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Effective action and interaction energy of coupled quantum dots
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~Received 6 May 2003; published 19 August 2003!

We obtain the effective action of tunnel-coupled quantum dots, by modeling the system as a Luttinger liquid
with multiple barriers. For a double dot system, we find that the resonance conditions for perfect conductance
form a hexagon in the plane of the two gate voltages controlling the density of electrons in each dot. We also
explicitly obtain the functional dependence of the interaction energy and peak splitting on the gate voltage
controlling tunneling between the dots and their charging energies. Our results are in good agreement with
recent experimental results, from which we obtain the Luttinger interaction parameterK50.74.
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Coulomb blockade CB~Ref. 1! in quantum dots has
gained in importance in recent years, due to its potential
application as single electron transistors. Rec
experiments2–4 on coupled quantum dots have revealed
variety of features, the most salient of which is the cond
tance peak splitting controlled by interdot tunneling. T
peaks split into two for a double dot system and into th
for a triple dot system.

Earlier theoretical studies5 on coupled dots studied th
effect of tunneling and inter-dot capacitances on the CB,
only a few6–8 focused on junctions with only one or tw
channels. Motivated by~a! the double dot experiments,~b!
the analysis of Matveev,9 which maps a quantum dot forme
by a narrow constriction that allows only one transve
channel to enter the dot, to a one-dimensional wire mo
and~c! recent numerical evidence10 that justifies modeling of
quantum dots by Luttinger liquids, we model the coupled
system as a one-dimensional Luttinger liquid~LL ! with large
barriers and study the effective action in the coherent lim

We obtain a simple expression for the interaction ene
in terms of the charging energies of the two dots and the g
voltage controlling the interdot tunneling, and find that tu
neling between the dots splits the conductance maxima. W
~without! interdot tunneling, the conductance~resonance!
maxima, for a double dot system, form a rectangular~hex-
agonal! grid in the plane of the two gate voltages controllin
the density of the electrons. The peak splitting grows t
maximum when the two dots merge into a single dot. Fr
the experiments, we estimate the interaction energy and
the values for the Luttinger parameters.

Although a classical analysis with an interdot capacita
reproduces the experimental results qualitatively, the valu
the required interdot capacitance is unrealistically larg2

Golden and Halperin7 obtain their results by mapping th
two dot model to a single dot model. Here, we directly mo
the experimental set-up as a one-dimensional system and
tain the effective action exactly, by integrating out Gauss
degrees of freedom. Hence our results give the interac
energy directly in terms of the microscopic variables a
applied voltages. We find that in the weak tunneling lim
the peak splitting is proportional to the square root of
tunneling conductance and in the strong tunneling limit,
deviation of the splitting factor from unity is proportional t
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the square-root of the deviation of the conductance~mea-
sured in units of 2e2/h) from unity.

Model and effective action for coupled quantum dots. Our
model for a dot is essentially a short length of LL wire wi
barriers at either end, controlling the tunneling to and fro
the dot. The two dot system is shown in Fig. 1, with thr
barriers in the LL wire between the two leads. The barri
are chosen to bed functions with strengthsGi and J. ~Ex-
tended barriers do not change the results.7! The electrons in
the dot interact via a short range~Coulomb-like! interaction
described by the HamiltonianH52vF*dx@cL

†i ]xcL

2(L↔R)#1g*dxr(x)2, wherer(x)5c†c is the electron
density andc5cLe2 ikFx1cReikFx. Here,cR andcL stands
for fermion fields linearized about the left and right Ferm
points. The electrons in the leads are free.

The model is bosonised via the standard transforma
cn5hne2iApfn wheren5R,L andfn are the bosonic fields
hn are the Klein factors that ensure anticommutation of
fermion fields. The Lagrangian density for the bosonic fie
in 111 dimensions is L(f;K,v)5(1/2Kv)(] tf)22(v/
2K)@]xf(x)#2, where K;(11g/pvF)21/2 and v
;vF(11g/pvF)1/2. The bosonized action is now give
by11–13

S5E dt@Sleads1Sdots1Sgates#, ~1!

with

Sleads5S E
2`

2d1
1E

d2

` D dxL~f;KL51,vF!,

FIG. 1. Double dot system above shown schematically be
with the dots modeled as LL withKi 51,2, between barriersGi and
J, and with two gate voltagesgi .
©2003 The American Physical Society01-1
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Sdots5E
2d1

0

dxL~f;K1,v1!1E
0

d2
dxL~f;K2,v2!

1V1J cos~2Apx!,

and

Sgates5~g1 /Ap!~x2f1!

1~g2 /Ap!~f22x!,

where

V5S i 51
2 Gicos@2Apf i1~21! i2kFdi #.

HereGi andJ are the junction barriers defining the dots a
f i[f@(21)idi # and x[f(0) denote the boson fields a
those points.J controls tunneling between the dots a
ranges from fully open (J50, single dot! to fully closed
(J5`, two decoupled dots!. The gate voltagesgi control the
density of electrons in each dot.

In the low T limit ( T!\v1 /kBd1 ,\v2 /kBd2) all three
barriers are seen coherently, and we expect the CB of the
dots to be coupled. The effective action of the system can
obtained by integrating out all degrees of freedom exc
those at the positions of the three junction barriers, follow
Refs. 11,12 and we find that

Se f5S01E dtH S i 51
2 FUi

2
~x2f i !

21~21! i
gi

Ap
~x2f i !G

1V1J cos~2Apx!J , ~2!

whereS05(vn
uvnu(f̃1

21f̃2
2)/2(KL51). The Fourier trans-

formed tilde fields are defined by f i(t)
5(vn

e2 ivntf̃ i(vn). The Ui5\v i /Kidi terms are the
‘‘mass’’ terms that suppress charge fluctuations on the d
and are responsible for the CB through the dots.

Weak tunneling limit. Here the barrierJ is very large, and
the fieldx is pinned at its minima

x5nAp[xcl ~n5 integer!. ~3!

A semiclassical expansion about these minima usingx
5xcl1xq to second order in the fluctuations yields

Se f.S01E dt$@2g1f11g2f2#/Ap1xq~g12g2!/Ap

1S i 51
2 Ui@xq

212xq~xcl2f i !1~xcl2f i !
2#/21V

2~2pJ!xq
2%, ~4!

where we have dropped all field-independent constants.
can now integrate out the quantum fluctuations inx, since
we have only kept quadratic terms, and usingJ@Ui ,gi , we
get
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Se f.S01E dtFS i 51
2 Ui

2
~xcl2f i !

21
U1U2

4pJ
f1f2

1~2g1f11g2f2!/Ap1VG . ~5!

Now, we define the following variables -ni5(21)i 11(xcl

2f i)/Ap1(kFdi)/p and u i5(xcl1f i)/21(21)i(kFdi)/2
which can be interpreted as the charges and currents on
dots 1 and 2, respectively, and in terms of which the act
can be rewritten simply as

Se f.S01E dtFS i 51
2 Ui

2
~ni2n0i !

22E12n1n21VG , ~6!

where

E125U1U2/4J and n0i5~kFdi !/p2gi /Ui . ~7!

Ui[pUi plays the role of the charging energy or CB ener
because in the absence of any mixing betweenn1 andn2, by
tuning gi ~equivalentlyn0i), the dot states withni and ni
11 electrons can be made degenerate. This is the lifting
the CB for each individual dot. But the crucial term above
the term mixingn1 andn2. This tells us how the CB through
one dot is affected by the charge on the other dot. The ba
terms can be more conveniently rewritten in terms of
total charge of the double dot and the current through
double dot system, whenG15G25G by defining the total
charge and current fields asN5n11n25(f22f1)/Ap
1(kFL)/p and u5(f21f1)/21(kFl )/2Ap, whereL5d1
1d2 and l 5d22d1. With these redefinitions, the barrie
term reduces to

V52G cos~2Apu!cospN, ~8!

andS0→S085(vn
uvnu@ ũ21(p/4)Ñ2#. The action is now in

a form where its symmetries are manifest.
When the two dots are decoupled from each other (E12

50 or equivalentlyJ→`), the action is symmetric unde
the transformationu→u1Ap, N→2N02N. This is be-
causeg1 and g2 can be tuned so as to maken01,n02 to be
half integersq111/2,q211/2 and hence,N05n011n02 to be
an integer. Thus the two CB’s are lifted and the four cha
states (n1 ,n2)5(q1 ,q2),(q111,q2),(q1 ,q211)(q111,q2
11) become degenerate and transport through the do
dot system is unhindered. We can plot the points of ma
mum conductance through the double-dot system in
plane of the two gate voltages and as shown by the do
lines in Fig. 2, we get a square grid.~The figure is for iden-
tical dots; in general, the grid is rectangular.!

Now, we study the symmetries for a large finiteJ. In this
case, the CB through each dot is influenced by interac
with the electrons in the other dot. Hence, we now find t
the CB through the double dot system is lifted for two po
sible sets of gate voltages. The states@(q1 ,q2), (q1
11,q2)# and the states@(q1 ,q2), (q1 ,q211)# are degener-
ate simultaneously, respectively, when
1-2
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n015q11
1

2
1

U2

8J
q2 , n025q21

1

2
1

U1

8J
q1 . ~9!

This is one point where the CB is lifted and the conducta
is a maximum.

Similarly, the states@(q1 ,q211), (q111,q211)] and
@(q111,q2), (q111,q211)] are degenerate simultaneous
when

n015q11
1

2
1

U2

8J
~q211!, n025q21

1

2
1

U1

8J
~q111!.

~10!

This is another point where the CB is lifted and the cond
tance is a maximum.

Note that the original resonance which occurred when
four states were degenerate has now broken into two sep
resonances, at each of which only three states are degen
Plotting this in the plane of the gate voltages, we obtai
hexagon as shown by the dashed and solid lines in Fig.
agreement with the experiments of Blicket al. in Ref. 3.
~The figure shown is for identical dots; otherwise, the he
gons are not perfectly symmetric.! Thus, as a consequence
tunneling between the quantum dots, the conducta
maxima splits into two.

The splittingdg of the maxima as a function of the tun
neling barrierJ ~the solid line in Fig. 2! can be computed
from Eqs.~9! and ~10!, and gives

dg15dg25pU1U2/8J⇒dg5A2pU1U2/8J. ~11!

Hence, the splitting ing1 andg2 is identical and is inversely
proportional to the gate voltage controlling the tunneling b
rier and directly proportional to the charging energies of
two dots. However, whenJ becomes comparable to the oth
energy scales in the problem likeUi , the strong barrier
analysis breaks down.

Strong tunneling or weak barrier limit. Here we assume
that the barrier between the two dots is very small, i.e.,Gi
@Ui@J. So essentially, there is only one CB. However,

FIG. 2. Positions of the conductance maxima as a function
the gate voltages. The solid lines denote the splitting and the
dash lineAB denotes the distance between two sets of split pe
The splitting factorS is defined as twice the ratio of the former
the latter length.
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shall see that the spacing of the CB terms are affected b
nonzeroJ. We integrate outx @in Eq. ~2!# which is quadratic
~whenJ is ignored! to obtain

Se f5Svn
uvnuS ũ21

p

4
Ñ2D1Ue f~N2N0!2/2

12G cos~2Apu!cospN1J cos@2Apu1XpN1C#

5S01Ve f . ~12!

Here, we have definedUe f5pU1U2 /(U11U2)5pU/2, X
5(U12U2)/(U11U2)50, N05kFL/p2(g1 /U11g2 /U2)
5kFL/p2g/Ue f , C52(g22g1)/(U11U2)1(U11U2)
kFl 1(U12U2)kFL50. N andu have been defined earlie
C and N0 depend on the gate voltages and are the tuna
parameters. The second equalities are for identical dots w
U15U25U andd15d2 . g15g25g can be tuned byC. We
shall use these values below for simplicity.

Since, we continue to be in the strong barrier limit for t
G term, the action has deep minima for integerN ~with ap-
propriateu). But the degeneracy between these minima
broken by theUe f and J terms leading to just one of them
being preferred~as is the case for the usual CB withoutJ).
Just as earlier, the CB is lifted when

Ve f~u,N!5Ve f~u1Ap/2,N11!. ~13!

WhenJ50, this happens whenN05 half integer. However,
whenJÞ0, the above equality holds when

N051/22J/Ue f,3/21J/Ue f,5/22J/Ue f•••, ~14!

which implies that the splittingdg is given by

dg5Ue f22J. ~15!

It is easy to see from Eq.~14! that periodicity is restored
when two electrons are added to the system, but periodi
when a single electron is added to the system is broken
theJ term. This tells us that the main effect of a small barr
within a single dot, is to change the spacing of the peaks w
two peaks coming closer to each other and pairs of pe
receding from each other. But the distance between pair
peaks remains 2U. As J increases towards̀ , the peaks
which come closer to one another slowly merge into one,
we are left with half as many peaks, which is what o
would expect when the dot size is halved.

Discussions and conclusions. Thus, both from the weak
and strong tunneling limits, we get a consistent picture. T
splitting is zero forJ5` and maximum when the tunnelin
goes to one (J50) and is just the spacing of a single dot
length d11d2. As a function of the tunneling barrier, th
splitting saturates linearly~proportional toJ) for low barriers
~strong tunneling! and goes as 1/J for weak tunneling~strong
barriers!. ~Our model does not include interdot capacitan
since it is expected to be very small for the experiment.2! In
terms of the barrier conductanceGb , simple quantum me-
chanics shows thatGb ~in units of 2e2/h) falls off from unity
asJ2 in the low barrier limit and increases from zero as 1/J2

in the weak tunneling limit. So in the weak tunneling lim
using Eq. ~11! and Fig. 2, the splitting factorS5dg/(U

f
t-
s.
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1dg);dg/U ~for dg!U) }1/J}AGb . In the strong tunnel-
ing limit, S52dg/2Ue f5122J/Ue f . So 12S}J
}A12Gb. Thus, in both limits, we relate the splitting facto
to the barrier conductance. This is the central result of
paper.

In Fig. 3, we compare our theoretical prediction ofSwith
the experimental curve. In the weak tunneling limit, a on
parameterx2 fit of our prediction to the lowest five point
~up to S;0.3) gives a goodness of fit of 84%. In contrast
linear fit to the same data~predicted in Ref. 7!, gives a good-
ness of fit of only 75%. Similarly, in the strong tunnelin
limit ( S above 0.7!, a one parameter fit of our predictio
~which, in fact, is in agreement with the scaling analysis
Ref. 14! gives a goodness of fit of 96%, again, considera
better than the 81% for the logarithmic prediction in Ref.
However, although our modeling is more realistic than e
lier ones and the agreement of our predictions with the
perimental data, both in the strong and weak tunneling lim
is impressive, better data is required for a conclusive pro

FIG. 3. Splitting factorSas function of the gate voltage contro
ling tunneling. The data points are from Ref. 2. The solid line d
notes the square-root of the measured conductance~multiplied by
scaling factor 0.56 for best fit! and the dotted line just denotes th
measured conductance~multiplied by 0.60 for best fit!.
t
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Further, we predict that for the weak tunneling case, the
terdot interaction energy is directly proportional to the cha
ing energies of the dots and hence inversely proportiona
the sizes or capacitances of each of the individual dots.

The charging energies and the Fermi velocity obtain
from Ref. 2 areUi;400 meV and (vF)1d;2.33107 cm.
Thus using the relationU5\v/Kd for a single dot, we find
the LL parametersv15v2;3.13107 cm/sec andK15K2
;0.74 for identical dots. In the weak barrier limit, where th
splitting is small, we find thatE12 @in Eq. ~7!# ranges from
;4240 meV, which is roughly (102221021)U. The LL
parameter values remain almost unchanged in the rang
gate voltages used in the experiments. The values can
confirmed by studying the conductance through the dou
dot system in the ‘‘high’’ temperature limitT@Td
5\v/kBd;0.6 K, when the electron transport through ea
of the dots is incoherent. The conductance should scal
T2(1/K21);T0.69 in the weak tunneling case and asT2(K21)

;T20.51 in the weak barrier case. LL behavior can also
probed if the conductances are studied as a function of
size of the dots at ‘‘low’’ temperaturesT!Td since LL
theory predicts explicit size dependent power laws at l
temperatures.

In conclusion, in this paper, we have obtained the eff
tive action of a system of coupled quantum dots, in both
weak and strong tunneling limits. We have shown that in
presence of interdot tunneling, the peaks denoting the c
ductance maxima split. The split is maximum when the tu
neling between the dots is maximum, i.e., when there is
barrier at all between the dots. We have also computed
splitting as a function of the gate voltage controlling t
tunneling between the dots in both the weak and strong
neling limits, and find that the splitting factor is proportion
to the square root of the conductance in the weak tunne
limit and the deviation of the splitting from unity is propo
tional to the square root of the deviation of the conducta
from unity in the strong tunneling limit. This agrees with th
experimental data on double dot systems. We have also
tracted the Luttinger parameters from the experiment
have predicted temperature power laws for the same s
which can be experimentally tested.
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