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Impurity effects in unconventional density waves in the unitary limit

Balazs Daa
The Abdus Salam ICTP, Strada Costiera 11, 1-34014, Trieste, Italy

Attila Virosztek
Department of Physics, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
and Research Institute for Solid State Physics and Optics, P.O.Box 49, H-1525 Budapest, Hungary

Kazumi Maki
Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484, USA
(Received 20 February 2003; revised manuscript received 27 May 2003; published 8 Augyst 2003

We investigate the effect of strong, nonmagnetic impurities on quasi-one-dimensional conventional and
unconventional density wavés/DW). The conventional case remains unaffected similarly to s-wave super-
conductors in the presence of weak, nhonmagnetic impurities. The thermodynamic properties of UDW were
found to be identical to those ofd&awave superconductor in the unitary limit. The real and imaginary part of
the optical conductivity is determined for electric fields applied in the perpendicular directions. A structure can
be present corresponding to excitations from the bound state at the Fermi energy to the gap maximum, in
addition to the usual peak an2In the dc limit, universal electric conductivity is found.
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[. INTRODUCTION On the other hand, since conventional DW were mainly
investigated in the Born scattering limit, it is instructive to
The existence and behavior of conventioifieé., with  study the effect of unitary scatterers on this state, partly to
constant gap spin and charge density wavéSDW and complete the picture and partly due the interesting physics of
CDW) is well documented.The thermodynamics of these this subject.
systems was found to be very close to those ofsavave In this paper, we study impurity effects on quasi-one-
BCS superconductor due to the similar, fully gapped densitylimensional conventional and unconventional density waves
of states but the transport properties are completely differentt T=0. The basic advantage of quasi—one dimensionality is
After the discovery of unconventional superconductors, thehat the nesting condition can be fulfilled at arbitrary fillings.
extension of the field of density wavéBW) into DW with  First we examine the effect of resonant scatterers on conven-
wave-vector dependent gdgermed unconventiongallooks  tional density waves. Interestingly, the density of states and
natural. In fact, after the earlier proposals in the context ofne thermodynamics remains unchanged due to infinitely
the excitonic insulatot? this topic was rediscovered in the strong impurities, similar to the effect of nonmagnetic impu-
early 90's in various dimensions and systém€.Since then, ities in s-wave superconductors in the Born liffit® This

the realization of unconventional or nodal density wabes surprising result follows from the fact that the nonmagnetic

looks more and more possible: nonsuperconducting phase

transitions without charge or spin ordering have been delMmpurity enhances the renormalized order paramaigin

tected in a number of materials and one of the possible ex€ unitary limit like it does irs-wave superconductor in the
planations is provided by the unconventional density waveé30rn limit. As a result, a clean gap exists in the excitation
(UDW) scenarid=-6One of the main reasons of interest on SPectrum for arbitrary impurity concentrations, and the low-
UDW arises from highF, superconductors, where one of the temperature physics is described by exponential functions
competing models in the pseudogap phase isdtdensity with an activation energy. The unconventional situation gives
wave statg/ 18 more “conventional” results in the unitary limit. The ther-
Recently, we have studied the effect of impurities in themodynamics looks very close to those af-&vave supercon-
Born limit in unconventional density wavé&This treatment  ductor in the unitary limi€*?>and localized states are visible
was justified from the fact that this limit works very well for around the Fermi energy. Similar phenomenon was observed
conventional density wavées,and the investigated physical in the density of states of isotropip-wave supercon-
quantities(for example, the threshold electric figlshowed —ductor?®=° where a small island of states develops around
convincing agreement with experimental data onthe Fermi energy in the unitary limit. As a result of these
a-(BEDT-TTF),KHg(SCN),.?*2% However, as is known states at the Fermi energy, depending on the direction of the
from high-T,. superconductor&"?° different impurities cause applied electric field and on the structure of the gap, some
distinct effects on the same ground state: the Born and unfeatures are found fap=A in the optical spectra along with
tary scattering limit seems to describe Ni and Zn impuritiesthe pair breaking peak atX2 whereA is the gap maximum.
respectively’® From this, it looks natural to extend our ear- In general, the gapless nature of optical excitations was de-
lier analysis on the thermodynamic and transport propertietected experimentally ina-(BEDT-TTF),KHg(SCN),,3!
to the unitary limit. which coincide with our theoretical results but for further
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conclusions, more experiments are needed in the Ioij is the position of thejth impurity atom, andQ is the
temperature range. nesting vector.
The explicit wave-vector dependence of the matrix
Il. FORMALISM elementé'*4is neglected since no important changes are ex-
pected from it. Following the method of Ref. [8gs.(13)—
(15) in Ref. 19, the self-energy correction from impurities is
given by

We consider the simple model Hamiltonian describing
density waves given by’

H= ' k . y +— -Q,o
& LE0O(a B~ B s8 Q) S e(iwn) =,

+A(kao-)alzaaka,o_FA(kvo-)alij,Jak,o]v (l)

d3 -t
U<R)*1—f Z—;Gm,iwn)) )

4 , , _where theR index in 2g(iw,) means the position of an
wherea , anday , are, respectively, the creation and anni-jm g rity over which the average should be takenjs the
hilation operators of an electron of momentknand spino.  impurity concentration. Here, following the standard ap-
In a sum with primek, runs from 0 to X (ke is the. Fermi proach, only noncrossingrainbow type diagrams were
wave number Q=(2kg, /b, m/c) is the best nesting vec- taken into accourf®-333>This approach is justified from the
tor. A(k,o) is the density wave order parameter and satisfie$,ct that our system is, in facot, one dimensional but rather
A(k,0)==A(k,~0) for (U)SDW andA(k,0)=A(k,~0) for = ihree dimensionalwe need at least one more dimension to
(U)CDW. Our system is based on an orthogonal lattice, Withye apje to describe UDW due to the wave-vector dependence
lattice constanta,b,c toward directiorx,y,z. The systemis  of the gap and the standard arguments about crossing dia-
anisotropic, the quasi-one-dimensional direction isxth&is.  grams hold in our case similar to normal metals and

The linearized kinetic-energy spectrum of the Hamiltoniangyperconductor?33we note here that the mean-field theory
IS: [Eq. (1)] itself would not work in the strictly one-
dimensional systems either.

£(K)=vr(ky—ke) — 2tp,cogkyb) = 2tccogk,C) — p1. (2) By fixing the ratio of U(Q)/U(0) and takingU(0) to

By introducing spinor infinity, the self-energy is given by
ak'T(’T) - dSp - -1
a1 (7) S(iwy)=—n; Z—WSG(p,lwn) : (8
Y=\ n | ()
T
ol The same result is obtained from E@$6)—(18) in Ref. 19.
a-q,1(7) We note here that in the special caseldf0)=|U(Q)|, the
the single-particle thermal Green’s function of DW is ob- U(R) matrix is singular and the above calculations are not
tained from Eq(1) ad9.32 valid but this condition corresponds to the fact that in real

space, the electron-impurity interaction is ultrashort range,
B _ namely,U(r)~ &8(r), which is not the case in real systems.
G(k,iwy)= —f dr(T,¥(k,7)¥ " (k,0))pe' " From Eq.(8), the self-energy correction in the conventional
0 case is obtained as

=[iwn—&(K)p3— prozReA(k)
—pao3imA(k)] ™Y 4 S(iwp)=—

r
. . . Vun+ 1

where w,, is the fermionic Matsubara frequengy, and o
(i=1,2,3) are the usual Pauli matri¢c&&*acting on momen- whereg(0) is the density of states per spin in the normal
tum and spin space, respectively, and@dYCDW o3 should  state at Fermi energy,=2n; /7g(0), u,=@,/A,, @,, and
be replaced by 1. Herers reflects the odd nature of the ~ : .
(U)SDW gap function with respect to spinA(K) A, are the renormalized frequency and gap:
=Ae'?f(k), f(k)=1 in the conventional case and dois) r
or sinpk)) in the unconventional case is the unrestricted o=0 ( 1— )

hase(due to incommensurabilijyof the density wave. neoon ~2,%2|"
phase( Jyo y Va2 + &2

- r
A=A, 1- —|. (12)

iu, —e?¢
), ©)

—e " ju,

(10

The Hamiltonian describing the interaction of the elec-
trons with nonmagnetic impurities is given by

1 . —
Hi=g 2 e M (ktURYY (), (3 Va2+ K2
u(0) U(Q)e iR From this, relationu,=®,/A,=w,/A holds. On the other
U(R))= (6) hand, in the unconventional case, the self-energy correction
i

U(Q)e' R u(0) ' is obtained as
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- [2+1 electric fields perpendicular to the chain direction still exhib-
2(lw,) :F§ — (12 its a clean gap fow<<2A but the divergent peak at\2turns
UK 1 into a sharp but finite cusp.
T JuZ+

IV. THERMODYNAMICS OF UNCONVENTIONAL
whereK(z) is the complete elliptic integral of the first kind. DENSITY WAVES
The gap remains unrenormalized due to the zero average of
gap functionf(k) over the Fermi surfacey,=w,/A, and
the Matsubara frequency is renormalized as

The density of states is obtained as

N(w) 2 u

——=—Im K )zlm , (16)
—Au-T = Juz+1 (13) AT .
@n no2 1 where u=iu,(iw,=w+id). It is identical to those of a

u,K

d-wave superconductor in the presence of nonmagnetic im-

purities in the unitary limit® and so is the thermodynamics,

which can be borrowed frord-wave superconductoffRefs.
€24,25 and references thergirConsequently the change of
the transition temperature is given by the Abrikosov-Gor’kov
formula[Eqg. (29) in Ref. 19:

Jui+1

This is the same as id-wave superconductors, the presenc
of backscatteringU (Q)] drops out from the calculation and
does not modify the result as in the Born limit. It is useful to
introduce quantityu,(w,=0)=C,, which is determined

from ( Tc) 1 (1
-l = =ul 50|~ ul 5], (17
T 2 2
1 7l J1+C§ 0
\/ﬁ “5A c2 (14 whereT, and T, are the transition temperatures of the im-
0 0 pure and clean system, respectively, andl' /27T, ¥(2)
and will be used in further calculations. is the digamma function. This formula holds also in the Born
scattering limit® for both conventional and unconventional
density waves as well as for unconventional superconductors
IIl. CONVENTIONAL DENSITY WAVE in the presence of impurities considered either in Born or in
resonant scattering limit. The critical impurity scattering
The density of state€DOS) is obtained as rate is obtained as
N(w) , R mTe,  JeAg
O m; IMmTr(GR(k, »)) [.= 5 =4 (18)
u ol Using the parameters ofa-(BEDT-TTF),KHg(SCN),,

=Im 50(Jo|—4), (15  namely,T.=10K, vp=6X 10°m/s and lattice constant in the
chain directiona=10 °m, the critical concentration is esti-

o ) ] o mated a:;=0.001. In Fig. 1, we show the transition tem-
whereu=iu,(iwy,=w+i6) andO(2) is the Heaviside func-  perature, the residual density of stafées., N(0)] and the
tion and the second equality follows from E¢80) and(11).  zero-temperature gap coefficient as a function of the scatter-
Hence, the density of states remains unchanged in the pregrg rate. The density of states exhibits localized state due to
ence Of |nf|n|te|y Strong impurities, Wh|Ch iS identical to the impurities around the Fermi energy Superimposed on the
behavior ofs-wave s_u_peYrczzgnductors in the presence of weaksyal gapless density of states of the pure system, which is
nonmagnetic impuritie§”?® As a result of the unchanged, manifested in the nonmonotonic nature of the DOS close to
gapped density of states, the thermodynamic properties, Su¢Re Fermi energ§? as shown in Fig. 1. This state gives rise
as the transition temperature or the specific heat, remain thg 3 feature in the optical response, as we will demonstrate
same as in the pure conventional density wave. This can bgter. The identification of the localized or bound states is
understood from the simple one impurity picture studied byclearer for fully gapped systems: similar localized states
Tutto and Zawadowski in Refs. 36 and 37. The basic effectyere found in conventional density waves in the presence of
of impurities, the pinning, comes from the interference be-gne single, relatively strong impurity,and also the small
tween the Fl’iede| OSCi||ati0n a.nd the density wave. For inﬁ'is|and of states in unitary isotropic p_Wave Supercon_
nitely strong backscattering, however, the phase of outgoingyctor222° around the Fermi energy signals the presence of
electron is the opposite of the incoming one, hence the Friepreviously unknown bound states.
del oscillation dies out® This simple picture has to be modi-
fied in the presence of the DW condensate but the lack of
Friedel oscillation still holds in the unitary limit and no pin-
ning is possible. We calculate the optical conductivity for electric fields

In the transport properties, there are differences betweeperpendicular to the conducting chain. In this case, collective
the pure and impure systems. The optical conductivity formodes do not show up or can be neglected, depending on the

NN

V. OPTICAL CONDUCTIVITY
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FIG. 1. In the left panelA(0,I")/Ayg (dashed ling T./T.q (solid line), andN(0,I')/g(0) (dashed-dotted lineare shown as a function
of I'/T;. In the right panel, the density of states is shownIfak=0 (dashed ling 0.01, 0.05, 0.1, 0.5, and 1 with increasiNg0). The
inset shows the localized state around the Fermi energ¥//fdr=0 (dashed ling 0.0001, 0.001, 0.005, and 0.01 with increashh@).

A(O’ F)/AOOa Tc/TCO and N(O’ F)/g(O)

explicit wave-vector dependence of the d4pdenceforth, 4

the optical response is calculated from the one bubble con- w|mffaa(w)_ezg(0)U§M< Iml (o)

tribution, where self-energy and vertex correction are taken

into account in the noncrossing approximation. The real and %

imazg]izréary part of the optical conductivity =0 is given +Zfo ImF(u(x),u(x+w))dx>, (20
by

where

e’g(0)v2 4

Reraq(w)=—— yRe(w), 19 (w)= fo [F(u(@—X),u(— %))~ F(u(&—x),u(—x))]dx
(21
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FIG. 2. Real and imaginary parts of the optical conductivity in yhdirection for A(k) =A cospk) are plotted as a function of the
reduced energy for different scattering amplitudeé&s=0 (dashed ling 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, and 1 with decreasing(R4),
Ima(24).
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andv,=vg, vy=+2bty,, andv,= 2ct.. In the following,

we discuss the different cases depending on the electric-field(u,u’) function as Eq(55) in Ref. 19. In the real part a
orientation and on the gap.

a. A(k)=A coskb), a=y:

1
F(uu)=— 2[\/1—u’2 E’(

u'?—u
12

K uu' - —- +y1-u?
2

+K| —uu' + =] |[{.

K| —uu 3}

—uu'— 5+

|

u12

3
,+2 u?
uu § ?

(22)

In the definition of differenF(u,u’) functions, the argument
of E and K is 14/1—u? while for E’ and K,’ 1\/1—u’? has

to be used. In the present case, vertex corrections vanisH\/lJrCoz.
similar to the Born limit due to the mismatch of wave-vector

PHYSICAL REVIEW B58, 075104 (2003
dependence of the velocity and the gap, resulting in the same

small peak develops close =0, and moves to higher fre-
quencies with increasing impurity concentration but finally
disappears as curves more and more take the form of a
Lorentzian. Here, the presence of bound states cannot be
seen because the weight of scattering from the Fermi energy
to the gap maximum is zero due to the zero velocity of qua-
siparticles at the latter point. In the imaginary part the cusp at
w=2A smoothens a¥' increases, as seen in Fig. 2. The dc
conductivity is calculated af=0 as:

I’

ﬂ) . (23

4
dc,cos_ o2 2 2_
oy °=e g(O)vyAW EV1+Cg

In the dc conductivities, the argument & and K is

b. A(k)=Asinkb), a=y.

1 , 4 u? , 4 u'?
F(uu')=———| V1I-U’E| —uu'+ o+ — |- V1-U"?E'| —uu'+ o+ —
u’ —u 3 3 3 3
u”’ K’ ’+2+u,2 + u’ K ’-1—2-|—u2
= uu 3t 3 oy uu 3t3
, 2
E’\/l—u’Z—E\/l—u2+u—2K’— w K
+F7-r\/1—u2x/1—u’2 1 V1—u'? J1-—u? 2
2AuUU’ KK’ (u+u’)? ' 1 [J1-u'? J1-u? '
= +
2A y+u'\ u'K’ ukK
7 r T 2 T
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o i
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FIG. 3. Real and imaginary parts of the optical conductivity in yhairection for A(k) = A sin(ok) are plotted as a function of the
reduced energy for different scattering amplitudé& =0 (dashed ling 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, and 1 with decreasing(R®),

increasing Ina(A).
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Comparing this to Eq57) in Ref. 19, the last term manifests
the differences in vertex corrections. The real part of the
conductivity exhibits a sharp peak ak 2nd a small bump at
A, indicating excitations from the localized state to the gap

maximum for low concentrations. By increasifg the N:;
former is suppressed and the latter becomes dominant. The 2
imaginary part changes sign sharply ak 2nd a dip is 2
present atA, as can be readily seen in Fig. 3. The dc con- N°’
A . ) b
ductivity is obtained as: \O
[e=]
. 2 CH(K—E) q

de,sin_ o2 2 0

o =eg(0)vi— . (25

v 9O R T e aciEn =
B

The dc conductivity is shown in Fig. 4.
c. A(k)=A sin(kb) or A coskb), a=z.

F(u,u’')= (2\/1—qu—2\/1—u’2E’

2(u12_u2)

u'(u—u’) K u(u—u’) FIG. 4. The dc conductivity is plotted &t=0 as a function of
\/1——u’2 \/l——uz ’ the reduced scattering rate for a cosinusoidadusoidal gap in the
y direction: solid(dashed lingand in thez direction: dashed-dotted
The vertex corrections vanish because the velocity dependse.
on different perpendicular wave-vector compondg) ¢han
the gap ky). The same functiofiEq. (59) in Ref. 19 was  gapless nature of the optical response is considered, while
found in the Born limit. Adl™ increases, the dominance of the the former with almost monotonically decreasingoRe) is
A peak becomes more prominent than in the previous case ilifferent from the measured data. We refrain here from the
the real part of the conductivity. The imaginary part of theevaluation of quasiparticle part of in-chain conductivity be-
conductivity is zero forw<<2A in the pure case and exhibits cause the sliding collective mode associated with the phase
a sharp peak at®2 The dc conductivity is obtained &  of the condensate dominates this respdfiase note, how-
=0 as ever, that the quasiparticle part of,(w) is expected to
behave very similar ter, ().
de ) 5 E The dc conductivities are shown in Fig. 4 B0 as a
0,,=2€ g(o)vzm- (27) function of the impurity scattering parameter. In the perpen-
V>0 dicular direction, the dc conductivities take the same value at
The latter two cases seem to be consistent with experimentée critical scattering parameter, nam(eﬁ,g(O)u)"j,zll“C [asit
data ona-(BEDT-TTF),KHg(SCN), (Ref. 3)) as far as the follows naturally from Eqs(63) and (64) in Ref. 19. Sur-

K (26)

x T T : 18 . ;
14
AL > 28
o) NQPS
— 12r
2 =
> g \Q;
N >
~ Q
= N
49 15 —~
— \3/ 06+
3 N
\.t: ik bN
N g
Q Loy
£ osf 3 oy
0

FIG. 5. Real and imaginary parts of the optical conductivity inZldérection are plotted as a function of the reduced energy for different
scattering amplituded:/A=0 (dashed ling 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, and 1 with decreasing(R®¥), increasing Ino(A).
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prisingly, for small concentrations the dc response increases As opposed to this, in the unconventional case, the ther-
linearly with I', as opposed to the almoEtindependent be- modynamic properties are identical to those af-aave su-
havior in the Born limit'® This increasing behavior is attrib- perconductor in the unitary limit. From the density of states,
uted to the fact that the creation of zero energy quasiparticleis is obvious that electrons are localized close to the Fermi
due to impurities is more efficient than the scattering of quaenergy while at larger energies they remain almost unaf-
siparticles by impuritie&? It is worth mentioning that in the fected by the presence of impuritiéasside from the broad-
dc conductivity, the'—=0 and »—0 limit cannot be ex- ening of thew=A peak. Also, the change in the transition
changed, as seen in Figs. 2, 3, 4, and 5; this is why we obtaiemperature is given by the Abrikosov-Gor’kov formula,
different dc conductivities in the pure case, depending on thevhich was also found to be valid in the Born limitBoth
order of limits. However, we believe the right procedure isthe real and imaginary parts of the optical conductivity seem
shown in Fig. 4, where th&—0 limit is taken first. The to reflect the presence of localized states around the Fermi
dc conductivity in all cases turns out to be univef€al, energy at certain gap structures by displaying bumgp-=at.
since regardless of the scattering limit, it takes the sam&his feature seems to dominate over the pair breakin@A
value as I'—0, namely, oyc®°=e?g(0)vZ4/Agym, o35  peak as the impurity concentration increases. We found uni-
=e%g(0)v22/A g, andoe""=0. The last equality holds versal electric conductidfin the dc limit. The comparison
since the electric current operator vanishes on the nodalf the optical conductivity with experimental data seems to
points of the gap. be difficult due to the lack of consistent investigations. This
can be attributed to the fact that the material which possesses
VI. CONCLUSION most likely quasi-one dimensional UCDW ground state, the
a-(BEDT-TTF),KHg(SCN), salt, enters this phase at 10 K
We have studied the effect of nonmagnetic impurities inand optical experiments below this temperature are very dif-
conventional and unconventional density waves in the unificult. The only available dafi reports some kind of
tary scattering limit in the standard noncrossing approximapseudogap behavior belofy., which is compatible with our
tion. In the conventional case, no changes are found in thgndings. Clearly, to make more decisive conclusions, further
thermodynamics compared to the pure system, similar t@xperiments are needed.
s-wave superconductors in the Born limit. In the presence of
one single, infinitely strong impurity, the Friedel oscillation
disappea_ré?*37sinqe the phase of the incoming and outgoing ACKNOWLEDGMENTS
electron is opposite. Consequently, there is no interference
between the density wave and the Friedel oscillation and We have benefited from useful discussions with A. Zawa-
there is no pinning. In the presence of impurities with finitedowski. This work was supported by the Hungarian National
concentration, this simple picture seems to survive and th&esearch Fund under Grant No. OTKA T032162 and
effect of impurities is canceled from the thermodynamics. T037451.
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