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Bethe-ansatz studies of energy-level crossings in the one-dimensional Hubbard model
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Motivated by Heilmann and Lieb’s work@Ann. N. V. Acad. Sci.172, 583 ~1971!#. We discuss energy level
crossings for the one-dimensional Hubbard model through the Bethe ansatz, constructing explicitly the degen-
erate eigenstates at the crossing points. After showing the existence of solutions for the Lieb–Wu equations
with one-down spin, we solve them numerically and construct Bethe-ansatz eigenstates. We thus verify all the
level crossings in the spectral flows observed by the numerical diagonalization method with one down-spin.
For each of the solutions we obtain its energy spectral flow along the interaction parameterU. Then, we
observe that some of the energy level crossings can not be explained in terms ofU-independent symmetries.
Dynamical symmetries of the Hubbard model are fundamental for identifying each of the spectral lines at the
level crossing points. We show that the Bethe-ansatz eigenstates which degenerate at the points have distinct
sets of eigenvalues of the higher conserved operators. We also show a twofold permanent degeneracy in terms
of the Bethe-ansatz wave function.
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I. INTRODUCTION

Degeneracies in the energy spectra of quantum syst
have close relationships with their symmetries. Actually, v
Neumann and Wigner showed that degeneracies are m
likely to occur for the systems with one or more symmetr
than those without symmetries.1,2 To be more precise, if one
assumes that a quantum system is given by a real Ha
tonian matrix whose elements are expressed by indepen
parameters, in the case of no symmetry, two parameters
pen to take some prescribed values in order to bring two
the eigenvalues into coincidence. Their theory reminds u
the ‘‘non-crossing rule’’ in quantum chemistry, which stat
that energy levels of orbitals of the same symmetry can ne
cross each other along a reaction parameter. However
von Neumann–Wigner theorem does not give a proof for
non-crossing rule. It is possible that degeneracies appe
the systems without symmetries. Such degeneracies ar
ferred to as accidental degeneracies. In fact some exam
of accidental degeneracies are numerically observed
molecules3 or triangular quantum billiards.4

The one-dimensional Hubbard model is one of the m
significant models in condensed matter physics. The mo
also attracts a great interest of mathematical physicists du
its Bethe-ansatz solvability.5,6 Heilmann and Lieb numeri-
cally investigated energy spectral flows along the interac
parameterU for the system on a periodic six-site chain a
found many level crossings which cannot be accounted
by the known symmetries such as translation, SO~4! and
particle-hole symmetries.7,8 They concluded that, if one take
into account onlyU-independent symmetries, the level cros
ings are accidental degeneracies, that is, a counter exa
of the non-crossing rule. Recently, Yuzbashyan, Altshu
and Shastry have suggested that the origin of the Heilma
Lieb level crossings should be dynamical symmetries in
Hubbard model.9 Here the dynamical symmetries are giv
by parameter-dependent operators, which are often ca
higher conserved operators in association with conser
0163-1829/2003/68~7!/075114~14!/$20.00 68 0751
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quantities in classical integrable systems. The dynam
symmetries for the Hubbard model are constructed in~Refs.
10–14!. Yuzbashyan, Altshuler and Shastry numerica
showed that crossings in the spectral flows of the first th
conserved operators never occur at the same value ofU. The
dynamical symmetries depend on the parameterU, and they
are not considered as symmetries in the von Neuma
Wigner’s theorem. Heilmann–Lieb level crossings are s
considered to be accidental degeneracies.

In the framework of the Bethe ansatz, we discuss in
paper energy level crossings for the one-dimensional H
bard model. The Bethe-ansatz method provides informa
on the eigenstates that cannot be easily obtained in the d
diagonalization of the Hamiltonian matrix. We set up t
following problems.

~i! When two energy eigenvalues approach in numer
data as one parameter is varied, one may draw two alte
tive spectral flows, a level crossing or level repulsion.7 To
ensure that genuine energy level crossings have happe
we must investigate the change of each eigenstate along
parameterU.

~ii ! Do the eigenstates have distinct dynamical symm
tries at the level crossing points? In order to solve the pr
lem we assign each of the eigenstates the eigenvalues o
higher conserved operators.

It is indeed not easy to investigate these problems. For
triangular quantum billiards with two parameters, Berry a
Wilkinson investigated the behavior of eigenstates alon
circuit of the crossing point in the parameter space so
they could verify the existence of genuine energy le
crossings.4 For general quantum systems, it is hard in pra
tice to construct quantum many-body eigenstates. The tas
also not easy even for the systems that can be treated b
Bethe ansatz. In fact, it is nontrivial to obtain numerical s
lutions to the Bethe-ansatz equations for a finite size syst
For the sector of one down-spin, however, it is practica
possible to solve the Bethe-ansatz equations numerically

In the present paper, we prove the existence of soluti
©2003 The American Physical Society14-1
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to the Lieb–Wu equations and then numerically solve the
Here we generalize the method of Ref. 15. By using
numerical solutions, we analyze the behavior of each of
degenerate eigenstates along the parameterU. We thus find
several genuine level crossings of energy spectral flows w
the sameU-independent symmetries. The merit of th
method is that the numerical solutions for the Lieb–W
equations provide not only the eigenvalues of the higher c
served operators but also the one-to-one correspondenc
tween their spectral lines and eigenstates. As a consequ
we observe that all the common eigenspaces of the first t
higher conserved operators are one dimensional in the
spaces with the sameU-independent symmetries. Furthe
more, when there areU-independent degeneracies~perma-
nent degeneracies! in the spectral flow, the one-to-on
correspondence plays an essential role in assigning to ea
the degenerate eigenstates its eigenvalues of the dynam
symmetries at the energy level crossing points. By using
explicit form of the Bethe ansatz wave functions,16 we can
derive the permanent degeneracies. We remark that the
tence of level crossings also gives a necessary condition
algebraic independence of the three higher conserved op
tors in the subspaces.

This paper is organized as follows: first, in Sec. II, w
summarize the known results for the Hubbard model a
prepare for the following sections. We list the known sy
metries of the Hubbard model in Sec. II A and review t
Bethe ansatz method in Sec. II B. In Sec. II C we prove
existence of solutions for the Lieb–Wu equations with o
down-spin following the approach developed in Ref. 1
Next, in Sec. III, we analyze degeneracies in the ene
spectrum of the Hubbard model by using both direct dia
nalization of the Hamiltonian matrix and the Bethe-ans
method. In Sec. III A we describe twofold permanent deg
eracies arising from a reflection symmetry of the lattice.
Sec. III B and III C we investigate energy level crossings
the systems with two or three up-spins and one down-spin
a periodic six-site chain. We find some genuine energy le
crossings and see that the degenerate eigenstates can b
sified by the eigenvalues of the higher conserved opera
The final section is devoted to concluding remarks.

II. SYMMETRIES AND BETHE-ANSATZ METHOD

We introduce the Hubbard model on a one-dimensio
periodicL-site chain. Letcis

† andcis ,(i PZ/LZ,sP$↑,↓%) be
the creation and annihilation operators of electrons satisfy
$cis ,cjt%5$cis

† ,cjt
† %50 and$cis ,cjt

† %5d i j dst , and define the
number operators bynisªcis

† cis . We consider the Fock
space of electrons with the vacuum stateu0&. The one-
dimensional Hubbard model is described by the followi
Hamiltonian acting on the Fock space:

H52(
i 51

L

(
s5↑,↓

~cis
† ci 11,s1ci 11,s

† cis!

1U(
i 51

L S ni↑2
1

2D S ni↓2
1

2D , ~2.1!
07511
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whereU(PR.0) is the interaction parameter. We consid
the system forL even throughout the paper.

A. U-independent and dynamical symmetries

In general, the symmetries of a quantum system are
pressed by operators which commute with its Hamiltoni
They are classified into two families in the case of the Hu
bard model; one is independent ofU and another depends o
U. We list some of these symmetries. First we consider
U-independent symmetries.7 Define

sª )
i 51

L/221

)
s5↑,↓

Pi ,L2 i
(s) , tª )

s5↑,↓
P12

(s)P23
(s)
•••PL21,L

(s) ,

~2.2!

wherePi j
(s)
ª12(cis

† 2cjs
† )(cis2cjs),(iÞ j ) are permutation

operators. The operatorss andt correspond to reflection an
translation symmetries of the lattice, respectively. They s
isfy s25tL51. It is clear that they commute with th
Hamiltonian ~2.1!. Another U-independent symmetry is th
SO~4! symmetry.17,18 Define

Szª
1

2 (
i 51

L

~ni↑2ni↓!,

S1ª(
i 51

L

ci↑
† ci↓ ,

S2ª~S1!†,
~2.3!

hzª
1

2 (
i 51

L

~12ni↑2ni↓!,

h1ª(
i 51

L

~2 ! ici↓ci↑ ,

h2ª~h1!†.

Both sets of operators$Sz ,S6% and$hz ,h6% give represen-
tations of the algebrasu(2) in the Fock space. They all com
mute with the Hamiltonian~2.1!, which leads to the symme
try of type su(2)% su(2).so(4). Furthermore it is known
that thisso(4) symmetry lifts to the SO~4! group symmetry.
For the later discussion, we define Casimir operators,

S2
ª

1
2 ~S1S21S2S1!1Sz

2 ,

h2
ª

1
2 ~h1h21h2h1!1hz

2 ,

which commute with all the operators in~2.3!.
Next we introduce the dynamical symmetries given by

U-dependent operators. TheseU-dependent operators them
selves are also commutative and are called conserved op
tors in association with conserved quantities in classical
tegrable systems. In Refs. 11 and 12, the first three conse
operators are explicitly given by
4-2
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I 15H,

I 252A21(
i 51

L

(
s5↑,↓

~cis
† ci 12,s2ci 12,s

† cis!1A21U(
i 51

L

(
s5↑,↓

~cis
† ci 11,s2ci 11,s

† cis!~ni ,2s1ni 11,2s21!,

I 352(
i 51

L

(
s5↑,↓

~cis
† ci 13,s1ci 13,s

† cis!1U(
i 51

L

(
s5↑,↓

~~cis
† ci 12,s1ci 12,s

† cis!~ni ,2s1ni 11,2s1ni 12,2s2
3
2 !1~ci 11,s

† ci 12,s

2ci 12,s
† ci 11,s!~ci ,2s

† ci 11,2s2ci 11,2s
† ci ,2s!1 1

2 ~ci ,s
† ci 11,s2ci 11,s

† ci ,s!~ci ,2s
† ci 11,2s2ci 11,2s

† ci ,2s!2~nis2 1
2 !~ni 11,2s2

1
2 !

2 1
2 ~nis2 1

2 !~ni ,2s2
1
2 !!2U2(

i 51

L

(
s5↑,↓

~cis
† ci 11,s1ci 11,s

† cis!~ni ,2sni 11,2s2
1
2 ~ni ,2s1ni 11,2s!1 1

2 !.
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In order to obtain higher conserved operators systematic
the transfer matrix approach similar to that of the XX
Heisenberg spin chain is developed.10,11,13,14The SO~4! sym-
metry of such higher conserved operators is also verifie
the framework of the transfer matrix approach.19

The operators$t,S2,Sz ,h2,hz ,I n% give a commutative se
of operators including the Hamiltonian. Hence they can
diagonalized simultaneously.

B. Bethe-ansatz method

The Bethe-ansatz method was applied to the Hubb
model in Ref. 5. Here we give only the result. LetN be the
number of electrons andM that of down-spins. We may as
sume 2M<N<L due to particle-hole and spin reversal sym
metries in the system. Letk5$ki u i 51,2, . . . ,N%,(Re(ki)
PR/2pR) denote a set of wave numbers of electrons a
l5$laua51,2, . . . ,M % that of rapidities of down-spins
Given a set of spin configurations5$si u i 51,2, . . . ,N% with
N2M up-spins andM down-spins, the Bethe state withk
andl has the following form:

uk,l;s&5(
$xi %

ck,l~x;s!cx1 ,s1

† cx2 ,s2

†
•••cxN ,sN

† u0&. ~2.4!

The coefficientsck,l(x;s) in ~2.4! are expressed16 as

ck,l~x;s!5 (
PPSN

sign~PQ!wkP ,l~sQ!

3expS A21(
i 51

N

kP( i )xQ( i )D ,

wkP ,l~sQ!5 (
RPSM

)
a,b

lR(a)2lR(b)2A21U/2

lR(a)2lR(b)

3 )
g51

M

FkP
~lR(g) ,yg!,
07511
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FkP
~la ,y!5

1

la2sinkP(y)1A21U/4

3 )
j 51

y21
la2sinkP( j )2A21U/4

la2sinkP( j )1A21U/4
,

where we have denoted byQ one of the shortest elements
the symmetric groupSN on $1,2, . . . ,N% such that 1
<xQ(1)<xQ(2)<•••<xQ(N)<L, and byyg the position of
thegth down-spin insQ5$sQ(1) ,sQ(2) , . . . ,sQ(N)%. The Be-
the states~2.4! give eigenstates of the Hamiltonian~2.1! if
$ki ,la% satisfy the following equations:

eA21kiL5 )
b51

M
lb2sinki2A21U/4

lb2sinki1A21U/4
,

~2.5!

)
i 51

N
la2sinki2A21U/4

la2sinki1A21U/4
5 )

b(Þa)

la2lb2A21U/2

la2lb1A21U/2
,

which are coupled nonlinear equations called Lieb–W
equations. The Lieb–Wu equations have not been sol
analytically. But it predicts some important results on th
modynamic properties of the system through Takahas
string hypothesis.6,20–22

The Bethe states~2.4! are not only eigenstates of th
Hamiltonian~2.1! but also those of the translation operatort
and the higher conserved operatorsI 2 and I 3. By using the
solutions$ki ,la% of the Lieb–Wu equations~2.5!, the eigen-
values oft and$I n% are written as

tuk,l;s&5eA21(2p/L)Puk,l;s&, P5
L

2p S (
i 51

N

ki D ~modL !,

I nuk,l;s&5Enuk,l;s& ~n51,2,3!,
~2.6!

E15E522(
i 51

N

coski1
1

4
U~L22N!,

E2522(
i 51

N

~sin~2ki !1U sinki !,
4-3
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E352(
i 51

N S 2 cos~3ki !13US cos~2ki !2
1

2D1U2coski D
2

3

4
UL.

The P appearing in the eigenvalues oft indicates the total
momentum of the system.~There should be no confusio
with the use ofP in the coefficients of the Bethe states whe
P denotes an element inSN .)

We immediately find

Szuk,l;s&5 1
2 ~N22M !uk,l;s&,

~2.7!
hzuk,l;s&5 1

2 ~L2N!uk,l;s&.

It is shown in Ref. 23 that each Bethe state~2.4! with a
regular solution for the Lieb–Wu equations~2.5! corre-
sponds to the highest weight vector of a highest weight r
resentation ofso(4), i.e., S1uk,l;s&5h1uk,l;s&50. Then
we find

S2uk,l;s&5S~S11!uk,l;s&,
~2.8!

h2uk,l;s&5h~h11!uk,l;s&,

with S5(N22M )/2 andh5(L2N)/2. Hence, by applying
the lowering operators (S2)n,(0<n<N22M ) and
(h2)m,(0<m<L2N) to the Bethe states~2.4!, we also
have eigenstates of the Hubbard Hamiltonian~2.1!,

uk,l;s;n,m&ª~S2!n~h2!muk,l;s&, ~2.9!

which have the same eigenvalues$En% for the operators$I n%
as those ofuk,l;s&. The dimension of the representation wi
the highest weight vectoruk,l;s& is (N22M11)(L2N
11). By using Takahashi’s string hypothesis for the Be
states~2.4! together with theso(4) symmetry, their combi-
natorial completeness is proved in Ref. 24.

C. Lieb–Wu equations with one down-spin

We try to find regular solutions of the Lieb–Wu equatio
~2.5! in the case when the system has only one down-s
following the discussion in Ref. 15. In this case, the stri
hypothesis20 predicts that two types of solutions exist: one
the solution with only real wave numbers$ki% and another
includes two complex wave numbers. First we consider
real wavenumber solutions. ForM51, the Lieb–Wu equa-
tions ~2.5! reduce to

eA21kiL5
l2sinki2A21U/4

l2sinki1A21U/4
~ i 51,2, . . . ,N!,

~2.10!

)
i 51

N
l2sinki2A21U/4

l2sinki1A21U/4
51.

These are equivalent to the following equations:

sinki2l5
U

4
cotS kiL

2 D ,
~2.11!
07511
-

e

in

e

expS A21(
i 51

N

kiL D 51.

We consider the real solutions for the first equation

sinq2l5
U

4
cotS qL

2 D . ~2.12!

In the interval 0<q,2p, its right-hand side hasL branches

2p

L S ,2
1

2D,q,
2p

L S ,1
1

2D ,

~2.13!

,PH 2 j 21

2 U j 51,2, . . . ,LJ .

If we seek a solutionq of ~2.12! in one of the branches
~2.13!, the solution is unique under the conditionUL.8
~Ref. 15! and can be written as a function ofl, i.e., q
5q,(l). Given a distinct set$, i u i 51,2, . . . ,N%,$(2 j
21)/2u j 51,2, . . . ,L% of the branches, the second equati
in ~2.12! is satisfied when (L/2p)( i 51

N q, i
(l)PZ. The be-

havior of the solutionq5q,(l) tells us that

lim
l→6`

L

2p (
i 51

N

q, i
~l!5(

i 51

N S , i6
1

2D . ~2.14!

Hence there existN21 values ofl which give the following
integer values for (L/2p)( i 51

N q, i
(l):

mPH (
i 51

N S , i2
1

2D1 jU j 51,2, . . . ,N21J .

Note that such$l% and integers$m% are in one-to-one corre
spondence due todq,(l)/dl.0. It is straightforward that
$ki5q, i

(l),l% characterized by the indices$, i ,m% give

(N
L )(N21) solutions of the equations~2.11!.

Next we consider thek-L-string solutions. We assume th
forms of solutions as

kiPR/2pR, ~ i 51,2, . . . ,N22!,

kN215z2A21j, kN5z1A21j,

where 0<z,2p and j.0. Note thatkN21 and kN form a
complex conjugate pair which is referred to
k-L-two-string. Then the first equations in~2.10! are rewrit-
ten as the following equations with real variables:

sinki2l5
U

4
cotS kiL

2 D ~ i 51,2, . . . ,N22!,

~2.15a!

sinz coshj2l5
U

4

sin~zL !

cosh~jL !2cos~zL !
, ~2.15b!

cosz sinhj52
U

4

sinh~jL !

cosh~jL !2cos~zL !
. ~2.15c!
4-4
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On the other hand, the second equation in~2.10! is equiva-
lent to the following condition:

(
i 51

N22

ki12z5
2p

L
m ~mP$0,1, . . . ,NL21%!.

~2.16!

In the same way as the previous case, if we consider a s
tion of each equation~2.15a! in one of the branches~2.13!, it
can be written as a function ofl. Given a distinct set$, i u i
51,2, . . . ,N22% of indices specifying the branches~2.13!,
we express the solutions of~2.15a! as ki5q, i

(l),(i

51,2, . . . ,N22). Then, from the relation~2.16!, the z is
also written as a function ofl,

z5z~l!ª
p

L
m2

1

2 (
i 51

N22

q, i
~l!, ~2.17!

for fixed $, i% andm. For an illustration, we consider~2.15b!
and~2.15c! in the caseN52. Sincez does not depend onl
in the case, the equations~2.15b! and ~2.15c! decouple into

l5sinS p

L
mD coshj,

~2.18!

sinhj52
U

4 cosS p

L
mD f (2)~j!,

where

f (2)~j!ª
sinh~jL !

cosh~jL !2~21!m

5H tanh~jL/2! for m odd,

coth~jL/2! for m even.

One finds from graphical discussion15 that, if the condition
UL.8 is satisfied, the second equation determines
uniquej(.0) for p/2,(p/L)m,(3p/2). We denote it as
jm

(2) ,(mP$(L/2)1 j u j 51,2, . . . ,L21%). The first equation
in ~2.18! immediately givesl with the jm

(2) . Let us consider
the caseN.2. By inserting~2.17! into ~2.15c!, we have

sinhj52
U

4 cos~z~l!!
f ~j!,

~2.19!

f ~j!ª
sinh~jL !

cosh~jL !2~2 !mcosS L

2 (
i

q, i
~l! D .

Since f (j).0 for j.0 in the similar to the caseN52, this
determines an uniquej as a function ofl if and only if
p/2,z(l)5(p/L)m2 1

2 ( iq, i
(l),3p/2. By using ~2.14!,

it is sufficient to have an unique solution for~2.19! that the
integerm satisfies
07511
lu-

n

(
i 51

N22 S , i1
1

2D1
L

2
,m, (

i 51

N22 S , i2
1

2D1
3L

2
,

that is,

mPH (
i 51

N22 S , i1
1

2D1
L

2
1 jU j 51,2, . . . ,L2N11J .

~2.20!

Note that liml→6`j(l)5j
m2( i (, i6

1
2 )

(2)
which is well defined

for the abovem. We expect that, for theL2N11 values of
m allowed in ~2.20!, the equation~2.15b! with j(l), and
z(l)

l5sinS p

L
m2

1

2 (
i

q, i
~l! D cosh~j~l!!

2
U

4

sinS L

2 (
i

q, i
~l! D

cosS L

2 (
i

q, i
~l! D 2~2 !mcosh~j~l!L !

5:g~q, i
~l!,j~l!!, ~2.21!

determinesl. In fact, sinceq, i
(l) andj(l) are continuous

functions with respect tol and

lim
l→6`

g~q, i
~l!,j~l!!

5gS 2p

L S , i6
1

2D ,j
m2( i (, i6

1
2 )

(2) D ,

g is a continuous and finite function with respect tol. Hence
there exists a solutionl in ~2.21!. As a consequence we hav
(N22

L )(L2N11) solutions corresponding to the indice
$, i ,m%.

Let us see the relation between the string hypothesis20 and
our results. Let$, i% reduce moduloL into the interval
@2L/2,L/2# and express them as$I ( i )%. Setting J5m
2( i 51

N , i for the real wave number solutions andJ85L
2m1( i 51

N22, i for the k-L-two-string solution, we have

I ( i )PZ1
1

2
, 2

L

2
,I ( i )<

L

2
,

JPZ1
N

2
, uJu<

1

2
~N22!, ~2.22!

J8PZ1
N

2
, uJ8u<

1

2
~L2N!.

One sees that the indices$I ( i );J;J8% characterizing the regu
lar solutions of the Lieb–Wu equations withM51 are noth-
ing but those appearing in the string hypothesis.20 Thus we
have shown for the Lieb–Wu equations~2.5! with M51 that
there exist the same number of solutions as those predi
4-5
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by the string hypothesis. In the next section, we numeric
calculate the solutions $ki ,lu i 51,2, . . . ,N% and
$ki ,z,j,lu i 51,2, . . . ,N22% for L56.

III. ENERGY LEVEL CROSSINGS

Let us review the von Neumann–Wigner discussion
the spectra of quantum systems. We assume that a Ha
tonian is described by a finite-dimensional real symme
matrix whose elements are regarded as random indepen
parameters. If the system has no symmetry, we call its s
tra a ‘‘pure sequence.’’ If there exist some symmetries in
system, its spectra is given by a superposition of pure
quences, which we call a ‘‘mixed sequence.’’ The v
Neumann–Wigner theorem reads as follows: one must ad
two parameters to bring two of the eigenvalues belonging
a pure sequence into coincidence while in a mixed seque
one obtain a degeneracy by varying only one paramete1,2

Hence the degeneracies in pure sequences are very un
to be found if we choose the values of parameters in
arbitrary manner. Such degeneracies in pure sequence
referred to as accidental degeneracies.

Applying the above discussion, we study the Hubba
model. In varying the parameterU, the Hamiltonian~2.1!
gives a flow in the above space of parameters. As we h
mentioned in the preceding section, the system has sev
symmetries. Since the operators$t,S2,Sz ,h2,hz% are mutu-
ally commutative, they can be simultaneously diagonaliz
by an orthogonal transformation. Through the same ortho
nal transformation, the Hamiltonian matrix breaks up in
diagonal blocks corresponding to the common eigenspa
of $t,S2,Sz ,h2,hz%. Notice that the common eigenspaces a
characterized by the set of quantum numbers$N,M ,P,S,h%.
Energy eigenvalues from the blocks with different quant
numbers may degenerate due to translation and SO~4! sym-
metries. But all the blocks do not give a pure sequence;
example, the blocks withL5N52M have particle-hole and
spin reversal symmetries. However, after considering all
known U-independent symmetries, the spectra also h
many degeneracies at special values ofU, i.e., level cross-
ings in the spectral flows along the parameterU.7 Thus the
flow determined by the Hamiltonian~2.1! runs through
several special values of parameters that give accide
degeneracies.

Let us discuss how to numerically determine level cro
ings, in particular, for the case of accidental degenerac
One notices that the numerical diagonalization of the Ham
tonian is not enough to find crossings of energy spec
flows since apparent crossings may be just close approa
of two eigenvalues.7 To verify the existence of genuine leve
crossings, we must investigate the behavior of spectral fl
for each eigenstate. The Bethe-ansatz method is a very e
tive tool to establish this. Here we restrict our investigati
to the systems with one down-spin where we have shown
existence of solutions for the Lieb–Wu equations~2.5! in
Sec. II C. We have seen in Sec. II A that the Hubbard mo
has the dynamical symmetries in addition to t
U-independent symmetries. The recent paper9 pointed out
that the degenerate eigenstates at the accidental degene
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observed in Ref. 7 can be classified by the eigenvalues o
higher conserved operators. We verify their assertion at
level of eigenstates in the sector of one down-spin. Here
note that the degeneracies discussed in Refs. 7,8 and 9 a
the half-filled Hubbard model with zero magnetization, th
is, in the sector of three down-spins. The strategy in
present paper is given by the following.

~i! We give a matrix representation of the Hamiltonian
a certain common eigenspace of the operat
$t,S2,Sz ,h2,hz%, which is referred to as desymmetrizatio
of the corresponding symmetries. We numerically give
eigenvalues from the direct diagonalization7,9 for several val-
ues ofU.

~ii ! We give the numerical solutions of the Lieb–W
equations~2.5! in several values ofU. From the correspon-
dence between energy spectral flows and the Bethe state
verify whether or not genuine energy level crossings exis

~iii ! We also diagonalize other conserved operat
$I 2 ,I 3% and see the correspondence between their spe
flows and the Bethe states. We analyze the structure of t
degeneracies.

We discuss only the systems containing two or three
spins and one down-spin, which do not have particle-h
and spin reversal symmetries. In spite of such restriction,
have some nontrivial results on degeneracies.

A. Twofold permanent degeneracies

The translation and the SO~4! symmetries produce
U-independent degeneracies in energy spectral flows. We
U-independent degeneracies permanent degeneracies.
thermore, after the desymmetrization of theseU-independent
symmetries, we often observe another twofold permanent
generacies associated with a reflection symmetry of
lattice.9 In fact, we can explain them in terms of the Beth
ansatz wave function. Here we note that, due to the rela
ts5st21, the reflection operators acts only on the eigens
paces oft with the eigenvalue 1 or21, that is, the sub-
spaces of the Fock space with the total momentumP50
or L/2.

Let us investigate the twofold permanent degenerac
due to the reflection operators in the framework of the
Bethe-ansatz method. Even in the subspaces withP50 or
L/2, the Bethe states do not always diagonalize the oper
s. Indeed it is easy to verify that, if we apply the operators
to one of the eigenvectorsuk,l;s;m,n&, then its total mo-
mentum and eigenvalues of$I 2n% are negated and those o
$S2,Sz ,h2,hz ,I 2n21% do not change since

st5t21s, sI 2n1I 2ns50,
~3.1!

sI 2n215I 2n21s, @s,Sz,6#5@s,hz,6#50.

These facts are verified more directly from the followin
relation:

suk,l;s;n,m&5~2 !Mu2k,2l;s;n,m&, ~3.2!

where 2k5$2ki u i 51,2, . . . ,N% and 2l5$2laua
51,2, . . . ,M %. Note that, if $ki ,la% is a solution for the
Lieb–Wu equations~2.5!, then so is$2ki ,2la%. The rela-
4-6
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tion ~3.2! means that, if the set$ki ;la% does not coincide
with $2ki ;2la% as a set, we have a twofold permane
degeneracy in energy spectral flows. On the other hand
$ki ;la%5$2ki ;2la% as a set, then the eigenstat
uk,l;s;m,n& have the eigenvalueE250 for the second con
served operatorI 2, which follows from the formulas in~2.6!.
It should be noted that, to see the existence of such two
permanent degeneracies, we must solve the Lieb–Wu e
tions ~2.5!.

B. Spectral flows:LÄ6,NÄ3,MÄ1

We now study the system with two up-spins and o
down-spin on benzene (L56,N53,M51). Note that Sz
5 1

2 andhz5
3
2 in this case. We consider the subspace ch

acterized by the set of quantum numbers$P52,S5 1
2 ,h

5 3
2 %. There is no moreU-independent symmetry in the sub

space, and we shall actually find one of the simplest n
trivial energy level crossings there. We have a matrix rep
sentation of the Hamiltonian of 11 dimension. We setu
ªU/(U14) and numerically diagonalize the Hamiltonia
matrix for several values ofu. Figure 1 shows the energ

FIG. 1. Spectral flowsE from direct diagonalization forL
56,N53,M51, P52,S5

1
2 , andh5

3
2 .
07511
t
if
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-
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spectral flows for 0,u,1. Here the vertical line in the fig-
ure indicates the energyE divided by U14. We confirm
from the numerical data that there is no permanent deg
eracy. We observe a close approach of two energy level
0.5,u,0.6, which seems to be an energy level crossing

Our first purpose is to show that a genuine energy le
crossing has been found in Fig. 1. In the case of triangu
quantum billiards,4 topological properties of their eigenstate
were studied to verify the existence of energy level cro
ings. Here we employ the Bethe-ansatz method to verify
ergy level crossings in the level of eigenstates. It is clear t
sinceS5Sz5

1
2 andh5hz5

3
2 , all the eigenstates in the sub

space are the Bethe states characterized by the ind
$I ( i );J;J8% satisfying~2.22!. By using the procedure in Sec
II C, we numerically give real wave number solutions wi
P5(( i 51

3 I ( i )1J)(mod 6)52(mod 6) and k-L-two-string
solutions with P5(I (1)2J8)(mod 6)52(mod 6) to calcu-
late the corresponding energy eigenvalues. The corres
dence between energy eigenvalues and the Bethe stat
u50.3 and 0.8 is displayed on Table I. Here we deal with
Lieb–Wu equations only in the case when the condit
UL.8 is satisfied. One sees that the results foru→1,(U
→`) read as

lim
U→`

E

U14
5H 0 for real wave number solutions,

1 for k2L2two2string solutions,

which agrees with those conjectured by the string hypothe
We remark that the energy eigenvalues obtained by the s
tions of the Lieb–Wu equations coincide with those obtain
by the direct diagonalization of the Hamiltonian matr
within an error ofO(10215). Thus, by combining the result
in Fig. 1 with those on Table I, we obtain the behavior
energy spectral flows for each eigenstate. We conclude
in 0.5,u,0.6, there exists an energy level crossing betwe

two Bethe states indexed by$2 5
2 , 3

2 , 5
2 ; 1

2 ;% and$ 1
2 ;;2 3

2 %.
Next we show that, if we take into account dynamic

symmetries, each one-dimensional component of the de
erate eigenstates at the energy level crossing point ca
distinguished from the other degenerate eigenstates. In
TABLE I. E obtained by the Bethe-ansatz method.

E/(U14)
$I ( i );J;J8% u50.3 u50.8 u51.0

$ 5
2 ;; 1

2 % 1.005067890492477 0.9123001584634441 1

$2
5
2 ;; 3

2 % 0.6786192438740763 0.8733443175466562 1

$ 3
2 ;;2 1

2 % 0.5258327541688925 0.8031341881381975 1

$2
5
2 , 3

2 , 5
2 ; 1

2 ;% 0.4763789806072449 0.1794157938506165 0

$ 1
2 ;;2 3

2 % 0.144465968291432 0.7105015978852069 1

$2
3
2 , 3

2 , 5
2 ;2 1

2 ;% 20.03872530249182613 0.06204279614552415 0

$2
5
2 ,2 3

2 , 1
2 ;2 1

2 ;% 20.05950271399595123 0.01208774945632921 0

$2
3
2 , 1

2 , 5
2 ; 1

2 ;% 20.1292149141454342 20.008632714879121293 0

$2
5
2 ,2 3

2 ,2 1
2 ; 1

2 ;% 20.1472919189221319 20.03595459977202529 0

$2
1
2 , 1

2 , 5
2 ;2 1

2 ;% 20.447930438860179 20.0995848490575883 0

$2
1
2 , 1

2 , 3
2 ; 1

2 ;% 20.6326995490186007 20.1586544377772396 0
4-7
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similar way to the energy eigenvalues, the eigenvalues of
second conserved operatorI 2 are obtained by both their di
rect diagonalization and the solutions of the Lieb–Wu eq
tions, which are displayed in Fig. 2 and Table II~the vertical
line in the figure also indicates the eigenvalueE2 divided by
U14). Note that there is no permanent degeneracy. We
serve that the spectral flows indexed by$2 5

2 , 3
2 , 5

2 ; 1
2 ;% and

$ 1
2 ;;2 3

2 % in Fig. 2 never have crossings. Hence the Be

states indexed by$2 5
2 , 3

2 , 5
2 ; 1

2 ;% and $ 1
2 ;;2 3

2 % belong to dif-
ferent eigenspaces ofI 2, that is, the two Bethe states have
different dynamical symmetry. Thus all the common eige
paces of the operators$H,I 2% with the set of quantum num
bers$P52,S5Sz5

1
2 ,h5hz5

3
2 % are one dimensional.

The fact that the common eigenspaces of$H,I 2% are one
dimensional becomes clearer by investigating the spec
flows of the transfer matrix, i.e., the spectral flow sets
conserved operators. Figure 3 shows that, if we consider
eigenvalue sets$E,E2% for two of the eigenvectors along th
parameterU, there is no crossing while their projection on
the U –E plane has a crossing. One notices that the Be

FIG. 2. Spectral flowsE2 from direct diagonalization forL
56,N53,M51, P52,S5

1
2 , andh5

3
2 .
07511
e

-

b-

e

-

al
f
he

e-

ansatz method plays an essential role in getting such pict
It seems to be rare that the eigenvalues of the transfer m
simultaneously degenerate. We comment that the X
Heisenberg spin chain at root of unity has such degenera
in the transfer matrix,25 where one sees symmetries defin
only at the special values of parameters.

C. Spectral flows:LÄ6,NÄ4,MÄ1

We give an example where the eigenvaluesE andE2 de-
generate at the same value ofU. We consider the system with
three up-spins and one down-spin on benzene (L56,N
54,M51). In this case, we haveSz5hz51. We investigate
the degeneracies of energy spectral flows in the subsp
characterized by the set of quantum numbers$P50,S5h

FIG. 3. Spectral flow sets (E,E2) characterized by

$2
5
2 , 3

2 , 5
2 ; 1

2 ;% and $ 1
2 ;;2 3

2 % for the system withL56,N53,M
51, P52,S5

1
2 , and h5

3
2 , and their projections onto theU –E

andU –E2 planes.
9
8
09
TABLE II. E2 obtained by the Bethe-ansatz method.

E2 /(U14)
$I ( i );J;J8% u50.3 u50.8

$2
5
2 ,2 3

2 ,2 1
2 ; 1

2 ;% 1.373365167833861 3.179687928057096

$2
5
2 , 3

2 , 1
2 ;2 1

2 ;% 0.4945223061494427 1.49382887039459

$2
5
2 ;; 3

2 % 0.3397777976721251 1.11745577716595

$2
3
2 , 1

2 , 5
2 ; 1

2 ;% 0.2072047205613698 0.013099759971929

$2
1
2 , 1

2 , 5
2 ;2 1

2 ;% 0.01863957159436896 20.4919569001978466

$ 5
2 ;; 1

2 % 20.02590156370174922 20.6254191358761778

$2
3
2 , 3

2 , 5
2 ;2 1

2 ;% 20.1828197100832381 20.9968145682615939

$ 1
2 ;;2 3

2 % 20.3289755229197938 20.3593561303568662

$2
5
2 , 3

2 , 5
2 ; 1

2 ;% 20.5374256073807519 21.059175160002318

$ 3
2 ;;2 1

2 % 20.9702596151665846 21.610420144313048

$2
1
2 , 1

2 , 3
2 ; 1

2 ;% 21.210851678154266 22.13317348301527
4-8
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51%; hence we can expect all the eigenstates therein to
the Bethe states. The subspace is 14 dimensions. Figu
shows the energy spectral flows obtained by the numer
diagonalization of the Hamiltonian matrix for 0,u,1. Also
listed on Table III are the energy eigenvalues given by
merical solutions for the Lieb–Wu equations atu50.4 and
0.8; we show the numerical solutions in the Appendix. W
observe asu→1,(U→`) that

lim
U→`

E

U14
5H 2 1

2 for real wave number solutions,

1
2 for k2L2two2string solutions,

which are also derived from the string hypothesis.20 Here we
note that the results from the two different methods ab
coincide within an error ofO(10215), which give an evi-
dence for the validity of the Bethe-ansatz method. From F
4 and Table III, we see the correspondence between the
ergy spectral flows and the indices$I ( i );J;J8% ~2.22! charac-
terizing the Bethe states. The correspondence shows th

FIG. 4. Spectral flowsE from direct diagonalization forL
56,N54,M51, P50, andS5h51.
07511
be
4

al
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e
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n-

, if

$I ( i );J;J8%Þ$2I ( i );2J;2J8%, i.e., $ki ;l%Þ$2ki ;2l% as a
set, two Bethe states characterized by these indices are
permanent degeneracy. In fact, among the 14 Bethe st
eight of them are in the twofold permanent degeneracies
sociated with the reflection symmetry. We find that the Be
states indexed by$2 5

2 ,2 3
2 , 3

2 , 5
2 ;0;% and $2 1

2 , 1
2 ;;0% has an

energy level crossing atu50.5, (U54). Although the exis-
tence of this energy level crossing is also verified from
characteristic equation of the Hamiltonian matrix, we ne
the Bethe-ansatz method to clarify which Bethe states h
the crossing.

We discuss whether or not each of the above degene
eigenstates have distinct eigenvalues of the higher conse
operators. In the similar way to the previous case, we c
sider the correspondence between the spectral flows of
second conserved operatorI 2 and the Bethe states, which
displayed in Fig. 5 and Table IV. As is described in Se
III A, if we express the eigenvalue ofI 2 for the eigenstate
uk,l;s& asE2, that for the statesuk,l;s& is 2E2. In particu-

FIG. 5. Spectral flowsE2 from direct diagonalization forL
56,N54,M51, P50, andS5h51.
5
5
5
5
5
5

5

TABLE III. E obtained by the Bethe-ansatz method.

E/(U14)
$I ( i );J;J8% u50.4 u50.8 u51.0

$2
5
2 , 5

2 ;;0% 0.9497682678087262 0.5932037077099968 0.

$2
5
2 , 3

2 ;;21% 0.5228330155542626 0.4784624958920988 0.

$2
3
2 , 5

2 ;;1% 0.5228330155542626 0.4784624958920990 0.

$2
3
2 , 3

2 ;;0% 0.3420419258315002 0.4083645387410650 0.

$2
3
2 , 1

2 ;;21% 0.09563282828838615 0.3370068842393331 0.

$2
1
2 , 3

2 ;;1% 0.09563282828838634 0.3370068842393334 0.

$2
5
2 ,2 3

2 , 3
2 , 5

2 ;0;% 0.0307824371531894 20.2476848090979949 20.5

$2
1
2 , 1

2 ;;0% 20.03078243715318940 0.2476848090979948 0.

$2
5
2 ,2 3

2 , 1
2 , 5

2 ;1;% 20.09563282828838634 20.3370068842393332 20.5

$2
5
2 ,2 1

2 , 3
2 , 5

2 ;21;% 20.09563282828838632 20.3370068842393332 20.5

$2
5
2 ,2 1

2 , 1
2 , 5

2 ;0;% 20.3420419258315001 20.4083645387410647 20.5

$2
5
2 ,2 1

2 , 1
2 , 3

2 ;1;% 20.5228330155542629 20.4784624958920988 20.5

$2
3
2 ,2 1

2 , 1
2 , 5

2 ;21;% 20.5228330155542631 20.4784624958920992 20.5

$2
3
2 ,2 1

2 , 1
2 , 3

2 ;0;% 20.9497682678087262 20.5932037077099968 20.5
4-9
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TABLE IV. E2 obtained by the Bethe-ansatz method.

E2 /(U14)
$I ( i );J;J8% u50.4 u50.8

$2
3
2 ,2 1

2 , 1
2 , 5

2 ;21;% 1.009981725805320 1.21933550753100

$2
3
2 , 5

2 ;;1% 1.009981725805319 1.21933550753100

$2
5
2 ,2 3

2 , 1
2 , 5

2 ;1;% 0.4769034635429986 1.06804537360269

$2
3
2 , 1

2 ;;21% 0.4769034635429980 1.06804537360269

$2
5
2 ,2 3

2 , 3
2 , 5

2 ;0;% 0 0

$2
5
2 ,2 1

2 , 1
2 , 5

2 ;0;% 0 0

$2
3
2 ,2 1

2 , 1
2 , 3

2 ;0;% 0 0

$2
5
2 , 5

2 ;;0% 0 0

$2
3
2 , 3

2 ;;0% 0 0

$2
1
2 , 1

2 ;;0% 0 0

$2
5
2 ,2 1

2 , 3
2 , 5

2 ;21;% 20.4769034635429986 21.068045373602690

$2
1
2 , 3

2 ;;1% 20.4769034635429986 21.068045373602689

$2
5
2 ,2 1

2 , 1
2 , 3

2 ;1;% 21.009981725805320 21.219335507531004

$2
5
2 , 3

2 ;;21% 21.009981725805319 21.219335507531006
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lar, if $I ( i );J;J8%5$2I ( i );2J;2J8%, i.e., $ki ;l%5$2ki ;
2l%, the state hasE250. Figure 5 and Table IV indeed
show that two eigenstates whose energy spectral flows a
a permanent degeneracy belong to the different eigensp
of I 2 and there are 6(51428) states in the eigenspace ofI 2
with E250. Thus we may conclude that the dynamical sy
metry I 2 ‘‘accounts for’’ all the twofold permanent degener
cies in the energy spectral flows which are produced by
reflection symmetry. It is a further remarkable fact that bo
the Bethe states indexed by$2 5

2 ,2 3
2 , 3

2 , 5
2 ;0;% and

$2 1
2 , 1

2 ;;0%, which has an energy level crossing, belong
the same eigenspaces ofI 2 with E250. Hence, atu
50.5,(U54), the two Bethe states cannot be distinguish
from their eigenvalues of$t,S2,Sz ,h2,hz ,H,I 2%.

We have to investigate the spectral flows of higher c
served operators. Displayed in Fig. 6 and Table V are
spectral flows of the third conserved operatorI 3 obtained by
its direct diagonalization and its eigenvalues atu50.3 and

FIG. 6. Spectral flowsE3 from direct diagonalization forL
56,N54,M51, P50, andS5h51.
07511
in
ces

-

e
h

d

-
e

0.8 given by the Bethe-ansatz method, respectively. Here
note that the vertical line in the figure indicates the eige
value E3 divided by U214. The eigenstates in a twofol
permanent degeneracy in the energy spectral flows also
manently degenerate in the spectral flows ofI 3. Figure 6 and
Table V tell us that the eigenvaluesE3 of the eigenstates
indexed by$2 5

2 ,2 3
2 , 3

2 , 5
2 ;0;% and$2 1

2 , 1
2 ;;0% never have de-

generacies in 0,u,1. Hence they belong to the differen
eigenspaces ofI 3 and the energy level crossing atu50.5 is
‘‘accounted for’’ by the third dynamical symmetry. Thu
all the common eigenspaces of$H,I 2 ,I 3% with the set of
quantum numbers $P50,S5Sz5h5hz51% are one
dimensional.

We give some comments on the results. The origin of
twofold permanent degeneracies in Fig. 4 has not been c
fied until we obtain the correspondence between the ene
spectral flows and the Bethe states. Indeed we have fo
that they are due to the reflection symmetry. At first sig
there is no crossing at the same value ofu in the spectral
flows in Fig. 4, 5, and 6. But we must not immediately co
clude that the energy level crossing in Fig. 4 is due to
dynamical symmetries since the spectral flows ofI 2 and I 3
also include permanent degeneracies. Actually the eig
states that have an energy level crossing in Fig. 4 per
nently degenerate in the spectral flows ofI 2 in Fig. 5. Thus
the correspondence between the spectral flows and the B
states is crucial in the discussion above.

IV. CONCLUDING REMARKS

We have studied degeneracies in the energy spectrum
the one-dimensional Hubbard model with one down-spin
benzene. The energy spectral flows have been obta
through the two approaches: direct diagonalization of
Hamiltonian matrix and the Bethe-ansatz method. As
noted in Ref. 7, the former approach does not always de
mine the energy spectral flows since, if two of eigenvalu
4-10
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TABLE V. E3 obtained by the Bethe-ansatz method.

E3 /(U214)
$I ( i );J;J8% u50.4 u50.8

$2
5
2 ,2 3

2 , 3
2 , 5

2 ;0;% 2.073222007147403 1.802629509710799

$2
3
2 , 3

2 ;;0% 1.421598188795819 0.358066840292761

$2
5
2 , 5

2 ;;0% 1.038079524262059 1.652488231566702

$2
5
2 ,2 3

2 , 1
2 , 5

2 ;1;% 0.5951023372314052 0.714727932837951

$2
5
2 ,2 1

2 , 3
2 , 5

2 ;21;% 0.5951023372314052 0.714727932837951

$2
5
2 , 3

2 ;;21% 0.4301781122067006 0.683485294429713

$2
3
2 , 5

2 ;;1% 0.4301781122066977 0.683485294429697

$2
5
2 ,2 1

2 , 1
2 , 3

2 ;1;% 20.4301781122066989 20.6834852944297066

$2
3
2 ,2 1

2 , 1
2 , 5

2 ;21;% 20.4301781122066986 20.6834852944297066

$2
3
2 , 1

2 ;;21% 20.5951023372314045 20.7147279328379513

$2
1
2 , 3

2 ;;1% 20.5951023372314060 20.7147279328379495

$2
3
2 ,2 1

2 , 1
2 , 3

2 ;0;% 21.038079524262058 21.652488231566708

$2
5
2 ,2 1

2 , 1
2 , 5

2 ;0;% 21.421598188795818 20.3580668402927629

$2
1
2 , 1

2 ;;0% 22.073222007147403 21.802629509710803
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approach in numerical data, there are alternative spe
flows that may be drawn from the data. To employ the lat
we have presented a procedure for giving numerical s
tions of the Lieb–Wu equations forUL.8. Combining the
two approaches, we have shown that some energy spe
flows have crossings which cannot be understood by
U-independent symmetries. We have investigated the s
tral flows of the higher conserved operatorsI 2 and I 3 in the
same way and have found that the degenerate eigenstate
classified by the dynamical symmetries.

As we have indicated, the transfer matrix approach s
tematically provides higher conserved operators. Althoug
is not so easy to see their explicit form, their eigenvalues
be written as functions of the solutions for the Lieb–W
equations~2.5! by using the eigenvalues of the transf
matrix.26,27 First five of them are given by

Ẽn5(
i 51

N

en~ki !,

e1~k!522 cosk2 1
2 U,

e2~k!522 sin~2k!22U sink,

e3~k!52 cos~3k!12 cosk1U~3 cos~2k!21!

1 3
4 U2cosk2 1

16 U3,

e4~k!52 sin~4k!1 8
3 sin~2k!1U~4 sin~3k!2 4

3 sink!

12U2sin~2k!,

e5~k!522 sin~5k!2 10
3 sin~3k!2 4

3 sin~3k!2U~5 cosk1 1
3 !

2U2~ 15
4 cos~3k!2 5

4 cosk!2U3~ 5
8 cos~2k!1 5

24 !

1 5
64 U4cosk2 3

256U5.
07511
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Our numerical solutions for the Lieb–Wu equations~2.5!
immediately gives their values forLU.8. We have
also verified that these eigenvalues never degene
simultaneously.

Our studies on the spectral flows of conserved opera
support several assumptions that have been believed fo
Hubbard model and other Bethe-ansatz solvable models.
is the one-to-one correspondence between solutions of
Lieb–Wu equations and linearly independent eigenstates.
have found that all the common eigenspaces of conse
operators$I n% are one dimensional in several subspaces ch
acterized by the sets of quantum numbers$N,M ,P,S,h%,
which shows linear independence of the eigenvect
therein. Another is the algebraic independence of the c
served operators$I n%. As is easily found, two commutative
matrices which have the same type of degeneracy are
algebraically independent since one of the two matrices
be expressed by a linear combination of powers of anot
In our situations, the energy spectral flows have crossing
several values ofU which do not produce degeneracies f
the other conserved operatorsI n . This fact gives a necessar
condition for the algebraic independence ofH and I n .

We also remark that our discussion on the Lieb–Wu eq
tions in Sec. II C give an evidence for the validity of th
counting of states in Takahashi’s string hypothesis. It is
teresting to generalize our procedure to that with two
more down-spins, which enables one to analyze the en
level crossings in the Heilmann and Lieb situations.7
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APPENDIX: NUMERICAL SOLUTIONS
OF LIEB –WU EQUATION

Following the procedure demonstrated in Sec. II C,
give the numerical solutions$ki ;l% of the Lieb–Wu equa-
tions ~2.5! for L56,N54,M51,P50, andS5h51. Here,
for the solutions indexed by$I ( i );J;J8%5$2I ( i );2J;2J8%,
that is, $ki ;l%5$2ki ;2l%, the Lieb–Wu equations~2.5!
decouple as follows; since( i 51

4 ki50 (mod 2p) andl50,
the real wave number solutions can be given by$k1 ,k2,2p
2k2,2p2k1 ;l50% satisfying

sinki5
U

4
cot~3ki ! ~ i 51,2!,
07511
e

and the k-L-string solutions are $k1 ,k2 ,p2A21j,p
1A21j;l50% satisfying

sinki5
U

4
cot~3ki ! ~ i 51,2!, sinhj5

U

4

sinh~6j!

cosh~6j!21
.

We observe below that the solutions indexed by$2 5
2 ,

2 3
2 , 1

2 , 5
2 ;1;% and $2 1

2 , 3
2 , 5

2 ;;1% share the samel. The simi-
lar situation is seen in other pairs of solutions. Indeed th
are in the relation of complementary solutions
Woynarovich,28 that is, they give eight~distinct! solutions of
the eighth-order algebraic equation

x6~x222A21~l1A21U/4!21!

2~x222A21~l2A21U/4!21!50,

throughx5eA21k.
28

2

2

28
u50.4
$I ( i );J;J8% k1 k2

k3 k4 l

$2 5
2 ,2 3

2 , 3
2 , 5

2 ;0;% 3.938730108910538 5.031918491061250
1.251266816118337 2.344455198269048 10216

$2 5
2 ,2 3

2 , 1
2 , 5

2 ;1;% 4.051708143729197 5.108797294345751
0.6064241499221595 2.799441026362065 0.73907907757341

$2 5
2 ,2 1

2 , 3
2 , 5

2 ;21;% 3.483744280817521 5.676761157257427
1.174388012833835 2.231477163450389 20.7390790775734128

$2 5
2 ,2 1

2 , 1
2 , 5

2 ;0;% 3.938730108910538 5.922043144971536
0.3611421622080508 2.344455198269048 10216

$2 5
2 ,2 1

2 , 1
2 , 3

2 ;1;% 4.078300853771271 6.124165064590864
0.7271767083756111 1.636727987621427 1.13143758377655

$2 3
2 ,2 1

2 , 1
2 , 5

2 ;21;% 4.646457319558159 5.556008598803976
0.1590202425887225 2.204884453408315 21.131437583776552

$2 3
2 ,2 1

2 , 1
2 , 3

2 ;0;% 5.031918491061250 5.922043144971536
0.3611421622080508 1.251266816118337 10216

$I ( i );J;J8% k1 k2

z j l

$2 5
2 , 5

2 ;;0% 3.938730108910538 2.344455198269048
3.141592653589794 0.6481740825183825 21310215

$2 5
2 , 3

2 ;;21% 3.349805335791242 1.152236997712285
4.032164140427823 0.9264247935487532 21.131437583776552

$2 3
2 , 5

2 ;;1% 5.130948309467302 2.933379971388344
2.251021166751764 0.9264247935487532 1.13143758377655

$2 3
2 , 3

2 ;;0% 5.03191849106125 1.251266816118337
3.141592653589793 0.6481740825183825 10216

$2 3
2 , 1

2 ;;21% 4.833550063047541 0.2051607987234935
3.763829876294069 0.7358326337961154 20.7390790775734128

$2 1
2 , 3

2 ;;1% 6.078024508456093 1.449635244132045
2.519355430885517 0.7358326337961154 0.73907907757341

$2 1
2 , 1

2 ;;0% 5.922043144971536 0.3611421622080508
3.141592653589793 0.6481740825183825 10216
4-12
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u50.8
$I ( i );J;J8% k1 k2

k3 k4 l

$2 5
2 ,2 3

2 , 3
2 , 5

2 ;0;% 3.709764868570788 4.793788787327027
1.489396519852559 2.573420438608797 10216

$2 5
2 ,2 3

2 , 1
2 , 5

2 ;1;% 3.950200892165781 5.005557244521997
0.7483113471533719 2.862301130518022 3.8764469557337

$2 5
2 ,2 1

2 , 3
2 , 5

2 ;21;% 3.420884176661565 5.534873960026214
1.277628062657589 2.332984415013805 23.876446955733767

$2 5
2 ,2 1

2 , 1
2 , 5

2 ;0;% 3.709764868570789 5.798257477867752
0.4849278293118341 2.573420438608798 10216

$2 5
2 ,2 1

2 , 1
2 , 3

2 ;1;% 3.96270066619563 6.03997184302193
0.7650646846850695 1.798633420456542 4.2320986518962

$2 3
2 ,2 1

2 , 1
2 , 5

2 ;21;% 4.484551886723044 5.518120622494517
0.2432134641576561 2.320484640983956 24.232098651896293

$2 3
2 ,2 1

2 , 1
2 , 3

2 ;0;% 4.793788787327027 5.798257477867752
0.4849278293118341 1.489396519852559 10216

$I ( i );J;J8% k1 k2

z j l

$2 5
2 , 5

2 ;;0% 3.70976486857079 2.573420438608798
3.141592653589792 2.094719300551342 5310215

$2 5
2 , 3

2 ;;21% 3.404556288703187 1.266195169893996
3.947809577880995 2.454678139195706 24.232098651896293

$2 3
2 , 5

2 ;;1% 5.016990137285591 2.8786290184764
2.335375729298592 2.454678139195706 4.2320986518962

$2 3
2 , 3

2 ;;0% 4.793788787327028 1.48939651985256
3.141592653589793 2.094719300551342 2310215

$2 3
2 , 1

2 ;;21% 4.503384094618568 0.2564653496245172
3.903260585058044 2.410923664087426 23.876446955733767

$2 1
2 , 3

2 ;;1% 6.026719957555069 1.779801212561019
2.379924722121542 2.410923664087426 3.8764469557337

$2 1
2 , 1

2 ;;0% 5.798257477867752 0.484927829311834
3.141592653589793 2.094719300551341 10216
a
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