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We reply to the preceding Comment by Diehl and SHpitys. Rev. B58, 066401(2003] criticizing a new
approach to the Lifshitz critical behavior just presenfstd M. Leite, Phys. Rev. B57, 104415(2003]. We
show that this approach is free of inconsistencies in the ultraviolet regime. We recall that the orthogonal
approximation employed to solve arbitrary loop diagrams worked out in the criticized paper even at the
three-loop level is consistent with homogeneity for arbitrary loop momenta. We show that the criticism is
incorrect.
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Diehl and ShpotDS) (Ref. 1) recently formulated a criti- pling constantu; are defined througli2a)—(2e) in such a
cism of a new renormalization-groufiRG) picture of the way that the renormalized vertex part wmf(f))(p) [given
Lifshitz critical behaviof It is based on a scaling hypothesis by Eq.(193a for 7=1] in Ref. 2 is ultraviolet finite. When
with two independent relevant lengtimomentum scales, 7=2, the vertex parﬂ“(Ff('g))(q) has nonvanishing external
which characterize the spatial axes without competition, asnomenta only along directions parallel to the competing
well as those in competing space directidrie. momentum  axes, i.e..q=(k,0). The authors miss that in additioone
space, the Feynman diagrams are calculated up to two-lodpas the renormalization factoB,,),Z 422y and renormal-
order using two different approximations. The theory isized coupling constani, which are defined througt8a)—
renormalized using dimensional regularization in two differ-(3€) with renormalized vertefg(g))(k) [given by Eq.(1933
ent renormalization schemes. We first use normalization corfor 7=2] which is ultraviolet finite. In minimal subtraction,
ditions with two distinct symmetry points characterizing dif- for 7=1, the functionsZ .y, Z 21y, andu, are defined in
ferent momenta directions. Then, we check our results usin§ds. (1923—(1929. Equation(1933 defining the renormal-

a minimal subtraction scheme. ized vertexI"¢9)(p) and Eqs.(1949 and (1950 expressing

The dissipative approximation was used to calculate somghe bare vertefgf')o)(p) eliminate the ultraviolet pole pro-
critical exponents along directions perpendicular to theportional top?/ €, , making the renormalized vertds Z(f))(p)
(quartio competing direction$.The main point of the criti-  ultraviolet finite as shown explicitly there. The pole propor-
cism by DS in Ref. 5 to this approximation was the impos-tional tok*/ ¢, of the bare vertefg')o)(k) is explicitly elimi-
sibility to treat the isotropic case. However, it was pointednated in VIB2 using a similar reasoning with=2. These
out in Ref. 6 that it is a good approximation for the aniso-explicit cancellations in this minimal subtraction scheme first
tropic behaviors, since it preserves the homogeneity of thappeared in Ref. 2. Indeed, the minimal subtraction was car-
Feynman integrals in the external quadratic momentum conved out up to three-loop level fdr{3(q).
ponents perpendicular to the competition axes. Notice that if one tries to renormalize the theory using

The orthogonal approximation to perform loop integralsminimal subtraction using the vertdSéN'L)(k,p) with arbi-
introduced in Ref. 2 is the most general one consistent withrary momenta, without separating each subspace into inde-
the physical principle of homogeneity. It can address bottpendent RG transformations, the renormalized vertices are
isotropic and anisotropic cases since the loop integrals areot finite in the ultraviolet regime. Had we not separated the
homogeneous functions of arbitrary external momentuntenormalized vertices in that way we would have obtained a
scales perpendicular to or along the competing axes. Theréenormalized theory with bad ultraviolet behavior. This sepa-
fore, the main point of DS in Ref. 5 no longer applies for theration is possible, for the two coupling constants flow con-
orthogonal approximation presented in Ref. 2. s'lsyer)tly to the same fixed point. Given these facts, the claim

The criticism in Ref. 1 has a different nature: the authorsi) iS incorrect. o
claim that (i) Leite’s renormalization scheme does not yield = Next, the authors make the clainiif) Leite’s insufficient
an ultraviolet finite renormalized theory, and the structure 01ch0|ce of counterterms is biased towards giving the incorrect

-1 1 — ”
the RG he formulates is incorrect.” Let us show now why value =3 for the anisotropy exponent=w,/v ,.” AS

this statement is wrong. Recall that each vertex part in Ref. % E?ngdﬂié?gn?b&\é?e%%gg{ﬁgr:{ntt?fafgglcfngf cogr::derterms 'S
has a subscript=1,2[see, for example, Ed6)]. If k is a ) ’ ponems, andv

. S . are determined independently in the perturbative framework
vector along them competing directions ang is a vector

. S up to the two-loop level. The valué=3 is just a simple
along th_e noncompetingd¢-m) cﬁrechqns, the vectoq consequence of this analysis. In the following discussion of
=(k,p) is the most genergtg—dlmensmnal momentum.  this claim, the authors insist that the choice of counterterms
When =1, the vertex parl’{7)(q) has nonvanishing ex- s insufficient. Hence, the claifii) is unwarranted.
ternal momentum components only along directions perpen- The following claim is “(ii) Leite obtained incorrect hy-
dicular to the competing axes, i.@+(0,p). The associated perscaling relations because he missed the fact@hatan

renormalization factor& ,1y,Z,42(1) and renormalized cou- independent exponent, not identicalstdor all e, >0.” The
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hyperscaling relation is derived from the specific heat vertex-x). By taking m=8— ¢, and expanding thé" functions,

part above the critical Lifshitz temperature and relates theve find up toe? with no approximation the result

specific heat exponent to the space dimension and correlation

length exponents, as stated in E¢45) for the anisotropic

cases® We recall that the exponerg, is obtained when

performing the RG analysiselowthe critical Lifshitz tem- 1,(K')=S,4X3X2

perature, as shown in Eq&4b) and(54d). Of course, since €L

the specific heat critical exponent is the same above and 1 ¢ (2 5 )

below T, , the magnetization exponep{ can be related to X[g—fjo dxx(1=x)IN[x(1=Xx)K"“]+O(€}) |.

ap and y_ through the Rushbrook law. In Ref. 2 it was

explicitly demonstrated that the anisotropic scaling relations 4

Z_;Zt;)d 223((:?43)) ;r;a;;r;i;?;égﬂl)n?nl gae?ei (f)(f)rlqee:f';'vsﬁiucatlon?\loticg thz_it the remaining logarithmic int_egral in the Ia_st

is the correct value of), at least at the two-loop level. From ?hqua_tltC)n ISI ?oment?m dctjapt)enbdent.l Inl T'gmlllal sutt;]tr?cnon.t

our scaling analysig is not an independent exponent. There- IS Integral does not need to be calculated. INEVerineless, |
L9 has to be considered in order to show that the renormaliza-

fore, claim(iii) is out of order. tion factors are momentum independent. This condition is

The claim(iv) is about the role oftr. As shown in the P '

text? o is not required, since we develop two independentaCh'eved provided the cancellations of all the logarithmic

e .. . integrals take place for arbitrary vertex parts. Thus, any at-
sets of normalization conditions in each subspace. Furthet- : ’ ! T

L . empt to solve the integrals without doing approximations
more, if o is set to unity and the external momenta along th

competing axes have the same canonical dimension as %eas to take into account these basic facts.
Peting It is clear from the last equation that the remaining loga-

components _perpendlcular 0 the competing axes, the quartlr‘r‘thmic integrals in the isotropic case are not the same as
kinetic term in the Lagrangian accounting for the effect of

L : . .~those in the standar@* theory. In Ref. 11 the validity of Eq.
the competition is inconsistent for it has the wrong canonica : . 1
. P : o : . Al) for arbitrary external momenta implies that the logarith-
dimension(in mass units This invalidateqiv).

The claim(v) says that the results obtained in Ref. 2 for Mic integrals do not cancel out in the calculation of the
. . , . _renormalization factors, making them momentum dependent
the isotropic case are false. Let us first analyze the scalin

laws. The scaling laws in Ref. 2 are identical to those ob-% contradlc_t|on to Eqs(.12).—(14) n Ref. 11. This shows that
. . - : : . X the results in Ref. 11 are inconsistent. On the other hand, the
tained in the earlier worK for isotropic cases with arbitrary

even momentum powerp? in the propagators wheh use of the orthogonal approximation in Ref. 2 provides all

- g . cancellations of logarithmic integrals for arbitrary vertex
Jni\.bllé Itz g:a?i(\)/gat?]te;z ?czrl]it:g);nlet\r/]vit the DS treatment Wasparts, making the renormalization factors momentum inde-

Consider the one-loop Feynman integig(K’), Eg. pendent as explicitly shown there.

! Let us compare our findings for the isotropic case using
(150 from Ref. 2. It can be calculated to ordef without normalization conditions. Taking'?=1, the integral above

any approximation as follows. Using Feynman parameters,,, pe easily calculated, giving the result
Eq. (150 reads

136L)

I (K’)—F(4)fldxx(1—x)f a7 (1_;)
2 - 0 [Xk2+(1_x)(k+K/)2]4' |2(K/2:1):4Sm6—L. (5)
(N

In Ref. 2 it was incorrectly asserted that the choice of a
Using the formula convenient factor to be absorbed in the coupling constant
would affect the universal quantities. Then, if we choose the

F( m) factor Fm,€L=4sm(1—7eL/24), the exact result above and

d™k 1 Sml“( 271972 approximate form, Eq157), from Ref. 2 ofl ,(K'?=1) are
f (K2+ 2Kk’ +m2)« ) I'(a) thel same and only differ by an ultraviolet finite repargmetri—
zation of the theory. Thus, the orthogonal approximation for
X (m?—k'2)m2-e, (2) I, is the same as the exact solution up to a finite ultraviolet
_ reparametrization which does not change universal amounts.
we obtain This invalidates the sentenceés .. due to hisincorrect cal-
culation . . . hegets even the simple one-loop integrg(K)
m 1 defined in(150 wrong.” The discussion above implies that
4- 2 Smfo dxx(1—x) (v) is false. The advantage of the orthogonal approximation
is that it permits one to treat the anisotropic and isotropic
X[X(1—x)K'2]m2-4, (3)  loop integrals within the same mathematical footing.
In (vi), the authors actually ‘!..fail to see...
The integral above is different from its analog in the stan-e-expansion results qualify as acceptable approximations.”
dard ¢* theory for the appearance of the extra fact¢i In fact Ref. 2 achieved the two goals) homogeneity is the

1 /m
IZ(K,):EF(E)F
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physical principle which justifies the orthogonal approxima-P when “performing” the calculations either in momentum
tion and(b) the independent flow of the two coupling con- space(as they “did” in Appendix B or in coordinate space
stants along different momenta subspaces to the same fixésee Appendix € This is obviously incomplete and wrong,
point in the anisotropic cases is consistent and yields a weliSince the most general situation should include both momen-
defined theory. The critical exponents and other universalum scales. In Ref. 11 they tried to defend their result with a
amounts for the anisotropic cas&¥ reduce correctly to the falacious argument in Appendix B. The simple orthogonal
casesm=0 using this approximation. approximation presented in Ref. 2 for this integral, Bet8),

DS see no need to make approximations, but there is §MPly rules out Eq(B14) in Ref. 7 as a valid equation,
point in their formulation that deserves at least an update t anng It unaccepte}ble. AS was already pgmted out in Ref. 6
correct a wrong result. Consider the two loop int(::gr(:llthe Incorrect tf>ehaV|r(])r of §h|s |nt'egral,r1:0r'|nstang:e, prevents
I4(P,K") contributing to the coupling constant at two Ioops.t e transition from the anisotropic to the isotropic case.
SinceP is a (d—m)-dimensional momentum vector perpen- To summarize, the renormalized field theory in Ref. 2 is
dicular to the competing axes aid is a momentum vector free of ultraviolet pathologies for both the isotropic and an-

parallel to then-dimensional competing axes, E¢$48 and @sotropic cases. DS's misconceptions of t.he method .p.rc.)posed
(137) for the solution of this integral using the orthogonal in that reference lead them to make an incorrect criticism.

approximation in Ref. 2 depends toth external momenta. | acknowledge support from FAPESP, Grant No. 00/
In Ref. 7, Eq.(B14), the integrall ,(P,K’) only depends on 06572-6.
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