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Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators
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The high stiffness and strength, low density, and large aspect ratio of single-walled carbon nanotubes make
them good candidates as nanoresonators. Employing an atomistic modeling technique, molecular structural
mechanics, this work predicts that the fundamental frequencies of cantilevered or bridged single-walled carbon
nanotubes as nanomechanical resonators could reach the level of 10 GHz–1.5 THz. The effects of tube
diameter, length and end constraints on the fundamental frequency have been discerned.
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Resonators are key components in signal proces
systems.1 Reduction in the size of a resonator enhances
resonant frequency and reduces its energy consumption
sensors, higher resonant frequency means higher sensit
For wireless communications, higher frequency resona
enable the production of higher frequency filters, oscillato
and mixers.1 The advancement in high-frequency nanoel
tromechanical systems brings about new applications ra
ing from mechanical mass or charge detectors2,3 and nanode-
vices for high-frequency signal processing4 to biological
imaging.5

It has been predicted that, with advanced nanolithograp
SiC resonators with fundamental frequencies above 10 G
is attainable at the 10 nm scale.6 The highest frequency na
nomechanical resonator~1.029 GHz! so far, based on SiC
was recently fabricated from SiC using optical and electr
beam lithography.7

Meanwhile, some researchers turned their attention to
bon nanotubes~CNT! as resonators8 and oscillators.9 For ex-
ample, the vibrational properties of nanotubes have b
studied and the amplitude of thermal vibrations of cant
vered nanotubes has been used for predicting their You
modulus.10–12 But the potential of nanotubes as resonat
has not been explored. Owing to their unique propert
such as high stiffness and strength, low density and la
aspect ratio, carbon nanotubes, especially single-walled
bon nanotubes, seem to be well suited for the use as
oresonators. However, because of the size of a single-wa
carbon nanotube and the uncertainty in defining its w
thickness,13 the classical continuum mechanics cannot
readily applied for predicting the resonant frequencies
single-walled carbon nanotubes. In this research, we exp
the potential of single-walled carbon nanotubes as nanor
nators using an atomistic modeling technique.14,15

For the analysis of nanotube resonator, we adopt the
lecular structural mechanics method.14,15The concept of this
method originated from the observation of geometric sim
larities between nanoscopic fullerenes and macrosc
space frame structures. In a carbon nanotube, each ato
bonded covalently with three nearest neighbors. Whe
nanotube is subjected to external forces, the displacemen
atomic nuclei are constrained by the covalent bonds.
nanotube is viewed as a space frame with ‘‘beams’’ conn
ing the carbon atoms, its deformation can be modeled by
technique of structural mechanics. In essence, the cova
0163-1829/2003/68~7!/073405~3!/$20.00 68 0734
g
ts
or

ity.
rs
,
-
g-

y,
z

-

r-

n
-
’s

s
s,
e

ar-
n-

ed
ll
e
f
re
o-

o-

-
ic
is

a
of

a
t-
e
nt

bond between two neighboring carbon atoms can be si
lated as an equivalent structural beam with a circular cr
section. Then, following the theory of structural mechani
only three stiffness parameters, i.e., the tensile resista
EA, the flexural rigidityEI, and the torsional stiffnessGJ,
need to be determined for deformation analysis. Here,E and
G are, respectively, the Young’s modulus and shear modu
of the beam,A and J are, respectively, the cross-section
area and polar inertia of the beam. Based on the ene
equivalence between local potential energies in comp
tional chemistry and elemental strain energies in structu
mechanics, the tensile resistance, the flexural rigidity and
torsional stiffness for an equivalent beam can be determin

From the viewpoint of molecular mechanics, the gene
expression of total steric potential energy is a sum of en
gies due to valence or bonded interactions and nonbon
interactions16

U5( Ur1( Uu1( ~Uf1Uv!1( UVDW , ~1!

whereUr , Uu , Uf , Uv , andUVDW are attributed to bond
stretching, bond angle bending, dihedral angle torsion, o
of-plane torsion, and van der Waals interaction, respectiv
From a structural mechanics viewpoint, the deformation o
space frame results in the change of strain energy. The s
energy for a beam element is given by17

U5( UA1( UM1( UT1( UV , ~2!

whereUA , UM , UT , and UV are strain energies for axia
tension, bending, torsion, and shear force, respectively.
considering the energy equivalence between Eqs.~1! and~2!,
a direct relationship between the structural mechanics par
eters and the molecular mechanics force field constants
be established,14 i.e.,

EA

L
5kr ,

EI

L
5ku ,

GJ

L
5kt , ~3!

wherekr , ku , andkt are the force field constants in molec
lar mechanics andL is the length of the equivalent beam
Then, following the procedure of the structural mechan
technique, the static or dynamic problems of carbon na
tubes can be readily solved.
©2003 The American Physical Society05-1
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The capability and efficiency of this molecular structu
mechanics method have been verified in the modeling
single walled carbon nanotubes under tension or torsion.
calculated results of Young’s modulus and shear modulus
in good agreement with the theoretical predictions and
perimental results available in the literature.14 Also, this
method has been used for modeling of the buckling beha
of single-walled carbon nanotubes under hydrostatic pres
and the results are in reasonably good agreement with
prediction ofab initio calculations and existing experiment
results.18

For determining the natural frequencies of a single-wal
carbon nanotube, we consider its equivalent space frame
structure under the condition of free vibration. For the pro
lem of free vibration of an undamped structure, the equa
of motion is

@M #$ ÿ%1@K#$y%5$0%, ~4!

where @M # and @K# are, respectively, the global mass a
stiffness matrices, and$y% and $ ÿ% are, respectively, the
nodal displacement vector and acceleration vector.

The global stiffness matrix@K# of the frame structure can
be assembled from the elemental stiffness matrix@K#e, i.e.,
@K#5(e51

n @K#e, wheren is the number of beam element
The assembling procedure follows the node-related te
nique in the finite element method.19 The elemental stiffness
matrix @K#e is identical to that used in modeling the elas
moduli of a carbon nanotube,14 and assumes the followin
general form:

@K#e5F @kii # @ki j #

@kji # @kj j #
G , ~5!

where the submatrices@kii #, @ki j #, @kji #, and @kj j # are des-
ignated stiffness coefficients related to the cross-sectiona
rameters of the beam elementi 2 j .

The global mass matrix@M # can be assembled from th
elemental mass matrix. By considering the atomistic feat
of a carbon nanotube, the masses of electrons are negle

FIG. 1. ~Color online! Cantilevered~a! and bridged~b! single-
walled carbon nanotube resonators.
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and the masses of carbon nuclei (mc51.9943310226 kg)
are assumed to be concentrated at the centers of atoms
the joints of beam members. Due to the extremely sm
radius (r c52.7531025 Å) of the carbon atomic nucleus,20

the coefficients in the mass matrix corresponding to flexu
rotation and torsional rotation21 2

3 mcr c
2 , are assumed to be

zero. Only the coefficients corresponding to translatory d
placements are kept. Thus, the elemental mass matrix@M #e

is given by

@M #e5diagF mc

3

mc

3

mc

3
0 0 0G . ~6!

The factor 1/3 in the elements of the elemental mass ma
is introduced because of the three bonds of a carbon a
connecting with the three nearest neighboring atoms an
ensures that the nodal mass has the value of a single a
after matrix assembling.

FIG. 2. ~Color online! Fundamental frequency of nanotube res
nators, (m,n) denotes the chirality of an SWCNT.
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The orders of the global stiffness matrix and mass ma
are reduced by the static condensation method22 for more
efficient computations. Then, the natural frequenciesf and
mode shapes are obtained from the solution of the eigenp
lem

~@K#s2v2@M #s!$yp%50, ~7!

@K#s, @M #s are the condensed stiffness matrix and co
densed mass matrix, respectively,$yp% is the displacemen
vector corresponding to the primary coordinates, i.e.,
translatory displacements of carbon atoms, andv52p f is
the angular frequency.

The resonant frequencies of nanotubes-based reson
depend on the tube diameter and length, as well as c
straints on the nanotube ends. In this work, we analyze
forms of nanotube resonators, i.e., cantilevered and brid
~Fig. 1!. The computational results of fundamental natu
frequencies of single-walled carbon nanotube resonators
displayed in Fig. 2.

It is obvious from Fig. 2 that nanotube resonators c
achieve very high resonant frequencies. For nanotubes
diameters of 0.4–0.8 nm and length/diameter ratios of 6–
the fundamental frequencies are in the ranges of 10–
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GHz and 100–1500 GHz, respectively, for cantilevered a
bridged nanotubes. For both nanotube boundary conditi
the fundamental frequency increases with the reduction
nanotube length. For the same aspect ratio, nanotubes w
smaller diameter have a higher fundamental frequen
Nanotube chirality does not have a significant effect on
fundamental frequency.

In summary, ultrahigh frequency nanomechanical reso
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nators with terahertz frequencies can be accomplished. S
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velopment of the fastest scanning probe microscopes, m
netic resonant force microscope, and even mechanical su
computers. In this paper, the ultrahigh frequencies of car
nanotubes are demonstrated using the molecular struc
mechanics method. Further theoretical studies and exp
mental measurements are needed to confirm these resu
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