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Superconductivity in a system of fractional spectral dimension
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This work is concerned with an extension of the fractional-dimensional scheme to the study of supercon-
ductivity. We show that quasi-two-dimensional layered structure of the high-temperature superconductors can
be described as a system for which both spatial and spectral dimensions have nonintegral values. We derive a
general formula for critical temperature as a function of spectral dimensiovhich for layered structures can
vary within the I<a<4 range. We show that foa>3 there is an enhancemefwhen compared to the
three-dimensional supercondudtaf critical temperature up to the maximum determined by the pairing

mechanism.
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[. INTRODUCTION be classified as a system having integer dimension. Typical

examples of such systems are the heterepitaxial multilayers.
With recent progress in technology, the growth of systemdn any laminar structure the interlayer tunneling responsible
consisting of alternate heteroepitaxial thin layers with con-for the charge transfer along the growth directioris the
trolled nanoscale thickness has become possible. Thigsult of thermal fluctuations and has three-dimensi@3ia)
achievement offers the ability to produce strong spatial locharactef if
calization of electrons and holes between high-quality inter- 5
: h . kg T>t2(T)/tyy . Y
faces. As a result of the in-layer confinement of mobile B z Xy

charge carriers there arises size-quantization field, which cap, Eq. (1) t, andt,, are the interlayer and in-layer hopping

alter physical behavior of the initially free electron das.  (a1eq respectively, whilkg is the Bolzmann constant. When
this context it is important to find some universal relations;, temperature is lowered to

between confined geometry of the system and physical phe-

nomena. The idea of universality stimulates studies of physi- kBT~t§(T)/txy, )

cal behavior in real structures by means of model systems.

Within this approach only a few parameters are sufficient t¢he interlayer transfer is gradually limited and we have tem-
determine the relevant statistical properties of a wide class g#erature driven dimensional 3B2D crossover. Thus, lami-
systems. Among the most relevant parameters that charactérar systems offer good testing ground to study the general
ize both single particle and collective behavior of any physi-relations between dimension of a system and physical phe-
cal system is the dimensionality. In the following we will homena.

focus our attention on description of superconductors which In conclusion, the approximation of the Fermi gas in a
exhibit multilayered structure. Special attention will be paidquantum well, i.e., in a layered system, by a purely 2D or 3D
to the influence of confined geometry on the critical temperasystem is seldom a reasonable choice. The purpose of the
ture of superconductivitySC) in a stratified system. In the present paper is to formulate a simplified model of the SC in
description of SC, most of the theoretical effort is focused orthe intermediate region, when the dynamical dimensionality
a search for microscopical mechanism responsible for ele®f the mobile charge carriers interpolates between 2D and
tron pair formation. Since, till now, there is no unified picture 3D cases. In our approach we will treat the dimension of
of SC, detailed study of size effects is impossible. Fortu-€lectron gas system as a continuous parameter. So let us first
nately, as we will show below, there is an alternative ap-ecall the concept of fractional dimensionality in the solid-
proach to description of the size effects, which is based ostate physics.

the dynamical properties of the electron-hole gas with no

specific assumptions concerning the pairing. Il. FRACTIONAL DIMENSIONALITY
It is a well-known fact that dimension of spaBeplays a e ) )
crucial role in phase transitions. The critical valDeabove The concept “dimension of the system” may have several

which a continuous symmetry can be spontaneously brokeR1€anings. It may describe the number of coordinates to be
at finite temperature, equals 2. To any physical systems varfalt with, e.g., in a problem of several quasiparticles. It can
ous definitions of dimension can be proposed, thus it is imMmean the dimension of the positidkuclidean space em-
portant to determine which notion of dimensionality is rel- bedding the particles. In this work we shall be interested in
evant in the description of critical phenomena. In the case ofnother definition of dimensionality, which is related to the
nontranslation-invariant structures, it has been proven thdfotion of quasiparticles within a soliddynamical space,
spectral dimension is the best generalization of the EuclideapPectral dimensionalify Within quantum formalism  the
dimension of the system when dealing with dynamical orStates of mobile quasiparticles of a finite solid systém.,
thermodynamical properties. The notion of spectral dimenWith periodic boundary conditiopsare labeled by the
sion opens the way for research of structures, which canndt-wave vectors, which form the reciprocal lattice. There is a
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widespread conjecture that dimensions of the position spacgionality arises not from intrinsic disorder, but due to the
(lattice) and of dynamical spadgeciprocal latticg should be  restraints imposed onto motion of free particles. The most
both equal and integer. However, there is experimental eviprominent example of this presents the metallic magnetic
dence that in many laminar systems at least one of the aboveuperlattices. RKKY-reminiscent indirect interaction is medi-
mentioned relations does not hold. ated by mobile electrons confined within metallic layer. The
In many low-dimensional systems, e.g., superlattices offfective ir_1ter|a_yer coupling between magnetic Iayers_is still
overlayers, the vibrational as well as the electron density ofvell described in terms df vectors spanning the Fermi sur-
states, extracted from the experimental data correlates witlc€ Of the spacer layer. This gives experimental evidence of
those predicted for the systems of fractional dimensiorfn€ applicability ofk-space formalism in these systems and
(FD).3~> Laminar systems, such as Ag/001) overlayer or indicates that the arguments of Tsallis and MayHasdil
GaAs/ALGa,_,As quantum wells and superlattices as theh(_)ld- The d_|rect observatlt_)ns show that many real systems
layer thickness decreasésee Refs. 4 and 6 and referencesWith @ mobile charge carriers, as extracted from excitation
therein), show continuous dimensional crossover from 3D toStatistics, exhibit fractional spectral d|m_enS|.o_na:f|t§Eh|s
almost 2D behavidt.Generally, the dimension of these sys- confirms both FD of the systems and applicabilitkespace

tems changes with the monolayer coverage, wire thicknesformalism in layered systems. _ _
or temperature. Let us mention here that FD space is not, in general, a

In the case of rough interfaces, a noninteger dimension of€Ctor SPaCé'Z However, one can trace a number of mutually
the stratified system can be interpreted in terms of fractaP€"Pendicular lines, which can be regardegssudocoordi-
geometry(Haussdorff dimensidh, but fractional dimension- nateaxes. It is Wo_rth mentioning that the Iqrgest number of
ality has been observed in a system not having fractaifutually perpendicular axegpseudocoordinatgscan be
structure® In principle, FD originates from restrained motion €ven larger than FLx. Since in our case we assume te
of mobile particles or quasiparticles in the stratified mediaSPace to be of FD this implies to renounce the use of any
As it has been shown in Ref. 9, the observed FD of a giverYector property. In the following we will use the terin
physical system is based on the physical strength rather thaiP@ce instead & wave vectors.
on the geometrical effects. This can be easily understood, 1he method by H”epostu_latgs that the electron quantum
numerous physical problems involve basic objects, which ar&tates are homogenously distributed in @@ k space and a
usually described by shrinking or stretching the shape ofurface of constant energy is & spherical shell. Suppzose
some characteristic functions. This fact modifies the energfurther that the energy dispersion is parabolic; E,~k?,
spectrum of the mobile quasiparticles, which, in turn, deterWe obtain the expression for the density of statestin k
mines the spectral dimensi8rinvoking a FD space in de- spacé as
scription of such a system offers a convenient alternative to wl2—
computational techniquésin this case single parameter— n(E)dE~(E~Eo)“* 'dE, )
the spectral dimensionality—contains all of the informationyhere E, is the band gap. This means although the ionic
about the perturbation. We adopt the approach by o  (mass distribution position space of dimensionaljyshows
has shown that the anisotropic interactions in 3D space beyg peculiarities, the density of free particle eigenstates shows
come isotropic ones in lower FD space, where the dimensiofsometimes fractional power-law scaling(with effective
is the Hausdorff dimension and is determined by the degregpectral dimensiom# 8).*
of anisotropy. Evidently, when the potential that causes the The effective spectral dimensionality of laminar system
in-plane confinement is infinite, the system is purely 2D.can be easily determined provided that energy spectrum of
However, in the case of finite quantum wells the envelopénopbile particles within the layer is known. As an example,
functions of free electrontholes spread into the barrier re- et ys consider a semiconductor with planar doping, often
gion and partially restore the 3D character of the motionysed for forming V-shaped potential wells with quasi-two-
Consequently, the system exhibits behavior, which is somegimensionalquasi-2D electron gas. When the deposition of
where in between 2D and 3D. Different notions of dimen-impyrities can be represented by the Di@dunction, it is
sionality manifest themselves in many ways, €.g., Oné Cagalled § doping®® The enhanced mobility of the 2D electron

imagine a 3D spin structure on a 2D lattice. . gas in V-shapeds-doped semiconducting multilayers can be
In case of the laminar systertthin films, superlattices, or jescribed by the following HamiltoniaH:
overlayer$ there arises a question whether the dynamical

states of quasiparticles can be labeled by the wave vectors H=—a,V*— a,V?+V, (4
i.e., whether th&-space formalism is valid. Since in laminar

systems the translational symmetry is broken, one would exwhere

pect that the proper answer is no, on the other hand the

existence of band structure in liquid metals and random al- _ nt
loys suggests that a positive answer is possible. This is given "‘1_4_5g
by Tsallis and Maynard! who have shown that thie-space
formalism can be applied to the description of dynamicalwhile m, and m* denote the bare and effective electron
states in the fractal system, when only statistical invariancenass, respectively, whil&, is the bottom of the valence
under translation is observed. The metallic superlattices possand(for detailed description of the model see Refs 14 and
sess crystalline in-plane symmetry and the fractional dimeni5, and references thergi’V=V(z) is the confinement po-

1 1)? 8
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tential that includes electron-electron interaction. At thesystem of(spectral FD. For the use of further consider-
same timeV(z) is the conduction band-edge profile. The ations, it is not necessary to specify any peculiar mechanism
eigenfunctions and eigenvalues of Hg) are given in the of pairing. Experiments confirm that spectral FD case arise
form in various laminar systems involving polaréhgand thus
bipolaronic S&?), excitons® phonons’* or magnons/*°
This variety of quasiparticles and interactions covers almost

Wa(r) = 5—exp(ik- p)hn(2), all mechanisms postulated for description of §@ovided
(6) that real-space pairing theories are exclyded
E=E(n,K)+ a,k?— a;k?, In conclusion we assume that the Hamiltonian that is re-

. . sponsible for the Cooper pair formation is given by
where p=(X,y), k=(ky,ky). Both h, and E(n,k) satisfy
the 1D Schrdinger equatiort h,,,= E(n,k)h,,*® whereH
is given by Eq.(4). E, represents thath two-dimensional H:Z (Gk_l‘)clzacli,(r*'g kalclzTka,Lcljl,Tka,l-
subbands of the 2D electron gas within the quantum wells of ko o 9)
a laminar system. When limited to the single band model,

Eni reduces to wherecy . is the fermion creation operator label&dand
o= k2 — o KA 7) sping. The qnly difference Whgn compared to con\_/entional
k=52 1 Ko approaches is that the states fill the space of nonintegral
Wherelu is the Fermi energy. Having the mobile quasiparti- dimensionality. As we have mentioned above, we assume the
cle spectrun{7) known we can calculate the density of statesSC transition as the Bose-Einstein condensation of preexist-
as follows!® ing boson pairs. It is well known fact that Bose-Einstein
condensation produces a nonzero absolute temperature
n(k)dk~ w(e—eo)‘l’zds. (8) below which a macroscopic condensation emerges, only if
D>2. Although there were recently reports on possibility of

Exp.re55|8n(8) can be fitted to the general formu(@) by SC state in a systems with<<2 (Ref. 24, we must note that
setting «=1. This means that we can model such a planat

semiconductor with nonparabolic dispersiohby a 1D sys- these results refer to the geometrical meaning of dimension.
) 1th nonpar P y Y However, if we determine the value of spectral dimension
tem with parabolic dispersion.

M L . . . aD [according to formula3)], we can easily find that the
In principle, it is enough if the density of states fulfills . : o
: : ) . reported systef still fulfills the «D>2 condition. The con-
relation (3) in a small energy window close to the Fermi . : ,
: . . . . ventional theory of boson condensation derived for systems
energy. Extensive analytical discussion of how the effective . ; : ; .
of integral dimensionality’ can be easily extended onto sys-

spectral dimensionality is associated with the number of th . o . . : "
free electron modes can be found in Ref. 17. ?ems, which exhibit fractional spectral dimensienThe to

Although for the further considerations only the value oftal nlfrm%i;;)fﬂ?:tsggfdfs(-rzh? trhoe r?()j/s;?m con_5|(s)t_snc3[1;];he
spectral dimension is important, we must point out that the};BvO( ) upy grou alp(€,=0 |

spatial dimension can also be a fraction. Concerning th hermodynamic lirmit, Wh”? the others areégistributed over
problem of mobile particle confined within a layer, the ques- igher-energy levels. In view of this we have

tion is what is the spatial dimensian which measures the

anisotropy of the system. A possible answer in the case of

superlattice is given in Ref. 18, where the FD is defined as NB:NB,O(THk;O eBle—re) 1" (10
a=2+y=2+ u,/u, where u, and u, are the on-axis re-

duced effective masses in the 3D crystal and in the S”perla%hereﬁ= 1KgT andug<0 is the chemical potential. Simi-

tice, respectively. Another possible chpice i_S to express larly as in Eq.(9) we assume that summation goes overkhe
terms of the effective quantum well widtt; in the case of - giaies filling the fractionakD space. The sum ovérin Eq.

excitons hgving the extensiahis given by the expression (1) can be converted to an integral over positive |K|,
a=3—e "¢ 5 In magnetic systems the FD can be deter-where k fills the aD space. In view of the results of
mined as viewed form the measurements of the Bloch expostillinger*? the integration overD space(when 2< a<3)
nent in the low-temperature magnetizativh(T)=M(0)(1 can be performed with use of the formtia

—BT*?) or specific heat®

E \V; 27T(afl)/2 s - L )
I1l. SUPERCONDUCTIVITY — = dkf k*™*(sin@)* “dé,
- <zw)ar<a—1/2>fo o K (sin6)

As we have shown above the dynamical states of mobile (11
charge carriers in some laminar systems can be described
properly with the help of & space having fractional dimen- whereI'(x) is the EulerI” function.
sion. This concerns also the YBaCuO compounds for which However, if we recall the main idea of FD approdch,
the FD has been postulatéiMost of the theoretical ap- i.e., replacement of anisotropic 3D system by an isotropic
proaches to the superconductivity rely of thapace pairing; (but lowen FD space, the integration over anglecan be
thus, it is reasonable to consider the problem of SC in gerformed and relatiofill) reduces to
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Similarly, as in Ref. 23, from Eq$11)—(17) we have

Vv fw
— - ke ldk. 12
Ek: 207172 (@f2) Jo (12 (al2)
. . . . NeoT) [T 18
Inserting relation(11) into Eq.(10) we obtain Ng o(0) Ta

Ng=Ng o(0)=Ng o T N :
8= Ne,o(0)=Neo(T) As we have mentioned in Sec. Il, the FD arises due to the

Vv ( m* )“’2 w yal2=1 anisotropy forces and when external conditiGlesnperature,
4+ f dx, (13)  thickness, or fieldschange the FD system underggssme-
al2,_(al2 2 . . . . .
2427« (al2) \ Bh o e~1 times continuousdimensional crossover. Let us consider a
where we have accounted for the fact thaTat0 all boson ~ FD System in two states, which exhibit Fdanda’, respec-
pairs form the condensate, i.&g o(T=0)=Ng o(0)=Ng. tively. Moreover, let us assume that number of preexisting

In the calculations the parabolic energy spectrum of the qua20SOn pairs is constant during this dimensional crossover. In

pressed with help of Riemanifunctior?® in the following ~ Poth states fulfill the relation.
form:

TC,a' _ mZ/ §(a’/2)a’/2

o yal2—1
f dx=T(al2){(al2). (14) Tea mE (al2)%?
0o e-1

N(BZ/D/ - 2/&) . (19)

Let us study the variation of the critical temperatdrg,
associated with the continuous dimensional crossover. We
assume that in Eq18) =3, i.e., we take the 3D case as the
al2 reference system. First, let us note that rati§y,/m? is a

2) {(al2). (159  factor of the order of unity. Value of(a'/2)/{(al2) can be

2mpBh estimated as follows. Using the definition of Riematin

The condensate fraction falls off when the temperature igunction
increased and eventually &t the condensate vanishes, i.e.,
Ngo(T)/Ngo(0)=0. From this condition and Eq15) we 1
can derive the formula for the critical temperatiig as a {o)=2 —
function of the effective spectral dimensian non

Inserting this result into Eq.13) we can calculate the con-
densate fractiofNg o(T)/Ng o(0) as

*

NgofT) . ﬁ
Ng,o(0) Ng

(20

the value of Riemany function for a given argument can be

* 2|a
W= 2 Hal? ) ) 16 estimated as follows:
“ 2mkgh? ( Ng £ (19
The fact that the phase transitions are governed by the value * *
of spectral rather than spatial dimension has been established ) X—de< L(o)<1+ . ;dx. (21

long time ago when studying fractal systefi€® However,
in the case of bulk or laminar systems phase transitions stifrom Eq.(21), it follows that
are improperly classified according to the value of their spa-
tial (geometrical dimension. 1 1
Let us discuss some consequences of(E). In conven- T1< (o)< 1+T1- (22
tional theories the rati®/ ,/Ng is treated as the inverse bo- 7 7

son pair concentrationgl. Such interpretation is justified |, view of Eq. (22 the ratio[in Eq. (19)] of Riemann{¢

provided that spectral dimensiom and dimension of real ,nctions for differentx anda’ can be estimated as follows:
spacef (position spaceare equal. However, in systems of

FD such interpretation is not valid. Suppose that in the sys- , ,
tem under consideration we have some characteristic length 2(a—2) {(a'f2) a'(a=2)
L, then the volumeV,~L%~ (k) ¢. Simultaneously the ala'—2) §(al2) ala'—2)
volume of the system, i.e., volume filled with quasiparticles

(boson pairscan be expressed a4~ LA, In view of this, From Eq.(23), it follows that for «=3 (our reference sys-
concentratiomng being the real-space quantity readsrgs tem) and a’>2.5 ratio (23) of Riemann{ functions is a
=Ng/V,. Distinction between these different notions of di- number of the order of unity. The factor that shows strongest
mensionality is often missed, but as it will be shown below,influence on ratio(19) of critical temperatures in different

it is crucial in proper description of dimensional effects in states of the system under consideratioe., in the states
SC. Inserting relatiorv ,~L*“ into Eqg. (15 we have that exhibit different values of effective spectral dimengion
is the last term, namelyN®*' =2 |n the casea=3,
o’'=2.8, and Ng=10% this factor can be estimated as

N@/® 2@ =10"1 while for a=3, o/ =2.5, it takes value

(23

17)

c,a

_ om*L? ({(a/Z))Z/“
2mkgh?\ Np '
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N@«'~20=1073, This means that when the effective di- with 5=(x,y) andk=(k k). EM represents thath two-
mension is decreased the critical temperature decreases imanensional subbands of the quasi-2D electron gas within
very rapid manner. Contrary to the previous remarky#3  the planar parabolic quantum-wg¢PQW). In the following
and o’'>3, one would expect an elevated critical tempera-we will focus our attention on the single-band model for
ture. This point is important per se, independently of quantiwhich E},, reduces to

tative predictions since it allows us to draw general conclu-

. . . . . . 21,2
sions concerning the role of dimension in formation of SC E —ﬁ%
phase. In connection with previous remarks, there arises a mk™ om @
guestion why in some laminar systems or overlayers one can ) . ) ) )
observe enhancement of SC above critical temperature chafn€rex is the Fermi energy. Using the mobile charge carrier
acteristic for bulk systems? The possible explanation is thag"€rgy spectrum given by E(27) we can find the density of
the effective spectral dimension of the copper oxide systerfynamic eigenstat
is higher than 3. At first sight conclusion that the dimension n(E)~|E—E¢| 28)
of k space for the boson gas with in layer confinement can be Fb
higher than three appears to be counterintuitive, one woulitting it to general formuld3) with a=4.2° This means that
rather expect a<3. To show that our conclusion can be the electron(hole) gas within the parabolic quantum-well
correct, let us discuss the relation between the dimensionalexhibits effective spectral dimensien=4. One may suspect

2
mT3

— M (27)

ties of position and spaces. that such result indicates limitations of the effective dimen-
sionality approach. On the other hand, there is experimental
IV. SUPERCONDUCTIVITY IN A SYSTEMS WITH D>3 evidence that the dimension of reciprocal lattice in the case

. . . . ) _of quasi-2D system can be higher than 3.
In the conventional, isotropic systems both dimensionality | &t us remind the case of modulated superstructures. In

of k space and the dimensionality of the position space arg,,se systems x-ray diffraction pattern spots fom¢)D

equal 3. One would expect that due to the constraints imfeciprocal latticé® which is described by the theory of
posed onto free electrofole) motion within the quantum g\ hercrystal@®3! In this picture the modulated commensu-
well, the effective dimensionality should be lower than 3. 5ia or incommensurate phases are describedniyd)D
However, the variationahumerica) calculations of the qua- Euclidean superspace containin® subspace, called posi-
siparticle mobility in the GaAs/Ga,,Al,As heterostructure qn space. Such a picture can be achieved after the crystal
suggest_smaller confinement than in the isotropic 3Dha5 pheen embedded in higher-dimensional Euclidean space
situation-” This means that there may arise situation with &, the additional dimensions are connected with the internal

. . . 27 . . . .
effective dimensiorD>3.% This is not just a computational |4tion arises for those heteroepitaxial systems for which the
error. To show this let us consider a parabolic quantum welljemental constituents exhibit significant ionic radii mis-

fabricated of semimagnetic semiconducttta,system being match. In such a quasi-2D systems aH®)D (Ref. 32 or

an object of interest of nanotechnology. Due to the nonrect(2+2)D superstructurdand thus (2-1)D and (2+2)D
angular quantum-well barriers, the mobile electrdnsles k-spacd is to be expected.

exhibit nonconventional quantization in the growth direction. Generally a system with at least two interpenetrating
Assuming thae denotes the direction of the planar parabolic o4 jated crystalline subsystems that have incommensurate

guantum W_eII,_ the Hamiltonian that_ describe; the electromqepeat distances along some common crystallographic dis-
structure within the envelope function formalism and effec-5nces has the reciprocal lattice, in which wave vectors are

tive mass approximation redds given by
Hym At g2y D, (24) 4
T om, Y T2 & e k= E| hia* | (29
i=1

Here,n represents the band index, and m, the band-gap | o ) )

energy and the effective mass at the center of the paraboli®ith h; being integers, whil& span the reciprocal space. In
respectively.D,, is the curvature of the parabola potential this quasiperiodic structures, being an intersection of a few
profile, which is assumed to be infinitely high. Thus, theincommensurate periodic structures the value of Eq. (29)
electronic states within the parabolic quantum-well are giveris larger than the dimension of the position spgicén such

in the form systems the density of charge in physical space is given by
n
> 1 I > iq;-F
Wi F) = 5 —exp(ik- §)hni(2), (25 p(F)=po| 1+ 2, 7€ %", (30
whereh,,(z) are the standard harmonic oscillator states andwith n> 8. We must point out here that amymodulation of
consequently, the electron spectrum is give®by the charge density opens a gap at the Fermi surface. How-
212 ever, there still remain portions of the Fermi surface, which
E" —E + 7k thol m+ } (26) are weakly influenced by the change-density wave modula-
mk— =N 2m, n 2) tions, so our general conclusiofat least those qualitatiye
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concerning the role of spectral dimension in the formation ofsemiconducting(ii) exhibit layered structure, angii) ex-
a SC phase remain unchanged. hibit dimensional crossovers. Let us now, basing on the ob-
From Eq.(19) we have drawn conclusion that far>3 an  tained till now results, pay some attention to the HTC mate-
elevated critical temperature should occur. This is not justials. Since the advent of high-temperature superconductivity
mechanical interpretation of mathematical formula; to proveHTC SO a variety of mechanisms that could be responsible
that let us discuss possible mechanism behind this effect. Ifor this phenomenon has been postulated. Many elaborate
the case of the 3x space the number of electron states atmodels of reasonable accuracy present finite domains of va-
the Fermi surface can be estimated\ager) ~N?°. Gener- lidity and often remain out of scope of the experimentalists
ally the number of states that occupy a hypersphere of corand none of them explains satisfactorily all aspects of this
stant N, (eg) energy can be estimated abl,(eF) phenomenon. Thus, despite an enormous theoretical effort
~N(~Ya) whereN is the total number of quasiparticles in over the years and quite a variety of treatments, a complete
the system and is the dimensionality of th& space. From theory of HTC SC still does not exist. Nevertheless, accumu-
this formula the ratidN,(eg)/N3(eg) that describes relative lated experimental data provide support for a widespread
occupation of the Fermi level in 4D and 3Dspaces can be conjecture that superconductivity, in general, is a Bose-
estimated ad,(er)/Nz(er) ~NY*2 In the case oN=10"  Einstein condensation of the charged Cooper pairs observed
the ratio is a number of the order of40This means that the also in conventional superconductéfflso the recently dis-
number of electron states at the Fermi level is significantlycovered MgB seems to be a simple BCS superconductor
higher in the 4Dk space compared to the conventional 3Dwithout any of the other mechanisms for the HTC SC that
case. In many systems the spectral dimensiéma function are hypothesized for the cuprate superconductors. However,
of external fieldge.g., temperatujeand with varying exter- the specific mechanism behind this pairing remains un-
nal conditions a gradual dimensional crossover is observednown. This suggests that the theoretical description of the
Suppose thatr is a fractiona=3+¢€ (with 0<e<1) then the HTC systems should focus on more general properties rather
ratio of relative occupations of the Fermi level can be giventhan on microscopical mechanisms responsible for the pair-
asN,(er)/Nz(ep) =N33C*9) As we can see considerably ing. The characteristic feature of the copper oxitlasprin-
enhanced densities of states near the Fermi level are preiple of any HTC systemss their layered structure. In me-
dicted, which is expected to yield enhanced SC over thatallic phase this results in anisotropy of conductivity and
there are of standard 3D, provided that no large changes iiinerant charge carrier concentration. The conductivity
the electron-ion matrix and phonon frequency contributon. within CuQ, plane is much higher compared to that of mea-
From Eq.(19) it follows that ratioT, , /T, 3p can achieve sured along the axis, perpendicular to this plane. In the
values of the order of FOfor o>3, which is far from being YBaZCug,OXn copper oxide the magnetoresistivity measure-

realistic. We must pointout, however, that there is anothements with reduced,, indicate gradual dimensional cross-
limit set on critical temperature. ThE; , enhancement pre- over from an anisotropic 3D to quasi-2D syst&hSince all
dicted by Eq.(19) is valid provided that assumptions under HTC systems exhibit anisotropic, quasi-2D mobility of the
which this equation was derived hold. The most restrictive incharge carriers, it is evident that this property is essential in
that we have assumed condensation of boson pairs, whiahe formation of SC state. In view of the previous remarks,
exist above critical temperature. However, stability of elec-there arises a question whether the copper oxides, which are
tron (hole) pairs is limited by the mechanism of pairing. commonly believed to be quasi-2D superconductors with
Suppose that the energy of electron-electron binding is giveparabolic dispersion, can be described by spectral dimension
by Epong- When temperature is increased to the valy€; oD >37? At first sight suggestion that the dimension of khe
~Epond, the boson pairs dissociate and EtP) is no longer  space for a boson gas confined within the Glayers can be
valid. This means that when the spectral dimension increaséfigher than three seems to be errorneous, our intuition
(dimensional crossoverthe system can achieve only the guided by the notion of spatial dimension suggests rather
maximal critical temperature allowed by the particular 2<a<3. To show that such situation may really occur, let us
mechanism of charge carrier pairing, i.&sT; ,<Epong-  recall two experimental facts indicating that in some HTC
This situation resembles to some extent the BCS picturgnaterials the value of spectral dimension can exceed 3.
where there is no preexisting bosons and they appear just at After extensive discussion of the modulated systems,
T.. The fact that boson pairs are breakable suggests that wgiven in Sec. IV, let us point that the copper oxides exhibit
should consider the situation in which unpaired but pairabléateral lattice modulations. The extended Hubbard model ap-
fermions coexist with the boson pafs?* However, such plied to the HTC systems predicts charge striftase to the
generalization is of less importance and cannot change theéhase separation When the local Coulomb repulsion is

general conclusion presented above. taken into account, critical charge fluctuations drive the sys-
tem towards phase separation. Such density instability
V. REMARKS ON HTC SC evolves into an incommensurate charge density waves when

nonlocal Coulomb forces are taken into accolint. It is
The concept of our considerations is based on ideas drawmell-known fact that CDW transition cannot occur on a rigid
from models derived for structured semiconductors. Till nowlattice. In any case CDW formation is accompanied fbysi-
we have avoided any remarks concerning HightHTC)  tively chargedion displacement, which produces lattice con-
oxide SC although they share many common features witlstant modulation with the same as for CDW period. At the
the previous systems. The copper oxides @rerincipally  advent of the HTSC research the fractiongosition
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dimensionalityd= 2,03 of cuprates has been sugge&tec
more realistic since it reflects inter-CuO-layer couplisge
Ref. 29. If we add 1D charge density modulatioriza-- e+ 1)
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phase we have adopted the concept of fractional spectral di-
mensionality to model the SC system. Ed4)—(8) and
(24)—(27) show that detailed knowledge of the low-energy

electron system is generated and description of copper oxexcitations and the Fermi surface topology is essential to
ides within a=3+¢€ k space formalism is justified. Let us understand the unusual properties of the HTC SC and to shed
give another experimental argument indicating that coppelight on the SC mechanism. On very general ground systems
oxides can exhibit spectral dimension having vait2>3.  that are both interacting and nonhomogenous should exhibit
Different types of SC can be classified according to thedeviations from single-particle Fermi surface. If for the
point-group symmetry of pair states. In classical SC there isnodified Fermi surface predicts that dynamical states density
no low-energy excitations, while some unconventional SOn a narrow energy window close ¢ fulfills relation (3)
with a line of nodeg(i.e., with zero gap along some direc- with nonintegera, then description within fractional dimen-
tions, to this class belong, e.g., spin singlet pairs states witkion picture is fully justified. Using systematic procedures
dy2_y2 Ordy, symmetried’) are expected to have a zero-field we have shown that depending on the low-energy excitation

density of statedN(E)~|E—Eg|.*° The density of states
N(E)~|E—Eg|, similarly as the electron system within
parabolic quantum wellsee Eq.(28)], can be fitted to gen-
eral formula by setting the spectral dimensies4. Calcu-
lations predict that the density of statéfE)~|E—Eg|
leads to the characteristic specific-heat temp=pT?

spectra the effective spectral dimension varies within the
1<a<4 range. Although the value of spectral dimension in
some systems can be calculated directly from the electron
gas spectra we can assumeas a phenomenological param-
eter with values extracted from experimental da@ur ap-
proach enables us to derive the formula for critical tempera-

~y,T?/T,, Wherey, is the coefficient of the lineaf-term  ture being a function of spectral dimension. From our
in the normal state. The most important fact is that the exconsideration it follows that systems with™>3 produce in-
perimental data confirm presenceT# term in specific heat creased population of the Fermi level compared to the con-
of the optimally doped YBCO systeffi. Thus, we can as- ventional 3D systems. We have shown in a system for which
sume that there is experimental hallmark of 4D SC in thisthe effective spectral dimensianexceeds three one can ex-
system. We must stress, however, that despite the abovpect enhancement of critical temperature up to its maximum
mentioned experimental evidences, they cannot be assumeéét by the pair formation energy. This conclusion is con-
as a proof as discussed by us that mechanism plays actifismed by recent experimental data, which report enhance-
role in SC transition in HTC material. In description of the ment of T, due to the quantum-confinemefitBasing on the
HTC SC, it is crucial to answer the question: what is thetheory of modulated systermsupercrystals we show that
microscopical mechanism responsible for pair formationlayered system with 1D charge density modulafio., situ-
with binding energy exceeding 100 K? Since till now there isation as in the HTC superconductprsan be described
no consensus concerning the microscopical mechanism @¥ithin @=3+¢€ k space. This means that conclusions con-
HTC SC we can make only some model studies to reacleerning enhancement of critical temperature dor3 apply,
better understanding of SC and to prepare testing ground fat least in part, to the copper oxides. However, the main area
alternative models. Another argument why we should beof application we expect to be the multilayered SC systems,
aware when extending our results onto cuprates is that thespecially those with short coherence length. We believe that
layer thickness in structured semiconductors we are basingur results are of relevance for many other low-dimensional
on is at least by an order higher than in the copper oxidegjuasi-1D organic superconductors&)D Bechgaard salts
However, one can expect that some of the above conclusioor (2+¢€)D ET salts?® Furthermore, since the effective spec-
should be valid in the case of multilayers or superlatticegral dimension is sensitive to the interface stress or external
fabricated of HTC materials. forces, there arises possibility to fabricate systems with re-
quired effective spectral dimension, which gives optimum of

VI. SUMMARY AND DISCUSSION critical temperature.

There are many attempts of search for a general principle
or a specialmaybe hiddensymmetry that facilitates under-
standing of SC in systems with restricted geometry. In our Financial support from the State Committee for Scien-
approach, basing on the common belief that layered structuréfic Research(KBN) via a University grant is gratefully
and lateral charge inhomogeneities are in the heart of S@cknowledged.
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