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Reply to ‘‘Comment on ‘Renormalization-group picture of the Lifshitz critical behavior’ ’’
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We reply to the preceding Comment by Diehl and Shpot@Phys. Rev. B68, 066401~2003!# criticizing a new
approach to the Lifshitz critical behavior just presented@M. M. Leite, Phys. Rev. B67, 104415~2003!#. We
show that this approach is free of inconsistencies in the ultraviolet regime. We recall that the orthogonal
approximation employed to solve arbitrary loop diagrams worked out in the criticized paper even at the
three-loop level is consistent with homogeneity for arbitrary loop momenta. We show that the criticism is
incorrect.
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Diehl and Shpot~DS! ~Ref. 1! recently formulated a criti-
cism of a new renormalization-group~RG! picture of the
Lifshitz critical behavior.2 It is based on a scaling hypothes
with two independent relevant length~momentum! scales,
which characterize the spatial axes without competition,
well as those in competing space directions.3 In momentum
space, the Feynman diagrams are calculated up to two-
order using two different approximations. The theory
renormalized using dimensional regularization in two diffe
ent renormalization schemes. We first use normalization c
ditions with two distinct symmetry points characterizing d
ferent momenta directions. Then, we check our results u
a minimal subtraction scheme.

The dissipative approximation was used to calculate so
critical exponents along directions perpendicular to
~quartic! competing directions.4 The main point of the criti-
cism by DS in Ref. 5 to this approximation was the impo
sibility to treat the isotropic case. However, it was point
out in Ref. 6 that it is a good approximation for the anis
tropic behaviors, since it preserves the homogeneity of
Feynman integrals in the external quadratic momentum c
ponents perpendicular to the competition axes.

The orthogonal approximation to perform loop integra
introduced in Ref. 2 is the most general one consistent w
the physical principle of homogeneity. It can address b
isotropic and anisotropic cases since the loop integrals
homogeneous functions of arbitrary external moment
scales perpendicular to or along the competing axes. Th
fore, the main point of DS in Ref. 5 no longer applies for t
orthogonal approximation presented in Ref. 2.

The criticism in Ref. 1 has a different nature: the auth
claim that ‘‘~i! Leite’s renormalization scheme does not yie
an ultraviolet finite renormalized theory, and the structure
the RG he formulates is incorrect.’’ Let us show now w
this statement is wrong. Recall that each vertex part in Re
has a subscriptt51,2 @see, for example, Eq.~6!#. If k is a
vector along them competing directions andp is a vector
along the noncompeting (d2m) directions, the vectorq
5(k,p) is the most generald-dimensional momentum
When t51, the vertex partGR(1)

(2,0)(q) has nonvanishing ex
ternal momentum components only along directions perp
dicular to the competing axes, i.e.,q5(0,p). The associated
renormalization factorsZf(1) ,Zf2(1) and renormalized cou
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pling constantu1 are defined through~2a!–~2e! in such a
way that the renormalized vertex part withGR(1)

(2,0)(p) @given
by Eq. ~193a! for t51] in Ref. 2 is ultraviolet finite. When
t52, the vertex partGR(2)

(2,0)(q) has nonvanishing externa
momenta only along directions parallel to the compet
axes, i.e.,q5(k,0). The authors miss that in additionone
has the renormalization factorsZf(2) ,Zf2(2) and renormal-
ized coupling constantu2 which are defined through~3a!–
~3e! with renormalized vertexGR(2)

(2,0)(k) @given by Eq.~193a!
for t52] which is ultraviolet finite. In minimal subtraction
for t51, the functionsZf(1) , Zf2(1) , andu1 are defined in
Eqs.~192a!–~192c!. Equation~193a! defining the renormal-
ized vertexGR(1)

(2,0)(p) and Eqs.~194a! and ~195d! expressing

the bare vertexG (1)
(2,0)(p) eliminate the ultraviolet pole pro

portional top2/eL , making the renormalized vertexGR(1)
(2,0)(p)

ultraviolet finite as shown explicitly there. The pole propo
tional tok4/eL of the bare vertexG (2)

(2,0)(k) is explicitly elimi-
nated in VIB2 using a similar reasoning witht52. These
explicit cancellations in this minimal subtraction scheme fi
appeared in Ref. 2. Indeed, the minimal subtraction was
ried out up to three-loop level forGR(t)

(2,0)(q).
Notice that if one tries to renormalize the theory usi

minimal subtraction using the vertexGR
(N,L)(k,p) with arbi-

trary momenta, without separating each subspace into in
pendent RG transformations, the renormalized vertices
not finite in the ultraviolet regime. Had we not separated
renormalized vertices in that way we would have obtaine
renormalized theory with bad ultraviolet behavior. This sep
ration is possible, for the two coupling constants flow co
sistently to the same fixed point. Given these facts, the cl
~i! is incorrect.

Next, the authors make the claim ‘‘~ii ! Leite’s insufficient
choice of counterterms is biased towards giving the incorr
value u5 1

2 for the anisotropy exponentu5nL4 /nL2.’’ As
shown in the above paragraph, the choice of counterterm
not insufficient. Moreover, the critical exponentsnL4 andnL2
are determined independently in the perturbative framew
up to the two-loop level. The valueu5 1

2 is just a simple
consequence of this analysis. In the following discussion
this claim, the authors insist that the choice of counterter
is insufficient. Hence, the claim~ii ! is unwarranted.

The following claim is ‘‘~iii ! Leite obtained incorrect hy-
perscaling relations because he missed the fact thatu is an
independent exponent, not identical to1

2 for all eL.0.’’ The
©2003 The American Physical Society02-1
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hyperscaling relation is derived from the specific heat ver
part above the critical Lifshitz temperature and relates
specific heat exponent to the space dimension and correla
length exponents, as stated in Eqs.~45! for the anisotropic
cases.2,8 We recall that the exponentbL is obtained when
performing the RG analysisbelow the critical Lifshitz tem-
perature, as shown in Eqs.~54b! and~54d!. Of course, since
the specific heat critical exponent is the same above
below TL , the magnetization exponentbL can be related to
aL and gL through the Rushbrook law. In Ref. 2 it wa
explicitly demonstrated that the anisotropic scaling relatio
are identical to that in the seminal paper of Ref. 9. Equati
~54b! and~54d! do satisfy Eq.~1! in Ref. 1 foru5 1

2 , which
is the correct value ofu, at least at the two-loop level. From
our scaling analysisu is not an independent exponent. Ther
fore, claim~iii ! is out of order.

The claim ~iv! is about the role ofs. As shown in the
text,2 s is not required, since we develop two independ
sets of normalization conditions in each subspace. Furt
more, ifs is set to unity and the external momenta along
competing axes have the same canonical dimension as
components perpendicular to the competing axes, the qu
kinetic term in the Lagrangian accounting for the effect
the competition is inconsistent for it has the wrong canon
dimension~in mass units!. This invalidates~iv!.

The claim~v! says that the results obtained in Ref. 2 f
the isotropic case are false. Let us first analyze the sca
laws. The scaling laws in Ref. 2 are identical to those
tained in the earlier work10 for isotropic cases with arbitrary
even momentum powersp2L in the propagators whenL
52. It is important to mention that the DS treatment w
unable to derive these scaling laws.

Consider the one-loop Feynman integralI 2(K8), Eq.
~150! from Ref. 2. It can be calculated to ordereL

0 without
any approximation as follows. Using Feynman paramet
Eq. ~150! reads

I 2~K8!5G~4!E
0

1

dxx~12x!E dmk

@xk21~12x!~k1K8!2#4
.

~1!

Using the formula

E dmk

~k212kk81m2!a
5

1

2

SmGS m

2 DGS a2
m

2 D
G~a!

3~m22k82!m/22a, ~2!

we obtain

I 2~K8!5
1

2
GS m

2 DGS 42
m

2 DSmE
0

1

dxx~12x!

3@x~12x!K82#m/224. ~3!

The integral above is different from its analog in the sta
dard f4 theory for the appearance of the extra factorx(1
06640
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2x). By taking m582eL and expanding theG functions,
we find up toeL

0 with no approximation the result

I 2~K8!5Sm43332
S 12

13eL

24 D
eL

3F1

6
2

eL

2 E0

1

dxx~12x!ln@x~12x!K82#1O~eL
2!G .

~4!

Notice that the remaining logarithmic integral in the la
equation is momentum dependent. In minimal subtract
this integral does not need to be calculated. Nevertheles
has to be considered in order to show that the renormal
tion factors are momentum independent. This condition
achieved provided the cancellations of all the logarithm
integrals take place for arbitrary vertex parts. Thus, any
tempt to solve the integrals without doing approximatio
has to take into account these basic facts.

It is clear from the last equation that the remaining log
rithmic integrals in the isotropic case are not the same
those in the standardf4 theory. In Ref. 11 the validity of Eq.
~A1! for arbitrary external momenta implies that the logarit
mic integrals do not cancel out in the calculation of t
renormalization factors, making them momentum depend
in contradiction to Eqs.~12!–~14! in Ref. 11. This shows tha
the results in Ref. 11 are inconsistent. On the other hand,
use of the orthogonal approximation in Ref. 2 provides
cancellations of logarithmic integrals for arbitrary verte
parts, making the renormalization factors momentum in
pendent as explicitly shown there.

Let us compare our findings for the isotropic case us
normalization conditions. TakingK8251, the integral above
can be easily calculated, giving the result

I 2~K8251!54Sm

S 12
eL

24D
eL

. ~5!

In Ref. 2 it was incorrectly asserted that the choice o
convenient factor to be absorbed in the coupling cons
would affect the universal quantities. Then, if we choose
factor Fm,eL

54Sm(127eL/24), the exact result above an

approximate form, Eq.~157!, from Ref. 2 ofI 2(K8251) are
the same and only differ by an ultraviolet finite reparame
zation of the theory. Thus, the orthogonal approximation
I 2 is the same as the exact solution up to a finite ultravio
reparametrization which does not change universal amou
This invalidates the sentences ‘‘ . . . due to hisincorrect cal-
culation . . . hegets even the simple one-loop integralI 2(K)
defined in~150! wrong.’’ The discussion above implies tha
~v! is false. The advantage of the orthogonal approximat
is that it permits one to treat the anisotropic and isotro
loop integrals within the same mathematical footing.

In ~vi!, the authors actually ‘‘ . . . fail to see. . .
e-expansion results qualify as acceptable approximation
In fact Ref. 2 achieved the two goals:~a! homogeneity is the
2-2
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physical principle which justifies the orthogonal approxim
tion and~b! the independent flow of the two coupling co
stants along different momenta subspaces to the same
point in the anisotropic cases is consistent and yields a w
defined theory. The critical exponents and other unive
amounts for the anisotropic cases12,13 reduce correctly to the
casesm50 using this approximation.

DS see no need to make approximations, but there
point in their formulation that deserves at least an updat
correct a wrong result. Consider the two loop integ
I 4(P,K 8) contributing to the coupling constant at two loop
SinceP is a (d2m)-dimensional momentum vector perpe
dicular to the competing axes andK 8 is a momentum vecto
parallel to them-dimensional competing axes, Eqs.~148! and
~137! for the solution of this integral using the orthogon
approximation in Ref. 2 depends onboth external momenta
In Ref. 7, Eq.~B14!, the integralI 4(P,K 8) only depends on
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To summarize, the renormalized field theory in Ref. 2
free of ultraviolet pathologies for both the isotropic and a
isotropic cases. DS’s misconceptions of the method propo
in that reference lead them to make an incorrect criticism
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