D2/2kF andp05v→0 which nullifies the quasipar
ticle weight Z21512] ReS↑ /]p0up* ;v at the Fermi sur-
face.

We can also arrive at this result by means of the ren
malization group~RG!. For this we define the renormalize
one-particle irreducible functionGR↑

(2)(p0 ,p) such that atp0

5v, where v is a small energy scale parameter, andp
5p* , at the same Fermi surface point as before,GR↑

(2)(p0

5v,p5p* )5v. Using the RG theory,GR↑
(2) is related to the

corresponding bare functionG0↑
(2) by

GR↑
(2)~p;U;v!5Z~p* ;v!G0↑

(2)~p;U0!, ~12!

whereU0 and U are the corresponding bare and renorm
ized coupling. Since at zeroth orderU05U it follows imme-
diately from our prescription and from perturbative res
that

Z~p* ;v!5
1

11
3U2

32p4 S l2D

kF
D 2

lnS V

v D . ~13!

Naturally,Z50 if v→0. As we show later this result reflec
itself in the anomalous dimension developed by the sing
particle Green’s function at the FS.

Let us next calculate the one-particle irreducible tw
particle function Ga,b

(4) (p1 ,p2 ;p3 ,p4) for a,b5↑,↓. This
function depends on the spin arrangements of the exte
legs as well as on the scattering channel into considera
Generically for antiparallel spins up to two-loop order w
have that

G↑↓
(4)~p1 ,p2 ;p3 ,p4!

52U1U2E
k
G↑

(0)~k!G↓
(0)~k1p42p1!

1U2E
k
G↑

(0)~k!G↓
(0)~2k1p11p2!
07511
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2U3E
k
G↓

(0)~k!G↓
(0)~k1p32p1!E

q
G↑

(0)~q!

3G↑
(0)~q1p32p1!1•••. ~14!

In one-loop order the only divergent contributions com
from the particle-hole loop and the particle-particle diagra
with internal lines with opposite spins. This singular partic
hole diagram with propagators with opposite spins we c
exchange loop. In contrast, the forward loop is the diverg
particle-hole diagram with internal lines of the same sp
This kind of loop only contributes toG↑↓

(4) from two-loop
order on. However, the forward loop is present in every or
of the perturbative series for the one-particle irreduci
G↑↑

(4) :

G↑↑
(4)~p1 ,p2 ;p3 ,p4!

52U2E
k
G↓

(0)~k!G↓
(0)~k1p32p1!

1U3E
k
G↓

(0)~k!G↓
(0)~k1p32p1!P↑↓

(0)~k1p2!

2U3E
k
G↓

(0)~k!G↓
(0)~k1p32p1!x↑↓

(0)~p42k!1•••.

~15!

The nature of the singularities which appear in the pert
bative series forGa,b

(4) depend on the specific choice of th
external momenta. Due to this momenta space anisotr
different kinds of scattering channels produce divergen
with different multiplicative factors along the patched Fer
surface. They reflect the role played by the momenta al
the FS in our results. As we will see later this automatica
obliges us to define momenta dependent bare coupling fu
tions in our perturbation series expansions. Despite all
the existing divergences can be grouped together with
spect to their scattering channel and vertex type. This op
the way to define a systematic local regularization proced
to guide our renormalization group prescriptions through
our calculations. Here our vertex classification convent
goes as follows. We say there is an ‘‘exchange’’ type ver
whenever its associated ‘‘external’’ momenta can be tun
together to produce a logarithmic divergent exchange loo
the Fermi surface. This can be easily achieved if we cho
to work in the ‘‘ exchange’’ scattering channel forG↑↓

(4) in
which the external momenta↑p15↑p3 and ↓p25↓p4. In
contrast if the external legs ofG↑↓

(4) are chosen such tha
↑p15↓p4 and ↓p25↑p3 it is now the ‘‘forward’’ particle-
hole loop which becomes logarithmic divergent. The asso
ated vertex in that case is then called ‘‘forward.’’ Finally
the external legs ofG↑↓

(4) are such that↑p152p2↓ and↑p3

52↓p4 the particle-particle diagram becomes logarithm
divergent. The vertex associated with that singular partic
particle diagram is said to be ‘‘Cooper-like.’’
5-4
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In this work for simplicity we consider only the leadin
divergence at every order of perturbation theory. Despite
since we go beyond one-loop order and since we incl
nontrivial self-energy corrections we take explicitly into a
count contributions which are not considered either in p
quet type or numerical RG approaches. Inasmuch as both
renormalization conditions and the bare coupling functio
vary as we move along in momenta space, strictly speak
we would need an infinite number of counterterms to re
larize all the divergences in our model. However since all
divergences are associated with a singular loop with vert
which are either of exchange, Cooper or forward type it
possible to define three bare coupling functionsU0x(p4
2p1), U0C(p11p2), andU0 f(p32p1) which cancel out ex-
actly, order by order, all the divergences which appear in
perturbation theory expansions.

To illustrate our argument further take initially, e.g.,p1
5p35(D,kF2D2/2kF) and p25p45(l2e,2kF1D2/2kF)
with e being such that 0<e,l2D. The leading terms up to
two-loop order forp0'0 are@Fig. 2~a!#

G↑↓
(4)~p15p3 ;p25p4 ,p0!

52U2U2x↑↓
(0)~p42p1 ;p0!1U2P↑↓

(0)~p11p2 ;p0!

2U3@x↑↓
(0)~p42p1 ;p0!#22U3@P (0)~p11p2 ;p0!#2

2U3E
k
G↑

(0)~k!G↓
(0)~k1p42p1!P↑↓

(0)~k1p2!

1U3E
k
G↑

(0)~k!G↓
(0)~2k1p11p2!

3@x↑↓
(0)~p42k!1p4
p3#1•••. ~16!

If we evaluate all those diagrams we find

G↑↓
(4)~p15p3 ;p25p4 ,p0'v!

52U2
U2

2p2kF

e lnS V

v D1
U2

2p2kF

~l2D2e!lnS V

v D
2

U3

4p4kF
2

e2F lnS V

v D G2

2
U3

4p4kF
2 ~l2D2e!2F lnS V

v D G2

1
U3

16p4kF
2 F3eS l2D2

e

2D
1@~l2D!22e2#GF lnS V

v D G2

1•••. ~17!

In contrast for external momenta such asp152p2
5(D,kF2D2/2kF) andp352p45(l2e,2kF1D2/2kF) up
to two-loop order our series expansion becomes instead@Fig.
2~b!#
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G↑↓
(4)~p152p2 ;p0!

52U1U2P↑↓
(0)~p0!2U2x↑↓

(0)~p42p1 ;p0!

2U3~P↑↓
(0)~p0!!22U3@x↑↓

(0)~p42p1 ;p0!#2

1U3E
k
G↓

(0)~k!G↑
(0)~2k;p0!@x↑↓

(0)~p32k!

1x↑↓
(0)~p42k!#

2U3E
k
G↑

(0)~k!G↓
(0)~k1p42p1!P (0)~k1p2!1•••.

~18!

Evaluating those integrals we obtain

G↑↓
(4)~p152p2 ;p0!

52U1
U2

2p2kF

~4l!lnS V

v D2
U2

4p2kF

~l2D2e!lnS V

v D
2

U3

4p4kF
2 ~4l!2F lnS V

v D G2

2
U3

16p4kF
2 ~l2D2e!2

3F lnS V

v D G2

1
U3

16p4kF
2 F3

2
~l2D!212e~l2D2e!G

3F lnS V

v D G2

1
U3

16p4kF
2 @~l2D!22e2#F lnS V

v D G2

1•••. ~19!

Finally, if we now choose external momenta such asp1
5p45(D,kF2D2/2kF) and p25p35(l2e,2kF1D2/2kF)
we have thatp32p15(l2D2e,22kF1D2/kF), p11p2
5(l1D2e) and our series expansion in the forward cha
nel becomes@Fig. 2~c!#

G↑↓
(4)~p15p4 ;p25p3 ,p0!

52U1U2P (0)~p11p2 ;p0!2U3@x↑↑
(0)~p32p1 ;p0!#

3@x↓↓
(0)~p32p1 ;p0!#2U3@P (0)~p11p2 ;p0!#2

1U3E
k
G↑

(0)~k!G↓
(0)~2k1p11p2!

3@x↑↓
(0)~p42k!1p4
p3#

1U3E
k
G↓

(0)~k1p32p1!G↑
(0)~k!x↑↓

(0)~p42k!1•••.

~20!

Solving all those integrals above we get
5-5
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FIG. 2. Feynmann diagrams up to two-loop order f
G↑↓

(4) in the ~a! exchange channel,~b! Cooper channel, and
~c! forward channel.
at
on

ion

d

e

G↑↓
(4)~p15p4 ;p25p3 ,p0!

52U1
U2

2p2kF

~l2D2e!lnS V

v D2
U3

16p4kF
2 ~e!2

3F lnS V

v D G2
U3

16p4kF
2 ~l2D2e!2F lnS V

v D G2

1
U3

16p4kF
2 @~l2D!22e2#F lnS V

v D G2

1•••. ~21!

Our renormalization prescription must therefore incorpor
this momenta space anisotropy to cancel all the corresp
ing singularities appropriately.
07511
e
d-

Using RG theory we can proceed with the regularizat
scheme relating the renormalized two-particle functionGR↑↓

(4)

to its corresponding bare functionG0↑↓
(4)

GR↑↓
(4) @p1 ,p2 ;p3 ,p4 ;Ua~$pi%;v!;v#

5)
i 51

4

Zi
1/2~pi ;v!G0↑↓

(4) @p1 ,p2 ;p3 ,p4 ;U0a~$pi%!#,

~22!

where U0a and Ua are the bare and the renormalize
couplings respectively witha5x (exchange),C ~Cooper!, f
~forward!. The renormalizedGR↑↓

(4) can be invoked for the
definition of the renormalized coupling functions. Here w
5-6
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follow a renormalization prescription regulated by the lea
ing divergence in one-loop order. Thus if the leading div
gence in one-loop order is the exchange particle-hole l
we define GR↑↓

(4) such that GR↑↓
(4) ($pi%,p05v)5

2Ux($pi%,v). In this way it follows that

GR↑↓
(4) ~p15p3 ;p25p4 ;p05v;Ua!

52Ux~p15p3 ;p25p4 ;v;Ua! ~23!

for p15p35(D,kF2D2/2kF) and p25p45(l2e,2kF
1D2/2kF) with 2e.l2D.

Similarly, if the leading divergence in one-loop order
the particle-particle Cooper diagram in our prescription
renormalized GR↑↓

(4) is such that GR↑↓
(4) ($pi%;p05v;Ua)

52UC($pi%;v;Ua). Clearly using this scheme

GR↑↓
(4) ~p152p2 ;p05v;Ua!52UC~p152p2 ;v;Ua!

~24!

for p152p25(D,kF2D2/2kF) and p352p45(l2D
2e,kF2D2/2kF).

Finally if the leading particle-hole loop has internal lin
with the same spinGR↑↓

(4) in our prescriptionGR↑↓
(4) ($pi%,p0

5v;Ua)52U f($pi%;v;Ua). It follows from this that

GR↑↓
(4) ~p15p4 ;p25p3 ,p05v;Ua!

52U f~p15p4 ;p25p3 ;v;Ua! ~25!

for p15p45(D,kF2D2/2kF) and p25p35(l2e,2kF
1D2/2kF), respectively.

Using this renormalization scheme we find, respective

Ux~p15p3 ;p25p4 ;v;Ua!

5Z~p1 ;v!Z~p4 ;v!S U0xH 11
e

2p2kF

U0xlnS V

v D
1

1

4p2kF
2 Fe2U0x

2 2
3

4
eS l2D2

e

2DU0C
2 G

3F lnS V

v D G2

1•••J 2
l2D2e

2p2kF

U0C
2 lnS V

v D
1

U0C

4p4kF
2 F ~l2D2e!2U0C

2

2
1

4
@~l2D!22e2#U0x

2 GF lnS V

v D G2

1••• D ~26!

for the exchange channel,
07511
-
-
p

e

,

UC~p152p2 ;p352p4 ;v;Ua!

5Z~p1 ;v!Z~p4 ;v!S U0CH 12
4l

2p2kF

U0ClnS V

v D
1

1

4p2kF
2 F ~4l!2U0C

2 2
1

4 S 3

2
~l2D!2

12e~l2D2e! DU0x
2 GF lnS V

v D G2

1•••1
l2D2e

4p2kF

U0x
2 lnS V

v D1
U0x

16p4kF
2

3$~l2D2e!2U0x
2 2@~l2D!22e2#U0C

2 %

3F lnS V

v D G2

1••• D ~27!

for the Cooper channel and finally

U f~p15p4 ;p25p3 ;v;Ua!

5Z~p1 ;v!Z~p3 ;v!H U0 fF11
e2

4p4kF
2

3U0 f
2 ln2S V

v D1•••G2
l2D2e

2p2kF

U0C
2 lnS V

v D
1

U0C

4p4kF
2 S ~l2D2e!2U0C

2

2
1

4
@~l2D!22e2#U0x

2 D F lnS V

v D G2

1•••J
~28!

for the forward channel. HereZ(p1 ;v) is given as before
and

Z21~p3 ;v!

511
U0x

2

16p4kF
2 F3

2
~l2D!213e~l2D2e!G lnS V

v D1•••.

~29!

These results can be simplified further if we take in
consideration that the divergencies are removed by local s
tractions. Thus if we restrict ourselves to two-loop order
must haveU0C

2 >U0x
2 >U0 f

2 >U0
2 . Up to two-loop order there

is in practice no mixing of channels in our perturbatio
theory. As a result the RG equations for the renormaliz
coupling functions simplify considerably and they reduce
5-7
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Ux5U0x2~aU0x
2 22bU0x

3 !lnS V

v D1•••, ~30!

where

a5
2e2~l2D!

2p2kF

, ~31!

b5
3

32p4kF
2 @~l2D!21e~l2D2e!#, ~32!

U f5U0 f2~cU0 f
2 12bU0 f

3 !lnS V

v D1••• ~33!

with c5(l2D2e)/2p2kF ,

UC5U0C2~dU0C
2 12bU0C

3 !lnS V

v D1••• ~34!

with d5@4l2(l2D2e)/2#/2p2kF .
Using the RG conditions v]U0x /]v5v]U0 f /]v

5v]U0C /]v50 the RG equations forUx , U f and UC in
two-loop order are simply

b~Ux!5v
]Ux

]v
52aUx

212bUx
31•••, ~35!

b~U f !5v
]Ux

]v
5cUf

212bUf
31•••, ~36!

and

b~Uc!5v
]Uc

]v
5dUc

212bUc
31•••. ~37!

Note that there are nontrivial fixed pointsUx* 5a/2b,
Uc* 52$@4l2(l2D2e)/2#/@2e2(l2D)#%Ux* and U f* 5

2$(l2D2e)/@2e2(l2D)#%Ux* for the exchange, Coope
and forward channels respectively which are infrared~IR!
stable but they are by no means of small magnitude if
renormalized Fermi surface parameters continue to be s
that kF@(l2D) and l@(l2D). The magnitude ofUx* is
regulated by the ratio ofkF and the size of the flat sector o
the FS fore>l2D. In this case the larger the size of the fl
sector with respect tokF the smaller the magnitude ofUx* .
For UC* andU f* there are extra multiplicative factors whic
measures basically the ratio of FS longitudinal widths ink
space available for the divergent particle-particle a
particle-hole diagrams in the Cooper and forward chann
respectively. In our perturbation theory scheme the exp
sion parameter is precisely a fraction ofUa(width)/kF and
even a large value of the coupling constant such as som
the U* ’s above present no serious convergence difficulty
our perturbation series expansions.

We can use a similar RG approach for the renormali
two-particle irreducible function with parallel spins. Now w
define the corresponding one-particle irreducible function
07511
e
ch

d
ls
n-

of
o

d

s

GR↑↑
(4) ~p1 ,p2 ;p3 ,p4 ;Ua ;v!

5)
i 51

4

Zi
1/2~pi ;v!G0↑↑

(4) ~p1 ,p2 ;p3 ,p4 ;U0a!1A~v!, ~38!

whereA(v) is an infinite additive constant which is define
to cancel the divergence produced by the first term in o
perturbation series expansion forG0↑↑

(4) . As a result of that
our RG prescription in this case becomesGR↑↑

(4) ($pi%;p0

5v;Ua ;v)50. In this way it follows immediately that

GR↑↑
(4) ~p45p1 ;p25p3 ;p05v;Ua ;v!

5Z~p1 ;v!Z~p3 ;v!@G0↑↑
(4) ~p45p1 ;p25p3 ;

p05v;U0a!#1A~v!50. ~39!

Using our perturbation series result~Fig. 3! we obtain

G0↑↑
(4) ~p15p4 ;p25p3 ,p05v;U0a!

5
e

2p2kF

U0 f
2 lnS V

v D2
U0 fU0C

2

16p4kF
2

33eS l2D2
e

2D ln2S V

v D1•••. ~40!

Using the same approximationU0 f
2 >U0C

2 >U0
2 as before

it follows immediately that

A~v!52
e

2p2kF

U f
2lnS V

v D
1

U f
3

16p4kF
2
3eS l2D2

e

2D ln2S V

v D1•••. ~41!

Having established the existence of IR stable nontriv
fixed points in two-loop order we can now investigate ho
self-energy effects produce an anomalous dimension in
single-particle Green’s function at the Fermi surface.11

IV. SINGLE-PARTICLE GREEN’S FUNCTION
AND OCCUPATION NUMBER AT FS

We can use the RG to calculate the renormalized Gree
function GR at the FS. SinceGR5(GR

(2))21 it follows from
the previous section that

FIG. 3. Diagrams up two-loop order forG↑↑
(4) .
5-8
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GR~p0 ;p* ;$Ua%;v!5Z21~p* ;v!G0~p0 ;p* ;$U0a%!,
~42!

whereG0 is the corresponding bare Green’s function andp*
is some fixed FS point. Seeing thatG0 is independent of the
scale parameterv we obtain thatGR satisfies the Callan
Symanzik (CS) equation13

S v
]

]v
1(

a
ba~$Ub%!

]

]Ua
1g DGR~p0 ;p* ;$Ub%;v!50,

~43!

where

g5v
d

dv
ln Z~v!. ~44!

Using the fact thatGR at the FS is a homogeneous functio
of v andp0 of degreeD521 it turns out that it must also
satisfy the equation

S v
]

]v
1p0

]

]p0
DGR~p0 ;p* ;$Ua%;v!

52GR~p0 ;p* ;$Ua%;v!. ~45!

Combining this with the CS equation we then find

S 2p0

]

]p0
1(

a
ba~$Ub%!

]

]Ua
1g21D

3GR~p0 ;p* ;$Ub%;v!50. ~46!

Using the fact that up to two-loop order we don’t yet disti
guish the mixing effects produced by the different scatter
channels in the self-energy we can simplify this RG equat
even further. As a result we assume that the divergence u
this order is associated with just one of the renormaliz
coupling functions. If we chooseUx to be this coupling in
consideration the CS equation reduces to

S 2p0

]

]p0
1bx~Ux!

]

]Ux
1g21DGR~p0 ;p* ;Ux ;v!50.

~47!

From this we obtain that the formal solution forGR is

GR~p0 ;p* ;Ux ;v!

5
1

p0
expS E

v

p0
d lnS p̄0

v
D g@Ux~ p̄0 ;p* ;Ux!# D , ~48!

where

dUx~ p̄0 ;U !

d lnS p̄0

v
D 5bx@Ux~ p̄0 ;p* ;Ux!#, ~49!

with Ux( p̄05v;p* ;Ux)5Ux(p* ;v).
If we assume that as the physical system approaches

Fermi surface asp0;v→0, it also acquires a critical con
dition with the running coupling constantUx(p* ;v)
07511
g
n
to
d

he

→Ux* (p* ) for p* 5(l2e,2kF1D2/2kF) we can use our
perturbation theory result forZ(p* ;v) up to orderO(Ux*

2)
to obtain

g5
3Ux*

2

16p4kF
2 F ~l2D!2

2
1e~l2D2e!G1•••5g* .

~50!

As a resultGR develops an anomalous dimension given b11

GR~p0 ;p* ;Ux* ;v!5
1

v S v2

p0
2 D (12g* )/2

. ~51!

If we make the analytical continuationp0→p01 id, at the
FS, GR reduces forp0,0 to

GR~p0 ;U* ;v!52
1

v S v2

p0
2 D [(12g* )/2]

3@cos~pg* !1 i sin~pg* !#. ~52!

Using this result the spectral functionA(kF ,p0)52Im GR
becomes

A~kF ,p0!5u~2p0!Up0

v Ug* sin~pg* !

up0u
~53!

and the number densityn(kF) reduces to

n~kF!5
1

2

sin~pg* !

pg*
. ~54!

Notice that if Ux* →0, g* →0 and as a resultn(kF ;Ux*
50)5 1

2 . Alternatively, if we replace our two-loop value fo
Ux* we get

g* 5
4

3
@2e2~l2D!#2

@~l2D!2/21e~l2D2e!#

@~l2D!21e~l2D2e!#2
.

~55!

If we now takee5 2
3 (l2D) we find g* >0.07,

Im GR~p0 ;U* ;v!>2S v2

p0
2 D 20.035

1

up0u
, ~56!

and as a resultn(kF ;Ux* )>0.14. This result shows that ther
is indeed no discontinuity atn(kF). Moreover there is only a
small correction to the marginal Fermi liquid result for th
‘‘cold’’ spot point which suffers the direct effect of the fla
sectors throughS. The correction to the linear behavior o
Im S is practically not observed experimentally. The pow
law behavior ofGR and the value ofn(kF) independent of
the sign of the coupling constant resembles the results
tained for a Luttinger liquid.14 However, for the one-
dimensional Luttinger liquid]n(p)/]pup5kF

→`. In order to
see if the occupation function shows the same behavio
our case we have to generalize our CS equation to explic
include the momentum dependence forGR in the vicinity of
a given ‘‘cold’’ spot point.
5-9
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V. GREEN’S FUNCTION AND MOMENTUM
DISTRIBUTION FUNCTION NEAR A ‘‘COLD’’

SPOT POINT

Let us choose for simplicity the pointp* 5(D2y,2kF
1D2/2kF2yD/kF) in the (0,2kF) patch of our FS model
Quite generically the relation between the renormalized
bare one-particle irreducibleG (2)’s holds for any momentum
value. Thus taking into consideration our perturbative tw
loop self-energy result together with the fact that atp050
and in the vicinity of the FS point„D2y,2kF1 (D2/2kF )
2(yD/kF)…, it is natural to define a renormalized (kF)R such
that GR

(2) reduces to

GR
(2)~p050,p;v!5 p̄5FkFS py1kF2

D2

2kF
1

yD

kF
D G

R

5Z~p* ,v!kFS py1kF2
D2

2kF
1

yD

kF
D .

~57!

In this way the renormalization of all the Fermi surface p
rameters is emulated byp̄.

In the presence of a nonzerop̄ the CS equation forGR in
the neighborhood of this ‘‘cold’’ spot point becomes

S v
]

]v
1b~Ux!

]

]Ux
1g p̄

]

] p̄
1g D GR~p0 ; p̄;Ux ;v!50.

~58!

Since now we have

S v
]

]v
1p0

]

]p0
1 p̄

]

] p̄
D GR~p0 ; p̄;Ux ;v!

52GR~p0 ; p̄;Ux ;v!, ~59!

it follows from this thatGR satisfies the RG equation

S p0

]

]p0
1~12g!p̄

]

] p̄
2b~Ux!

]

]Ux
112g D

3GR~p0 ; p̄;Ux ;v!50. ~60!

We can therefore writeGR in the form

GR~p0 ; p̄;Ux ;v!

5G@Ux~p0 ;Ux!; p̄~p0 ; p̄!#

3exp2S E
v

p0
d lnS p̄0

v
D $12g@Ux~ p̄0 ; p̄;Ux!#% D ,

~61!

where

p̄~p0 ;Ux!5 p̄expS 2E
v

p0
d lnS p̄0

v
D $12g@Ux~ p̄0 ; p̄;Ux!#% D ,

~62!
07511
d

-

-

and theb function is determined perturbatively. If we as
sume as before that the physical system is brought to c
cality asv→0 andUx(v)→Ux* Þ0 we can use our pertur
bation theory result forg and these equations reduce to

GR~p0 ; p̄;Ux* ;v!5
1

p0
G@ p̄~p0 ;Ux* !#S p0

v D g*
, ~63!

with

p̄~p0 ;Ux* !5 p̄S p0

v D (g* 21)

. ~64!

The functionG is determined from perturbation theory. R
calling that at zeroth order, forp0.v, we have that

GR>
1

v1 p̄
1O~Ux*

2!, ~65!

and it turns out that

G@ p̄~p0 ;Ux* !#5
v

v1 p̄~p0 :U* !
1•••. ~66!

Finally, combining all these results we get that in the vicin
of our ‘‘cold’’ spot point

GR~p0 ; p̄;Ux* ;v!5
1

p0
S p0

2

v2D g* /2F11
p̄

p0
S p0

2

v2D g* /2G21

.

~67!

If we now do again the analytic continuationp0→p01 id we
obtain the renormalized Green’s function in the form

GR~p0 ; p̄;Ux* !

5

S p0
2

v2D g* /2

p̄S p0
2

v2D g* /2

2up0ucos~pg* !1 i up0usin~pg* !

, ~68!

for p0,0 or

GR~p0 ; p̄;Ux* !5

S p0
2

v2D g* /2

p̄S p0
2

v2D
g*
2

1p01 id

, ~69!

for p0.0.
It follows from this that the imaginary part of the reno

malized self-energy ImSR , for p0,0, is given by-
5-10
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Im SR~p0 ; p̄;Ux* ;v!52up0uS p0
2

v2D 2g* /2

sin~pg* !

~70!
r-
is

07511
or ImSR(p0 ; p̄;Ux* ;v)50 for p0.0.
As a result of that the renormalized spectral functi

AR( p̄;v) becomes11
AR~p0 ,p̄;v!5

up0uS p0
2

v2D 2g* /2

sin~pg* !

S p̄2up0uS v2

p0
2 D g* /2

cos~pg* !D 2

1p0
2S v2

p0
2 D g*

sin2~pg* !

, ~71!
n-

te
for p0,0 or simply

AR~p0 ,p̄;v!5
p

12g*
S p0

v D g*
dS p02S 2 p̄

v
D 1/(12g* )D ,

~72!

for p0.0.
We can immediately infer from this result that our reno

malized Fermi Surface near the given ‘‘cold’’ spot point
now characterized by a dispersion law given by

p05Ē~ p̄!52S p̄ sec~pg* !

vg* D 1/(12g* )

, ~73!

for p0,0, p̄.0, and cos(pg* )Þ0 or

p05Ē~ p̄!5S 2 p̄

v
D 1/(12g* )

~74!

for p0.0 andp̄,0.
If we now define the ‘‘Fermi velocity’’vF as the deriva-
tive of Ē( p̄) with respect to the component of the mome
tum perpendicular to the Fermi surface in the vicinity ofp*
we find

vF5
kFR

12g*
@sec~pg* !#1/(12g* )S p̄

v
D g* /(12g* )

,

p0,0, p̄.0, ~75!

vF5
kFR

12g*
S 2 p̄

v
D g* /(12g* )

, p0.0, p̄,0. ~76!

Clearly for g* /(12g* ).0 and we have thatvF→0 if
u p̄u/v→0. However if (g* /(12g* )!1, vF is nonzero and
differs only weakly from itskFR value.

Finally, using our spectral function result we can calcula
the momentum distribution functionn( p̄) for p̄/v;0. Using
n( p̄)5*2v

v (dp0/2p)AR(p0 ,p̄;v), we obtain
n~ p̄!5
1/2

12g*
S 2 p̄

v
D g* /(12g* )

u~2 p̄!u~12g* !

1usin~pg* !u E
0

1 dy

2p

y12g*

F y12g* 2
p̄

v
expi ~pg* !GF y12g* 2

p̄

v
exp2 i ~pg* !G . ~77!

Evaluating this last integral we get

n~ p̄!5
1/2

12g*
S 2 p̄

v
D g* /(12g* )

u~2 p̄!1
usin~pg* !u

2pg*
S 11

g*

2g* 21

sin~2pg* !

sin~pg* !

u p̄u
v

1••• D
2

u~12g* !

2p
GS 22g*

12g*
D GS 21

12g*
D S u p̄u

v
D g* /(12g* )Fu~ p̄!sinS 3p

12g*
D 2u~2 p̄!sinS 2p

12g*
D G ~78!
5-11
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A. FERRAZ PHYSICAL REVIEW B 68, 075115 ~2003!
for u p̄u/v!1 and noninteger 1/(12g* ).
It follows from this that in the vicinity of FS for

u p̄u/v>0

]n~ p̄!

] p̄
;S u p̄u

v
D 2[(122g* )/(12g* )]

. ~79!

Therefore if 1.2g* or g* .1 we have]n( p̄)/] p̄→` when
p̄/v→0. In contrast forg* ,1 and 1,2g* the momentum
distribution function is a smooth function and there must
a charge gap in the regions ofk space, where these cond
tions are satisfied. If we use our two-loop results we see
both sets of conditions are equally possible. Assuming
y!e5 2

3 (l2D) we can use the value ofUx* obtained before.
Combining this with our perturbative result forZ(v) which
at the appropriate momentum value is given by

Z~v!512
3

32p4kF
2 ~l2D2y!2Ux*

2lnS V

v D1•••

>12
3

32p4kF
2 ~l2D!2Ux*

2lnS V

v D ~80!

we find g* >6/121. For this value ofg* the momentum
distribution function is clearly nonanalytic atp̄50 indicating
that some remains of a Fermi surface continues to be pre
in the system. Thus for thisk-space region the physical sy
tem resembles indeed a Luttinger liquid.14,15 On the other
hand if we choose our FS parameters in a way thatg*
>0.64 we find that]n( p̄)/] p̄→0 when p̄/v→0 and the
smoothness ofn( p̄) eliminates locally all traces of metalli
behavior. As a result there should appear a charge gap a
this direction ofk space characterizing an associated insu
ing state. That a truncation of the Fermi surface could
produced by interaction was proposed earlier by Furuka
Rice, and Salmhofer in the context of a 2d-Hubbard model.
Our result shows similar trends if certain condition conce
ing the Fermi surface parameters and the coupling fi
point are satisfied. This result is very suggestive in view
the fact that in high-Tc superconductors the Fermi surfa
has flat sectors and a pseudogap along preferential direc
of momenta space.

This shows that the effects produced by the flat sector
the FS leads to a complete breakdown of the Landau qu
particle picture in the ‘‘cold’’ spots. This is in general agre
ment with recent photoemission data6 for optimally doped
Bi2212 which report a marginal Fermi liquid behavior f
Im S and a large broadening of the spectral peak e
around the (p/2,p/2) region of the Fermi surface for tem
peratures higher thanTc . We find corrections for that mar
ginal Fermi liquid behavior in our results. However, if th
Fermi surface parameters in the metallic region are such
g* !1 those corrections are logarithmically small and m
not be easily detectable experimentally.
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As we saw in our discussions so far our results depen
an important way on the value of the nontrivial fixed poin
It is therefore opportune to check what happens to our res
if we include higher-order corrections. To estimate them n
we discuss the higher-loop contributions to bothS↑ and
G↑↓;↑↓

(4) .

VI. HIGHER-ORDER CORRECTIONS

At three-loop order with our local subtraction regulariz
tion method we only do not distinguish the different ba
coupling functions at the same orderO(U0

3). There are in
this way two contributions to the bare self-energyS0↑
~Fig. 4!:

S0↑
(a)~p!5U0x

3 E
q
G↓

(0)~q!@x↑↓
(0)~q2p!#2

5U0
3E

q
G↓

(0)~q!@x↑↓
(0)~q2p!#2 ~81!

and

S0↑
(b)~p!5U0C

3 E
q
G↓

(0)~q!@P↑↓
(0)~q2p!#2

5U0
3E

q
G↓

(0)~q!@P↑↓
(0)~q2p!#2 ~82!

with U0C
3 >U0x

3 >U0
3 . There are four inequivalent ways o

producing ln2(V/v) singularities with the Cooper blocks. I
contrast there is only one exchange diagram at
order with the same kind of singularity. Since forp5(D,
2kF1D2/2kF) we have that P (0)(q1p;q01p0)
52x↑↓

(0)@q2p;q02(2p0)# the exchange channel diagra
cancels one of the contributions from the Cooper chan
and we end up with three Cooper ln2(V/v) singularities for
p05v>0. The next nonzero contributions are produced
the fourth-order terms shown in~Fig. 5!. They all have the
same relative sign bringing about a strong mix between
different scattering channels.

The calculation of all those higher order diagrams
highly nontrivial and is presently beyond the scope of t
work. However, if we were to include such contributions w
would automatically be forced to distinguish the differe
bare couplings already at two-loop order. This produces
portant changes in our earlier results. To observe this in
tail we begin by rewriting our two-loop result for the quas
particle weightZ(p̃,v), for p̃5(D,2kF1D2/2kF), as

FIG. 4. Diagrams forS↑ in three-loop order.
5-12
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Z21~ p̃,v!511
3

64p4kF
2 ~l2D!2lnS V

v D ~U0x
2 1U0C

2 !1•••

~83!

and forZ(p* ,v) at p* 5(l2e,2kF1D2/2kF):

Z~p* ,v!511
3

32p4kF
2 @~l2D!212e~l2D2e!# lnS V

v D
3~U0x

2 1U0C
2 !1•••. ~84!

The numerical difference between these twoZ values is es-
sentially due to the longitudinal components ofp̃ and p* ,
respectively.

If we repeat the same procedure as before but now dis
guishing the diverse bare coupling functions at two-loop
der we find, respectively,

Ux~p12p4 ;v!5U0x1F e

2p2kF

U0x
2 2bU0x~U0x

2 1U0C
2 !

2
~l2D2e!

2p2kF

U0C
2 G lnS V

v D1•••, ~85!

U f~p12p3 ;v!5U0 f2F ~l2D2e!

2p2kF

U0C
2 1bU0 f

3~U0x
2 1U0C

2 !G lnS V

v D1•••, ~86!

UC~p152p2 ;v!5U0C2F 4l

2p2kF

U0C
2 1bU0x~U0x

2 1U0C
2 !

2
~l2D2e!

4p2kF

U0x
2 G lnS V

v D . ~87!

for the exchange, forward, and Cooper channels. If we n
define the correspondingb functions as

FIG. 5. Four-loop diagrams forS↑ .
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bx~Ux ,U f ,UC!5v
]Ux

]v
, ~88!

b f~U f ,Ux ,UC!5v
]U f

]v
, ~89!

bC~UC ,Ux ,U f !5v
]UC

]v
~90!

it follows that

bx~Ux ,U f ,UC!52
e

2p2kF

Ux
21bUx~Ux

21UC
2 !

1
~l2D2e!

2p2kF

UC
2 1•••, ~91!

b f~U f ,Ux ,UC!5
~l2D2e!

2p2kF

UC
2 1bUf~Ux

21UC
2 !1•••

~92!

and

bC~UC ,Ux ,U f !5
4l

2p2kF

UC
2 1bUC~Ux

21UC
2 !

2
~l2D2e!

4p2kF

Ux
21••• ~93!

with b given as before. To determine the fixed points w
have to solve these coupled equations. As we emphas
before the fixed point values vary as we move along
Fermi surface. This reflects the explicit role played by t
momenta components projected along the FS.

In order to illustrate what might happen to the fixed poin
in the presence of mixing of scattering channels let us cho
for simplicity the casee5l2D. Taking bx5b f5bC50 it
follows immediately that the non-trivial fixed points for th
value ofe are

Ux* 5
16p2kF

3~l2D!
z21, ~94!

U f* 50, ~95!

UC* 52
4p2kF

3l
z21 ~96!

with z5$11@(l2D)/4l#2%.1. Defining the matrix of ei-
genvaluesMi j by

Mi j 5S ]b i

]U j
D

U*
~97!

for i , j 5C,x, f respectively we can expand in coupling spa
around these fixed points to find16,17

b i>(
j

M i j @U j~p* ;v!2U j* ~p* !#1•••. ~98!
5-13
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Integrating these out we obtain

Ui5Ui* 1(
j

cjVj
i vg j , ~99!

where

Mi j Vi j 5g iVi . ~100!

Using our results it then turns out that

UC~p* ;v!>UC* 2
c1

A2z
S l2D

4l Dv (8/3)z21
1

c2

Az
v2(8/3)z21

,

~101!

Ux~p* ;v!>Ux* 1
c1

A2z
v (8/3)z21

1
c2

Az
S l2D

4l Dv2(8/3)z21
,

~102!

and

U f~p* ;v!>
c1

A2
v (8/3)z21

, ~103!

wherec1, andc2 are constants. As a result unless there i
new adjustable parameter which would be tunned to prod
c250 the fixed point (UC* ,Ux* ,U f* ) is infrared unstable
when we approach the Fermi surface by taking the limitv
→0. This is the main effect produced by the mixing of sc
tering channels at higher order perturbation theory at
sector of the FS. This is again an interesting result in view
the fact that the pseudogap state in the underdoped cup
does not seem to be a realizable state atT50. It would
therefore be natural to associate such a phase in the cup
to an unstable fixed point.

Since the running coupling functionsUC(p;v) and
U(p;v) are only infrared stable if there exists an extern
parameter which could either be, e.g., temperature or h
concentration, it can be readily adjusted to nullifyc2 at the
FS. The critical surface formed by the set of trajectories
Ui(p* ;v) which are attracted into the fixed poin
(UC* ,Ux* ,U f* ) for v→0, in this case, has in this way cod
mensionality one. If we represent such external param
needed byu, it turns out that in the vicinity of the phas
transition the coupling constants associated with the th
scattering channels become

UC~v!>UC* 12
c1

A2z
S l2D

4l Dv (8/3)z21

1
~u2uc!

Az
v2(8/3)z21

, ~104!

Ux~v!>Ux* 1
c1

A2z
v (8/3)z21

1
~u2uc!

Az
S l2D

4l Dv2(8/3)z21
,

~105!

and
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U f~v!>
c1

A2
v (8/3)z21

, ~106!

whereuc is the critical value ofu at the transition point.

VII. CONCLUSION

We present a two-loop field-theoretical renormalizati
group calculation of a two-dimensional truncated Fermi s
face. Our Fermi surface model consists of four disconnec
patches with both flat pieces and conventionally curved a
centered around (0,6kF) and (6kF ,0) in k space. Two-
dimensional Fermi-liquid-like states are defined around
central region of each patch. In contrast the patch bor
regions are flat and as a result their associated single par
states have linear dispersion law. These flat sectors are in
duced specifically to produce nesting effects which in tu
generate logarithmic singularities in the particle-hole ch
nels which are known to induce non-Fermi-liquid effects.
this way conventional 2d Fermi-liquid states are sandwiche
by single particles with a linear dispersion law to simula
the so-called ‘‘cold’’ spots as in the experimentally observ
truncated Fermi surface of the underdoped normal phas
the high-temperature superconductors. Our main motiva
here is to test to what extent Fermi-liquid theory is app
cable in the presence of flat Fermi surface sectors which
indicative of a strong coupling regime. New experimen
data on both optimally doped and underdoped Bi2212~Ref.
6! above Tc indicate that the imaginary part of the sel
energy ImS(v) scales linearly withv even along the
(0,0)-(p,p) direction. This is consistent with other photo
emission experiments6 which support a marginal Fermi
liquid phenomenology over the whole Fermi surface. O
results are in general agreement with those experime
findings since the power law corrections we find for th
linear behavior can in some cases be so small as not t
detectable by the present day experiments. Using pertu
tion theory we calculate the two-loop self-energy of a sin
particle associated with a curved FS sector. We find that
bare self-energy is such that ImS0(v);v and as a result
ReS0(v);v ln(V/v) for v;0 reproducing the margina
Fermi-liquid phenomenology at the FS. We calculateS0 as a
function of both frequency and momentum. It turns out th
both ]S0 /]p0 and ]S0 /] p̄ diverge at the FS. Using RG
theory we determine the renormalized one-particle irred
ible function GR

(2)(p0 ,p;U,v) in the vicinity of a ‘‘cold’’
spot FS point. Again it follows immediately that the quas
particle weightZ vanishes identically at the Fermi surfac
Next we calculate the bare one-particle irreducible tw
particle functionG0ab

(4) (p1 ,p2 ;p3 ,p4) for a,b5↑,↓. This
function depends on the spin arrangements as well as on
relative momenta of its external legs. There are three dif
ent scattering channels associated with theG0ab

(4) ’s: the so-
called Cooper, exchange, and forward channels. For a
with flat sectors there are logarithmic singularities inG0ab

(4)
5-14
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for both exchange and forward channels due to nesting
fects. In contrast the Cooper channel produces similar sin
larities in the whole FS. We calculateG0

(4) perturbatively up
to two-loop order for the mentioned scattering channels. T
ing into account self-energy corrections calculated earlier
we obtain the corresponding renormalized one-particle i
ducible functionGR

(4) subjected to an appropriate renorma
ization condition. The field theory regularization scheme
lows us to introduce local counterterms to cancels
divergences order by order in perturbation theory. This s
plifies the problem considerably although due to the anis
ropy in k space the counterterms are in fact momenta dep
dent. The bare coupling constant becomes a bare coup
function and we proceed with the regularization of the div
gences grouping them together according to their locatio
the FS, the scattering channel, and the vertex type inte
tion. We introduce in this way three bare coupling functio
U0x(p), U0C(p), andU0 f(p) to systematically cancel all th
local divergences in our perturbation theory expansions
this scheme the effects produced by the crossing of diffe
channels is practically nonexistent up to the two-loop or
calculation of the self-energy. Therefore if we only consid
the leading divergence at every order of perturbation the
it is essential to proceed with the renormalization of fields
order for the running coupling functions to develop no
trivial infrared ~IR! stable fixed points. As opposed to th
parquet or the Wilsonian RG methods we do not try to der
an effective action in explicit form. This would in practic
demand the introduction of an infinite number of local cou
terterms in our Lagrangian model. Nevertheless all div
gences can be removed to all orders by local subtract
around a given point of momentum space. The anisotrop
the Fermi surface therefore reflects itself directly in the m
mentum dependence of the coupling parameters. This fea
is consistent with the findings of those other two approac
referred to before. Since we take explicitly into account se
energy effects we are able to find nontrivial fixed point s
lutions even if we do not go beyond the leading divergen
approximation in our higher loop calculations. With our tw
loop results for the nontrivial fixed points together with t
assumption that the physical system acquires a critical c
dition as we approach the Fermi surface, by taking the s
parameterv→0, we can solve the RG equation for th
renormalized single particle propagatorGR(p;U,v) in the
vicinity of a chosen ‘‘cold’’ spot point. We show that th
nullification of the quasiparticle weightZ manifests itself as
an anomalous dimension inGR . This anomalous dimensio
is independent of the sign of the given fixed point valu
Using this result we calculate the spectral functi
AR(p;U* ,v) and the renormalized single particle dispersi
law. From this we calculate the ‘‘Fermi velocity’’ which ca
either remain finite or is nullified at the FS. Finally we ca
culate the corresponding momentum distribution funct
n( p̄) in the vicinity of the FS and show that it is a continuo
function of p̄ with ]n( p̄)/] p̄ finite or ]n( p̄)/] p̄→` when
p̄/v→0. In the former case we have a real charge gap ty
cal of an insulating state and in the latter the physical sys
continues to be metallic and resembles a Luttinger liqu
07511
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There could be in this way phase separation ink space and
there is a complete breakdown of the Landau Fermi liq
when the ‘‘cold’’ spot suffers the effects produced by the fl
FS sectors. Since essentially the RG exponentiates the
energy ln corrections the power law behavior ofGR reflects
itself back in the renormalized self-energy producing

Im SR~p;U* !;2up0uS p0
2

v2D 2g* (p;U* )/2

~107!

with g* depending on the size of the size of the flat Fer
surface sectors through the fixed point coupling strength.
certain k-space regions near the FS we show thatg*
.6/121. This produces a singular]n( p̄)/] p̄→` and is con-
sistent with the marginal Fermi liquid phenomenology whi
is in agreement with the observed experimental results wh
are not sensitive enough to distinguish such minor power
corrections.

Since several of our results are given in terms of a fix
point value it is important to see what happens if we consi
higher order contributions to our perturbation theory exp
sions. We do this calculating initially the three-loop corre
tions to the bare self-energyS0↑ . At this order of perturba-
tion theory we have the bare constantsU0C

3 >U0x
3 >U0 f

3

identical to each other. However, if we consider higher or
terms in our perturbative calculation of the three bare c
plings we can distinguish the different contributions pr
duced at orderO(U0

2) and this brings important changes
our results. The exchange and Cooper channel couplings
strongly with each other. As a result of this we define gen
alized b functions b i5v]Ui /]v5b i(UC ,Ux ,U f) for i
5C,x, f . We calculate the eigenvalue matrixMi j

5]b i /]U j* , find its eigenvalues, and expand theseb func-
tions in coupling space around one of the existing fix
points in k space. We then show that the critical surfa
formed by the set of trajectories ofUi(p;v) which is at-
tracted into the fixed point@UC* (p),Ux* (p),U f* (p)# for v
→0 has codimensionality one. This means that the fix
point is infrared unstable and one external paramete
needed to drive the physical system towards one of its st
phases. This result is very suggestive since the underdo
phase of the cuprates at finite temperature is well charac
ized by a pseudogap state. This state may not be realizab
zero temperature and may also well be associated with s
an unstable fixed point.

To conclude it is fair to say that even a simplified anis
tropic Fermi surface model such as the one used in this w
is able to produce interesting nontrivial results due to the f
that it contains flat parts which are indicative of a stro
interaction regime. They turn the 2d-Fermi-liquid states into
a non-Fermi liquid which can be metallic or insulating d
pending on its location at the Fermi surface ink space. It is
tempting to relate our results to the high-Tc superconductors
which are also known to have an anisotropic FS display
5-15
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non-Fermi-liquid behavior for both the underdoped and
timally doped metallic phase, above the critical temperatu
The underdoped cuprates are also notorious for presenti
pseudogap state at finite temperature. Our findings conc
ing the nature of the metallic state are in general agreem
with more recent photoemission experiments which dem
strate the validity of the marginal Fermi liquid phenomen
ogy aboveTc . We believe therefore that the model presen
here might well contain some of the ingredients which
needed to describe the strange metal and the pseud
phases of the cuprate superconductors.
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