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Motivated by Heilmann and Lieb’s worldnn. N. V. Acad. Sci.l72 583(1971)]. We discuss energy level
crossings for the one-dimensional Hubbard model through the Bethe ansatz, constructing explicitly the degen-
erate eigenstates at the crossing points. After showing the existence of solutions for the Lieb—Wu equations
with one-down spin, we solve them numerically and construct Bethe-ansatz eigenstates. We thus verify all the
level crossings in the spectral flows observed by the numerical diagonalization method with one down-spin.
For each of the solutions we obtain its energy spectral flow along the interaction pardmétben, we
observe that some of the energy level crossings can not be explained in tebrsdgpendent symmetries.
Dynamical symmetries of the Hubbard model are fundamental for identifying each of the spectral lines at the
level crossing points. We show that the Bethe-ansatz eigenstates which degenerate at the points have distinct
sets of eigenvalues of the higher conserved operators. We also show a twofold permanent degeneracy in terms
of the Bethe-ansatz wave function.
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[. INTRODUCTION qguantities in classical integrable systems. The dynamical
symmetries for the Hubbard model are constructe(Riefs.

Degeneracies in the energy spectra of quantum systemi®—-14. Yuzbashyan, Altshuler and Shastry numerically
have close relationships with their symmetries. Actually, vonshowed that crossings in the spectral flows of the first three
Neumann and Wigner showed that degeneracies are moo®nserved operators never occur at the same valuke dhe
likely to occur for the systems with one or more symmetriesdynamical symmetries depend on the parameteaind they
than those without symmetrié$.To be more precise, if one are not considered as symmetries in the von Neumann-—
assumes that a quantum system is given by a real HamilWigner's theorem. Heilmann—Lieb level crossings are still
tonian matrix whose elements are expressed by independecnsidered to be accidental degeneracies.
parameters, in the case of no symmetry, two parameters hap- In the framework of the Bethe ansatz, we discuss in the
pen to take some prescribed values in order to bring two opaper energy level crossings for the one-dimensional Hub-
the eigenvalues into coincidence. Their theory reminds us dbard model. The Bethe-ansatz method provides information
the “non-crossing rule” in quantum chemistry, which stateson the eigenstates that cannot be easily obtained in the direct
that energy levels of orbitals of the same symmetry can nevatiagonalization of the Hamiltonian matrix. We set up the
cross each other along a reaction parameter. However, thellowing problems.
von Neumann—Wigner theorem does not give a proof for the (i) When two energy eigenvalues approach in numerical
non-crossing rule. It is possible that degeneracies appear itata as one parameter is varied, one may draw two alterna-
the systems without symmetries. Such degeneracies are réve spectral flows, a level crossing or level repulsiofo
ferred to as accidental degeneracies. In fact some examplesisure that genuine energy level crossings have happened,
of accidental degeneracies are numerically observed iwe must investigate the change of each eigenstate along the
molecules or triangular quantum billiards. parameteiJ.

The one-dimensional Hubbard model is one of the most (ii) Do the eigenstates have distinct dynamical symme-
significant models in condensed matter physics. The modeties at the level crossing points? In order to solve the prob-
also attracts a great interest of mathematical physicists due tem we assign each of the eigenstates the eigenvalues of the
its Bethe-ansatz solvabili§f Heilmann and Lieb numeri- higher conserved operators.
cally investigated energy spectral flows along the interaction It is indeed not easy to investigate these problems. For the
parametetJ for the system on a periodic six-site chain andtriangular quantum billiards with two parameters, Berry and
found many level crossings which cannot be accounted fowilkinson investigated the behavior of eigenstates along a
by the known symmetries such as translation,(8Cand circuit of the crossing point in the parameter space so that
particle-hole symmetries® They concluded that, if one takes they could verify the existence of genuine energy level
into account onlyJ-independent symmetries, the level cross-crossingé. For general quantum systems, it is hard in prac-
ings are accidental degeneracies, that is, a counter examgiee to construct quantum many-body eigenstates. The task is
of the non-crossing rule. Recently, Yuzbashyan, Altshuleralso not easy even for the systems that can be treated by the
and Shastry have suggested that the origin of the HeilmannBethe ansatz. In fact, it is nontrivial to obtain numerical so-
Lieb level crossings should be dynamical symmetries in thdutions to the Bethe-ansatz equations for a finite size system.
Hubbard modef. Here the dynamical symmetries are given For the sector of one down-spin, however, it is practically
by parameter-dependent operators, which are often callggossible to solve the Bethe-ansatz equations numerically.
higher conserved operators in association with conserved In the present paper, we prove the existence of solutions

0163-1829/2003/68)/07511414)/$20.00 68 075114-1 ©2003 The American Physical Society



AKINORI NISHINO AND TETSUO DEGUCHI PHYSICAL REVIEW B68, 075114 (2003

to the Lieb—Wu equations and then numerically solve themwhereU (e R-() is the interaction parameter. We consider
Here we generalize the method of Ref. 15. By using thehe system fot even throughout the paper.

numerical solutions, we analyze the behavior of each of the

degenerate eigenstates along the paranétét/e thus find A. U-independent and dynamical symmetries

several genuine level crossings of energy spectral flows with )

the sameU-independent symmetries. The merit of this In general, the symmetries of a guantum system are ex-
method is that the numerical solutions for the Lieb—wuPressed by operators which commute with its Hamiltonian.
equations provide not only the eigenvalues of the higher conThey are classmt_ad.lnto two families in the case of the Hub-
served operators but also the one-to-one correspondence ard quel; onels mdependentldfqnd ar!other depen'ds on
tween their spectral lines and eigenstates. As a consequen ,_We list some of thesg symmetries. First we consider the
we observe that all the common eigenspaces of the first thre -independent symmetriéDefine

higher conserved operators are one dimensional in the sub- Lio—1

spaces with the samd-independent symmetries. Further- . pe o PP, .. p©
more, when there arb-independent degeneracigserma- 7 |];[1 SLIL =i T sl'_T'[,l 12723 Loibe
nent degeneracigsin the spectral flow, the one-to-one (2.2

correspondence plays an essential role in assigning to each o (s) ot L .
the degenerate eigenstates its eigenvalues of the dynamiciere Pij”:=1—(Cis—Cjs) (Cis—Cjs), (i#]) are permutation
symmetries at the energy level crossing points. By using th@P€rators. The operatossandr correspond fo reflection and
explicit form of the Bethe ansatz wave functidfisye can 'translazuoanymmetr}es of the lattice, respectively. They sat-
derive the permanent degeneracies. We remark that the exi§fy ¢°=7=1. It is clear that they commute with the
tence of level crossings also gives a necessary condition fgfamiltonian (2.1).7,lbénoth_erU-mdependent symmetry is the
algebraic independence of the three higher conserved operd®4) symmetry.”** Define

tors in the subspaces.

L

This paper is organized as follows: first, in Sec. Il, we Sz"l 2 (Nii—ni))
summarize the known results for the Hubbard model and T2 e
prepare for the following sections. We list the known sym-
metries of the Hubbard model in Sec. Il A and review the L
Bethe ansatz method in Sec. Il B. In Sec. Il C we prove the S, ::2 cf}cii,
existence of solutions for the Lieb—Wu equations with one =1
down-spin following the approach developed in Ref. 15. .
Next, in Sec. lll, we analyze degeneracies in the energy S_=(S4),
spectrum of the Hubbard model by using both direct diago- . (2.3
nalization of the Hamiltonian matrix and the Bethe-ansatz 1
method. In Sec. Il A we describe twofold permanent degen- N2=5 21 (1=nj;—ny)),

eracies arising from a reflection symmetry of the lattice. In

Sec. Il B and Il C we investigate energy level crossings for L

the systems with two or three up-spins and one down-spin on 74 = (—)ijCm ,
a periodic six-site chain. We find some genuine energy level i=1

crossings and see that the degenerate eigenstates can be clas-

sified by the eigenvalues of the higher conserved operators. n_=(n)".

The final section is devoted to concluding remarks. .
g Both sets of operatorsS,,S..} and{#,,n-} give represen-

tations of the algebrsu(2) in the Fock space. They all com-
mute with the Hamiltoniari2.1), which leads to the symme-
We introduce the Hubbard model on a one-dimensionalry of type su(2)®su(2)=so(4). Furthermore it is known
periodicL-site chain. Let, andc;s,(ie Z/LZ,se{1,|}) be  thatthisso(4) symmetry lifts to the S@) group symmetry.
the creation and annihilation operators of electrons satisfyingror the later discussion, we define Casimir operators,
{cis.cit={cl.c/}=0 and{c;s,cf} = 8 5, and define the
number operators by1i3=:ciTScis. We consider the Fock
space of electrons with the vacuum std@. The one- L )
dimensional Hubbard model is described by the following W=t )+,
Hamiltonian acting on the Fock space:

IIl. SYMMETRIES AND BETHE-ANSATZ METHOD

S:=3(S,S_+S.S,)+5%,

which commute with all the operators {@.3).

L Next we introduce the dynamical symmetries given by the
H= _2 2 (CiTSCHl’SjL CL 1Cis) U-dependent operators. The@edependent operators them-
i=1s=7, selves are also commutative and are called conserved opera-
L tors in association with conserved quantities in classical in-
UE o E o E 21 tegrable systems. In Refs. 11 and 12, the first three conserved
U2 | iy ni| ; (2.9 o
=1 2 2 operators are explicitly given by
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L L
V- Z (CiTsCi+2,s_ CiT+2,sCis)+ v—1uU Z P (CiTSCi+1,5_ CiT+1,sCis)(ni,—s+ni+1,fs_ 1),

L

L
T T 3 )
Z = CISCI+3S+CI+3SCIS)+U21 SETL ((Cisci+2,s+Ci+2,sCis)(ni,fs+ni+1,fs+ni+2,fs_E)+(Ci+l,sci+2,s

t t 1ot t t 1 1
—Ci42sCi+16)(C |7sC|+1 s Ci+1-sCi,—s) T2(Ci Cit15— Ci+1Ci s)(C |7sCI+l s~ Cit1-sCi,—s) —(Nis—2)(Njy1-5—3)

—3(is—H)(nj_s—3)— u22 E

=1s=7

1
CISCI+lS+CI+lS IS)(nI 7sn|+1 s (ni,fs+ni+1,fs)+§)-

B. Bethe-ansatz method

The Bethe-ansatz method was applied to the Hubbar
model in Ref. 5. Here we give only the result. Iéthe the
number of electrons anlll that of down-spins. We may as-
sume M <N=<L due to particle-hole and spin reversal sym-
metries in the system. Lek={ki|i=1,2,... N},(Re(k;)

In order to obtain higher conserved operators systematically, 1
the transfer matrix approach similar to that of the XXZ Fi,(Ag y)= -
Heisenberg spin chain is develop@d!'31*The SG4) sym- ) N, Sinkp(y)+ = 1U/4
metry of such higher conserved operators is also verified in y-1 )
the framework of the transfer matrix approdch. No—Sinkpgy == 1U/4
The operator$r,S%,S,, 7%, 7,,1,,} give a commutative set J=1 N —sinkp(j)+—1U/4’
of operators including the Hamiltonian. Hence they can be
diagonalized simultaneously. where we have denoted I8y one of the shortest elements in
the symmetric groupSy on {1,2,... N} such that 1
<XQ(1)SXQ@)S T SXQ= <L, and byy7 the position of
the yth down-spin insg={Sq(1),So(2)» - - - :Sq(n)}- The Be-
e stateg2.4) give eigenstates of the Hamiltoniaﬂ.l) if
ki ,\o} satisfy the following equations:
N g—sink;—\—1U/4
B=1 \g—sink;+—1U/4’

e R/27R) denote a set of wave numbers of electrons and (2.5
N={\,Ja=12,... M} that of rapidites of down-spins. " \,—sink—\—1U/4 No—Ng—V—1U/2
Given a set of spin configuratis={s;|[i=1,2, ... N} with H H

N—M up-spins andv down-spins, the Bethe state with
andX\ has the following form:

K N;8)= 20 dhn(S)Ck s Ch oo Ch 5 [0). (2.4

o S

The coefficientsjy \(x;s) in (2.4) are expresséfl as

a(i9)= 2, signPQ)ey, A(So)

EGN

N
X exp( V= 12,1 kp(i)xQ(i)) ,

V—1U/2

ARr(g)

ARr(@) = AR(p)

Pk, 1 (SQ) = >

Re &y a<p )\R(a)_

M
X Hl Fro(Ar(») »Y5)
=

—sink;++y—1U/4 B(#a))\—)\BJr\/ 1u/2’

which are coupled nonlinear equations called Lieb—Wu
equations. The Lieb—Wu equations have not been solved
analytically. But it predicts some important results on ther-
modynamic properties of the system through Takahashi’s
string hypothesi§:2°-22

The Bethe state$2.4) are not only eigenstates of the
Hamiltonian(2.1) but also those of the translation operator
and the higher conserved operatbysand | ;. By using the
solutions{k; ,\ .} of the Lieb—Wu equation€.5), the eigen-
values ofr and{l,} are written as

7k\;s)=e"TCTUP K \:s), P=

L N
2—(2 ki)(modu,
m\i=1

Ik, N;s)=Eplk,\;s)  (n=1,2,3),

N (2.6

1
E,=E=-2D, coski+ 7 U(L=2N),
i=1

N
E,= —221 (sin(2k;)+ U sink;),
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N N
1
Es=—2, |2 cog3k)+3U cos{2ki)—§)+uzcoski> exp( V=12 kiL|=1.
=1 i=1
3 We consider the real solutions for the first equation
— ZUL. o
The P appearing in the eigenvalues ofindicates the total sinq—\= ZCO[( 7) (2.12

momentum of the system{There should be no confusion . o .
with the use oP in the coefficients of the Bethe states whereln the interval 6=q<2, its right-hand side hals branches
P denotes an element &y, .)

i i ; 2 1 2 1
We immediately find _Tr(g__)<q<_77 e+
L L 2 L 2
Sk \;s)=1(N=2M)[k\;S), (2.13
. 2.7) 2j—1]|
7k, N;8)=35(L—N)|K,\;S). Ce 5 i=1,2,...L;.

It is shown in Ref. 23 that each Bethe std#®4) with a . .
regular solution for the Lieb—Wu equatior@.5) corre- |f We seek a solutiom of (2.12) in one of the branches
sponds to the highest weight vector of a highest weight rept2-13. the solution is unique under the conditidh.>8
resentation obo(4), i.e., S, |k,\;s)= 7, |k,\;s)=0. Then (Ref. 15 aqd can be_ vyrltten as a function af, i.e., q
we find =g¢(\). Given a distinct set{¢;[i=1,2,... N}C{(2]
—1)/2j=1,2,...L} of the branches, the second equation
S|k, \;S)=S(S+1)|k,\;8), in (2.12 is satisfied when I.(/27T)EiN=lq€i()\)EZ. The be-

(2.9 havior of the solutiom=q,(\) tells us that
71k \;s)=n(n+1)[k,\;s),

with S:(N_—ZM)/Z and77=(L—I:I)/2. Hence, by applying lim L % qe.(h)IEN: (&il
the lowering operators  )",(0O=<n=N-2M) and 2w = i = 2
(7-)™,(0=m=<L—N) to the Bethe state$2.4), we also

have eigenstates of the Hubbard Hamilton(ard), Hence there exidl — 1 values of which give the following
integer values forl(/ZW)EiN:ngi()\):

. (2.19

A—*oo

[k, N5s5n,m)=(S2)"(7-)M[K,\; ), (2.9
which have the same eigenvalyés,} for the operator$l .} ! 1
me E Ei - E

as those ofk,\;s). The dimension of the representation with +
the highest weight vectofk,\;s) is (N—2M+1)(L—N

+1). By using Takahashi's string hypothesis for the BetheNote that sucH\} and integergm} are in one-to-one corre-
states(2.4) together with theso(4) symmetry, their combi- spondence due tdq,(\)/dA>0. It is straightforward that

j=1,2,...N—1].

natorial completeness is proved in Ref. 24. {ki=a,,(\),\} characterized by the indicef(;,m} give
(x)(N—1) solutions of the equatior(@.11).
C. Lieb—Wu equations with one down-spin Next we consider th&-A-string solutions. We assume the

We try to find regular solutions of the Lieb—Wu equationsforms of solutions as

(2.5 in the case when the system has only one down-spin T P _
following the discussion in Ref. 15. In this case, the string kieRf2mR, (i=12,...N=2),
hypothesi&’ predicts that two types of solutions exist: one is

e g ¢ kn-1=¢— V=16 k=01,

the solution with only real wave numbefk;} and another

includes two complex wave numbers. First we consider thgyhere 0<¢ <27 and £>0. Note thatky_; andky form a
real wavenumber solutions. F& =1, the Lieb—Wu equa- complex conjugate pair which is referred to as
tions (2.9 reduce to k-A-two-string. Then the first equations {8.10 are rewrit-

ten as the following equations with real variables:
— N—sinki—+—1U/4

el Hit=—— (i=12,...N), U (kL
A =sinki+y—1U/4 sinki—)\=zcot('7) (i=12,...N=2),
(2.10
ﬁ A—sink —\-1U/4_ (2.153
=1 N—sink+—1U/4 U sin(ZL)
sin{ coshé— A= — , (2.15
These are equivalent to the following equations: £ ¢ 4 coshéL)—cog{L) (2150
. U kil—) sinh(£L)
sinki—\= —coff —|, inhé= — —
Ink; 4 f( 2 cos sinhé& 4 cost£L)—cos7L)" (2.159

(2.12)
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On the other hand, the second equatior{arl0 is equiva- N-2 1\ L N-2 1\ 3L
lent to the following condition: E i+ |+ z<m< 2 bi—=|+—,
i=1 2 2 i=1 2 2
N2 2 ;
S k+27="7m (me{0l,.. NL-1}). that is,
i=1
N—2
2.1 1 L
(210 me|2 €i+§+§+jj=1,2,...L—N+1].
In the same way as the previous case, if we consider a solu- =1

tion of each equatiof2.153 in one of the branche@.13), it (2.20
can be written as a function of. Given a distinct set¢;|i . (2

=1,2,...N—2} of indices specifying the branché¢g.13), Note that |In1_¢m§(7\)—§m_2i(€it%)
we express the solutions 0f2.153 as k=g, (\),(i for the abovem. We expect that, for the —N+ 1 values of
=1,2,...N=2). Then, from the relatior2.16, the ¢ is ™M allowed in (2.20, the equation(2.15h with &(\), and

which is well defined

also written as a function of, {N)

o 1 N2 N s T 1 Z \ \

(=L0)=pm=5 3 a0, (2.17) =sin Tm=3 2 dg (M) Jcosité(N))
for fixed {¢;} andm. For an illustration, we considé2.15b sin(E > Qe.()\))
and(2.159 in the caseN=2. Since/ does not depend ox B E 24 :
in the case, the equatioif®.15h and (2.159 decouple into 4 L .
cog 5 2 A (\) |~ (=)MeosHENL)
|
FS'”(E”‘)‘:OS*‘& =:9(dg, (M), EN)), (2.21)
2.1
U (2.18 determines\. In fact, sinceq{i()\) and &(\) are continuous
sinhé= — —Wf(Z)(g), functions with respect ta and
4 co T .
lim g(ae, (M), &(N))
where Mo
. 277' +1 (2)
2 sinh(£L) “O T ) s
12(6)= -
coshél)—(—1) gis a continuous and finite function with respecitoHence
tanh(£L/2) for m  odd, theLre exists a solution _in (2.21).As a consequence we h_ave
= (n=2)(L—N+1) solutions corresponding to the indices
coth(éL/2) for m even. e, .m
i .

One finds from graphical discussiSrthat, if the condition Let us see the relation between the string hypotAeaixd

UL>8 is satisfied, the second equation determines aful results. Leti(;; reduce modulol(_i) into_the interval
unique &(>0) for w/2<(w/L)m<(3m/2). We denote it as —LN/2,L/2] and express them a$l™’}. Settmg J=m
£® (me{(Li2)+j]j=1,2,...L—1}). The first equation —Ei=l€,iu_fgr the real wave number so!utlons add=L
in (2.18 immediately gives\ with the £ . Let us consider —~ M*=i=1 ¢ for thek-A-two-string solution, we have

the caseN>2. By inserting(2.17 into (2.159, we have

. 1 L L
)74 — — — (N =
| U I\WeZ+ 5 2<I =5
Slnhfz—mf(g)y N 1
(2.19 JeZ+—=, [J==(N-2), (2.22
. 2 2
sinh(&L)
f(&):= L . N .
costL) —(—)™cog 5 2, dy (M) Yetts, [V<5(L-N).

Sincef(£)>0 for £>0 in the similar to the casd=2, this  One sees that the indicék);J;J’} characterizing the regu-
determines an uniqué as a function ofn if and only if |ar solutions of the Lieb—Wu equations wikh=1 are noth-
m2<{(N)=(m/L)m—3Z2;q,(\)<3w/2. By using(2.14,  ing but those appearing in the string hypothé&ighus we
it is sufficient to have an unique solution .19 that the  have shown for the Lieb—Wu equatiof%5) with M =1 that

integerm satisfies there exist the same number of solutions as those predicted
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by the string hypothesis. In the next section, we numericallyobserved in Ref. 7 can be classified by the eigenvalues of the
calculate the solutions {k;,\|[i=1,2,...N} and higher conserved operators. We verify their assertion at the
1k, £, ENi=1,2,... N—2} for L=6. level of eigenstates in the sector of one down-spin. Here we
note that the degeneracies discussed in Refs. 7,8 and 9 are in
the half-filled Hubbard model with zero magnetization, that
is, in the sector of three down-spins. The strategy in the

Let us review the von Neumann—Wigner discussion orP'€Sent paper is given by the following. o
the spectra of quantum systems. We assume that a Hamil- (i) We give a matrix representation of the Hamiltonian in
tonian is described by a finite-dimensional real symmetric@ _Serain - common eigenspace of the operators
matrix whose elements are regarded as random independenftS+Sz. 7, 7;}, which is referred to as desymmetrization
parameters. If the system has no symmetry, we call its spe@f the corresponding symmetries. We numerically give its
tra a “pure sequence.” If there exist some symmetries in thegigenvalues from the direct diagonalizafiSiior several val-
system, its spectra is given by a superposition of pure sed€s ofU. . _ .
quences, which we call a “mixed sequence.” The von (||)_We give the numerical solutions of the Lieb—Wu
Neumann—Wigner theorem reads as follows: one must adju§duations2.5) in several values obl. From the correspon-
two parameters to bring two of the eigenvalues belonging tél€nce between energy spectral flows and the Bethe states, we
a pure sequence into coincidence while in a mixed sequencéerify whether or not genuine energy level crossings exist.
one obtain a degeneracy by varying only one paraméter. (i) We also diagonalize other conserved c_)perators
Hence the degeneracies in pure sequences are very unlikdlle.!3} and see the correspondence between their spectral
to be found if we choose the values of parameters in affows and the Bethe states. We analyze the structure of their

arbitrary manner. Such degeneracies in pure sequences &egeneracies. o

referred to as accidental degeneracies. We discuss only the systems containing two or three up-
Applying the above discussion, we study the HubbardSPins and one down-spin, which do not have particle-hole

gives a flow in the above space of parameters. As we hav/dave some nontrivial results on degeneracies.

mentioned in the preceding section, the system has several

symmetries. Since the operatdrs $?,S,, %%, 7,} are mutu- A. Twofold permanent degeneracies

ally commutative, they can be simultaneously diagonalized The translation and the SO symmetries produce

by an orthogonal transformation. Through the same orthogoy.ingependent degeneracies in energy spectral flows. We call
nal transformation, the Hamiltonian matrix breaks up 'ntOU-independent degeneracies permanent degeneracies. Fur-
diagonal blocks corresponding to the common eigenspacggfermore, after the desymmetrization of theséndependent

of {r, 3215_2,772, 7.} Notice that the common eigenspaces aresymmetries, we often observe another twofold permanent de-
characterized by the set of quantum numH&sM,P,S,7}.  generacies associated with a reflection symmetry of the
Energy eigenvalues from the blocks with different quantumiattice? In fact, we can explain them in terms of the Bethe-
numbers may degenerate due to translation anSym-  ansatz wave function. Here we note that, due to the relation
metries. But all the blocks do not give a pure sequence; formzm.fl, the reflection operatar acts only on the eigens-
example, the blocks with=N=2M have particle-hole and paces ofr with the eigenvalue 1 or-1, that is, the sub-

spin reversal symmetries. However, after considering all thgpaces of the Fock space with the total moment®r0
known U-independent symmetries, the spectra also haveg, | /o

many degeneracies at special valuedJofi.e., level cross- Let us investigate the twofold permanent degeneracies
ings in the spectral flows along the parametef Thus the  gue 1o the reflection operatar in the framework of the

flow determined by the Hamiltoniari2.1) runs through pathe ansatz method. Even in the subspaces RiD or
several special values of parameters that give accident@ls the Bethe states do not always diagonalize the operator

degeneracies. _ _ o. Indeed it is easy to verify that, if we apply the operator
Let us discuss how to numerically determine level CroSSiy one of the eigenvectori, \;s;m,n), then its total mo-

Ings, in particular, for the case of accidental degeneraciesyonym and eigenvalues 6f,,! are negated and those of
One notices that the numerical diagonalization of the Hamil- 2,8, 77, } do not change since
tonian is not enough to find crossings of energy spectrai e el

Ill. ENERGY LEVEL CROSSINGS

flows since apparent crossings may be just close approaches or=1t0, &lytlyo=0,
of two eigenvalue$.To verify the existence of genuine level (3.1
crossings, we must investigate the behavior of spectral flows olon-1=lsn-10, [0,S,+]=[0,7,+]=0.

for each eigenstate. The Bethe-ansatz method is a very effe
tive tool to establish this. Here we restrict our investigation
to the systems with one down-spin where we have shown th
existence of solutions for the Lieb—Wu equatiof@s5) in
Sec. I C. We have seen in Sec. Il A that the Hubbard model
has the dynamical symmetries in addition to thewhere —k={-k[i=12,...N} and —-A={-\,a
U-independent symmetries. The recent pagminted out =1,2,... M}. Note that, if{k;,\,} is a solution for the
that the degenerate eigenstates at the accidental degeneradiesh—Wu equationg2.5), then so is{—k; ,—\,}. The rela-

%hese facts are verified more directly from the following
@Iation:

alk,\;s;n,my=(—)M|—k,—\;s;n,m), (3.2
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1.5 - - - - spectral flows for 8&<u<1. Here the vertical line in the fig-
ure indicates the energl divided by U+4. We confirm
from the numerical data that there is no permanent degen-
eracy. We observe a close approach of two energy levels in

0.5 0.5<u<0.6, which seems to be an energy level crossing.
Our first purpose is to show that a genuine energy level
wiF 0 crossing has been found in Fig. 1. In the case of triangular

quantum billiardg, topological properties of their eigenstates
were studied to verify the existence of energy level cross-
ings. Here we employ the Bethe-ansatz method to verify en-
ergy level crossings in the level of eigenstates. It is clear that,
sinceS=S,=1 and = 7,= 2, all the eigenstates in the sub-

A5 - - - - space are the Bethe states characterized by the indices
0 02 04 06 08 1 {11:3:3'} satisfying(2.22. By using the procedure in Sec.
u Il C, we numerically give real wave number solutions with
— 3 i _ H
FIG. 1. Spectral flowsE from direct diagonalization for P_(_2i=1|(|).+ J)(moq 6)=2(mod 6) and k-A-two-string
—6,N=3,M=1, P=2,5=1, andy=2. solutions with P= (1Y~ J")(mod 6)=2(mod 6) to calcu-

late the corresponding energy eigenvalues. The correspon-

tion (3.2) means that, if the seftk;;\,} does not coincide dence between energy eigenvalues and the Bethe states at
with {—k,;—\,} as a set, we have a twofold permanentu=0-3 and 0.8 is displayed on Table I. Here we deal with the

degeneracy in energy spectral flows. On the other hand, {€0—Wu equations only in the case when the condition
(kA ={—k:—\, as a set, then the eigenstatesU'—>8 is satisfied. One sees that the results des 1,(U
|k,\;s;m,n) have the eigenvalug,=0 for the second con- —) read as

served operatdr,, which follows from the formulas i2.6). E 0 for real wave number solutions

It should be noted that, to see the existence of such twofold  |jj —— = ’
permanent degeneracies, we must solve the Lieb—-Wu equa- u—-U+4 |1 fork—A—two—string solutions,

tions (2.9 which agrees with those conjectured by the string hypothesis.

We remark that the energy eigenvalues obtained by the solu-
B. Spectral flows:L=6N=3M=1 tions of the Lieb—Wu equations coincide with those obtained

We now study the system with two up-spins and onedy the direct diagonalization of the Hamiltonian matrix
down-spin on benzeneL&6N=3M=1). Note thatS,  Within an error ofO(10™*%). Thus, by combining the results
=1 and 5,=$ in this case. We consider the subspace charl Fig. 1 with those on Table I, we obtain the behavior of
acterized by the set of quantum numbdR=2S=%,,  €nergy spectral flows for each eigenstate. We conclude that,
=21, There is no mor&J-independent symmetry in the sub- in 0.5<u<0.6, there exists an energy level crossing between
space, and we shall actually find one of the simplest nontwo Bethe states indexed Hy-3,3,3;3;} and{3;;—3}.
trivial energy level crossings there. We have a matrix repre- Next we show that, if we take into account dynamical
sentation of the Hamiltonian of 11 dimension. We set symmetries, each one-dimensional component of the degen-
:=U/(U+4) and numerically diagonalize the Hamiltonian erate eigenstates at the energy level crossing point can be
matrix for several values ofi. Figure 1 shows the energy distinguished from the other degenerate eigenstates. In the

TABLE |. E obtained by the Bethe-ansatz method.

E/(U+4)
{1®:3;9} u=0.3 u=0.8 u=1.0
5.1 1.005067890492477 0.9123001584634441 1
{-3:3 0.6786192438740763 0.8733443175466562 1
(2:-1 0.5258327541688925 0.8031341881381975 1
{-32.3.3:3) 0.4763789806072449 0.1794157938506165 0
-3 0.144465968291432 0.7105015978852069 1
{(-3,3,5,-3) —0.03872530249182613 0.06204279614552415 0
{(-3,-3.3;-3} —0.05950271399595123 0.01208774945632921 0
{-3.3.5:3) —0.1292149141454342 —0.008632714879121293 0
{-3.-3.-3:3.} —0.1472919189221319 —0.03595459977202529 0
{-3.3.5,-3)} —0.447930438860179 —0.0995848490575883 0
{-3.3.3:11 —0.6326995490186007 —0.1586544377772396 0
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E,
U+4

FIG. 2. Spectral flowsE, from direct diagonalization foi -1
=6,N=3,M=1, P=2,S=3, andyp=3.

1.5 -2
0.2 04 06 0.8 1 0.2 0.4 0.6 0.8 1
similar way to the energy eigenvalues, the eigenvalues of the .
second conserved operatorare obtained by both their di- 'S:I?'s f Spec}ral 3ﬂ°W sets BE,) characterized by
rect diagonalization and the solutions of the Lieb—Wu equai ~2:2,2;2:} and {3;;—3} for the system withl=6,N=3,M
tions, which are displayed in Fig. 2 and Tabldthe vertical =1, P=2,S=3, and»=3, and their projections onto the -E

line in the figure also indicates the eigenvaledivided by ~ andU-E; planes.
U+4). Note that there is no permanent degeneracy. We ob- _ ) ) _
serve that the spectral flows indexed py $,2,5;%:} and  ansatz method plays an essential role in getting such picture.

21515121 . .
{3::—2} in Fig. 2 never have crossings. Hence the Bethelt seems to be rare that the eigenvalues of the transfer matrix

. ] simultaneously degenerate. We comment that the XXZ
states indexed by—3,3,3;3;} and{3;;—3} belong to dif-  Heisenberg spin chain at root of unity has such degeneracies
ferent eigenspaces 0§, that is, the two Bethe states have ain the transfer matri®> where one sees symmetries defined
different dynamical symmetry. Thus all the common eigensonly at the special values of parameters.
paces of the operatof$, | ,} v;/ith the set of quantum num-
bers{P=2,S=S,=3,»=7,=3} are one dimensional. .

The fact that the common eigenspacegéfl,} are one C. Spectral flows:L =6N=4M=1
dimensional becomes clearer by investigating the spectral We give an example where the eigenvalleandE, de-
flows of the transfer matrix, i.e., the spectral flow sets ofgenerate at the same valueldfWe consider the system with
conserved operators. Figure 3 shows that, if we consider théaree up-spins and one down-spin on benzehe=§,N
eigenvalue setsE,E,} for two of the eigenvectors along the =4,M =1). In this case, we hag,= n,=1. We investigate
parametetd, there is no crossing while their projection onto the degeneracies of energy spectral flows in the subspace
the U—E plane has a crossing. One notices that the Bethecharacterized by the set of quantum numbgps=0,S= 7

TABLE Il. E, obtained by the Bethe-ansatz method.

E,/(U+4)

10:3:31 u=0.3 u=0.8
(—5,-3 _1.14 1.373365167833861 3.179687928057096
(-53 111 0.4945223061494427 1.493828870394599
(-3 0.3397777976721251 1.117455777165958
{-3.3.5:31} 0.2072047205613698 0.01309975997192909
{-143,-11 0.01863957159436896 —0.4919569001978466
! —0.02590156370174922 —0.6254191358761778
(-335-1y —0.1828197100832381 —0.9968145682615939
(3-2 —0.3289755229197938 —0.3593561303568662
(-3,25:40 —0.5374256073807519 —1.059175160002318
T —0.9702596151665846 —1.610420144313048
-43.3:4y —1.210851678154266 —2.13317348301527
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1.5 pm

Nﬁ'
|3
0 0.2 0.4 0.6 0.8 1
/3 /3
FIG. 4. Spectral flowsE from direct diagonalization foi. FIG. 5. Spectral flowsE, from direct diagonalization fot
=6,N=4,M=1, P=0, andS=75=1. =6,N=4,M=1, P=0, andS=75=1.

=1}; hence we can expect all the eigenstates therein to bg ). 1. 1/ @) e . ko

the Bethe states. The subspace is 14 dimensions. Figureﬁzé A1 90 e kM ki A asa
shows the energy spectral flows obtained by the numericag
diagonalization of the Hamiltonian matrix foQuU<<1. Also
listed on Table Il are the energy eigenvalues given by nu
merical solutions for the Lieb—Wu equationswat 0.4 and
0.8; we show the numerical solutions in the Appendix. We
observe asi—1,(U—) that

t, two Bethe states characterized by these indices are in a
ermanent degeneracy. In fact, among the 14 Bethe states,
eight of them are in the twofold permanent degeneracies as-
sociated with the reflection symmetry. We find that the Bethe
states indexed by—3,—3,3%,5;0;} and{—3,3;;0} has an
energy level crossing at=0.5, (U=4). Although the exis-
tence of this energy level crossing is also verified from the
_ 1 forreal wave number solutions characteristic equation of the Ha_lmiltor_lian matrix, we need
lim iz 2 ' the Bethe_-ansatz method to clarify which Bethe states have
u—=Ut4 |1 fork—A—two—string solutions, the crossing.

We discuss whether or not each of the above degenerate
which are also derived from the string hypotheSislere we  eigenstates have distinct eigenvalues of the higher conserved
note that the results from the two different methods aboveperators. In the similar way to the previous case, we con-
coincide within an error of0(10 %%, which give an evi- sider the correspondence between the spectral flows of the
dence for the validity of the Bethe-ansatz method. From Figsecond conserved operalgrand the Bethe states, which is
4 and Table I, we see the correspondence between the edisplayed in Fig. 5 and Table IV. As is described in Sec.
ergy spectral flows and the indicgs";J;J'} (2.22 charac- Il A, if we express the eigenvalue df, for the eigenstate
terizing the Bethe states. The correspondence shows that,|K,\;s) asE,, that for the stater|k,\;s) is — E,. In particu-

TABLE lll. E obtained by the Bethe-ansatz method.

E/(U+4)
1©:3:3% u=0.4 u=0.8 u=1.0
{-3,3;;0 0.9497682678087262 0.5932037077099968 0.5
(-23;:-1 0.5228330155542626 0.4784624958920988 0.5
{-22:1} 0.5228330155542626 0.4784624958920990 0.5
{330 0.3420419258315002 0.4083645387410650 0.5
{(-33::-1) 0.09563282828838615 0.3370068842393331 0.5
{(-13:1) 0.09563282828838634 0.3370068842393334 0.5
{-3,-3,3.3,0} 0.0307824371531894 —0.2476848090979949 -0.5
{—3,3;,0} —0.03078243715318940 0.2476848090979948 0.5
{-3,-3%.3.3:1;} —0.09563282828838634 —0.3370068842393332 -0.5
{-3,-3.3.3;-1;} —0.09563282828838632 —0.3370068842393332 -0.5
{-3,-3.3.2;0;} —0.3420419258315001 —0.4083645387410647 -0.5
{-3,-3.3.3:1;) —0.5228330155542629 —0.4784624958920988 -0.5
{-3,-3.3.3;-1;) —0.5228330155542631 —0.4784624958920992 -0.5
{-3,-3.3.3.0;) —0.9497682678087262 —0.5932037077099968 -0.5
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TABLE IV. E, obtained by the Bethe-ansatz method.

E,/(U+4)
1®:3:31% u=0.4 u=0.8
(-3,-3.3.5-13} 1.009981725805320 1.219335507531004
{-3.3:1 1.009981725805319 1.219335507531009
{(-3,-%.3.5:13) 0.4769034635429986 1.068045373602690
(-3i.-1 0.4769034635429980 1.068045373602692
{-3.-3.3.3:0} 0 0
{-3.-2.7.3:0} 0 0
{-3.-%.3.3:0} 0 0
{~3.3::0} 0 0
{~3.3:0) 0 0
{~3.3:0) 0 °
{-2,-%333%-1} —0.4769034635429986 —1.068045373602690
{-3.3:1) —0.4769034635429986 —1.068045373602689
{-3,-3.3.3:1;) —1.009981725805320 —1.219335507531004
{(-3.3:-1} —1.009981725805319 —1.219335507531006
lar, if {11;3;3"1={-1M:-73;-3", ie., {k;\}={—k;; 0.8 given by the Bethe-ansatz method, respectively. Here we

—\}, the state hag€,=0. Figure 5 and Table IV indeed note that the vertical line in the figure indicates the eigen-
show that two eigenstates whose energy spectral flows are iralue E; divided by U2+4. The eigenstates in a twofold
a permanent degeneracy belong to the different eigenspacpsrmanent degeneracy in the energy spectral flows also per-
of I, and there are 6€ 14— 8) states in the eigenspacelgf  manently degenerate in the spectral flows-pfFigure 6 and
with E,=0. Thus we may conclude that the dynamical sym-Table V tell us that the eigenvaluds; of the eigenstates
metry|, “accounts for” all the twofold permanent degenera- indexed by, —%,—3,3,3,0;} and{— 3,3;;0} never have de-
cies in the energy spectral flows which are produced by thgeneracies in &u<1. Hence they belong to the different
reflection symmetry. It is a further remarkable fact that botheigenspaces df; and the energy level crossing @t 0.5 is
the Bethe states indexed by—3,—3,3,3;0;} and *“accounted for” by the third dynamical symmetry. Thus
{—3.,3;;0}, which has an energy level crossing, belong toall the common eigenspaces {#l,l,,l3} with the set of
the same eigenspaces ¢§ with E,=0. Hence, atu quantum numbers {P=0S=S,=5=7,=1} are one
=0.5,(U=4), the two Bethe states cannot be distinguishedlimensional.
from their eigenvalues dfr,S?,S,, %%, 7, ,H,1,}. We give some comments on the results. The origin of the
We have to investigate the spectral flows of higher contwofold permanent degeneracies in Fig. 4 has not been clari-
served operators. Displayed in Fig. 6 and Table V are thdied until we obtain the correspondence between the energy
spectral flows of the third conserved operdtpobtained by  spectral flows and the Bethe states. Indeed we have found
its direct diagonalization and its eigenvaluesuat0.3 and that they are due to the reflection symmetry. At first sight,
there is no crossing at the same valueuah the spectral
3 . . , . flows in Fig. 4, 5, and 6. But we must not immediately con-
clude that the energy level crossing in Fig. 4 is due to the
dynamical symmetries since the spectral flowd pand|;
also include permanent degeneracies. Actually the eigen-
states that have an energy level crossing in Fig. 4 perma-
nently degenerate in the spectral flowslgfin Fig. 5. Thus
the correspondence between the spectral flows and the Bethe
states is crucial in the discussion above.

IV. CONCLUDING REMARKS

We have studied degeneracies in the energy spectrum of
the one-dimensional Hubbard model with one down-spin on
-3 ' ' ' ' benzene. The energy spectral flows have been obtained
' ' ' through the two approaches: direct diagonalization of the
Hamiltonian matrix and the Bethe-ansatz method. As is

FIG. 6. Spectral flowsE; from direct diagonalization fol noted in Ref. 7, the former approach does not always deter-
=6,N=4,M=1, P=0, andS=n=1. mine the energy spectral flows since, if two of eigenvalues
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TABLE V. E; obtained by the Bethe-ansatz method.

Es/(U%+4)
10:3;31 u=0.4 u=0.8
{-3.-%3.503 2.073222007147403 1.802629509710799
(330 1.421598188795819 0.3580668402927611
(~55.0) 1.038079524262059 1.652488231566702
(-5,-31%1, 0.5951023372314052 0.7147279328379515
(-5-135 94 0.5951023372314052 0.7147279328379515
(-3.%:-1 0.4301781122067006 0.6834852944297134
(-35.q 0.4301781122066977 0.6834852944296976
(-5-11342 —0.4301781122066989 —0.6834852944297066
(-3 115 194 —0.4301781122066986 —0.6834852944297066
(-1 —0.5951023372314045 —0.7147279328379513
(-13.1) —0.5951023372314060 —0.7147279328379495
{~3.-3.3.3:0;} —1.038079524262058 —1.652488231566708
{-3,-3.3.3:0;} —1.421598188795818 —0.3580668402927629
(-1i:0 —2.073222007147403 —1.802629509710803

approach in numerical data, there are alternative spectr&®ur numerical solutions for the Lieb—Wu equatio(s5)
flows that may be drawn from the data. To employ the latterimmediately gives their values fotU>8. We have
we have presented a procedure for giving numerical solualso verified that these eigenvalues never degenerate
tions of the Lieb—Wu equations faJL>8. Combining the  simultaneously.
two approaches, we have shown that some energy spectral Qur studies on the spectral flows of conserved operators
flows have crossings which cannot be understood by thgupport several assumptions that have been believed for the
U-independent symmetries. We have investigated the spegjybbard model and other Bethe-ansatz solvable models. One
tral flows of the higher conserved operatdgsandls in the s the one-to-one correspondence between solutions of the
same way and have found that the degenerate eigenstates g{gp_\y equations and linearly independent eigenstates. We
classified by thg d)_/nam|cal symmetries. have found that all the common eigenspaces of conserved
As we have indicated, the transfer matrix approach Sys‘bperators{ln} are one dimensional in several subspaces char-

Femaﬂcally provides hlgher conserved operators. Although 'tacterized by the sets of quantum numb@k§M,P,S, 7},
is not so easy to see their explicit form, their eigenvalues can

be written as functions of the solutions for the Lieb—WuWhICh shows linear independence of the eigenvectors

equations(2.5) by using the eigenvalues of the transferthereln. Another is the qlgebre_uc independence of the_ con-
matrix 2827 First five of them are given by served operator§l ,}. As is easily found, two commutative

matrices which have the same type of degeneracy are not

N algebraically independent since one of the two matrices can

E,= 2 en(ki), be expressed by a linear combination of powers of another.

i=1 In our situations, the energy spectral flows have crossings at
several values o) which do not produce degeneracies for

ei(k)=—2cosk—3U, the other conserved operatdys This fact gives a necessary
condition for the algebraic independencetbandl .
e5(k)=—2 sin(2k) — 2U sink, We also remark that our discussion on the Lieb—Wu equa-
tions in Sec. Il C give an evidence for the validity of the
es(k)=2 cog3k) +2 cosk+U(3 cog2k)— 1) counting of states in Takahashi’s string hypothesis. It is in-
- - teresting to generalize our procedure to that with two or
+zU%cosk—35U°, more down-spins, which enables one to analyze the energy

level crossings in the Heilmann and Lieb situatidns.
e4(k) =2 sin(4k) + §sin(2k) + U (4 sin(3k) — 3sink)

+2U2?sin(2k),
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APPENDIX: NUMERICAL SOLUTIONS
OF LIEB -WU EQUATION

U
sinki=zcoi(3ki) (i=1,2), sinhé=—

U sinh(6¢)
4 cosh6é)—1°

Following the procedure demonstrated in Sec. Il C, weWe observe below that the solutions indexed py 3,

3

for the solutions indexed b1 ();J; 3"} ={—10);-J3:-J3"},  are

that is, {k;;A}={—k;; —\}, the Lieb—Wu equation$2.5)
decouple as follows; sincEi“zlkizo (mod 27) and\=0,

the real wave number solutions can be given{ky,k,,27

—ky,2m— k4 ;A =0} satisfying

sink; =%cot(3ki) (i=1,2),

u:_0.4
{1;3;3'}

Ky
Ks

throughx=e

ka
Kq

give the numerical solutiongk; ;\} of the Lieb—Wu equa- —3%,3,3;1;} and{—3,3,3;;

tions (2.5 for L=6N=4M=1P=0, andS=n»=1. Here,

1} share the samg. The simi-
lar situation is seen in other pairs of solutions. Indeed they

in the relation of complementary solutions by

Woynarovich? that is, they give eightdistinct solutions of
the eighth-order algebraic equation

X8(x2— 2= L(N++/—1U/4) —1)
—(x2—2J=1(\—\-1U/4)—1)=0,

V=1k

3.938730108910538
1.251266816118337
4.051708143729197
0.6064241499221595
3.483744280817521
1.174388012833835
3.938730108910538
0.3611421622080508
4.078300853771271
0.7271767083756111
4.646457319558159
0.1590202425887225
5.031918491061250

5.031918491061250
2.344455198269048
5.108797294345751
2.799441026362065
5.676761157257427
2.231477163450389
5.922043144971536
2.344455198269048
6.124165064590864
1.636727987621427
5.556008598803976
2.204884453408315
5.922043144971536

)
0.7390790775734128
—0.7390790775734128
%0
1.131437583776552

—1.131437583776552

0.3611421622080508 1.251266816118337 %0
{1;3;37} Ky ka

4 ¢ A
{—%2,5:;0 3.938730108910538 2.344455198269048

3.141592653589794 0.6481740825183825 —1x10° %
{-5.3:-1} 3.349805335791242 1.152236997712285

4.032164140427823 0.9264247935487532 —1.131437583776552
{—%,3:;1} 5.130948309467302 2.933379971388344

2.251021166751764 0.9264247935487532 1.131437583776552
{-%,%:.0} 5.03191849106125 1.251266816118337

3.141592653589793 0.6481740825183825 ~%0
{—%,%::-1} 4.833550063047541 0.2051607987234935

3.763829876294069 0.7358326337961154 —0.7390790775734128
{—%.%::1} 6.078024508456093 1.449635244132045

2.519355430885517 0.7358326337961154 0.7390790775734128
{—4%,%:;0} 5.922043144971536 0.3611421622080508

3.141592653589793
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u= 0.8
10:3;3} Ky Ky
ks kg A
{-5,-%,3,5:0} 3.709764868570788 4.793788787327027
1.489396519852559 2.573420438608797 ~%0

3.950200892165781
0.7483113471533719
3.420884176661565
1.277628062657589
3.709764868570789
0.4849278293118341
3.96270066619563
0.7650646846850695
4.484551886723044
0.2432134641576561
4.793788787327027

5.005557244521997
2.862301130518022
5.534873960026214
2.332984415013805
5.798257477867752
2.573420438608798 %0
6.03997184302193

1.798633420456542
5.518120622494517
2.320484640983956
5.798257477867752

3.876446955733767

—3.876446955733767

4.232098651896293

—4.232098651896293

0.4849278293118341 1.489396519852559 ~1%0
{19,3;97} Ky k

4 & A
{—5.%;;00 3.70976486857079 2.573420438608798

3.141592653589792 2.094719300551342 X 1§15
(—5.3:-1) 3.404556288703187 1.266195169893996

3.947809577880995 2.454678139195706 — 4.232098651896293
(—3.5:1 5.016990137285591 2.8786290184764

2.335375729298592 2.454678139195706 4.232098651896293
{—%.3:;0 4.793788787327028 1.48939651985256

3.141592653589793 2.094719300551342 X 12715
(—3i:-1) 4.503384094618568 0.2564653496245172

3.903260585058044 2.410923664087426 —3.876446955733767
(—13:1 6.026719957555069 1.779801212561019

2.379924722121542 2.410923664087426 3.876446955733767
(-0 5.798257477867752 0.484927829311834

3.141592653589793 2.094719300551341 ~40
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