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Non-Fermi liquid in a truncated two-dimensional Fermi surface
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Using perturbation theory and the field theoretical renormalization group approach we consider a two-
dimensional anisotropic truncated Fermi Surf@€€) with both flat and curved sectors which approximately
simulates the “cold” and “hot” spots in the cuprate superconductors. We calculate the one-particle two-loop
irreducible functiond™® andT"*) as well as the spin, the charge and pairing response functions up to one-loop
order. We find nontrivial infrared stable fixed points and we show that there are important effects produced by
the mixing of the existing scattering channels in higher order of perturbation theory. Our results indicate that
the “cold” spots are turned into a non-Fermi liquid with divergeas, /dp, andaEO/aE a vanishingz, and
either a finite or zero “Fermi velocity” at the FS when the effects produced by the flat portions are taken into
account.
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[. INTRODUCTION Brillouin zone (BZ). This agrees qualitatively well with the
phenomenological picture of a FS composed of “hot” and
The appearance of high: superconductivity focused ev- “cold” spots put forwarded by Hlubina and Rice and Pines
eryone’s attention on the properties of strongly interactingand co-workers.In that picture the “cold” spots associated
two-dimensional electron systems. Basically the Higheu- ~ With correlated quasiparticle states are located along the BZ
prates are characterized by a doping parameter which reg@iagonals. In contrast the “hot” spots centered around
lates the amount of charge concentration in the Cplanes. ~ (*7,0) and (0 m) are related to the pseudogap and other
As one varies the doping concentration and temperature orfd’omalies of the cuprate normal phase. However, recent pho-
finds an antiferromagnetic phase, a pseudo-gap phase, Hfm!Ssion experimerftsvhich have a much better resolution
anomalous metallic phase andiavave superconductor. than before put into doubt the applicability of Fermi liquid

The standard model to describe these phenomena is ﬂﬁflg'_eory even along the (0,0)-m(w) direction. Using their

) : . . ata on momentum widths as a function of temperature for
two-dimensional (2) Hub'bard' mOdEI' Starting e|the'r from different points of FS, in optimally doped Bi2212, Valla
the so-called weak coupling limit or from the largklimit

instead q ¢ least | litative t t al. show that the imaginary part of the self-energydm
Instead one can reproduce at feast in qualltative 1erms agq e q linearly with the binding energy along that direction
those phases by varying only a small number of appmp”atﬁ]dependent of the temperature. Similarly, Kaminekial.

parameters.In particular, for the underdoped and optimally gpqy that the half-width-half-maximum of the spectral func-
doped compounds, motivated by the experimental result§on a(p, w) single particle peak varies linearly with above
coming from angle-resolved photoemissi&RPES experi- 1. They claim this to be analogous to both the observed
ments which demonstrated among other things the presenggear temperature behavior of the electrical resistivity and
of an anisotropic electronic spectra characterized by ghe scattering rate. Those results are very different from what
pseudogap and flat bands knspace several workers have is expected from a Fermi liquid and support a marginal
related some of these anomalies to the existence of a nomermi-liquid phenomenology even near the/2,7/2) points
conventional Fermi surfacé9) in these material$.As is  of the Brillouin zone.

well known for the half-filled 21-Hubbard model the FS be- In this work we consider a two-dimensional electron gas
ing perfectly square the perfect nesting and the presence @fith a truncated FS composed of four symmetric patches
van Hove singular points allow the mapping of this systemwith both flat and conventionally curve arcs ki space.
onto perpendicular sets of one-dimensional chiaprsduc-  These patches for simplicity are located aroundk§,0) and

ing infrared divergences in both particle-particle and(0,+kg) respectively(Fig. 1). The Fermi-liquid-like states
particle-hole channels, already at one-loop level. The physiare defined around the patch center. In contrast the border
cal system in this case shows a non-Fermi-liquid behavioregions are taken to be flat. As a result in this region the
However, as doping is increased the FS immediately acquiresiectron dispersion law is one dimensiohah this way in
curved sectors and this opens up a possibility for Fermieach patch there are conventional two-dimensional electronic
liquid-like behavior around certain regions kfspace. This states sandwiched by single-particles with a flat FS to simu-
feature seemed to be confirmed early on by the ARPES dafate the “cold” and “hot” spots scenario described earlier on.
for the underdoped and optimally doped Bi2212 and YBCOFlat FS sectors and single-particle with linear dispersion
compound$.In the electronic spectra of these materials therevere also used earlier on by Dzyaloshinskii and co-wofkers
appears an anisotropic pseudogap and flat bands aroune produce logarithmic singularities and non-Fermi-liquid
(=,0) and (0 m) and traces of gapless single-particle behavior. In their model the quasiparticle propagators depend
band dispersions around the- ¢r/2,+ 7/2) regions of the explicitly only on the momenta perpendicular to the Fermi
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dimensional Fermi liquid state can vanish identically as a
result of the interaction of the “cold” particles with the flat
sectors. We solve the RG equation for the renormalized cou-
pling in two-loop order and we find a nontrivial stable fixed
point. From there we go on to solve the corresponding RG
equation for the renormalizddﬁz) and to calculate the renor-

ke malized spectral functioA(p,») when the physical system
acquires its critical condition. Using(p, w) we calculate the

momentum distribution function(ﬁ) and discuss the nature
of the Fermi surface region associated the chosen fixed point

value. Depending on the analytical propertiesda{p)/dp

we can distinguish a metallic from an insulating-like behav-

ior at the corresponding sector of the renormalized FS. Later,
going beyond two-loops we estimate higher-order correc-
tions. We take full account of the mixing of the various scat-

FIG. 1. Truncated Fermi surface model. tering channels and show how it affects our two-loop result.
We conclude by emphasizing that our results indicate the
instability of two-dimensional Fermi-liquid states when they

surface. The longitudinal momenta called by them “fast vari- ) . i .
ables” are used to guarantee momentum conservation at e;_re renormalized by the interaction with the flat sectors of the
[

ery scattering process. By means of a symmetrization o.ermi surface and by arguing that the Tesu'“”g. nqn-Fermi—
those variables they distinguish betwesrand d-wave su- quid state may well be used to describe qualitatively the
perconductivities pseudogap phase of the cuprate superconductors.

Here the flat sectors are mainly used to test the stability of
the two-dimensional Fermi-liquid states associated with the
“curved” parts of FS. We use the field theory renormaliza- Il TWO-DIMENSIONAL MODEL FERMI SURFACE
tion group(RG) method to regularize the infrargtR) sin-
gularities produced by the “Cooper,” “exchange,” and “for-
ward loops at every order of perturbation theory. These in with that they are Fermi-liquid-like. The disconnected
singular loops depend on the value of the external moment

as well as on the spin arrangements of the legs directly as_rcs separate occupied and unoccupied single-particle states

. ) ; X ? along the direction perpendicular to the Fermi surface. How-
sociated with them. Since these diagrams diverge at the . .
. ) ; . ever as we approach any patch along the arc itself there is no
Fermi surface the vertices acquire an explicit dependence o : ! o :
Sharp resolution of states in the vicinity of the gaps located in

wﬁa\t/?lsugcs)n(g ;E?hﬁoprgfc;‘JZtatl)?gg ;r[:])(:)rlcz)icw Z;vva\}gvs;nlilr?raﬁhe border regi(_)ns_. We assume th_at these regions are proper
. S ; ' for non-Fermi-liquid (NFL) behavior. To represent those
dition to considering two-loop order corrections we take EX-NEL features we take the FS to be flat in the border regions
plicit account of self-energy effects. This allows us to obtainIn this way the single-particle states which are d Rermi '
nontrivial fixed points which are used to solve the RG equa—quuid around the center of the patch acquire an one-
tion for the single-particle propagator near the Fermi Surfa“:edimensional dispersion as we approach those flat border sec-
We then use this result to calculate the momentum distribu,fOrS They represent the “hot” spots sandwiching the “cold”

tion functionn(ﬁ) and distinguish between those parts of thespots in our model.

FS which remain metallic from the ones which are not. In order to be more quantitative consider the single-
Other RG methods were used recently by several Workerﬁarticle Lagrangian density

to test the weak-coupling limit of the two-dimensional Hub-

Consider a & FS consisting of four disconnected patches
centred around{ kg,0) and (O£ kg). Let us assume to be-

bard model with and without next-nearest-neighbor hopping '
against superconducting and magnetic ordering as well as Ezz z,//f,(x)(iat*+7+sF ¥ ,(X)
Pomenranchuk instabilities at different doping regirhes. 7
However due to the difficulty in implementing their method —
y I Imp 9 —UBTO0 w008, 0 41 (%), 1)

in higher orders they do not go beyond one-loop and no
self-energy effects are taken into account by them. As a re-
sult the coupling functions always have divergent flows an
there is never any sign of the presence of nontrivial fixe

herex=(t,x), eg=k2/2, t *=m*t" !, andU=m*U with

d"n* being the effective mass. The Fermi surface parameters

points. are 'noka y N, a_ndA. V\(h.en we progeed with our renormal-
The scope of this work is the following. We begin by ization scheme in the_wcmlty ofagwenES point W-e replace

reviewing briefly the model used in our calculations. NextKe by the corresponding batg=Z"'w"/% whereZ is the

we calculate the one-particle irreducible functidhg) and quasiparticle weightkg is dimensionless and is an energy

F(T‘I);“ up to two-loop order. Our regularization scheme isscale parameter. In this wdy can be nonzero even if both

introduced and discussed in detail. Using this procedure w& and w—0. The other Fermi surface parametarand A
demonstrate that the quasiparticle weightfor the two-  suffers the same kind of renormalization. Naturally the renor-
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malization of the FS is in general much more intricate than In contrastII(?) is singular for particles located in both
this. Here we follow this route for simplicity. We can do this “cold” and “hot” spots whenever they are involved in a
as long as we restrict the renormalization of those parameteGooper scattering channel. Here for, eRy=(0,0) we obtain
to two-loop order and neglect the contribution of the constant
Hartree term. In practice this is done simply by concentrating
our attention in the most divergent contrlbutl_on of Fhe self- . A Q+Py—is Q—P,—is
energy, as we show later on. We leave the discussion of the [1(9(p; P,) = In _ _ )
1 H H H Tl 2 PO_ | 5 - PO_ | 5
full implementation of a more general FS renormalization to T Kp
a later work. Notice that in our scheme the coupling constant 8

U scales ag! %2in d spatial dimensions. Here the fermion
fields are nonzero only in a slab of width Zaround the four

As is well known the Cooper channel singularity drives the

symmetrlc.patcheg of FS' Thus n momentum space th§ystem towards its superconducting instability. However at
S|ngle—part|clee(p) IS defmed according to.the sec.:tpr'and I:Sone-loop for a repulsive interaction the renormalized cou-
patch under consideration. For example, in the vicinity of the

central zone of the patch defined around the FS point (Oolmg in that channel approaches the trivial Fermi liquid fixed

int i 0 i ity ip(©®
—kg), since there is a nonzero curvature in the FS we havgoInt instead? As opposed to that the smgule_mty w .
produced by the one-loop exchange channel drives the physi-

that . . .
a cal system towards a nonperturbative regime. This nonper-
k2 2 turbative behavior might be indicative of either the failure of
e(P)= 5 ~Ke(pytke)+ 5, (2)  the one-loop truncation or the inadequacy of perturbation

. _ . theory itself to deal with that situation. To find out what is in
with —A<p,=<A. In contrast in the border regions of the fact the case we consider the effect of higher-order contribu-

same patch where the FS is flat we find instead tions in both one-particle irreducible functiod$?(p) and
k,2: AZ I‘(4)(p)-
e(P)=~5 ke Py+kF—2—kF : 3)
for A<p,<\ or —\<p,<—A. In this case only the single- lll. ONE-PARTICLE IRREDUCIBLE FUNCTIONS

particle dispersion depends exclusively on the momentum
component perpendicular to the FS. We follow the same Let us initially consider the one-particle irreducible func-
scheme to define(p) in all other patches of the FS. tion I'(?)(po,p) for a p located in the vicinity of a “cold”

In setting up our perturbation theory scheme two quantispot point of FS such asp* = (A, — ke +A2/2kg). We can
ties appear frequently: the particle-hole and the particleyyite T2 in this case as
particle bubble diagrams. In zeroth order they are defined,
respectively, as

AZ
Q= [ sO@eParp @ rP0p1=pot ke e | S ©
q
and
where, using perturbation theory, the two-loop self-energy
n{(P)= f GG (-q+P), (5 *1isgivenby
q
where 5
ole(q)] o[ —e(q)] 3 1(Po,p)=——5 —2U? f G%a)x{Pa-p). (10
G (a0, ) = + 6 g |

do—s(@)+id8 go—e(q)—id

with £(q)=e(q)—k2/2, Jq=—if(dao/2m) [[da/(2m)?],  The constant term produces at this order a constant shift in
andq=(qo,q). ke which leads to the renormalization of the Fermi surface
It turns out thaty(®) is singular only if theG(®'s refer to  parameters. andA. Since the renormalization of the Fermi
flat sectors in whicly andqg-+P are points from correspond- surface is a problem in itself we postpone the discussion of
ing antipodal border regions of the FS. In the case, in whichts full implementation to a later work. Here for simplicity
e.g.,P=(0,&e— A%kg) we find we ignore the presence of the constant term and concentrate

(A—4) Q+Py—is Q-Py—is our attention in the two-loop diagram which produces a non-
X(TOL)(F); Po)=—— { ( — ) ( — ” analiticity at FS. As a result the renormalized Fermi surface
47K Po=id Po—id parameters. and A relate to their bare counterparts in the
™ same way a&r: A=2Z\g andA=ZA,.
with Q= 2Kg\. Evaluating the integrals overwe obtairt*
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3U2 [A—A\? A? 0 0 0
21(Po,p)=- W(k_F) PotKe| Py+Ke— 2_kp” —U3LG§ ()G (k+p3—py) qu% (@)
O+py—is xGOAq+ps—py)+---. (14)

X| In A2

—ke| py+ke— i +po—id In one-loop order the only divergent contributions come

F from the particle-hole loop and the particle-particle diagram

Q—py—is with internal lines with opposite spins. This singular particle-

+In 0 . hole diagram with propagators with opposite spins we call

Kk ke A_ s exchange loop. In contrast, the forward loop is the divergent

F| Py Xr 2ke Po particle-hole diagram with internal lines of the same spin.

This kind of loop only contributes td () from two-loop
(12) T .
order on. However, the forward loop is present in every order
Clearly bothds, /dp, and 33, /ap, are divergent at the of the perturbative series for the one-particle irreducible
4).
FS. In fact it gives the marginal Fermi-liquid resdlfor Py F%T)'
= —kg+ A?%/2ke andpy= w— 0 which nullifies the quasipar-
ticle weight Z~*=1—JReX/dpo|p., at the Fermi sur-
face. _ _ Fﬁ)(pl,pzipsvpzt)
We can also arrive at this result by means of the renor-
malization group(RG). For this we define the renormalized
one-particle irreducible functiofi §)(po.p) such that apg
=w, Where w is a small energy scale parameter, gmd
—p* i i )
p*, at jhe same Fermi surface p0|(nzt) as befdr&(po +U3J GOk GO (k+ps—p) P (k+p,)
=w,p=p*)=o. Using the RG theory['y/ is related to the k
corresponding bare functidi? by

=-u? Jkeﬁ°><k>ei°)<k+ Pa—py)

-u? Jkeﬁ°><k>G§°><k+ Pa—PUX{ P (Pa=k)+ .

T (p;Uiw)=Z(p* ;)T R(p;Uo), (12 (19

whereU, and U are the corresponding bare and renormal- | he nature of t?ﬁ singularities which appear in the pertur-
ized coupling. Since at zeroth ordeg=U it follows imme-  bative series fol" ;s depend on the specific choice of the

diately from our prescription and from perturbative result€xtérnal momenta. Due to this momenta space anisotropy
that different kinds of scattering channels produce divergences

with different multiplicative factors along the patched Fermi
1 surface. They reflect the role played by the momenta along
Z(p*;w)= . (13)  the FS in our results. As we will see later this automatically
3U% (A—-A\2 (O obliges us to define momenta dependent bare coupling func-
3274\ ke LI tions in our perturbation series expansions. Despite all that
the existing divergences can be grouped together with re-
Naturally,Z=0 if o— 0. As we show later this result reflects spect to their scattering channel and vertex type. This opens
itself in the anomalous dimension developed by the singlethe way to define a systematic local regularization procedure
particle Green'’s function at the FS. to guide our renormalization group prescriptions throughout
Let us next calculate the one-particle irreducible two-our calculations. Here our vertex classification convention
particle function F(a4)ﬁ(pl,p2;p3,p4) for a,8=1,]. This goes as follows. We say there is an “exchange” type vertex
function depends on the spin arrangements of the externdfhenever its associated “external” momenta can be tunned

legs as well as on the scattering channel into consideratioiogether to produce a logarithmic divergent exchange loop at
Generica”y for antipara”e] Spins up to tWO-lOOp order we the Fermi surface. This can be eaSIIy achieved if we choose
have that to work in the * exchange” scattering channel fo¥] in
which the external momentap,;=1Tp; and | p,=|ps. In
contrast if the external legs dfﬁ) are chosen such that
I'(p1,p2;P3.Pa) 1p1=1ps and | p,=1p; it is now the “forward” particle-
hole loop which becomes logarithmic divergent. The associ-
ated vertex in that case is then called “forward.” Finally if
the external legs ofﬁ) are such that p;=—p,| and1p;
= — | p4 the particle-particle diagram becomes logarithmic
+sz GOMKIGO(— K+ p,+ dive_rgent: The vgrtex_associated with that singular particle-
k| (G P1tP2) particle diagram is said to be “Cooper-like.”

1+
)

=—U+ uszeg‘))(k)GgO)(H Ps—P1)
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In this work for simplicity we consider only the leading p(4)(p1_ —P2:Po)
divergence at every order of perturbation theory. Despite that
since we go beyond one-loop order and since we include = —U+UZIT{(py) —Ux{P(ps—p1:po)
nontrivial self-energy corrections we take explicitly into ac- 3,11(0) 2 1130 (0) _ )
count contributions which are not considered either in par- ~ UL (po)) "= U X7 (Pa=P1:Po) ]
guet type or numerical RG approaches. Inasmuch as both the
renormalization conditions and the bare coupling functions +U3f GO GO(—k;po) XV (p3—k)
vary as we move along in momenta space, strictly speaking, k
we would need an infinite number of counterterms to regu- +X D(py—K)]
larize all the divergences in our model. However since all the TARa™
divergences are associated with a singular loop with vertices 5 ) ) (©)
which are either of exchange, Cooper or forward type it is Y kai (K)G](k+ps—p) I (k+py)+ - - -
possible to define three bare coupling functiodsg,(p,
—pP1); Upc(p1t+p2), andUq:(p3;—p1) which cancel out ex- (18
actly, order by order, all the divergences which appear in our
perturbation theory expansions.
To illustrate our argument further take initially, e.04
=ps=(A,ke—A%/2kg) and p,=ps=(\— €, — ke +A%/2kg)
with e being such that & e<\ —A. The leading terms up to p(4)(p1_ P2 :Po)
two-loop order forpy~0 are[Fig. 2(a)]

Evaluating those integrals we obtain

U+ u? (4N)] (Q) u? (N—A—¢)l (Q)
=— nf—|— —A—¢€)ln|—
(4) _ . _ 2772k|: Q) 4’772k|: w
3 (p1=P3:P2= P4, Po) ,

= —U—U{D(ps—p1;Po) + U (P +p2:po) Rreriel in<%)r_ 6Ujkz(x A= e)?
— U3 x{P(pa=p1:po) 12— US[TTO(py+py; po) 12 QF 2 yd |3
_Usfkeio)(k)Gio)(kﬂLp4—p1)H(ﬁ)(k+pz) X|In ;) Ton 4k2[ (N—A)2+2e(A—A—¢)
2 3 Q12
+U3ka(T0)(k)Gi0)(—k+p1+p2) x| In|=|| + 16774k,2:[()\_A)2_62] In(;”
XX (pa—K)+pa=pal+- . (16) . 19

. . Finally, if we now choose external momenta suchpas
If we evaluate all those diagrams we find = pa=(A,Ke— A%/2ke) and py=pa= (A — €, — ke -+ A2/2kp)
we have thatp;—p;=(A—A—¢€,—2ke+A%kg), pi+p,
=(N+A—¢€) and our series expansion in the forward chan-

T (p1=ps;p2=Pa.Po~
117 (P1=P3:P2=Pa,Po~ w) nel become$Fig. 2c)]

2 2
=—U- eln —)-i— (A A—e)ln( )
20’k \ @] 272k @ ID(p1=p43p2=Ps.Po)

us o [Q 2 3 Q 2 =—U+UIO(p;+py;po) — US[X(O)(ps P1;Po)]

— 7€ In Y 2()\ A—e)
47°Kg 47 ke X[ X\ D(ps—p1;po) 1= UM (p; +p,;po) 12

us € 3| =0 (0)

+m 36 )\—A—E +U kaT (k)Gl (_k+pl+p2)

2 ><[X(O) (Pa—K) +ps=ps]

+[(A—A)2—€?] o (17)

(Q)
In| —
w
‘u f GO(k+ pa—py) GOk X V(ps—k)+

In contrast for external momenta such as=-—p, (20)
=(A,ke—A%/2kg) andps=—ps=(A—€,— kg +A%/2kg) up
to two-loop order our series expansion becomes indteiad
2(b)] Solving all those integrals above we get
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pt b4
p3 4 P, * p; 4 B' l
>< + \
= P[’ Pz' p14 4 H'
Py \ P2 }

'
Y 4 t ) Py
by

FIG. 2. Feynmann diagrams up to two-loop order for
(%) in the (a) exchange channefp) Cooper channel, and
(c) forward channel.

(b)

rﬁ)(pl: P4:P>=P3,Po) Using RG _theory we can p_roceed with 'Fhe regularization
scheme relating the renormalized two-patrticle funcﬂ'l‘(ﬁj‘fl
u? Q 3 ) to its corresponding bare functi ‘Pl
=—-U+ AN—=A—-¢)In| —|— 2(6)
272K o)  167%kE @)
IR/ [P1,P2;P3,P4;Ua({pi}; 0); @]
Q 3 2 4
x| In ) - (A\—A—¢)? In(”
wl| 1672 » =£[1 Z"(pi ;)T [p1.P2:P3.Pa; Uoa{PiD],
us O\ 1? (22)
+ A—A)2—¢? In() +e 21
Tomial A8 = in| (20

where Uy, and U, are the bare and the renormalized
Our renormalization prescription must therefore incorporatecouplings respectively wita=x (exchange) C (Coopey, f
this momenta space anisotropy to cancel all the correspondforward). The renormalized"(R“T)l can be invoked for the
ing singularities appropriately. definition of the renormalized coupling functions. Here we
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follow a renormalization prescription regulated by the lead-
ing divergence in one-loop order. Thus if the leading diver-

gence in one-loop order is the exchange particle-hole loop

we define F(R4T)i_ such  that IS ({pi}.po=w) =
—U,({pi},®). In this way it follows that

L&) (P1=P3;P2=PaiPo=@;Us)
Ux(P1=P3;P2=P4;w;Ua)

(23

for p1:p3:(A,kF_A2/2k|:)
+A2/2kg) with 2e>N—A.
Similarly, if the leading divergence in one-loop order is

and p,=ps=(A—€,—kg

the particle-particle Cooper diagram in our prescription the

renormalized I'f), is such that f%’l({pi};pozw;ua)
—Uc({pi};w;U,). Clearly using this scheme

T§ (p1=—P2;po=w;Ua) = —Uc(p1= —pzi;U,)
(24

fOI’ plz_pzz(A,kF_Azlsz)
- €,k|:_A2/2k|:).

Finally if the leading particle-hole loop has internal lines
with the same spil'&}, in our prescriptionl“.(R“T)l({pi},po
=w;Uy)=—-Ui({pi};w;U,). It follows from this that

and pz=-—p;=(A—A

F&“T)l(p1=p4;p2=p3,po= w;Ug)

=—=U¢(p1=pPas;P2=P3;@;Uy) (25

for p1=ps=(Ake—A%2kg) and p,=ps=(A—¢€,— kg
+A?%/2k), respectively.
Using this renormalization scheme we find, respectively,

Ux(P1=P3:P2=P4;w;Ua)

o

€
:Z(pl;w)z(p4iw)( U0x| 1+ muoﬂn<

1 90 12 3 €\ 5
2 AN—A—¢€ 5 QO
X{Inf—|| +--- ————UgcIn| —
2772k|: &
Uoc
o (N—A—e€)?U3
F

2

—%[(x—A)Z—ez]Uéx | (29

(Q
In| —
w

for the exchange channel,
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Uc(p1=—p2:P3= —Pa;o;Uy)
Q

J

Y
=Z(p1;w)Z(Pg; Ugci 1———U In(
(P1;®)Z(P4 w)( oc[ 272k oc

+

1/3
[(M)ZUSC—Z(Z

ol
Q)+

X{(A—A—e€)?U3, —[(A\—A)%2—€?]U3:}

_ 2
4772k,2: (A=4)

+26()\—A—e))U%X

AN—A—¢€

4’772k|:

UOx

+ ..o+
167%k2

ngln(

w

2
+..

Q

X|In (27)

for the Cooper channel and finally

Ut(P1=Pa;P2=P3;@;Uy)
2

1+

=Z(p1;w)Z(ps; U
(P1;@)Z(p3 w)| of 472

N—A—¢€ ) Q

2 2
X UgsIn 772K
F

I

UOC

+
2
47KE

(()\—A—E)ZUSC

—%[(x—AV—ez]USX) In(%

+]

(28)

for the forward channel. Herg(p;; w) is given as before
and

Z Y(p3;w)

2
0x

167*k2

o2

(29

3
E()\—A)Z-FSG()\—A—E)

These results can be simplified further if we take into
consideration that the divergencies are removed by local sub-
tractions. Thus if we restrict ourselves to two-loop order we
must haveU3.=U3,=U2=U3. Up to two-loop order there
is in practice no mixing of channels in our perturbation
theory. As a result the RG equations for the renormalized
coupling functions simplify considerably and they reduce to
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2 3 &
Ux: UOx_(aUOx_ZbUOX)In Z +ey (30) pt +...
Y
where
S~
2e—(A—A
g 26— 74) (31) g
2772k|:
FIG. 3. Diagrams up two-loop order faH? .
= [(A—A)’+e(A—A—¢)], (32
4,2
32m°Ke I (p1.P2:P3.Pa;Uqs0)
QO 4
Ug=Ug—(cUj+2bUS)In| —|+--- (33 =11 24P ;) TG, (P1,P2;Pa.PaiUoa) + Alw), (38)
with c=(\—A— €)/l2mke, whereA(w) is an infinite additive constant which is defined
to cancel the divergence produced by the first term in our
i i i DA It of that
Ue=Une— (dUZ-+2bU3 il = + . .. 3  Perturbation series expansion fbg?, . As a resu
c¢=Uoc~(dUsc oc)In| 34 our RG prescription in this case becom&&?,({pi};po

with d=[4\— (A — A — €)/2]/272ks =w;U,;w)=0. In this way it follows immediately that

Using the RG conditions wdUgy/dw=wdUy/dw

() (n o e ] -
=wdUgc/dw=0 the RG equations fod,, U; andU. in TR (Pa=P1:P2=PsiPo=:Uq @)
two-loop order are simply =Z(p1;®)Z(p3; 0)[T§P;(Pa=p1ip2=Ps;
du =w;U +A(w)=0. 39
BUI=0" = —aUi+2bUs+ -, (39 Po=@ilea) ¥ Alw) (39
Using our perturbation series res(ftig. 3) we obtain
J
AU =o ng:CU%+2bU?+"" (36) I8P (p1=Pa;P2=Ps,Po=;Uoa)
and e L, [Q UotUde
U 27°Ke o) 167%KE
B(Uy)=w aw°=dU§+2bU§+-~. (37 .
X3e(A—A- 5 In?| —|+---. (40)

Note that there are nontrivial fixed points; =a/2b,
U¥=—{[4N—(\—A—€)/2)[2e— (\—A)]}U¥ and Uf = Using the same approximatidn3;=U3.=U2 as before
—{(N—A—¢€)/[2e—(N—A)]}UZ for the exchange, Cooper it follows immediately that
and forward channels respectively which are infratdl)

stable but they are by no means of small magnitude if the € Q

renormalized Fermi surface parameters continue to be such Alw)=— > U?In(—)

thatke>(N—A) andA>(\—A). The magnitude ofJ} is 27°Ke

regulated by the ratio dfr and the size of the flat sector of U3 )

the FS fore=\ —A. In this case the larger the size of the flat f 36( N—A— f) In2 _) +.e. (4D
sector with respect tk: the smaller the magnitude &f; . 16m°KE 2 @

For UE andU¥ there are extra multiplicative factors which
measures basically the ratio of FS longitudinal widthscin Having established the existence of IR stable nontrivial
space available for the divergent particle-particle andixed points in two-loop order we can now investigate how
particle-hole diagrams in the Cooper and forward channelself-energy effects produce an anomalous dimension in the
respectively. In our perturbation theory scheme the exparsingle-particle Green’s function at the Fermi surfate.
sion parameter is precisely a fraction 0f(width)/kr and
even a large value of the coup_ling constant such as some of IV. SINGLE-PARTICLE GREEN'S FUNCTION
theU*’s ab0\_/e present no serious convergence difficulty to AND OCCUPATION NUMBER AT ES
our perturbation series expansions.

We can use a similar RG approach for the renormalized We can use the RG to calculate the renormalized Green’s
two-particle irreducible function with parallel spins. Now we function Gy at the FS. Sinc@R=(Ff§))‘1 it follows from
define the corresponding one-particle irreducible function ashe previous section that
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GR(po;p*;{Ua};w)zz_l(p*;w)GO(pO;p*;{UOa})!(42)

whereGy is the corresponding bare Green’s function g@fd

is some fixed FS point. Seeing thag is independent of the
scale paramete®» we obtain thatGg satisfies the Callan-
Symanzik CS) equatior®

(9 (9 n* . —
© 5 T2 BallUnh) 55+ 7| GrlPoip* {Up}@) =0,
43

where

d
7=wd—w|n Z(w). (44)
Using the fact thaGGg at the FS is a homogeneous function
of w andp, of degreeD= —1 it turns out that it must also

satisfy the equation

J J
(wa—wwoﬁ—%)GR(po:p*:{Ua}:w)

= —Ggr(po;p*;{Va}i ). (49
Combining this with the CS equation we then find
i +> U o 4 1
“Pogo T2 Ba({ b})ﬂa Y-
X Gr(Po:P*;{Up}; ) =0. (46)

Using the fact that up to two-loop order we don't yet distin-
guish the mixing effects produced by the different scatterin
channels in the self-energy we can simplify this RG equatio

even further. As a result we assume that the divergence up to,
JHx we get

this order is associated with just one of the renormalize
coupling functions. If we choosHE, to be this coupling in
consideration the CS equation reduces to

d

+ﬂx(ux)w+ 7_1)GR(pO;p*;Ux;w):0-
X

(47)

From this we obtain that the formal solution fGi; is

|

ZBX[UX(HO:IO*;UX)],

J
—Doa—po

Gr(Po;p*;Uy; )

1 Po
= —ex;;( f din
Po ®

dU,(po;V)

with U, (po=;p*;U,) = U, (p*; ).

Po

w

)ﬂux%mﬁum), (48)

where

(49

PHYSICAL REVIEW B 68, 075115 (2003

—U¥(p*) for p*=(\—€,—ke+A%/2kg) we can use our
perturbation theory result fof(p* ;) up to orderO(U§2)
to obtain

(A\—4)?
2

*

+...:'y .

+e(A—A—¢€)

3Ur?
-

- 16m4K2

(50)
As a resultGg develops an anomalous dimension giveritby
( ®
P5
If we make the analytical continuatiopy— pg+ié, at the
FS, G reduces fompy<0 to

. * . — 1 wz
Gr(po; U™ w)=—— p_g
X[cogmy*)+isin(7my*)]. (52

Using this result the spectral functioh(kg,pg) = —1m Gg
becomes

1 2

Gr(Po;p* ;UL j0)=—

w

(1-y")12
) (51)

)[(1—7*)/2]

Po|”" sin(my*)
A(Kg ,po)=6(— — —— 53
( F pO) ( po) ® |p0| ( )
and the number density(kg) reduces to
1 sin(my*)
n(k,: = 577—»)/* (54)

ﬂ\lotice that if Uf —0, y*—0 and as a resulb(kg;U}

0)=3. Alternatively, if we replace our two-loop value for

[(N=A)22+ e(A\—A—€)]

4
*=—[2e—(A—A)]? .
Vgl O e T e e
(55)
If we now takee=3(\—A) we find y*=0.07,
2\ —0.035
IM Gr(py:U*:w)=—| < - (56)
Rre= 2 [Po|”

and as a resuhi(kg ;U3 )=0.14. This result shows that there

is indeed no discontinuity at(kg). Moreover there is only a
small correction to the marginal Fermi liquid result for the
“cold” spot point which suffers the direct effect of the flat
sectors througt®. The correction to the linear behavior of
Im3, is practically not observed experimentally. The power
law behavior ofGg and the value oh(kg) independent of
the sign of the coupling constant resembles the results ob-
tained for a Luttinger liquid® However, for the one-
dimensional Luttinger quuicﬁn(p)/ap|p=kF—>oc. In order to

see if the occupation function shows the same behavior in

If we assume that as the physical system approaches ttwar case we have to generalize our CS equation to explicitly

Fermi surface apy~ w—0, it also acquires a critical con-
dition with the running coupling constant),(p*;w)

include the momentum dependence @&y in the vicinity of
a given “cold” spot point.
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V. GREEN'S FUNCTION AND MOMENTUM and theB function is determined perturbatively. If we as-
DISTRIBUTION FUNCTION NEAR A “COLD” sume as before that the physical system is brought to criti-
SPOT POINT cality asw—0 andU,(w)— U} #0 we can use our pertur-

Let us choose for simplicity the point* = (A — v, — ke bation theory result fory and these equations reduce to

+ A?/2k-— vA/kg) in the (0—kg) patch of our FS model. L ,
Quite generically the relation between the renormalized and TR — x4 Po

bare one-particle irreduciblE‘®’s holds for any momentum Gr(PoiPiUy i) = %g[p(po,ux )](Z) . (639
value. Thus taking into consideration our perturbative two-
loop self-energy result together with the fact thatpgt=0  with
and in the vicinity of the FS pointA — v, —kg+ (A%/2kg)
—(vA/kg)), itis natural to define a renormalizeliH) g such _ po| 7D
thatI'?) reduces to p(Po;U§)=d )

*

(64)

w

— A% A ; ; ; ;
T'®(pa=00 w)=p=|k T Kem — The functiong is determined from perturbation theory. Re-
7 (Po=0piw)=p { F| Py Xe 2ke ke calling that at zeroth order, fqs,=w, we have that
B . A% WA 1

(57)
In this way the renormalization of all the Fermi surface pa-
rameters is emulated hy.

and it turns out that

In the presence of a nonzepothe CS equation foBpg in Gp(po;Us)|=——=—"—+. (66)
the neighborhood of this “cold” spot point becomes w+p(po:U*)
9 P 9 . Finally, combining all these results we get that in the vicinity
®w—+B(Uy)——+yp—=+v|Gr(Po;p;Uy;w)=0. of our “cold” spot point
Jw (9UX ap
(58 %I _ o] —1
_ — 1(ps| p(prs|’
Since now we have Gr(po;p;Uy ;)= — - 1+— - .
Po\ w Po\ w

(67)

If we now do again the analytic continuatipg— py+i 6 we
obtain the renormalized Green’s function in the form

J + J +_(9 Gr(Po:p:U,;
W Doa—po pa_ﬁ R(Po:P: Uy )

=~ Gr(Po; P;Ux; @), (59) B
it follows from this thatGy, satisfies the RG equation Gr(po;p;Uy)
J . 9 ! J . (p_g) y*i2
poa_;)()+( Y)P&—H B( X)EJF Y o2
— - 2\ y*12 ' (68)
X Gr(Po;P;Uy; ) =0. (60) Po|” I
R0 d—z ~polcog my*) +i|polsin(ry*)
We can therefore writ&g in the form @
Gr(Po:P;Uy; o) for po<O or
=G[Ux(Po;Uy);p(Po;P)] 02| 7"
Xe fpod |n(50>{1 [Uy(po;P;Uy0 ]} (_2)
X DN - 1 1 Il -
T e IS L R Gr(po;P:U}) = - . (69
61) 2\ 7
— | +poti
where P 2 Pot1d
P(Po;U,)=pex —fp°dln(@){1—y[u (PoipiUT} |, for po>0.
X @ w X X It follows from this that the imaginary part of the renor-

(62 malized self-energy IRz, for py<0, is given by-
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2\ —Y*2
_ 5 _
Im 2 R(Po;P; Uy ;@)= —|po| _2) sin(y*)

(70

(O]

PHYSICAL REVIEW B 68, 075115(2003
or Im3x(Po;P;U% ;w)=0 for py>0.

As a result of that the renormalized spectral function
Ar(p; ®) become¥

2

po —y*I2
|po|(—2) sin(7y*)
— w
Ar(Po,P; ) = B L 2 G ; (71)
p—Ipol(—z) cog my*) +pé(—2) sinf(y*)
Po Po

for pg<<O0 or simply

-p 1U(1—v*)
AR(poyp;w): g )1

(72

1-y

for pg>0.

We can immediately infer from this result that our renor-
malized Fermi Surface near the given “cold” spot point is
now characterized by a dispersion law given by

poZE(B:_(BSL::?’*)) 1/(1_7*)1 73
®
for po<0, p>0, and cosfy*)+0 or
_ [ —pra
poZE(p)=<7] (74)

for pg>0 andﬁ<0.

If we now define the “Fermi velocity'vg as the deriva-

tive of E(H) with respect to the component of the momen-
tum perpendicular to the Fermi surface in the vicinitypdf

we find
*1(1-9%)
Ker 1—+y| P 7
_ (1-y9)| =
vp=_— _[sed¢my") | — ,
Po<0, p>0, (75)
*1(1-9)
ker [—P)” —
UF—H(%) , Po>0, p<0. (76

Clearly for y*/(1—y*)>0 and we have that—0 if

|H|/w—>0. However if (y*/(1— y*)<1, vg is nonzero and
differs only weakly from itskgg value.
Finally, using our spectral function result we can calculate

the momentum distribution functian(p) for p/w~0. Using
n(p)=/¢,(dpy/2m)Ar(Po,P; w), we obtain

12 [-p Y= *)
n(p)= (;) O(—p)o(1—v*)
l-y*\
ELLY y-r
+sin(my*)] | — — — (77
02 . . p
y' T = —expi(my*) ||y — —exp-i(my*)
w w
Evaluating this last integral we get
— w2 (=p| L sin(myt)| ¥ sin2my*) pl
n(p)= — 0(—p)+ 1+ : .
1—y*\ @ 2m7y* 2y* =1 sin(my*) @
o1—v*) [2=y*\ [ =1 \[[p\7] [ 3 2
— 1=y )F( L4 r (M) f(p)sin T —6(—p)sin T (78
2m 1=y \1-gr)l e 1-9* 1-y*
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for [p|/w<1 and noninteger 1/(% y*). As we saw in our discussions so far our.r(.asullts depe_nd in
It follows from this that in the vicinity of FS for ~ an important way on the value of the nontrivial fixed points.
|H|/wzo It is therefore opportune to check what happens to our results
if we include higher-order corrections. To estimate them next
wa)discuss the higher-loop contributions to bdh and
-

(79

— ) LA 29R )y
&n(p)N(M) [( YO)(1—v")]
ap '

w
VI. HIGHER-ORDER CORRECTIONS

Therefore if 1>2y* or y*>1 we havein(p)/dp— = when At three-loop order with our local subtraction regulariza-
p/w—0. In contrast fory* <1 and 1<2y* the momentum tion method we only do not distinguish the different bare

distribution function is a smooth function and there must becoupling functions at the same ordé(U3). There are in

a charge gap in the regions kfspace, where these condi- this way two contributions to the bare self-enerdy,
tions are satisfied. If we use our two-loop results we see thafrig. 4):

both sets of conditions are equally possible. Assuming that

v<e=5(A—A) we can use the value &f} obtained before. @)\ 113 0) ) 5
Combining this with our perturbative result f@(w) which 207(P)=Uox qGL (lxi(a=p]
at the appropriate momentum value is given by

0 =Ug fqeim(q)[x%‘?(q— p)1° (8D
Z(w)=1— A—A—v)2UF3n| —|+---
il 327k ( L s and
3 22y | & ®(py=ud. [ GO (0 g— )12
=1— (N—=A)°UZ“In| — (80 267 (P)=Uge | GI7(a)[I1}(a—p)]
327kE o q
we find y*=6/121. For this value ofy* the momentum :USLGEO)(@[H%‘I)(Q—D)]Z (82)

distribution function is clearly nonanalytic pt=0 indicating

that some remains of a Fermi surface continues to be presewjith Ugcg ngz US. There are four inequivalent ways of
in the system. Thus for this-space region the physical sys- producing If(€)/w) singularities with the Cooper blocks. In
tem resembles indeed a Luttinger liqufth® On the other contrast there is only one exchange diagram at this
hand if we choose our FS parameters in a way that order with the same kind of singularity. Since fpe (A,
=0.64 we find thaton(p)/dp—0 whenp/w—0 and the —kg+A%2kg) we have that I1©(q+p;de+po)

smoothness oh(p) eliminates locally all traces of metallic = —x!7[a—p;do—(—po)] the exchange channel diagram

behavior. As a result there should appear a charge gap aloggncels one of the contributions from the Cooper channel

this direction ofk space characterizing an associated insulatand we end up with three Cooper(fd/w) singularities for

ing state. That a truncation of the Fermi surface could b&o=w=0. The next nonzero contributions are produced by

produced by interaction was proposed earlier by Furukawahe fourth-order terms shown ifFig. 5. They all have the

Rice, and Salmhofer in the context of d-Hubbard model. same relative sign bringing about a strong mix between the

Our result shows similar trends if certain condition concern-different scattering channels.

ing the Fermi surface parameters and the coupling fixed The calculation of all those higher order diagrams is

point are satisfied. This result is very suggestive in view ofhighly nontrivial and is presently beyond the scope of this

the fact that in highF, superconductors the Fermi surface work. However, if we were to include such contributions we

has flat sectors and a pseudogap along preferential directioépuld automatically be forced to distinguish the different

of momenta space. bare couplings already at two-loop order. This produces im-
This shows that the effects produced by the flat sectors dgportant changes in our earlier results. To observe this in de-

the FS leads to a complete breakdown of the Landau quasiail we begin by rewriting our two-loop result for the quasi-

particle picture in the “cold” spots. This is in general agree- particle weightZ(p,w), for p=(A,—ke+A2%/2k¢), as

ment with recent photoemission d&tr optimally doped

Bi2212 which report a marginal Fermi liquid behavior for i |

Im3 and a large broadening of the spectral peak even ) f

around the /2,7/2) region of the Fermi surface for tem- !

peratures higher tham;. We find corrections for that mar-

ginal Fermi liquid behavior in our results. However, if the } ;

Fermi surface parameters in the metallic region are such tha t 7 }

v* <1 those corrections are logarithmically small and may

not be easily detectable experimentally. FIG. 4. Diagrams fo ; in three-loop order.
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' t }
% %

} }
t t i
di\x——j‘/i t
t
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|

FIG. 5. Four-loop diagrams fax .

(A—A)Zln(“)(uawécw =

Z Y p,w)=1+ -
(83

64m*k2

and forZ(p*,w) atp*=(\—e,—keg+ A%/2kg):

Q
Z(p*,w)=1+ 2 [(N—A)?+2e(A\—A— e)]ln(;)
X(Ug,+U3c)+---. (84)

The numerical difference between these tvoalues is es-

sentially due to the longitudinal components fand p*,
respectively.

PHYSICAL REVIEW B 68, 075115 (2003

U,
Bx(Uy,U¢,Ug)=w o (88)
U,
Bf(Uf,UX,UC):Q)%, (89)
U
BC(UCva:Uf):wm (90)
it follows that
€ 2 2,112
Bx(UXyUhUc):—mUx+mb(Ux+Uc)
F
(A-A—-¢) ,
—Ug+---, 91
2772|(|: C ( )
(A—A—¢) , 2,12
Bf(UfalJX!UC):WUC+bUf(UX+Uc)+'"
F
(92
and
an 2,112
BC(UCvUXiUf):%—Zkuc"f'bUC(Ux‘f'UC)
F
N—A—e€
S =l A
F

with b given as before. To determine the fixed points we
have to solve these coupled equations. As we emphasized
before the fixed point values vary as we move along the

If we repeat the same procedure as before but now distincermi surface. This reflects the explicit role played by the
guishing the diverse bare coupling functions at two-loop or-mnomenta components projected along the FS.

der we find, respectively,

U(Z)x_ bUOx(USx+U(2)C)

€
Uy(P1—Pa; @) =Uget | ——
«(P1=Pg; @) =Uox 272k,

(=879 |(Q + (85)
— n— ey
2’772k|: oc
(\-A-e)
Ut(p1—pP3;@)=Ugs— P UbctbUos
F
X (UgitUge) |Inf —| +--, (86)

. Ao 2 12
Uc(p1=—Pz;@)=Uqoc— | ———UgctbUgx(Ug,+Upe)
2’77 k,:

)

3 (AN—A—¢)

47T2k|:

2
0x

(87)

for the exchange, forward, and Cooper channels. If we now

define the corresponding functions as

In order to illustrate what might happen to the fixed points
in the presence of mixing of scattering channels let us choose
for simplicity the cases=\—A. Taking 8,=B¢=Bc=0 it
follows immediately that the non-trivial fixed points for this
value of e are

167%ke

izmg L (94)
Ut =0, (95
4772k|:

* __ -1

Ug=-—3¢ (96)

with {={1+[(A—A)/4\]?}>1. Defining the matrix of ei-
genvaluesM;; by

IB;
|28

fori,j=C,x,f respectively we can expand in coupling space
around these fixed points to fitfd’

97)

U*

ﬂizg M;[Uj(p*;0)—UF (p*)]+---. (99
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Integrating these out we obtain

c _
Us(w)= ﬁww g (109
Ui=U+2> ¢V, (99)
i
where where 6. is the critical value of¢ at the transition point.

Using our results it then turns out that Vil. CONCLUSION

We present a two-loop field-theoretical renormalization
i(ﬂ) R zw,(g,g)g—l group calculation of a two-dimensional truncated Fermi sur-
\/2—g 4N ' face. Our Fermi surface model consists of four disconnected
(101 patches with both flat pieces and conventionally curved arcs
centered around (frkg) and (£kg,0) in k space. Two-
dimensional Fermi-liquid-like states are defined around the
central region of each patch. In contrast the patch border
(102 regions are flat and as a result their associated single particle
states have linear dispersion law. These flat sectors are intro-
and duced specifically to produce nesting effects which in turn
generate logarithmic singularities in the particle-hole chan-
nels which are known to induce non-Fermi-liquid effects. In
this way conventional @ Fermi-liquid states are sandwiched
by single particles with a linear dispersion law to simulate
wherec,, andc, are constants. As a result unless there is ahe so-called “cold” spots as in the experimentally observed
new adjustable parameter which would be tunned to producguncated Fermi surface of the underdoped normal phase of
c,=0 the fixed point Ug,Us ,UF) is infrared unstable the high-temperature superconductors. Our main motivation
when we approach the Fermi surface by taking the limit here is to test to what extent Fermi-liquid theory is appli-
—0. This is the main effect produced by the mixing of scat-cable in the presence of flat Fermi surface sectors which are
tering channels at higher order perturbation theory at thigndicative of a strong coupling regime. New experimental
sector of the FS. This is again an interesting result in view ojata on both optimally doped and underdoped Bi2¢Réf.
the fact that the pseudogap state in the underdoped cupratgs above T, indicate that the imaginary part of the self-
does not seem to be a realizable stateTat0. It would energy Im>(w) scales linearly withw even along the
therefore be nat.ural to gssociate such a phase in the cupra@fo)_(ﬂyw) direction. This is consistent with other photo-
to an unstable fixed point. _ emission experimerftswhich support a marginal Fermi-
Since the running coupling functiont/c(piw) and  jiiq phenomenology over the whole Fermi surface. Our

U(p;w) tare %U'Br/] mfralzjed _tshtabls if thereteX|sts a;n eXterﬂ"":results are in general agreement with those experimental
parameter which could either be, €.g., temperature or Oﬁndings since the power law corrections we find for this

concentrati.o.n, it can be readily adjusted to nulkd 3. at the ginear behavior can in some cases be so small as not to be

FS. The critical surface formed by the set of trajectories Ofjetectable by the present day experiments. Using perturba-
* . i H i i '

Ui(p*;w) which are attracted into the fixed point 5, theory we calculate the two-loop self-energy of a single

NS, NN o .
(Uc Uy \Uy) for ©—0, in this case, has in this way codi- article associated with a curved FS sector. We find that the
mensionality one. If we represent such external parametgy, e self-energy is such that By(w)~w and as a result

needed byé, it turns out that in the vicinity of the phase Re3 o(w)~ o In(Q/w) for @~0 reproducing the marginal
transition the coupling constants associated with the thre?ermi-liquid phenomenology at the FS. We calculiitgas a
scattering channels become function of both frequency and momentum. It turns out that

both 93,/dp, and d5,/Jp diverge at the FS. Using RG

Uc(p*;0)=Ug—

Uu(p*;0)=Uj +iw(8/3)§1+2(ﬂ) w—(8/3)(1’
V2¢

\/247\

Cy 1
Ue(p*0)= —=o®3 (103
V2

Uc(w)=U%+— i(ﬂ) @3 theory we determine the renormalized one-particle irreduc-
V27! AN ible function T¥)(p,,p;U,w) in the vicinity of a “cold”
(6—0,) spot FS po_int. Again_ it follpws i_mmediately that t_he quasi-
+ _wa(s/a)fll (104) particle weightZ vanishes identically at the Fermi surface.
\/Z Next we calculate the bare one-particle irreducible two-

particle functionI"§;)5(p1,P2;P3.Ps) for a,f=1,l. This

c 1 (-6 [ N—A B function depends on the spin arrangements as well as on the
* 1 (8! c —(8/3);7t i i i
Uy(w)=UJ + \/70) + T T : relative momenta of its external legs. There are three differ-
¢ ¢ (109 ent scattering channels associated with II@QB’S: the so-
called Cooper, exchange, and forward channels. For a FS
and with flat sectors there are logarithmic singularitiesﬂ{,ﬁﬁ
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for both exchange and forward channels due to nesting effhere could be in this way phase separatiotk ispace and
fects. In contrast the Cooper channel produces similar singuhere is a complete breakdown of the Landau Fermi liquid
larities in the whole FS. We calculalé,“) perturbatively up  when the “cold” spot suffers the effects produced by the flat
to two-loop order for the mentioned scattering channels. TakFS sectors. Since essentially the RG exponentiates the self-
ing into account self-energy corrections calculated earlier oignergy In corrections the power law behavior@y reflects

we obtain the corresponding renormalized one-particle irreitself back in the renormalized self-energy producing

ducible functionF‘R“) subjected to an appropriate renormal-

ization condition. The field theory regularization scheme al-

lows us to introduce local counterterms to cancels all

divergences order by order in perturbation theory. This sim- 02 -y (pU*)i2
plifies the problem considerably although due to the anisot- Im3g(p;U*)~ —|Po|(_g) (107
ropy ink space the counterterms are in fact momenta depen- ®

dent. The bare coupling constant becomes a bare coupling

function and we proceed with the regularization of the diver-

gences grouping them together according to their location awith y* depending on the size of the size of the flat Fermi
the FS, the scattering channel, and the vertex type interasurface sectors through the fixed point coupling strength. For
tion. We introduce in this way three bare coupling functionscertain k-space regions near the FS we show thdt
Uox(P), Uoc(p), andUo(p) to systematically cancel all the ~6/121. This produces a singulan(p)/dp— = and is con-
local divergences in our perturbation theory expansions. IRjstent with the marginal Fermi liquid phenomenology which
this scheme the effects produced by the crossing of different jn agreement with the observed experimental results which
channels is practically nonexistent up to the two-loop ordefre not sensitive enough to distinguish such minor power law
calculation of the self-energy. Therefore if we only considercorrections.

the leading divergence at every order of perturbation theory sjnce several of our results are given in terms of a fixed
it is essential to proceed with the renormalization of fields inpoint value it is important to see what happens if we consider
order for the running coupling functions to develop non-higher order contributions to our perturbation theory expan-
trivial infrared (IR) stable fixed points. As opposed to the sjons. We do this calculating initially the three-loop correc-
parquet or the Wilsonian RG methods we do not try to derivejons to the bare self-enerdyy, . At this order of perturba-

an effective action in explicit form. This would in practice {jony theory we have the bare constantg.=U3 =U3,

demand the introduction of an infinite number of local coun-igengical to each other. However, if we consider higher order

terterms in our Lagrangian model. Nevertheless all diverygms in our perturbative calculation of the three bare cou-
gences can be removed to all orders by local subtractiongjings we can distinguish the different contributions pro-

around a given point of momentum space. The anisotropy O(fjuced at ordeO(Ug) and this brings important changes to

the Fermi surface therefore refleqts itself directly in t.he MO-,.r results. The exchange and Cooper channel couplings mix
mentum dependence of the coupling parameters. This featu

Ktrongly with each other. As a result of this we define gener-
is consistent with the findings of those other two approache gy g

: > othe dlized B functions B;=wdU;/dw=B;(Uc,U,,U;) for i
referred to before. Since we take explicitly into account Self'=C,x,f. We calculate the eigenvalue matriM;

energy effects we are able to find nontrivial fixed point SO_=3,3i /aU]-*  find its eigenvalues, and expand thegéunc-

lutions even if we do not go beyond the leading divergenceeions in coupling space around one of the existing fixed

approximation in our higher loop calculations. With our two- ~~. . -
loop results for the nontrivial fixed points together with the points ink space. We then show that the critical surface

assumption that the physical system acquires a critical cor{-0 rmeg b y thﬁ S?t 0(; tra!ectjniles dL]Jj,L(p;wEJlN hich fls at-
dition as we approach the Fermi surface, by taking the scalfacted into the fixed pointUg(p),Us (p). U5 (p)] for
parametero—0, we can solve the RG equation for the —0 has codimensionality one. This means that the fixed
renormalized single particle propagaBi(p:;U,w) in the point is infrared unstab!e and one external parameter is
vicinity of a chosen “cold” spot point. We show that the needed to drive the physical system towards one of its stable
nullification of the quasiparticle weight manifests itself as PNases. This result is very suggestive since the underdoped
an anomalous dimension {@g. This anomalous dimension _phase of the cuprates at finite temperature is well character-

is independent of the sign of the given fixed point value.’Z€d by a pseudogap state. This state may not 'be realizable at
Using this result we calculate the spectral function?€™ temperature and may also well be associated with such

Ag(p;U*, @) and the renormalized single particle dispersion2n Unstable fixed point.

law. From this we calculate the “Fermi velocity” which can ¢ T_O Ic:onclyde ]it Is fair éo Isay Lhat (tar\]/en a S|mp(Ij|f_|e(ihz_in|so-k
either remain finite or is nullified at the FS. Finally we cal- tropic Fermi surfaceé model such as thé one used in this wor

culate the corresponding momentum distribution function's able to produce interesting nontrivial results due to the fact

Y in the vicinity of the FS and show that it i . that it contains flat parts which are indicative of a strong
n(p) in the vicinity of the FS and show that it is a continUoUS a4 ction regime. They turn thed2Fermi-liquid states into

function of p with gn(p)/dp finite or dn(p)/dp—= when 3 non-Fermi liquid which can be metallic or insulating de-
p/w—0. In the former case we have a real charge gap typipending on its location at the Fermi surfacekispace. It is
cal of an insulating state and in the latter the physical systertempting to relate our results to the high-superconductors
continues to be metallic and resembles a Luttinger liquidwhich are also known to have an anisotropic FS displaying
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