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Effective action and interaction energy of coupled quantum dots
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We obtain the effective action of tunnel-coupled quantum dots, by modeling the system as a Luttinger liquid
with multiple barriers. For a double dot system, we find that the resonance conditions for perfect conductance
form a hexagon in the plane of the two gate voltages controlling the density of electrons in each dot. We also
explicitly obtain the functional dependence of the interaction energy and peak splitting on the gate voltage
controlling tunneling between the dots and their charging energies. Our results are in good agreement with
recent experimental results, from which we obtain the Luttinger interaction parakhet@r74.
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Coulomb blockade CB(Ref. 1) in quantum dots has the square-root of the deviation of the conductaflmea-
gained in importance in recent years, due to its potential fosured in units of 22/h) from unity.
application as single electron transistors. Recent Model and effective action for coupled quantum dasr
experiment$™ on coupled quantum dots have revealed amodel for a dot is essentially a short length of LL wire with
variety of features, the most salient of which is the conducbarriers at either end, controlling the tunneling to and from
tance peak splitting controlled by interdot tunneling. Thethe dot. The two dot system is shown in Fig. 1, with three
peaks split into two for a double dot system and into thredarriers in the LL wire l?etwegn the two leads. The barriers
for a triple dot system. are chosen_to bé functions with strength&; and J. (Ex-'

Earlier theoretical studi@son coupled dots studied the t€nded barriers do not change the resblfﬁhe electrons in
effect of tunneling and inter-dot capacitances on the CB, buthe dot interact via a short rang€oulomb-like mteTr.actlon
only a few?® focused on junctions with only one or two described by the 2Ham|lton|anH::UF_fdx[l//LmX(/;L
channels. Motivated bya) the double dot experimentdy)  — (L—=R)I+a/dxp(x)%, wherep(x) =4y is the electron

; _ ik ik
the analysis of Matveelwhich maps a quantum dot formed density andj=yy e "+ ge’“. Here, g andyy_stands

by a narrow constriction that allows only one transversefor. fermion fields Ilnegrlzed about the left and right Fermi
points. The electrons in the leads are free.

channel to enter the dot, to a one-dimensional wire model; ; . . .
. . R . The model is bosonised via the standard transformation
and(c) recent numerical evident&hat justifies modeling of 2T I
=7, V7% wherer=R,L and ¢, are the bosonic fields.

) S W,
g;;?:ﬂﬁ?iﬁé;ﬁ:;%%:2#5?&&2?1?&? \?vi(t:r? lljgrlgg dOtan are th.e Klein factors tha@ ensure _anticommutation_ of. the
. . A .. fermion fields. The Lagrangian density for the bosonic field
barriers and study the effective action in the coherent limit.; " /) = oo o L(:K,0)=(LI2Kv)(9,¢)2— (v
We obtain a simple expression for the interaction energ K)[oyd(X)]%  where K~’(1’+ gl mog) M2 ! and o
in terms of the charging energies of the two dots and the gathF({Jrg/m'F)l/z_ The bosonized action is now given
voltage controlling the interdot tunneling, and find that tun-by11—13
neling between the dots splits the conductance maxima. With
(without) interdot tunneling, the conductandeesonancke
maxima, for a double dot system, form a rectangueex- S= f d7[ Seadst Saorst Sgated @
agonal grid in the plane of the two gate voltages controlling with
the density of the electrons. The peak splitting grows to a
maximum when the two dots merge into a single dot. From —dy %
the experiments, we estimate the interaction energy and also Sleads:< f + J:, dxL(¢; KL =1pE),
the values for the Luttinger parameters. o 2
Although a classical analysis with an interdot capacitance

reproduces the experimental results qualitatively, the value of LEFT RIGHT
the required interdot capacitance is unrealistically 1&rge. LEAD @ LEAD
Golden and Halperiobtain their results by mapping the J

two dot model to a single dot model. Here, we directly model Gy G,

the experimental set-up as a one-dimensional system and ob-

tain the effective action exactly, by integrating out Gaussian Ki=1 Ky K> Ky=1
degrees of freedom. Hence our results give the interaction | g P |
energy directly in terms of the microscopic variables and d, d

applied voltages. We find that in the weak tunneling limit,

the peak splitting is proportional to the square root of the FIG. 1. Double dot system above shown schematically below
tunneling conductance and in the strong tunneling limit, thewith the dots modeled as LL witk;_, ,, between barriers; and
deviation of the splitting factor from unity is proportional to J, and with two gate voltageg; .
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0 d2 2 Ui 2 U1U2
Stots™ dxL(p;K1,v1)+ | dxL(h;Kp,v2) Sefzso'l'f dr Ei:l?(Xcl_Qsi) t a0y 9192
~d, 0 mJ
+V+Jcog2 ,
€2my) +(— Q11+ Gadbo) [T +V|. ()
and
Now, we define the following variablesniz(—l_)”l(xd
Sgates= (91 /T (x— ¢1) — )N+ (ked)/ 7 and 6,= (xe1+ ¢i)/2+(—1)'(ked;)/2
which can be interpreted as the charges and currents on the
+(G2 N (ha—x), dots 1 and 2, respectively, and in terms of which the action
can be rewritten simply as
where
V=37 ,Gicog§ 2\ +(—1)'2ked]. Ser=So+ f dr| 37, 2 (M= ng) >~ Eppniny + V|, (6

Here G, andJ are the junction barriers defining the dots and
b=#[(—1)id,] and y=¢(0) denote the boson fields at Where
those points.J controls tunneling between the dots and
ranges from fully open J=0, single dot to fully closed E1;=U U4 and ng=(ked)/m—gi/th. (7)
(J=, two decoupled dojsThe gate voltageg; control the
density of electrons in each dot.

In the low T limit (T<<%vq/kgdq,hiv,/kgd,) all three
barriers are seen coherently, and we expect the CB of the

U,==U; plays the role of the charging energy or CB energy
because in the absence of any mixing betwegandn,, by
tV\;(Bming g; (equivalentlyng;), the dot states witm; and n;

dots to be coupled. The effective action of the system can b 1 electrons can b_e_ made degenerate. This IS the Iifting.of
obtained by integrating out all degrees of freedom exceptt e CB for each individual dot. But the crucial term above is

those at the positions of the three junction barriers, followingt® {€rM mixingn; andn,. This tells us how the CB through
Refs. 11,12 and we find that one dot is affected by the charge on the other dot. The barrier

terms can be more conveniently rewritten in terms of the
total charge of the double dot and the current through the
double dot system, whe®,=G,=G by defining the total
charge and current fields al=n;+n,=(p,— ¢;)/ 7
+(keL)/ 7 and 6= (p,+ ¢1)/2+ (kel) /27, whereL=d,
+d, and I=d,—d;. With these redefinitions, the barrier
term reduces to

U; .G
Sef:SO+f dT[Eiz—l ?(X_Gf’i)z"‘(_l)'%()(_d’i)

+V+J 005{2\/;)()], 2

where$y=2,, |w,|($i+$3)/2(K =1). The Fourier trans- V=2G cog2\mg)cosmN, 8

formed tilde fields are defined by ¢;(7) d s ~5 N2 Th o .
=3, e “¢(w,). The U,=fv;/K,d; terms are the andSp—Sp= _‘“n|w”|[0 +_(7T N7 .e action Is now in
" a form where its symmetries are manifest.

mass” terms that suppress charge fluctuations on the dots When the two dots are decoupled from each ottiy, (

and are responsible for the CB through the dots. =0 or equivalentlyJ—x), the action is symmetric under
Weak tunneling limitHere the barried is very large, and = . ' S
g yfarg the transformationf— 6+, N—2Ny—N. This is be-

the field y is pinned at its mini
€ Tieldx 1S pinned at fis minima causeg,; andg, can be tuned so as to makg;,ny, to be
_ _ . half integersg; +1/2,9,+ 1/2 and hencdly=ng;+ ny, to be
X= n\/;:XC' (n=integej. ) an integer. Thus the two CB’s are lifted and the four charge
A semiclassical expansion about these minima using 77 () (et e, Bt LS e
= Xol T i i i ) . : ;
Xei+ Xq 10 Second order in the fluctuations yields dot system is unhindered. We can plot the points of maxi-
mum conductance through the double-dot system in the

sefZSOJrJ' dr{[—gis+ 92¢2]/\/;+Xq(91—92)/\/; plane of the two gate voltages and as shown by the dotted
lines in Fig. 2, we get a square grid-he figure is for iden-

+32 Uly2+2 — )+ (va— d)2N2+V tical dots; in general, the grid is rectangular.
21Ul 2xa(Xer= )+ (o~ 1)) Now, we study the symmetries for a large finiteln this
—(sz)Xé}, (4)  case, the CB through each dot is influenced by interaction

with the electrons in the other dot. Hence, we now find that
where we have dropped all field-independent constants. Wkhe CB through the double dot system is lifted for two pos-
can now integrate out the quantum fluctuationsyinsince  sible sets of gate voltages. The statE&;,d,), (91
we have only kept quadratic terms, and usisgU; ,g;, we  +1,,)] and the statep(q1,9,), (q:,9,+1)] are degener-
get ate simultaneously, respectively, when
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shall see that the spacing of the CB terms are affected by a
nonzeroJ. We integrate ouj [in Eqg. (2)] which is quadratic
(whenJ is ignored to obtain

_ ~2, %o 2
Sef—Ewn|wn| 0 +ZN +Uef(N—NO) 12

+2G cog 2\/mh)cosmN+J cog 2y/m 6+ XN+ C]
=Sp+ V. (12

Here, we have defined ;= 7U,U,/(U;+U,)=7U/2, X
=(U;—Up)/(U1+U2)=0, No=keL/m—(91/Uy+92/Uy)
=keL/m—g/Ug;, C=2(92—01)/(Us+U3)+(Us+Uy)

FIG. 2. Positions of the conductance maxima as a function okgl+(U;—U,)keL=0. N and ¢ have been defined earlier.
the gate voltages. The solid lines denote the splitting and the dot€ and N, depend on the gate voltages and are the tunable
dash lineAB denotes the distance between two sets of split peaksparameters. The second equalities are for identical dots when
The splitting factorSis defined as twice the ratio of the former to y,=U,=U andd,=d,. g;=g,=g can be tuned b{. We
the latter length. shall use these values below for simplicity.

Since, we continue to be in the strong barrier limit for the
1 U, 1 U, G term, the action has deep minima for intedgefwith ap-
No=0it 5+ 5702, Noz=G2t 5+ 5501 O propriate g). But the degeneracy between these minima is
broken by theU.; and J terms leading to just one of them
This is one point where the CB is lifted and the conductancéoeing preferredas is the case for the usual CB withal)t

is a maximum. Just as earlier, the CB is lifted when

Similarly, the stateq(q;,9,+1), (q;+1,0,+1)] and
[(q;+1.4,), (9;+1,0,+1)] are degenerate simultaneously Ver(6,N)=Ve(( 0+ m/2N+1). (13
when

WhenJ=0, this happens wheN,= half integer. However,
whenJ#0, the above equality holds when

_ 1 U2 1 Ul

No1=01+ 5+ 37(d2+ 1), Ne=Gpt 5+ g7(Ai+1). No=1/2—J3/Uq4,3/24+ 3/Ue;,5/2— I U¢gs- - -, (14

(10 \which implies that the splittingg is given by

This ig another. point where the CB is lifted and the conduc- 59=Uqy—2J. (15)
tance Is a maximum.

Note that the original resonance which occurred when allt is easy to see from Eql14) that periodicity is restored
four states were degenerate has now broken into two separatden two electrons are added to the system, but periodicity
resonances, at each of which only three states are degeneratden a single electron is added to the system is broken by
Plotting this in the plane of the gate voltages, we obtain aheJterm. This tells us that the main effect of a small barrier
hexagon as shown by the dashed and solid lines in Fig. 2 iwithin a single dot, is to change the spacing of the peaks with
agreement with the experiments of Bliek al. in Ref. 3.  two peaks coming closer to each other and pairs of peaks
(The figure shown is for identical dots; otherwise, the hexa+teceding from each other. But the distance between pairs of
gons are not perfectly symmetnid.hus, as a consequence of peaks remains @. As J increases towards, the peaks
tunneling between the quantum dots, the conductancehich come closer to one another slowly merge into one, and
maxima splits into two. we are left with half as many peaks, which is what one

The splitting g of the maxima as a function of the tun- would expect when the dot size is halved.
neling barrierJ (the solid line in Fig. 2 can be computed Discussions and conclusion$hus, both from the weak
from Egs.(9) and(10), and gives and strong tunneling limits, we get a consistent picture. The

splitting is zero forJ=c and maximum when the tunneling

89,=89,=mU,U,/8]= 6g= \/§7TU1U2/8J- (12) goes to one [=0) and is just the spacing of a single dot of

length d;+d,. As a function of the tunneling barrier, the
Hence, the splitting iy, andg, is identical and is inversely splitting saturates linearl§proportional tod) for low barriers
proportional to the gate voltage controlling the tunneling bar{strong tunnelingand goes as 1/for weak tunnelingstrong
rier and directly proportional to the charging energies of thebarrierg. (Our model does not include interdot capacitance
two dots. However, whed becomes comparable to the other since it is expected to be very small for the experinfen
energy scales in the problem likg;, the strong barrier terms of the barrier conductan€g,, simple quantum me-
analysis breaks down. chanics shows tha,, (in units of 2e2/h) falls off from unity

Strong tunneling or weak barrier limitHere we assume asJ? in the low barrier limit and increases from zero a3®1/
that the barrier between the two dots is very small, ., in the weak tunneling limit. So in the weak tunneling limit,
>U;>J. So essentially, there is only one CB. However, weusing Eq.(11) and Fig. 2, the splitting facto6= 5g/(U
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1 [ ' ' ' ' ' ] Further, we predict that for the weak tunneling case, the in-
e terdot interaction energy is directly proportional to the charg-
% ing energies of the dots and hence inversely proportional to
i a the sizes or capacitances of each of the individual dots.
. The charging energies and the Fermi velocity obtained
. from Ref. 2 areU;~400 ueV and @g),4~2.3X10° cm.
a Thus using the relatiokd=#%v/Kd for a single dot, we find
& the LL parameters);=v,~3.1x10" cm/sec andK,=K,
- ~0.74 for identical dots. In the weak barrier limit, where the
splitting is small, we find thakEq, [in Eq. (7)] ranges from
02 T ~4—40 peV, which is roughly (102—10 })U. The LL
parameter values remain almost unchanged in the range of
0 L L L L gate voltages used in the experiments. The values can be
-0.92 -0.91 -0.9 -0.89 -0.88 -0.87 -0.86 confirmed by studying the conductance through the double
Gats Voltage(V) dot system in the “high” temperature limitT>Ty
=hv/kgd~0.6 K, when the electron transport through each

FIG. 3. Splitting factoiSas function of the gate voltage control- C
lina tunneling. The data points are from Ref. 2. The solid line de-2f the dots is incoherent. The conductance should scale as
g g g I 2(1K=1) . 7069 n the weak tunneling case and @K%

notes the square-root of the measured conductémedtiplied by ~T-951in the weak barrier case. LL behavior can also be

scaling factor 0.56 for besF Iipnd the dotted line just denotes the probed if the conductances are studied as a function of the
measured conductan¢eultiplied by 0.60 for best fjt size of the dots at *low” temperature3<Tq since LL
theory predicts explicit size dependent power laws at low
+89)~8g/U (for dg<U) oc1/Jec \/Eb. In the strong tunnel-  temperatures.
ing limit, S=269/2U¢=1—-2J/Ug;. S0  1-SxJ In conclusion, in this paper, we have obtained the effec-
«\1—Gy. Thus, in both limits, we relate the splitting factor tive action of a system of coupled quantum dots, in both the
to the barrier conductance. This is the central result of thisveak and strong tunneling limits. We have shown that in the
paper. presence of interdot tunneling, the peaks denoting the con-
In Fig. 3, we compare our theoretical prediction®fvith  ductance maxima split. The split is maximum when the tun-
the experimental curve. In the weak tunneling limit, a one-neling between the dots is maximum, i.e., when there is no
parametery? fit of our prediction to the lowest five points barrier at all between the dots. We have also computed the
(up to S~0.3) gives a goodness of fit of 84%. In contrast, asplitting as a function of the gate voltage controlling the
linear fit to the same daf@redicted in Ref. ¥, gives a good- tunneling between the dots in both the weak and strong tun-
ness of fit of only 75%. Similarly, in the strong tunneling neling limits, and find that the splitting factor is proportional
limit (S above 0.7, a one parameter fit of our prediction to the square root of the conductance in the weak tunneling
(which, in fact, is in agreement with the scaling analysis oflimit and the deviation of the splitting from unity is propor-
Ref. 14 gives a goodness of fit of 96%, again, considerablytional to the square root of the deviation of the conductance
better than the 81% for the logarithmic prediction in Ref. 7.from unity in the strong tunneling limit. This agrees with the
However, although our modeling is more realistic than earexperimental data on double dot systems. We have also ex-
lier ones and the agreement of our predictions with the extracted the Luttinger parameters from the experiment and
perimental data, both in the strong and weak tunneling limithave predicted temperature power laws for the same setup
is impressive, better data is required for a conclusive proofwhich can be experimentally tested.
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