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Superconductivity in a system of fractional spectral dimension

Zygmunt Bak*
Institute of Physics, Pedagogical University of Czestochowa, 42-200 Czestochowa, al. Armii krajowej 13/15, Poland

~Received 2 May 2003; published 25 August 2003!

This work is concerned with an extension of the fractional-dimensional scheme to the study of supercon-
ductivity. We show that quasi-two-dimensional layered structure of the high-temperature superconductors can
be described as a system for which both spatial and spectral dimensions have nonintegral values. We derive a
general formula for critical temperature as a function of spectral dimensiona, which for layered structures can
vary within the 1,a,4 range. We show that fora.3 there is an enhancement~when compared to the
three-dimensional superconductor! of critical temperature up to the maximum determined by the pairing
mechanism.

DOI: 10.1103/PhysRevB.68.064511 PACS number~s!: 74.20.2z, 74.25.Jb, 74.78.Fk
m
n

Th
lo

te
ile
c

ns
h

ys
m
t t
s
ct
si
ill
ic
id
ra

o
le
re
tu
p
o
n

ke
a
im
l-

th
ea
o

en
n

ical
ers.
ble

g
n

m-
-
eral
he-

a
3D

the
in

lity
and
of
first

d-

ral
be
an

in
he

a

I. INTRODUCTION

With recent progress in technology, the growth of syste
consisting of alternate heteroepitaxial thin layers with co
trolled nanoscale thickness has become possible.
achievement offers the ability to produce strong spatial
calization of electrons and holes between high-quality in
faces. As a result of the in-layer confinement of mob
charge carriers there arises size-quantization field, which
alter physical behavior of the initially free electron gas.1 In
this context it is important to find some universal relatio
between confined geometry of the system and physical p
nomena. The idea of universality stimulates studies of ph
cal behavior in real structures by means of model syste
Within this approach only a few parameters are sufficien
determine the relevant statistical properties of a wide clas
systems. Among the most relevant parameters that chara
ize both single particle and collective behavior of any phy
cal system is the dimensionality. In the following we w
focus our attention on description of superconductors wh
exhibit multilayered structure. Special attention will be pa
to the influence of confined geometry on the critical tempe
ture of superconductivity~SC! in a stratified system. In the
description of SC, most of the theoretical effort is focused
a search for microscopical mechanism responsible for e
tron pair formation. Since, till now, there is no unified pictu
of SC, detailed study of size effects is impossible. For
nately, as we will show below, there is an alternative a
proach to description of the size effects, which is based
the dynamical properties of the electron-hole gas with
specific assumptions concerning the pairing.

It is a well-known fact that dimension of spaceD plays a
crucial role in phase transitions. The critical valueD, above
which a continuous symmetry can be spontaneously bro
at finite temperature, equals 2. To any physical systems v
ous definitions of dimension can be proposed, thus it is
portant to determine which notion of dimensionality is re
evant in the description of critical phenomena. In the case
nontranslation-invariant structures, it has been proven
spectral dimension is the best generalization of the Euclid
dimension of the system when dealing with dynamical
thermodynamical properties. The notion of spectral dim
sion opens the way for research of structures, which can
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be classified as a system having integer dimension. Typ
examples of such systems are the heterepitaxial multilay
In any laminar structure the interlayer tunneling responsi
for the charge transfer along the growth directionz is the
result of thermal fluctuations and has three-dimensional~3D!
character2 if

kBT.tz
2~T!/txy . ~1!

In Eq. ~1! tz and txy are the interlayer and in-layer hoppin
rates, respectively, whilekB is the Bolzmann constant. Whe
the temperature is lowered to

kBT'tz
2~T!/txy , ~2!

the interlayer transfer is gradually limited and we have te
perature driven dimensional 3D→2D crossover. Thus, lami
nar systems offer good testing ground to study the gen
relations between dimension of a system and physical p
nomena.

In conclusion, the approximation of the Fermi gas in
quantum well, i.e., in a layered system, by a purely 2D or
system is seldom a reasonable choice. The purpose of
present paper is to formulate a simplified model of the SC
the intermediate region, when the dynamical dimensiona
of the mobile charge carriers interpolates between 2D
3D cases. In our approach we will treat the dimension
electron gas system as a continuous parameter. So let us
recall the concept of fractional dimensionality in the soli
state physics.

II. FRACTIONAL DIMENSIONALITY

The concept ‘‘dimension of the system’’ may have seve
meanings. It may describe the number of coordinates to
dealt with, e.g., in a problem of several quasiparticles. It c
mean the dimension of the position~Euclidean! space em-
bedding the particles. In this work we shall be interested
another definition of dimensionality, which is related to t
motion of quasiparticles within a solid~dynamical space,
spectral dimensionality!. Within quantum formalism the
states of mobile quasiparticles of a finite solid system~i.e.,
with periodic boundary conditions! are labeled by the
kW -wave vectors, which form the reciprocal lattice. There is
©2003 The American Physical Society11-1
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widespread conjecture that dimensions of the position sp
~lattice! and of dynamical space~reciprocal lattice! should be
both equal and integer. However, there is experimental
dence that in many laminar systems at least one of the ab
mentioned relations does not hold.

In many low-dimensional systems, e.g., superlattices
overlayers, the vibrational as well as the electron density
states, extracted from the experimental data correlates
those predicted for the systems of fractional dimens
~FD!.3–5 Laminar systems, such as Ag/Cu~001! overlayer or
GaAs/AlxGa12xAs quantum wells and superlattices as t
layer thickness decreases~see Refs. 4 and 6 and referenc
therein!, show continuous dimensional crossover from 3D
almost 2D behavior.5 Generally, the dimension of these sy
tems changes with the monolayer coverage, wire thickn
or temperature.

In the case of rough interfaces, a noninteger dimensio
the stratified system can be interpreted in terms of fra
geometry~Haussdorff dimension7!, but fractional dimension-
ality has been observed in a system not having fra
structure.8 In principle, FD originates from restrained motio
of mobile particles or quasiparticles in the stratified med
As it has been shown in Ref. 9, the observed FD of a gi
physical system is based on the physical strength rather
on the geometrical effects. This can be easily understo
numerous physical problems involve basic objects, which
usually described by shrinking or stretching the shape
some characteristic functions. This fact modifies the ene
spectrum of the mobile quasiparticles, which, in turn, de
mines the spectral dimension.4 Invoking a FD space in de
scription of such a system offers a convenient alternative
computational techniques.6 In this case single parameter—
the spectral dimensionality—contains all of the informati
about the perturbation. We adopt the approach by He,4 who
has shown that the anisotropic interactions in 3D space
come isotropic ones in lower FD space, where the dimens
is the Hausdorff dimension and is determined by the deg
of anisotropy. Evidently, when the potential that causes
in-plane confinement is infinite, the system is purely 2
However, in the case of finite quantum wells the envelo
functions of free electrons~holes! spread into the barrier re
gion and partially restore the 3D character of the moti
Consequently, the system exhibits behavior, which is so
where in between 2D and 3D. Different notions of dime
sionality manifest themselves in many ways, e.g., one
imagine a 3D spin structure on a 2D lattice.10

In case of the laminar systems~thin films, superlattices, o
overlayers! there arises a question whether the dynam
states of quasiparticles can be labeled by the wave vectok,
i.e., whether thek-space formalism is valid. Since in lamina
systems the translational symmetry is broken, one would
pect that the proper answer is no, on the other hand
existence of band structure in liquid metals and random
loys suggests that a positive answer is possible. This is g
by Tsallis and Maynard,11 who have shown that thek-space
formalism can be applied to the description of dynami
states in the fractal system, when only statistical invaria
under translation is observed. The metallic superlattices p
sess crystalline in-plane symmetry and the fractional dim
06451
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sionality arises not from intrinsic disorder, but due to t
restraints imposed onto motion of free particles. The m
prominent example of this presents the metallic magn
superlattices. RKKY-reminiscent indirect interaction is me
ated by mobile electrons confined within metallic layer. T
effective interlayer coupling between magnetic layers is s
well described in terms ofk vectors spanning the Fermi su
face of the spacer layer. This gives experimental evidenc
the applicability ofk-space formalism in these systems a
indicates that the arguments of Tsallis and Maynard11 still
hold. The direct observations show that many real syste
with a mobile charge carriers, as extracted from excitat
statistics, exhibit fractional spectral dimensionality.3 This
confirms both FD of the systems and applicability ofk-space
formalism in layered systems.

Let us mention here that FD space is not, in genera
vector space.12 However, one can trace a number of mutua
perpendicular lines, which can be regarded aspseudocoordi-
nateaxes. It is worth mentioning that the largest number
mutually perpendicular axes~pseudocoordinates! can be
even larger than FDa. Since in our case we assume thek
space to be of FD this implies to renounce the use of
vector property. In the following we will use the termk
space instead ofk wave vectors.

The method by He4 postulates that the electron quantu
states are homogenously distributed in theaD k space and a
surface of constant energy is anaD spherical shell. Suppos
further that the energy dispersion is parabolic,E2Eo'k2,
we obtain the expression for the density of states inaD k
space4 as

n~E!dE'~E2Eo!a/221dE, ~3!

where Eo is the band gap. This means although the io
~mass! distribution position space of dimensionalityb shows
no peculiarities, the density of free particle eigenstates sh
~sometimes fractional! power-law scaling~with effective
spectral dimensionaÞb).4

The effective spectral dimensionality of laminar syste
can be easily determined provided that energy spectrum
mobile particles within the layer is known. As an examp
let us consider a semiconductor with planar doping, of
used for forming V-shaped potential wells with quasi-tw
dimensional~quasi-2D! electron gas. When the deposition
impurities can be represented by the Diracd function, it is
calledd doping.13 The enhanced mobility of the 2D electro
gas in V-shaped,d-doped semiconducting multilayers can b
described by the following Hamiltonian:14

H52a1¹42a2¹21V, ~4!

where

a15
\4

4Eg
S 1

m*
2

1

mo
D 2

, a25
\2

2m*
, ~5!

while mo and m* denote the bare and effective electro
mass, respectively, whileEg is the bottom of the valence
band~for detailed description of the model see Refs 14 a
15, and references therein!. V5V(z) is the confinement po-
1-2
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tential that includes electron-electron interaction. At t
same timeV(z) is the conduction band-edge profile. Th
eigenfunctions and eigenvalues of Eq.~4! are given in the
form

Cnk~rW !5
1

2p
exp~ ikW•rW !hnk~z!,

~6!
Enk5E~n,k!1a2k22a1k4,

whererW 5(x,y), kW5(kx ,ky). Both hnk and E(n,k) satisfy
the 1D Schro¨dinger equationĤhnk5E(n,k)hnk ,15 whereĤ
is given by Eq.~4!. Enk represents thenth two-dimensional
subbands of the 2D electron gas within the quantum well
a laminar system. When limited to the single band mod
Enk reduces to

ek5a2k22a1k42m, ~7!

wherem is the Fermi energy. Having the mobile quasipar
cle spectrum~7! known we can calculate the density of stat
as follows:16

n~k!dk'p~e2eo!21/2de. ~8!

Expression~8! can be fitted to the general formula~3! by
settinga51. This means that we can model such a pla
semiconductor with nonparabolic dispersion~7! by a 1D sys-
tem with parabolic dispersion.

In principle, it is enough if the density of states fulfil
relation ~3! in a small energy window close to the Ferm
energy. Extensive analytical discussion of how the effect
spectral dimensionality is associated with the number of
free electron modes can be found in Ref. 17.

Although for the further considerations only the value
spectral dimension is important, we must point out that
spatial dimension can also be a fraction. Concerning
problem of mobile particle confined within a layer, the que
tion is what is the spatial dimensiona, which measures the
anisotropy of the system. A possible answer in the case
superlattice is given in Ref. 18, where the FD is defined
a521g521mo /mz wheremo and mz are the on-axis re-
duced effective masses in the 3D crystal and in the supe
tice, respectively. Another possible choice is to expressa in
terms of the effective quantum well widthLw* in the case of
excitons having the extensionj is given by the expression

a532e2Lw* /j.6 In magnetic systems the FD can be det
mined as viewed form the measurements of the Bloch ex
nent in the low-temperature magnetizationM (T)5M (0)(1
2BTa/2) or specific heat.19

III. SUPERCONDUCTIVITY

As we have shown above the dynamical states of mo
charge carriers in some laminar systems can be descr
properly with the help of ak space having fractional dimen
sion. This concerns also the YBaCuO compounds for wh
the FD has been postulated.20 Most of the theoretical ap
proaches to the superconductivity rely of thek-space pairing;
thus, it is reasonable to consider the problem of SC i
06451
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system of ~spectral! FD. For the use of further conside
ations, it is not necessary to specify any peculiar mechan
of pairing. Experiments confirm that spectral FD case ar
in various laminar systems involving polarons21 ~and thus
bipolaronic SC22!, excitons,6 phonons,21 or magnons.17,19

This variety of quasiparticles and interactions covers alm
all mechanisms postulated for description of SC~provided
that real-space pairing theories are excluded!.

In conclusion we assume that the Hamiltonian that is
sponsible for the Cooper pair formation is given by

H5(
kW ,s

~ek2m!ck,s
1 ckW ,s1(

k,k1

Vkk1
ck,↑

1 c2k,↓ck1 ,↑
1 c2k,↓ ,

~9!

where ck,s
1 is the fermion creation operator labeledk and

spin s. The only difference when compared to convention
approaches is that thek states fill the space of nonintegra
dimensionality. As we have mentioned above, we assume
SC transition as the Bose-Einstein condensation of pree
ing boson pairs. It is well known fact that Bose-Einste
condensation produces a nonzero absolute temperatureTc ,
below which a macroscopic condensation emerges, onl
D.2. Although there were recently reports on possibility
SC state in a systems withD,2 ~Ref. 24!, we must note that
these results refer to the geometrical meaning of dimens
However, if we determine the value of spectral dimens
aD @according to formula~3!#, we can easily find that the
reported system24 still fulfills the aD.2 condition. The con-
ventional theory of boson condensation derived for syste
of integral dimensionality23 can be easily extended onto sy
tems, which exhibit fractional spectral dimensiona. The to-
tal number of bosonsNB(T) in the system consists of th
NB,0(T) ones that occupy the ground stateeo (eo50 in the
thermodynamic limit!, while the others are distributed ove
higher-energy levels. In view of this we have23

NB5NB,0~T!1 (
kÞ0

1

eb(ek2mB)21
, ~10!

whereb51/KBT andmB,0 is the chemical potential. Simi
larly as in Eq.~9! we assume that summation goes over thk
states filling the fractionalaD space. The sum overk in Eq.
~10! can be converted to an integral over positivek5uku,
where k fills the aD space. In view of the results o
Stillinger12 the integration overaD space~when 2,a,3)
can be performed with use of the formula21

(
k

→ Va

~2p!a

2p (a21)/2

G~a21/2!
E

0

`

dkE
0

p

ka21~sinu!a22du,

~11!

whereG(x) is the EulerG function.
However, if we recall the main idea of FD approach,4,5

i.e., replacement of anisotropic 3D system by an isotro
~but lower! FD space, the integration over angleu can be
performed and relation~11! reduces to
1-3
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(
k

→ Va

2a21p (a/2)G~a/2!
E

0

`

ka21dk. ~12!

Inserting relation~11! into Eq. ~10! we obtain

NB5NB,0~0!5NB,0~T!

1
Va

2a/2p (a/2)G~a/2!
S m*

b\2D a/2E
0

` xa/221

ex21
dx, ~13!

where we have accounted for the fact that atT50 all boson
pairs form the condensate, i.e.,NB,0(T50)5NB,0(0)5NB .
In the calculations the parabolic energy spectrum of the q
siparticles is assumed. The integral in Eq.~13! can be ex-
pressed with help of Riemannz function23 in the following
form:

E
0

` xa/221

ex21
dx5G~a/2!z~a/2!. ~14!

Inserting this result into Eq.~13! we can calculate the con
densate fractionNB,0(T)/NB,0(0) as

NB,0~T!

NB,0~0!
512

Va

NB
S m*

2pb\2D a/2

z~a/2!. ~15!

The condensate fraction falls off when the temperature
increased and eventually atTc the condensate vanishes, i.e
NB,0(T)/NB,0(0)50. From this condition and Eq.~15! we
can derive the formula for the critical temperatureTc as a
function of the effective spectral dimensiona:

Tc,a5
m*

2pkB\2 S Va

NB
z~a/2! D 2/a

. ~16!

The fact that the phase transitions are governed by the v
of spectral rather than spatial dimension has been establi
long time ago when studying fractal systems.25,26 However,
in the case of bulk or laminar systems phase transitions
are improperly classified according to the value of their s
tial ~geometrical! dimension.

Let us discuss some consequences of Eq.~16!. In conven-
tional theories the ratioVa /NB is treated as the inverse bo
son pair concentrationnB

21 . Such interpretation is justified
provided that spectral dimensiona and dimension of rea
spaceb ~position space! are equal. However, in systems
FD such interpretation is not valid. Suppose that in the s
tem under consideration we have some characteristic le
L, then the volumeVa'La'(kF)2a. Simultaneously the
volume of the system, i.e., volume filled with quasipartic
~boson pairs! can be expressed asVb'Lb. In view of this,
concentrationnB being the real-space quantity reads asnB
5NB /Vb . Distinction between these different notions of d
mensionality is often missed, but as it will be shown belo
it is crucial in proper description of dimensional effects
SC. Inserting relationVa'La into Eq. ~15! we have

Tc,a5
m* L2

2pkB\2 S z~a/2!

NB
D 2/a

. ~17!
06451
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Similarly, as in Ref. 23, from Eqs.~11!–~17! we have

NB,0~T!

NB,0~0!
512S T

Tc
aD (a/2)

. ~18!

As we have mentioned in Sec. II, the FD arises due to
anisotropy forces and when external conditions~temperature,
thickness, or fields! change the FD system undergoes~some-
times continuous! dimensional crossover. Let us consider
FD system in two states, which exhibit FDa anda8, respec-
tively. Moreover, let us assume that number of preexist
boson pairs is constant during this dimensional crossove
view of Eq. ~17! the hypothetical critical temperatures
both states fulfill the relation.

Tc,a8
Tc,a

5
ma8

*

ma*

z~a8/2!a8/2

z~a/2!a/2
NB

(2/a822/a) . ~19!

Let us study the variation of the critical temperatureTc,a8
associated with the continuous dimensional crossover.
assume that in Eq.~18! a53, i.e., we take the 3D case as th
reference system. First, let us note that ratioma8

* /ma* is a
factor of the order of unity. Value ofz(a8/2)/z(a/2) can be
estimated as follows. Using the definition of Riemannz
function

z~s!5(
n

1

ns
, ~20!

the value of Riemannz function for a given argument can b
estimated as follows:

E
1

` 1

xs
dx,z~s!,11E

1

` 1

xs
dx. ~21!

From Eq.~21!, it follows that

1

s21
,z~s!,11

1

s21
. ~22!

In view of Eq. ~22! the ratio @in Eq. ~19!# of Riemannz
functions for differenta anda8 can be estimated as follows

2~a22!

a~a822!
,

z~a8/2!

z~a/2!
,11

a8~a22!

a~a822!
. ~23!

From Eq.~23!, it follows that for a53 ~our reference sys-
tem! and a8.2.5 ratio ~23! of Riemannz functions is a
number of the order of unity. The factor that shows strong
influence on ratio~19! of critical temperatures in differen
states of the system under consideration~i.e., in the states
that exhibit different values of effective spectral dimensio!

is the last term, namely,NB
(2/a822/a) . In the casea53,

a852.8, and NB51020 this factor can be estimated a

NB
(2/a822/a)51021, while for a53, a852.5, it takes value
1-4
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NB
(2/a822/a)51023. This means that when the effective d

mension is decreased the critical temperature decreases
very rapid manner. Contrary to the previous remark, ifa53
and a8.3, one would expect an elevated critical tempe
ture. This point is important per se, independently of qua
tative predictions since it allows us to draw general conc
sions concerning the role of dimension in formation of S
phase. In connection with previous remarks, there arise
question why in some laminar systems or overlayers one
observe enhancement of SC above critical temperature c
acteristic for bulk systems? The possible explanation is
the effective spectral dimension of the copper oxide sys
is higher than 3. At first sight conclusion that the dimens
of k space for the boson gas with in layer confinement can
higher than three appears to be counterintuitive, one wo
rather expect 2,a,3. To show that our conclusion can b
correct, let us discuss the relation between the dimension
ties of position andk spaces.

IV. SUPERCONDUCTIVITY IN A SYSTEMS WITH DÌ3

In the conventional, isotropic systems both dimensiona
of k space and the dimensionality of the position space
equal 3. One would expect that due to the constraints
posed onto free electron~hole! motion within the quantum
well, the effective dimensionality should be lower than
However, the variational~numerical! calculations of the qua
siparticle mobility in the GaAs/Ga12xAl xAs heterostructure
suggest smaller confinement than in the isotropic
situation.27 This means that there may arise situation with
smaller than isotropic medium confinement described by
effective dimensionD.3.27 This is not just a computationa
error. To show this let us consider a parabolic quantum w
fabricated of semimagnetic semiconductors,28 a system being
an object of interest of nanotechnology. Due to the nonre
angular quantum-well barriers, the mobile electrons~holes!
exhibit nonconventional quantization in the growth directio
Assuming thatz denotes the direction of the planar parabo
quantum well, the Hamiltonian that describes the electro
structure within the envelope function formalism and effe
tive mass approximation reads28

Hn52
\2

2mn
¹21

Dn

2
z21en . ~24!

Here,n represents the band index,en and mn the band-gap
energy and the effective mass at the center of the parab
respectively.Dn is the curvature of the parabola potent
profile, which is assumed to be infinitely high. Thus, t
electronic states within the parabolic quantum-well are giv
in the form

Cnk~rW !5
1

2p
exp~ ikW•rW !hnk~z!, ~25!

wherehnk(z) are the standard harmonic oscillator states a
consequently, the electron spectrum is given by28

Emk
n 5En1

\2k2

2mn
1\vnS m1

1

2D , ~26!
06451
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with rW 5(x,y) andkW5(kx ,ky). Enk
m represents thenth two-

dimensional subbands of the quasi-2D electron gas wi
the planar parabolic quantum-well~PQW!. In the following
we will focus our attention on the single-band model f
which Emk

n reduces to

Em,k5
\2k2

2m
1\vS m1

1

2D2m, ~27!

wherem is the Fermi energy. Using the mobile charge carr
energy spectrum given by Eq.~27! we can find the density o
dynamic eigenstates29

n~E!'uE2EFu, ~28!

fitting it to general formula~3! with a54.29 This means that
the electron~hole! gas within the parabolic quantum-we
exhibits effective spectral dimensiona54. One may suspec
that such result indicates limitations of the effective dime
sionality approach. On the other hand, there is experime
evidence that the dimension of reciprocal lattice in the c
of quasi-2D system can be higher than 3.

Let us remind the case of modulated superstructures
those systems x-ray diffraction pattern spots form (n1d)D
reciprocal lattice,30 which is described by the theory o
supercrystals.30,31 In this picture the modulated commens
rate or incommensurate phases are described by (n1d)D
Euclidean superspace containingnD subspace, called posi
tion space. Such a picture can be achieved after the cry
has been embedded in higher-dimensional Euclidean s
and the additional dimensions are connected with the inte
degrees of freedom. A typical example of a displacive mo
lation arises for those heteroepitaxial systems for which
elemental constituents exhibit significant ionic radii m
match. In such a quasi-2D systems a (211)D ~Ref. 32! or
(212)D superstructure@and thus (211)D and (212)D
k-space# is to be expected.

Generally a system with at least two interpenetratin
modulated crystalline subsystems that have incommensu
repeat distances along some common crystallographic
tances has the reciprocal lattice, in which wave vectors
given by33

kW5 (
i 51u

n

hiaW i* , ~29!

with hi being integers, whileaW i* span the reciprocal space. I
this quasiperiodic structures, being an intersection of a
incommensurate periodic structures the value ofn in Eq. ~29!
is larger than the dimension of the position spaceb. In such
systems the density of charge in physical space is given

r~rW !5roF11(
i 51

n

hqW i
eiqW i•rWG , ~30!

with n.b. We must point out here that anyq modulation of
the charge density opens a gap at the Fermi surface. H
ever, there still remain portions of the Fermi surface, wh
are weakly influenced by the change-density wave mod
tions, so our general conclusions~at least those qualitative!
1-5
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concerning the role of spectral dimension in the formation
a SC phase remain unchanged.

From Eq.~19! we have drawn conclusion that fora.3 an
elevated critical temperature should occur. This is not j
mechanical interpretation of mathematical formula; to pro
that let us discuss possible mechanism behind this effec
the case of the 3Dk space the number of electron states
the Fermi surface can be estimated asN3(eF)'N2/3. Gener-
ally the number of states that occupy a hypersphere of c
stant Na(eF) energy can be estimated asNa(eF)
'N(a21/a), whereN is the total number of quasiparticles
the system anda is the dimensionality of thek space. From
this formula the ratioN4(eF)/N3(eF) that describes relative
occupation of the Fermi level in 4D and 3Dk spaces can be
estimated asN4(eF)/N3(eF)'N1/12. In the case ofN51023

the ratio is a number of the order of 102. This means that the
number of electron states at the Fermi level is significan
higher in the 4Dk space compared to the conventional 3
case. In many systems the spectral dimensiona is a function
of external fields~e.g., temperature! and with varying exter-
nal conditions a gradual dimensional crossover is obser
Suppose thata is a fractiona531e ~with 0,e<1! then the
ratio of relative occupations of the Fermi level can be giv
as Na(eF)/N3(eF)5N3/3(31e). As we can see considerab
enhanced densities of states near the Fermi level are
dicted, which is expected to yield enhanced SC over t
there are of standard 3D, provided that no large change
the electron-ion matrix and phonon frequency contribution34

From Eq.~19! it follows that ratioTc,a /Tc,3D can achieve
values of the order of 102 for a.3, which is far from being
realistic. We must pointout, however, that there is anot
limit set on critical temperature. TheTc,a enhancement pre
dicted by Eq.~19! is valid provided that assumptions und
which this equation was derived hold. The most restrictive
that we have assumed condensation of boson pairs, w
exist above critical temperature. However, stability of ele
tron ~hole! pairs is limited by the mechanism of pairing
Suppose that the energy of electron-electron binding is gi
by Ebond. When temperature is increased to the valuekBT1
'Ebond, the boson pairs dissociate and Eq.~19! is no longer
valid. This means that when the spectral dimension increa
~dimensional crossover! the system can achieve only th
maximal critical temperature allowed by the particu
mechanism of charge carrier pairing, i.e.,kBTc,a<Ebond.
This situation resembles to some extent the BCS pic
where there is no preexisting bosons and they appear ju
Tc . The fact that boson pairs are breakable suggests tha
should consider the situation in which unpaired but paira
fermions coexist with the boson pairs.23,24 However, such
generalization is of less importance and cannot change
general conclusion presented above.

V. REMARKS ON HTC SC

The concept of our considerations is based on ideas dr
from models derived for structured semiconductors. Till n
we have avoided any remarks concerning high-Tc ~HTC!
oxide SC although they share many common features w
the previous systems. The copper oxides are~i! principally
06451
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semiconducting,~ii ! exhibit layered structure, and~iii ! ex-
hibit dimensional crossovers. Let us now, basing on the
tained till now results, pay some attention to the HTC ma
rials. Since the advent of high-temperature superconducti
~HTC SC! a variety of mechanisms that could be responsi
for this phenomenon has been postulated. Many elabo
models of reasonable accuracy present finite domains of
lidity and often remain out of scope of the experimentali
and none of them explains satisfactorily all aspects of t
phenomenon. Thus, despite an enormous theoretical e
over the years and quite a variety of treatments, a comp
theory of HTC SC still does not exist. Nevertheless, accum
lated experimental data provide support for a widespr
conjecture that superconductivity, in general, is a Bo
Einstein condensation of the charged Cooper pairs obse
also in conventional superconductors.24 Also the recently dis-
covered MgB2 seems to be a simple BCS superconduc
without any of the other mechanisms for the HTC SC th
are hypothesized for the cuprate superconductors. Howe
the specific mechanism behind this pairing remains
known. This suggests that the theoretical description of
HTC systems should focus on more general properties ra
than on microscopical mechanisms responsible for the p
ing. The characteristic feature of the copper oxides~in prin-
ciple of any HTC systems! is their layered structure. In me
tallic phase this results in anisotropy of conductivity a
itinerant charge carrier concentration. The conductiv
within CuO2 plane is much higher compared to that of me
sured along thez axis, perpendicular to this plane. In th
YBa2Cu3Oxn

copper oxide the magnetoresistivity measu

ments with reducedxn indicate gradual dimensional cros
over from an anisotropic 3D to quasi-2D system.35 Since all
HTC systems exhibit anisotropic, quasi-2D mobility of th
charge carriers, it is evident that this property is essentia
the formation of SC state. In view of the previous remar
there arises a question whether the copper oxides, which
commonly believed to be quasi-2D superconductors w
parabolic dispersion, can be described by spectral dimen
aD.3? At first sight suggestion that the dimension of thek
space for a boson gas confined within the CuO2 layers can be
higher than three seems to be errorneous, our intui
guided by the notion of spatial dimension suggests rat
2,a,3. To show that such situation may really occur, let
recall two experimental facts indicating that in some HT
materials the value of spectral dimension can exceed 3.

After extensive discussion of the modulated system
given in Sec. IV, let us point that the copper oxides exhi
lateral lattice modulations. The extended Hubbard model
plied to the HTC systems predicts charge stripes~due to the
phase separation!. When the local Coulomb repulsion i
taken into account, critical charge fluctuations drive the s
tem towards phase separation. Such density instab
evolves into an incommensurate charge density waves w
nonlocal Coulomb forces are taken into account.36,37 It is
well-known fact that CDW transition cannot occur on a rig
lattice. In any case CDW formation is accompanied by~posi-
tively charged! ion displacement, which produces lattice co
stant modulation with the same as for CDW period. At t
advent of the HTSC research the fractional~position!
1-6
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dimensionalityd52,03 of cuprates has been suggested20 as
more realistic since it reflects inter-CuO-layer coupling~see
Ref. 24!. If we add 1D charge density modulation a~21e11!
electron system is generated and description of copper
ides within a531e k space formalism is justified. Let u
give another experimental argument indicating that cop
oxides can exhibit spectral dimension having valueaD.3.

Different types of SC can be classified according to
point-group symmetry of pair states. In classical SC ther
no low-energy excitations, while some unconventional
with a line of nodes~i.e., with zero gap along some direc
tions, to this class belong, e.g., spin singlet pairs states
dx22y2 or dxy symmetries39! are expected to have a zero-fie
density of statesN(E)'uE2EFu.40 The density of states
N(E)'uE2EFu, similarly as the electron system withi
parabolic quantum well@see Eq.~28!#, can be fitted to gen-
eral formula by setting the spectral dimensiona54. Calcu-
lations predict that the density of statesN(E)'uE2EFu
leads to the characteristic specific-heat termce5rT2

'gnT2/Tc , wheregn is the coefficient of the linear-T term
in the normal state. The most important fact is that the
perimental data confirm presence ofT2 term in specific heat
of the optimally doped YBCO system.40 Thus, we can as-
sume that there is experimental hallmark of 4D SC in t
system. We must stress, however, that despite the ab
mentioned experimental evidences, they cannot be assu
as a proof as discussed by us that mechanism plays a
role in SC transition in HTC material. In description of th
HTC SC, it is crucial to answer the question: what is t
microscopical mechanism responsible for pair format
with binding energy exceeding 100 K? Since till now there
no consensus concerning the microscopical mechanism
HTC SC we can make only some model studies to re
better understanding of SC and to prepare testing ground
alternative models. Another argument why we should
aware when extending our results onto cuprates is that
layer thickness in structured semiconductors we are ba
on is at least by an order higher than in the copper oxid
However, one can expect that some of the above conclu
should be valid in the case of multilayers or superlattic
fabricated of HTC materials.

VI. SUMMARY AND DISCUSSION

There are many attempts of search for a general princ
or a special~maybe hidden! symmetry that facilitates under
standing of SC in systems with restricted geometry. In
approach, basing on the common belief that layered struc
and lateral charge inhomogeneities are in the heart of
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Döhler, C. Campman, and A.C. Gossard, Superlattices Mic
struct.23, 93 ~1998!.

29Z. Bak, Solid State Commun.118, 43 ~2001!.
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