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Thermodynamic properties of thin films of superfluid 3He-A
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The pairing correlations in superflutHe are strongly modified by quasiparticle scattering off a surface or
an interface. We present theoretical results and predictions for the order parameter, the quasiparticle excitation
spectrum, and the free energy for thin films of superfidide. Both specular and diffuse scatterings by a
substrate are considered, while the free surface is assumed to be a perfectly reflecting specular boundary. The
results are based on self-consistent calculations of the order parameter and quasiparticle excitation spectrum at
zero pressure. We obtain results for the phase diagram, free energy, entropy, and specific heat of thin films of

superfluidHe.
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[. INTRODUCTION between theory and experiment for the temperature depen-

dence of the heat capacity and entropy allows us to deter-

The superfluid phases of bulkHe are condensates of mine the density of states and low-lying excitations of the
p-wave, spin-triplet Cooper pairs. The order parameters defilm. The heat capacity and entropy also enter the hydrody-
scribing theA andB phases spontaneously break orbital- andnamic equations that describe damping of low-frequency col-
spin-rotational symmetries, as well as discrete symmetries déctive modes of superfluid films.
space and time inversion, of the normal Fermi-liquid phase In this paper we report a theoretical study of superfluid
of 3He.! Pairing transitions of this type are called “uncon- 3He in films with thickness ranging frod~1¢&, to 15¢,.
ventional,” and such systems exhibit novel phenomena assdrhis is a system similar t8He in a slab, except théHe is in
ciated with the spontaneously broken symmetries of the orgeneral confined between different interfaces. Essential to
der parameter. A generic feature of superfluids with arany theory of superfluiHe in confined geometry are the
unconventional order parameter is their sensitivity to scatterboundary conditions that describe the effects of surface scat-
ing by impurities, defects, and boundaries. Scattering of quatering on the pairing correlations, the quasiparticle spectrum,
siparticles by these objects leads to the suppression of ttend quasiparticle distribution functions in the case of non-
order parametejpair breaking and suppression of the super- equilibrium properties.
fluid transition as well as more subtle physical effects asso- Early theoretical investigations focused on pair breaking
ciated with the interplay of scattering and particle-hole co-of the order parameter near a wall in the Ginzburg-Landau
herence in the superfluid state. These effects persist ovéGL) regime, and the implications of the pair-breaking effect
several coherence lengths, which foPHe is &, on the boundary conditions for the hydrodynamic variables
=tv2mkgT,=10°—10° A. When 3He is placed in a con- describing theA phase, in particular thé vector’® These
tainer or confined to a geometry with dimensions of the ordecalculations, as well as calculations of the suppression of the
of the coherence length scale the effects of the boundaries dransition temperature for superfluidHe in confined
the superfluid extend to all parts of the liquid, and there is ingeometry:* were based on de Gennes’ formulation of inho-
this sense no “bulk” phase. mogeneous superfluidity in terms of semiclassical correlation

Superfluidity of *He films was first reported in 1985. functions and a heuristic model of surface roughness which
Basic properties of superfluid films, such as the transitiorinterpolated between specular and diffuse scattering of qua-
temperature, critical current, and superfluid density, haveiparticles. More recent analyses based on the GL theory for
been measured in several laboratofiesEvidence of a pre- the phase diagram and dynamical propertieStdé in slabs
sumedA-B phase transition has been reported by severahnd cylindrical pores are described in Refs. 12 and 13.
groups, and a phase diagram has been constructed over aExtensions of surface pair-breaking calculations beyond
limited range of temperatures and film thickn@s8Experi-  the GL limit require a more detailed theoretical formulation
mental observation of third sound #He films also shows of inhomogeneous states of superflifide. The most pow-
anomalies in the mode spectrum as a function of temperaturerful theory of superflui®He is based on the quasiclassical
and film thickness which cannot be accounted for within thetransport equation$.~1® This theory is the natural extension
hydrodynamic theory applicable to superfluftie.® There  of Landau’s theory of normal Fermi liquids to include BCS
are many open questions about the nature of the superflujghiring correlations. The quasiclassical theory is applicable
phases ofHe in restricted geometries, including the identi- to a broad range of phenomena and nonequilibrium states of
fication of the superfluid order parameter and whether or noinhomogeneousHe. The central objects of the quasiclassi-
additional phases may be stabilized depending on the geoneal theory are the propagators that describe both the quasi-
etry and surface structure of the confining geometry. particle excitations of the condensed phases and the corre-

Theoretical models and calculations of the surface struckated pairs that form the condensate. Theoretical calculations
ture and excitation spectrum of superfliitle films are im-  based on the quasiclassical theory for the surface order pa-
portant for understanding both thermodynamic and nonequirameter and excitation spectrum near a wall or interface re-
librium properties of superfluid films. Detailed comparison quire boundary conditions for the quasiclassical propagators,
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generally formulated from scattering theory and a specific z
model for the surface or interface.

Boundary conditions describing reflection from an atomi-
cally rough surface were developed by Buchholtz and
Rainet’ and implemented in the form of the randomly
rippled wall (RRW) approximation for®He-B.189 Alterna-
tive formulations of diffuse boundary conditions were imple-
mented by Zhanget al?® based on scattering from a thin
layer of atomic-size impurities coating an otherwise smooth
surface and by Thunebesg al?! based on scattering from a
distribution of “randomly oriented mirror'(ROM) surfaces.
Boundary conditions describing rough surfaces which are
neither perfectly specular nor fully diffuse were developed g 1. A thin film of 3He on an atomically rough substrat
by Nagaf” in terms of a randon® matrix. In the diffuse  ,—0) with a free surfacez=D) which is specular.
scattering limit the results of Ref. 23 for the order parameter

suppressiogoin3He-B agree well with those obtained by njcal aspects of computing the free energy and implementing
Zhanget al= based on the thin-dirty-layeTDL) model. the diffuse boundary condition in the Riccati formulation of

We report a theoretical analysis of the structure, excitatioRne transport equations are included in appendixes.
spectrum, and thermodynamic properties of superffikic:

films. The free surface is modeled as a specular surface, and
the film resides on a substrate that we assume is atomically
rough. We model the scattering of quasiparticles by the sub- We assume that théHe film is on a substrate that is
strate by introducing a thin layer of atomic-size impuritiesatomically rough on a scale much shorter than coherence
randomly distributed on the surfaCeDL model)). The width  length &,. The film has a well-defined thickne$ that is
d of the impurity layer is assumed to be much less than théarger than the atomic scale. The free surface of the film is
superfluid coherence length, while the mean free pafifor  assumed to be atomically smooth; cf. Fig. 1. We assume that
quasiparticles propagating in the layer is much smaller thathere is negligible evaporation and vapor above the film.
the widthd. Thus, quasiparticles are strongly scattered insiderhus, the liquid in the film is essentially under zero pressure.
the layer, but eventually scatter out of the layer at an anglén this model *He quasiparticles are specularly reflected at
uncorrelated with the incident trajectory. The lindtl;,, the free surface. We also assume that the film is invariant
— asd—0 describes a rough surface in the diffuse scatunder translations and rotations in the plane of the fiy
tering limit. The specific formulation of the impurity model plane, and thus the physical properties of the film depend
for diffuse scattering that we use was introduced byonly on thez coordinate, which is normal to the substrate and
Ovchinnikov* for diffuse scattering from atomically rough the free surface.
metallic interfaces and was implemented for superfitlite The calculations we report were carried out using the qua-
by Kopninet al?® siclassical theory for superfluidHe,?® supplemented by
We start from the quasiclassical theory of superfluidityboundary conditions for surface scattering at the vapor-liquid
with the boundary conditions described above and calculatmterface and film substrate. The central object of the quasi-
the equilibrium properties of films of superfluitHe in the  jassical theory is the propagatgr(p,R;e,), which is a 4
weak-coupling limit. We calculate suppression of the orderx 4 Nambu matrix—denoted by a wide caret—in the com-
parameter in the film, the quasiparticle density of states, Sthined particle-hole and spin spaces and is defined in terms of

perfluid free energy, entropy, and heat capacity. We are espgn integration of the full Nambu propagator,
cially interested in films of thicknes® <D 55, whereD pg

Il. THEORETICAL MODEL

~9¢, marks the transition from thB-like phase for thicker — B oo e —ins

films to theA-like phase for thinner films. It is in this region G(D,R;Sm)=f0 dre'*m f dre”'P

that most film experiments have been done. We find that

because of diffuse scattering at one of the interfaces, a band —<TT‘I’(R+I'/2,T)\I_’(R— (2,0, (1)

of subgap states is formed and these states exist throughout
the film for sufficiently thin films. The thermodynamic prop- over a shell|v{(p—p¢)| <& <E;, in momentum space near
erties of theA phase are changed significantly by these gapthe Fermi surface,
less excitations.

The main sections of this paper are organized as follows. — -
In Sec. Il we describe the theoretical formulation of the qua- 9(p.Riem) = gf_s
siclassical transport equations and the boundary conditions
that we use in our calculations. Results for the thin-filmThe propagator is normalized by dividing by the weight of
phase diagram are summarized in Sec. lll. In Sec. IV wehe quasiparticle pole in the spectral functianWe use the
discuss the excitation spectrum for both specular and diffus®atsubara representation to calculate equilibrium properties;
scattering, while in Sec. V we present the results for the freghe fermion Matsubara frequencies arg=(2m+ 1) wkgT.
energy, entropy, and heat capacity of thin films. More tech-The four-component Nambu field operators are defined in

+e

“dg, 736 (P.Rien). 2
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terms of the bare fermion field operators by 1 leml<ec 4 113,
=y 900 g]) andW(r, ) =w'(r,-7). v,om e 2 e
For pure spin-triplet pairing the quasiclassical propagator
9 may be parametrized in particle-hole space by22spin which is used to eliminate the cutoff and pairing interaction
in favor of the measured bulk transition temperatilige

©)

matrices for the diagonalquasiparticle and off-diagonal The order parameter must be determined self-consistently
(Cooper pair propagators, with the solution of the transport equation for the propagator.
. A A This procedure and the quasiclassical transport equation can
~ |9 f _[ 9tog (iooy)-f 3 be simplified by introducing a parametrization for the propa-
f g (i(}yt})-f g+aog/’ gator that satisfies the normalization condition by construc-

tion and reduces the number of independent components,

The 2X 2 spin matrices are denoted by ordinary carets, e.g.,

g. The spin vectorsr= (0,0, ,0,) are the Pauli matrices. . _[1+aa 2a

One deviation from the matrix notationfis which denotes a g=—iwN _oa _ i-aa)’ (10

unit vector in the direction of the Fermi velocity;(p) T -

=vff). The components of the quasiclassical propagator arghere the prefactor is given by

not all independent. The upper qnd lower particle-hole com- (i—éé)*l 0

ponents are related_ by symmetries that follow from the fer- N :< = A ) _ (11)

mion anticommutation relations 0 (1-aa) !
f(p,Riem)=f(—p.Riem)*=—F(p,R;—em T, The amplitudesa and a are 2<2 matrices in spin space

which obey matrix Ricatti equatiof’s2®

9(P.R;em)=9(—P,Riem)* =g(—p,R;—em)",  (4)
whereg" is the matrix transpose .

The quasiclassical transport equation that governs the ivi-Va—2ie,a—ada+A=0. (12

evolution of the quasiclassical propaga®(p,R;e,) is**?° - T

ivi-Va+2ieya—ada+A=0,

We refer toa anda as the Ricatti amplitudes. The two Ri-
ie 7a— AP.R). T (P.R: +ive(P)-VI(P.R:e)=0. catti amplitudes are related to the particlelike and holelike
liem7a= A(PR), G (P.Riem) 1+1Vi(P)- V G (P.Riom) (5)  Projections of the off-diagonal propagators,

with a constraint given by Eilenberger’'s normalization con- a=—(im—q)~f, a=(iw+g) f, (13
dition on g, o N o
_ where the projection operators for the particlelike () and
g(p.R;em)?=—7?1. (6)  holelike (P_) sectors are given by
We have omitted the Landau molecular field self-energy in —~ 1 —~
the transport equation, and we consider the pairing self- P,=Z 1+i), B:_<1_L)_ (14)
energy’ﬁ in the weak-coupling limit, which is a convenient 2 i 2 i

choice for the order parameter. It is off diagonal in particle-FOr the case of spin-triplet pairing in zero field these ampli-

hole space, tudes can be parametrized as
2 0 A 0 iy A . a=(io-oy)-a and a=(ioy0)-a (15)
é 0 i&yfrA* 0 The Ricatti amplitudes are also related to each other by a

symmetry that follows from symmetry relations for the
and parametrized by a spin-triplet order parameter defined bgropagators in Eqg4),

the vectorA(p,R). In the weak-coupling limit the order pa-

rameter is determined by the off-diagonal pair amplitude a(p.Riem)* =a(—p.Riem). (16)
f(p,R;&,,) from the gap equation The Ricatti equations are easily integrated numerically, are
o< numerically stable, and provide a more efficient approach to

- YA A A, solving the quasiclassical transport equations than the “ex-
A(p.R)=T Em: 47: V(p.p)f(p".Riem), (8 piosion method.?® Equations(12) are solved by integration
L along classical trajectories—forward farand backward for
whereV(p,p’) is the interaction in the spin-triplet pairing 3—starting from an initial value. The Ricatti equations must
channel. For pur@-wave pairing we retain only the attrac- pe supplemented by boundary conditions at the two inter-
tive £=1 interactionvV=3V,p-p’. The cutoffe, and inter- faces. We do not have a bulk region in tele film, so
actionV; are not measurable, but they are related to the bullgenerally we start from an arbitrary initial value at the free
transition temperature by surface and compute along a classical trajectory with mul-
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tiple reflections until the Ricatti amplitude at the surface con- 04———F———T——71— — 04——1—
verges. The integration procedure is described in more detai
in Appendix A.

The boundary conditions for the Ricatti amplitudes at the (3
two interfaces are obtained from boundary conditions for the
quasiclassical propagators. Specular reflection at the free su_ o
face requires matching of the propagators at the free surfacg

for two trajectories,p and p, which are related bp=p 3
—2n(n-p),

0.3

0.2H 0.2

~ - ~ A 0.1 0.1 - -
. _ . — diffuse and specular
9 (p'D'Sm) 9 (B'D’Sm)' (17) | |~— both surfaces specular
Then the Ricatti amplitudes are also matched at the surfaci
in the same way, 0 oL 1+ 11
0 2 4 6 8
A(p,D;em) =A(p,D;en), (18 21%

A A FIG. 2. The order parameters for tBdike andA-like phases of
a(p,Diem)=a(p,Diem). (19 3He in a thin film. The coherence lengtiy=#v/2mkgT, is ap-

The boundary condition for the quasiclassical propagator &'oXimately equal to 73 nm at zero pressure.

an atomically rough surface is more complicated. A physical o

model for an atomically rough surface is provided by a TDL Ap=(0,04)(2)(pxtipy)), (23
model for surface roughness obtained by coating a specular ) ) ]

surface with a layefof thicknessd) of randomly distributed Where|| andL refer to orbital motion, characterized by the
impurities characterized by a mean free p;;xt}hirpg_31 Inthe  direction of the relative momentuim, parallel and perpen-
TDL model the ratiop=d/ly, describes the degree of sur- dicular to the surfaces of the film. Thaanar phase is a
face roughness. Fgr=0 we recover a specularly reflecting special case of thB phase withd, =0. For theA-like phase
surface, whilep— o0 corresponds to the fully diffuse surface. we haveAAII(f:E in order to minimize the nuclear dipolar
In the fully diffuse limit we implement Ovchinikov’s bound- energy. For theB phase the order parameter in Eg2) is

ary condition, which is a special case of the diffuse limit of multiplied by a spin-orbit rotation matri®(n, ), which is

the TDL boundary condition. The Ovchinnikov boundary fixed by the dipole energy.

condition requires self-consistent determination of the The spatial profiles of the order parameter components are
Green’s function at the diffuse surfacg(p,0;e,). For out-  shown in Fig. 2 for both thé-like (left pane) and A-like
going trajectoriesf,>0) the boundary condition for the Ri- (1ight pane] phases. The dashed lines correspond to a film

catti amplitude is with two specular surfaces, while the solid lines represent a
film with diffuse scattering from a substrate a0 and
a(p,0)=—(im—gmo.) HFroL, (200  specular reflection from the free surface.

. A The orbital components of the order parameter that are
wheregrp (e) andfp (ey) are the propagators deep in perpendicular to the film interfacé), , are suppressed at
the dirty layer and which are related to the surface propagaboth interfaces. This suppression is related to the change of

tor by sign of A, p, when a quasiparticle is reflected by the surface.
dO- The parallel componenk is suppressed by diffuse scatter-
IoLlem = f _”|f32|’§([3,o;8m)_ (21)  ing at the substrate in both phases. In BighaseA, is
R ™ slightly increased for diffuse scattering because some of the
PZZ((’) spectral weight that is lost fromy| is transferred td\ , .
Pz

The orbital structure of the order parameter for the

We give a short derivation of this boundary condition in Phase leads to a simplification for the boundary condition at
Appendix A. the diffuse substrate. If we parametrize the off-diagonal com-

ponent ofg by
Order parameter o )
We consider two possible phases in superfltfte films f=(0.0f)(p2)(Px+ipy)),
that have the same or nearly the same symmetry, a& émal

B phases of bulk superfluidHe when one restricts the or-
bital symmetry group to S). Theorder parameter for the

(29

then the angular integration in E1) givesf 15, =0. Thus,
we have an explicit value for the Ricatti amplitudeat that

B-like phase is of the form surface,
As=(A)(2)Px, A(2)Dy AL (2)D), (22) a(p.0;em) =0, p,>0. (25)
while that for theA-like (“axial” ) phase is given by The quasiclassical Green'’s functionzt 0 is then
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RS MR R == et A A AR R vanishes continuously, so this transition is second order. In
LN ;{c‘f Tan T, the weak-coupling Iimit the planar and axia_ll phases are de-
os £ | = generate. However, in bulkHe _strong-couplm_g corrections
5515 o | lower the free_energy of the_aX|aI phase relative to the plan_ar
I B A phase. Thus, if strong-coupling effects also stabilize the axial
L06r | ¢ o phase relative to the planar phase in a thin film, then the
N g second-order transition from tli&phase to the planar phase
= I? i 06 is preempted by a transition from tiephase to the axiah
il ! | phase. Measurements of the heat capacity jump in Bk
/| | o indicate that strong-coupling corrections are small at zero
02k | 0o pressure; thus, thAB transition in the film is likely to be
| very weakly first order. With the exception of the possible
. | L . ? . Ig!lzl B fine structure of the phase diagram close to the second-order

0 12 14 transition lineD og(T) and properties such as the latent heat
D/E, of transition, calculations of the thermodynamic properties of
thin films based on the weak-coupling approximation are ex-
FIG. 3. Phase diagram for superfluitie films. The thick solid pected to be accurate.
line represents thAB transition for a film in contact with a rough The perpendicu|ar component of the order parameter is
substrate and a specular free surface. The thin solid line i&\Ehe suppressed to zero even for a specular wall, soABéran-
phase boundary for a film with two specular surfaces. The insetitiion occurs even in a film bounded by two specular sur-
shows an enlarged portion of t#&B phase boundary, where the faces. For a film on a rough substrate, the suppressim‘ of
second-order transition is r_eentram,—>B—>A, as a function of by diffuse scattering leads to a small enhancemet, df).
Leorzﬁzz:;urfv'itg 2ip?)?:2:iin|I2f8 tﬁgogjzgzﬁjigigii:%ﬁﬁiase As a result thé to A transition requires slightly thinner films
o . ! * ¢ for arough substrate. This result, although the detailed shape
resulting from diffuse scattering by the substrate. The individual . . . .
points correspond to observed anomalies in measurements that mgglthpi phase boundda?)/ is slightly déﬁeréeén;;aagéees W'éhf the
indicate a phase transition in the superfluid filta) thin dashed ]E: Cuta:tr:ons rtgpolrte d )I/fNatghato ar]l N fsle Onfl -
!iner,]_agomalﬁierS]ET,D) (Ref. 7); (_b)lop(;n squares'lm‘x:‘e ano(;naly ,\?K/Tg m:;;srfge%;re] tt?iL sﬁits)groa;cgu:ooeurﬁu::fej:Shc()X/VVever,
g]p;r:rdizomuonnd(sﬁb\?\),' ;ﬁl;ﬁ;g??’ ow anomalyRef. 3; () that theAB transition occurs at larger values of film thickness
than predicted by the weak-coupling theory. This may indi-
cate that the first-ordeAB phase boundary needs to be cal-
culated with leading-order strong-coupling corrections in-
cluded in the theory, even at zero pressure.
An interesting feature of the calculated weak-couphig)

The boundary value in E@25) speeds up numerical integra- phase boundary below/T,~0.4 is shown in the inset of

tion since the calculation &(p,>0) anda(p,<0) are now Fig. 3. For films in contact with either a speqular or rough
" ) - oA s . substrate the second-order phase boundary is reentrant as a
initial value problems; we start at=0 with a(p,>0,0;s,,,) . i .

S . ) e ! function of temperature for a narrow range of film thick-
=0, ora(p,<0,0;em) =0 and integrate the Ricatti equations pegses. For example, for a film on a rough surface With

0 2 4 6 8

1 0

’d(ﬁ,o,sno:—iw( . ) p,>0. (26
—Zg -1

directly to obtaina(p,>0z;ey,) anda(p,<0zepy). =9.4¢,, upon decreasing the temperature belBii" the A
to B transition occurs al ,g~0.55T;. As the temperature
ll. PHASE DIAGRAM drops further a reentrar to A transition occurs aflga

o _ =0.23T.. Whether or not this reentrance will survive

At zero pressure bulRHe is in the superflui® phase for  strong-coupling corrections is not known. The reentrance
temperatures belowW.=0.93 mK. When we confine the su- may also signal that a translationally invariaabr B phase
perfluid to a slab between two surfaces or form a film on &s ynstable to the formation of an inhomogeneous phase with
substrate, we observe changes in the superfluid as we dgywer free energy. In any event the fine structure of the phase
crease the film thicknesd. The phase diagram ofHe in  giagram at low temperatures ndar=9.5, and the possibil-
superfluid films, as far as it is known, is shown in Fig. 3.ity of new phases stabilized by strong-coupling corrections
Several phase transition lines calculated theoretica”y argr which Spontane0u5|y break translation Symmetry in the
shown, as well as points indicating possible phase transitior@ane of the film is outside the scope of this paper.
based on anomalies in several experiments. For films that are thinner than (9.5—%@)the planar or

If one starts from the bulk superfluil phase and then axjal A phase is the stable phase relative toBrkke phase.
reduces the film thickned3 at constant temperature, we ex- For the purpose of calculating the thermodynamic properties
pect to cross at least two phase boundariesDAs reduced \ye assume that strong-coupling corrections stabilizeAhe
the perpendicular component, (z) is suppressed, and at a phase relative to the planar phase in the film; however, this is
critical film thickness D ag(T), A, (2) vanishes. This signi- really an open question. Strong-coupling corrections to the
fies a transition to thelanar phase with an order parameter free energy for phases with strong spatial variations, as oc-
of the form Ap=A(2)(py,py,0). The componenth, (2) curs in thin films, have not been calculated, so the relative
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stability of the planar ané phase in thin films is unknown,
either theoretically or experimentally.

If the substrate were an ideal specularly reflecting surface
then the superfluid phase would persist for film thicknesses
approaching a few monolayers or until the Fermi-liquid
properties and pairing interaction were modified by finite-
size effects. But the pair-breaking effect of scattering off a
rough substrate suppresses the transition temperature into tt
A phase, and at a film widtB 5n(T), which is substantially
smaller thanD og(T), the superfluidA phase is destroyed.
The calculated transition temperature for diffuse scattering is
shown in Fig. 3. This phase boundary was calculated by
identifying the temperature and film thickness where the or- FIG. 4. Skew scattering by the substrate.
der parameter vanishes. We also obtained the superfluid tran-
sition from the calculated free energy by a least-squares fit For example, consider th&-phase in contact with a
of the known Ginzburg-Landau form for the free energy,specular surface. For an incident trajectory normal to the
a(T-T¢m?2, interface, p||z, the B-phase order parameter changes sign

Calculations of the transition temperature in thin slabs of

3 . 3 o N S upon reflection: i.e.A(p)=—A(p) for p—p=—p. This
He were carried out by Kldmanet al.""using a linearized  qjo change leads to a multiple Andreev reflection that gen-

: - "brates a surface bound state at the Fermi level=i=Q. For
terms of the c!assmal I'|m|t for the normal—state Current'trajectories away from normal incidence the components of
current correlation functloﬁ‘_? Our calculations agree well B-phase order parameter corresponding to orbital motion
with the results for a slab if \éve take into account that they, yq plane are present and do not change sign upon reflec-
\Q”dth of the thin film of “He-A is equivalent 10 a {5y A a result the surface Andreev bound state disperses as
He-A slab of wice the width of the film. . a function of the incident and reflected angles relative to the
It s_ho;;ld bg noted that the.phases considered here, evelorface normal.
for thin *He films, assume thickness@s> A. We do not The bound-state energy dispersion can be calculated ap-
consider the two-dimensiond2D) limit of one or two  rquimately by neglecting the suppression of the order pa-

atomic layers ofHe atoms on the surface of a substrate. The 3 meter at the surface and assuming that surface scattering
properties of 2D superfluidHe, if it exists, are expected to occurs on a cone defined by the anglérom thexy plane—

be influenced by the reduced dimensionality. Ising-like ag o (0, b)) — (71— 0, dy), b= dby— db1—as shown in Fig. 4.

well as Kosterlitz-Thouless-type transitions are predicted foky/e then find bound-state poles in the retarded propagator, for
2D superfluid®He-A. 3233

. _ . either theB or A phase, given by
One additional note: observing the equilibrium phase

boundaries may be complicated by metastability. Even &

though the planar phase—i.e., tBgphase withA | =0—and ep=*A|sinf cos . (27)

the axialA phase are degenerate in weak coupling, they are

unrelated by symmetry and, therefore, separated by an en- The density of state$DOS) can be calculated once the
ergy barrier. Thus, once established, the akiphase willbe  order parameter and Landau molecular fields have been de-
metastable with respect to tiephase. The calculation of the termined self-consistently. The most detailed information is
barrier and corresponding metastability lines in the phasgontained in the angle-resolved local density of states, which
diagram would provide an important result, but are outsidgs optained from the diagonal component of the retarded qua-
the scope of this article. siclassical propagator,

IV. DENSITY OF STATES N(ﬁ,R;g):_%m gR(f),R;s), (28

Pair breaking by surface scattering leads to quasiparticle A
states below the gap. These excitations play an importawhere gR(p,R;e) is found by solving the quasiclassical
role in the thermodynamic and transport properties of thintransport equation for real energies: iie,,—¢+i0" and
films of superfluid®He. The subgap excitations are surfacethe known order parameter and molecular fields. The local
Andreev bound states. The mechanism leading to their fordensity of states for thB phase near a wall shows quasipar-
mation is closely related to the formation of bound states irticle states which develop below the bulk gap and are bound
the core of a vortex® Andreev bound-state formation occurs to the surface; i.e., their spectral weight vanishes a few co-
when the order parameter changes sign or phase alongherence lengths away from the surface.
guasiparticle trajectory. In the case of surface scattering the For example, the angle-resolved spectrum of superfluid
incident and reflected trajectories generally correspond tdHe-B near a specular surface, calculated numerically for a
very different order parameters; this is typically the case forself-consistently determined order parameter, is shown in
an unconventional order parameter which breaks rotationdtig. 5. For the specular reflection the position of the positive-
symmetry. energy surface bound state depends on the angle of the inci-
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5r 5
b ! z )
>3 ~3
@ )
2 g2
Z Z
1 0
0
0 &
©=8095 ©=8095 | ©=53.95
©=2695 ©=2695° 0=71.95°
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©=80.95"

e/A(T) T elA(D

FIG. 5. The angle-resolved local DOS for tHéle-B near a FIG. 6. The angle-resolved local DOS for tHéle-B near a
specular surface. The spectrum is calculatedfel0.5T .. For clar- diffuse surface. The spectrum is calculated Ter 0.5T . For clar-
ity we have broadened the Andreev bound states with a width paity we have broadened the Andreev bound states near grazing inci-
rameter ofp=10"3A,,. dence with a width parameter af=10"3A,,.

dent trajectoryg, approximately ag,=Asin 6. For normal for a rough surface. Now there are scattering processes con-
incidence the bound state is at zero energy and dispers&cting an incident trajectory with a reflected trajectory that
towards, eventually merging into, the continuum edge as thés at a skew anglep#  in the xy plane (see Fig. 4. For
incident trajectory approaches grazing incidence. There iSHe-A the order parameter for a trajectorﬁ=cos€2

also a weak dispersion in the continuum edge reflecting the- gjn 6(cosgx+singy), is AA(E,)ZQA”Sin 6e?. The change
enhancement ok, by surface scattering. in phase of the order parameter upon skew scattering leads to
At an atomically rough surface diffuse scattering couplesstrong pair breaking and the formation of subgap states. For
an incident trajectory to all outgoing trajectories. This leadsthe diffuse scattering the coupling of skew trajectories with
to mixing of states with different energies and thus to a bangy|| possible azimuthal angles generates a band of states
of subgap states for a given incident trajectory as shown iRyhich fill the subgap spectrum as shown in Fig. 7 for several
Fig. 6. The suppression df for diffuse scattering also leads incident trajectories.
to the formation of additional subgap states bound by mul- The self-consistent spectrum calcuated numerically and
tiple Andreev reflection within the “pair potential” provided shown in Fig. 7 is well described by the spectrum obtained
by the suppressed order paramete(z). These states ap- by calculating the retarded propagator for a constant order
pear only near grazing incidence and are weakly bound witparameterA| everywhere in the film. The spectrum is then
energies just below the continuum edge. determined entirely by the changes in the order parameter
Subgap states do not appeardide-A at a specular wall  induced by diffuse scattering. The transport equation can be
since there is no change in phase of the order parameter faplved analytically with Ovchinnikov's boundary condition
specular reflection wheii||z. Thus, all quasiparticle states for the Riccati amplitudes. For the diagonal part of the qua-
belong to the continuum. This situation changes dramaticallgiclassical propagator we obtain

0(6,z,e)=—lim| 1+

1 (cosk[Zw(z—D)/vfcose]_ ) | 29

cosh2wD/v;cos6]

€m
+ ——(e+wtanf2wD/vcosh])
Afsinza( " i tcosé]

wherew?=A(6)%+ sﬁq with A(#) =Asin¢. We calculate the retarded propagator by analytic continuation to the real energy
axis,ie,—e+i0". The result for the local density of states is then

(60 )N Lt B (a2 A(812) 1 cog2w(z—D)/vicosh]
(0,z;6)IN¢= (e"=A(0)°) 2 co§2wDlvcosf]
- (1+tarf[2wD/vcosh])
0)?
1 cosh2w(z—D)/v¢coso]
2_ .2y —
+OA(0) &) 22 ( cosli2wD/vcosd] ) (30

o (1—tant[2wD/vcosh])
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wherew is now As a consequence of the gapless spectrum the thermody-
namic properties of the films ofHe-A will be very different
w= ~/|82—A(0)2|. (31 from those of bulk®He. For example, the low-temperature

behavior of the specific heat vanishes exponentially in bulk
Equation(30) shows both the band of the subgap states gen3HeB for T<Ap ,Cg”'k(T)—>(TC/T)3/2exp(—A0/T), while
energies above the continuum. The positions of the maximgolated points on the Fermi surface. The bulk density of
are determined by the condition for constructive interferencgates vanishes at the Fermi leveld&'™(e—0)~&2, and

of particlelike and holelike excitations with energies abovey,, specific heat exhibits a power 1@~ (T/T)3
. . c/ -
the gap|Asind, reflecting from the specular surface, The specific heat of films of superflutHe-A is expected

Je2— AZsird6 to have a different power-law behavior at low temperatures.

2ye"—Afsime _ _ The density of states is finite and nearly constant in the low-

———  D=nw, n=0,12.... (32 . iy
vCOSH energy range above the Fermi level. As a result the specific

) o heat will have the linear temperature dependencé-a®,
The spectral weight of the Tomasch oscillations also depengast as for normal°He, except that the Sommerfeld coeffi-

on distance from the surface. Some peaks are suppressed-8ins is reduced in the superfluid film by the raNg0)/N; .
special positions in the film due to spatial oscillations of the

particle-hole interference amplitudes. This suppression of
spectral weight is most visible for angles close é&e /2
near the free surface. For example, the density of states for To compute the thermodynamic properties of superfluid
6=0.47 at z=19/2(D shows that every second peak is He films we need a free-energy functional formulated in
suppressed. terms of the quasiclassical propagator and self-energies.
The subgap states are bound to the surface on the leng&uch a functional has been derived starting from the general
scale set by coherence lengéy and decay exponentially Luttinger-Ward functional, formulated in terms of the full
into the bulk. However, the situation is different for thin Green’s function and self-energy, by eliminating the high-
films; the bound states extend over the entire width of theenergy, short-wavelength intermediate states and thus com-
film. Figure 8 shows the total DOS averaged over the filmputing only corrections to the ground-state energy to leading
N(S):fdﬂDJ‘dQﬁ/L]_ﬂ-N(ﬁ'Z;e)_ The spectrum is gapless order in the small expansion parameters of Fermi-liquid
over the entire energy range<A, and is finite at=0. The  theory. The conceptual formulation of this problem is dis-
inset to Fig. 8 shows the evolution of the total DOS as acussed in detail by Rainer and Seréfihe formulation of a
function of temperature. The gapless states fill the spectruruasiclassical free-energy functional for inhomogeneous
e<A, completely asT T, equilibrium states is similar, but there are additional techni-
At low temperature§ — 0, the DOS is insensitive to tem- cal approag?fg to incorporating mhor_nogeneltles of the order
perature, and the value of the DOSeat0,0<N(0)<N;, para_metef’._' ' _Our appro_ach is similar to that of Ref. 26
persists above =0. If we decrease the film thickness, the and is outlined in Append[x B. . .
subgap states fill the gap and a transition to the normal state We. sta_rt from the qua§|cIaSS|caI free energy |n_the weak-
will occur when this process is complete. As shown in Fig. 8¢0UPIiNg limit expressed in terms of the quasiclassical propa-
the density of states is almost equal to that for the normagator g (p,R;en,) and order parameteA(p,R) derived in
state over the whole energy range @r=0.8%,. TheAto  Ed.(B16),
normal transition occurs for a slightly smaller film thickness.

V. THERMODYNAMIC PROPERTIES

4 4 T |I T I II | II ' |
F D4 Zi= 120, — D=08¢& T=0.02T
2_ — T T T T T T T ‘_3D 35 [ JIEEES ;:8(7)% a() ¢
|5l @=mno ] [e=mno | ] | = =g j  — D=335T=00IT,
N — t=0.96 __D=45 gOT:O_Ol TC

- z=1/20D ]
= 0.5 -=-2=19220D
Z L — z-averag |
5 ob——1 1
b T——
)
Z [ ©=3r/10

e/ A,(T)
FIG. 7. The density of states in thfephase for a film of thick- FIG. 8. The total DOS averaged over film for several film thick-
nessD =4¢, at temperaturél =0.01T.. The excitation energy is nesses fofl'<Tf;"”‘j The inset shows the gapless excitations filling
scaled in units ofAo(T), the bulk value ofA| at temperaturd. the gap fort=T/TfM_. 1
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-~ 1 ~—_ 11 ~—
AQ[g,A]=—ZSﬁ(Ag)+§f d\ Sp(Ag,).
0
(33) -0.005

The symbol Spdenotes the sum over relevant variables: the = -0.01
volume of the®He film, position on the Fermi surface, Mat- _z~
subara energies, and a trace over spin and particle-hole de ¥ 0015

grees of freedom, &

o 0.02

dQ;
s|d(-.-)=NfJ d3RJ4—7TpT§m: Tra(---). (39

-0.025

There is an additional integration over the variable coupling i ‘ ‘ ‘ . .
parameterh in Eq. (33) involving an auxiliary propagator 0 0.2 0.4 0.6 0.8 1
‘g, Which is the solution of the quasiclassical transport

FIG. 9. Superfluid correction to the thermodynamic potential vs
—~ -~ —~ reduced temperature for several films of superfldide-A on a
—A,=NA. The transport equation fog, is not solved yough substrate. The inset shows the reduction in the entropy of the
self-consistently, but with a single integration for each valuesuperfluid film.

of . Thus, g, is a function of the exact order parameter in . . i
the inset of Fig. 9. The linear temperature dependence of

the film. This procedure and the application of boundary conthe entropy resulting from the gapless excitations is clearly
ditions for computing the auxiliary propagator and thejsiple.
quasiclassical free energy functional are also explained in Numerical calculations of the specific heat are shown in
Appendix B. Fig. 10. These results show the decrease of the heat capacity
Equation(33), when evaluated with the self-consistently jymp at 7™ with decreasing film thickness, as well as the
determined propagator and order parameter in the film, givegea temperature dependence of the specific heat resulting
the difference of the thermodynamic potentiabQ=Qs  fom the gapless excitatiorisee inset of Fig. 0 This behav-
—{y, from which the change in entropy and specific heaty, oy 3He-A films is in sharp contrast to the low-
can be calculated, tempegature heat capacity of bufiHe-A, which varies as
Cs~T°.
P AQ Results for the heat capacity jumppC(TM™)/y\ T"™ and
JT2 35 the Sommerfeld coefficients are summarized in Fig. 11 as
a function of the film thicknes®. The Sommerfeld coeffi-
_ cient ys was calculated by two independent methods. We
The normal-state free energy foiHe of volumeV is calculatedys directly by numerically differentiating the tem-
given by Q(T)=En— V(3 ynT?), whereE, is the ground-
state energy for normafHe andyN=(2w2/3)ka§ is the 2.0 prerr e e e e
normal-state Sommerfeld coefficient. b 2.0 grormprer I =
The reduction of the free energy below the normal-state [ C(DmT =
value represents the gain in energy due to the formation of ¢ 3
condensate of pairs in the film. The free energy of
3He-A films in the limit of diffuse scattering by the sub- o [ " F
strate is shown in Fig. 9 for several film thicknesses. Ther FosE
reduction in the free energy is given by the Ginzburg-Landaui 10F E E
form Aro—(l—T/Tﬂ'm)2 for temperatures just below the - = [ 0gfulubulusbubaludulbg

equation in Eq(5), but with the self-energy scaled byﬁ

dAQ
AS(T)Z—[?—T, AC(T)Z—T

1.5F

superfluid transition temperatufEl™ of the film. At low  © — D=90%, ]
temperatures the gapless excitations dominate the thermody o 20 ]
namics. The density of states at the Fermi energy is nonzer: — D=35 éz ]
and approximately constant at low energies. As a result the — D=25¢,
low-temperature limit for the free energy of the superfluid . — fo;zijgte;
state decreases &s—Eg=—V(3ysT?), whereys<yy is 0= e T e ”"()Islmlllm]_o
the Sommerfeld coefficient for the low-energy excitations of ) ' T/ T, ' ) '

the superfluid film andg is the T=0 condensation energy.

From the numerical results shown in Fig. 9 we can calcu- FIG. 10. The specific heat of a superfluile-A film as a func-
late temperature dependence of the entropy and specific he@n of reduced temperature for several film thicknesses. The inset
of the 3He-A film. The results for the entropy are shown in shows the raticCg(T)/Cy(T).
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e e B B RS : - = - NV~ A
I g [iem 73~ Simp(P,Riem) = A(P,R), 9 (P,R;em)]
] +ivi- VG (p.Riem) =0 (A1)
& 00.6:— —o ACCT ™) /(1 ) — in the dirty layer and matching this solution to the quasiclas-
\“/Z - HleNﬁz:Fng’sE“’gy = sical propagator in the superfluid. In the limit of strong dis-
©04f _ ] order within the impurity layer,|Sin /> |en|,| A|. Thus,
£ F deep in the impurity layer,
=°0.2F
3 S [ Simp(P.Riem), 9 (P,R;em)1=0, (A2)
0 3 6 D/E 9 12 15 with the impurity self-energy evaluated in the Born approxi-
0 mation,
FIG. 11. Specific heat jump\C(TIM)/ 5\ T™ at TiM and the 1 dOos
i - ici = P\ 1n AN A .
ratio of the _Iovx_/ temperature_Somm_erfeId_ coefficiept/ vy , for_ Gimp:_f r 1(p,p )9 (p'\Riem), (A3)
the superfluid film as a function of film thickneBs For compari- 2w) 4w
son, AC(T.)/ynT.=1.19 for bulk *He-A in the weak-coupling PP ] ]
limit. wherer™ *(p,p’) is the rate for quasiparticles to scatter from

p—p’ on the Fermi surface. These equations are solved by

perature dependence of the supe.rfluid .free energy. We Cain isotropic propagatoﬁ toL(em), Which is normalized to
also relate the Sommerfel_d coefficient directly to the densﬂ;@ 2 —— 1. This propagator isnot the normal-state

of states at the Fermi energyN(0). Thus, ys/yn ]

=N(0)/N; . The first calculation is carried out entirely in the Propagator for the isolated normal metal because the prox-
Matsubara formalism, while the calculation of the DOS atiMity coupling to the superfluid layer produces a “rotation”
the Fermi level is obtained by the solving for the retardedof gn(em)— 91pL(em) In particle-hole space. To fix this
quasiclassical propagator on the real energy axis. Both reotation we include the leading corrections to E&2) due to
sults agree and are shown in Fig. 11 and give us confidencgpatial variations of the propagator in both the TDL and su-
in our numerical calculations for the propagators, free enperfluid film and match the solutions at the interface. In the
ergy, entropy, and heat capacity. TDL the transport equation is

We have calculated the thermodynamic properties of thir]E : .
' . . e uationgA3) and(A4) are solved by expanding the propa-
films of su_perflwd3H_e in the weak-coupling limit, expected gtor in a basis of Nambu matrices.yForZuperﬂg?l'll filpmsp
to be applicable to films at zero pressure. We calculated th%1 zero field the basis is limited to matrices in2 particle-

phase diagram for the superfluid film, including thB tran- hole space, with the spin degrees of freedom fixed. Thus
sition, the suppression of the superfluid transition tempera- ' ' '

ture, suppression of the order parameter, the quasiparticldre€ linearly independent matricdgy,g,,gs} are re-
density of states, and thermodynamic potential. Our analysigUired [the identity matrix drops out of EqA4)]. These
based on the quasiclassical method, shows a spectrum igatrices satisfy the algebraic relations of the Pauli matrices,
superfluid films with gapless excitations formed by the com- ~ ~ ) -~ —
bination of reflection by a rough substrate and Andreev scat- [ 9i,9j]+=—276;, [0i,9;]-=—27&;jg«.
tering induced by changes in the order parameter along clas- (A5)
sical trajectories of quasiparticles. The gapless excitatior\1Ne
spectrum depends on the film thickness and dominates the
low-temperature thermodynamic potential, entropy, and spefDL as
cific heat.

chooseg 3='§TDL and express the propagator in the

9(P.R;em) =B, (p,R) g+ (em)+B_(P,R) G _(&m)
ACKNOWLEDGMENTS +B4(p,R) Gsem), (AB)

We thank Matthias Eschrig and Tomas fisander for ~ o~ .~ . . .
helpful discussions and acknowledge support from the NSI‘—‘_\’here 9-=(9:7ig 2)/)/5' The linear dlfferen.tlal equa-
through Grant No. DMR-9972087. tions for {B3(p,R),B.(p,R),B_(p,R)} are easily solved

with Ovchinnikov's model of forward scattering; (p,p’)
=47"'p,p, for p,p.>0; otherwise,r *(p,p’)=0. Thus,
quasiparticles enter the dirty layer, scatter forward towards

The boundary condition for the quasiclassical propagatothe specular wall, and after reflection diffuse out of the TDL.
at a rough surface is obtained by solving the transporffhe limit d—0,v;7—0,v;7/d—0 corresponds to diffuse
equation scattering by the impurity layer.

APPENDIX A: DIFFUSE SCATTERING

064508-10



THERMODYNAMIC PROPERTIES OF THIN FILMS .. .. PHYSICAL REVIEW B 68, 064508 (2003

The propagator in the TDL is matched to the propagator,

'9(p.0;e,), in the superfluid at the interface to the TDL. We
use the same basis to express

9(p.0iem) = groL(em)+C1(P,0) T+ (em)
+C_(p,0)g _(en). (A7)

The coefficients of this expansion satisfy the following rela-
tions obtained by Ovchinnikdt:

- - dQp . -
C+(p10):0’ pZ<0’ ~ _|pZ|C+(pIO):Oi
p,>0 T
FIG. 12. Integration along classical trajectories.

- - dQg . -
C-(p.0=0, p>0, J <07p|p2|cf(p’0):0' with specular reflection &8, to obtain the amplitud@. To
’ (A8) calculatea we integrate along the same trajectory in the
everse direction starting at point 2.
For theB phase we do not know the initial values of the
Ricatti amplitudes anywhere. In this case we start with an

The propagator deep in the dirty layer is also related to thé
physical propagator at the boundary,

40- initial guess for the amplituda, e.g., at the poing. Using

aTDL(Sm): j —"Ibzlﬁ(ﬁ,o,sm). (A9) Eqg. (16) and inversion in trle azimuthal plane we find a start-
p,>0 ing value for the amplituda. We then integrate frorto 2
p,<0 to obtaina(6,0;e,,) and fromS’ to 2 to obtaina(6,0;e,).

We implement the diffuse boundary conditions at point 2 to
obtaina(#,0;e,,) and then integrate from 2 . This gives
us an updated initial value for the amplitudegand by sym-
. . sgr(p,) —~ R metry for a). The integration procedure is repeated until
9(p.0iem) = grolem)=— [ 9roLlem) 9(P.Oem)].  convergence is reached.
(A10)

This condition is solved self-consistently with E@9) for
9oL and g (p.0iem).

The boundary condition fog (p,0;e,,) can be cast into a , - ~
more compact form using the Ricatti representation for thdVambu Green's functioi and self-energyZ,
propagatorg . For an outgoing trajectorp,>0, Eq.(A10)

. S 1 - _
is solved by Q[G,2]=—ESp{EG+In(—G01+2)}+q’[G],
a(p,0)=—(im—gror) oL (Al1) (B1)

Thus, integration along an outgoing trajectory should startvhere

with the value ofa given by the value deep in the thin dirty

layer. The second Ricatti amplitudeis known at the TDL d®p
. . o . oA Sp---1=T>, | d&®R

substrate, since we integra&e along a trajectory withp, = (2m)3

>0 in the backward direction. Thus, Eq#9) and (Al11),

together witha(p,0;e,,,) and the Ricatti parametrizatidfo), S(p.R;ey) is the self-energy, an@ 5 *(p,R;em) =iemTs

(1D, are iterated until they converge to a value &p.0).  _ ¢ ()7 is the inverse Green’s function for a noninteracting

We use the fourth-order Runge-Kutta method to numeriyeference system of bardHe. The stationarity condition
cally integrate the Ricatti equations along a classical trajecyith respect to the Green’s function,

tory for the Ricatti amplitudesi(p,z;e,) and a(p,z;em).
Azimuthal symmetry for scattering in the plane of the film )
allows us to consider trajectories defined Byand ¢=0 _
(Fig. 12. The integration procedure is slightly different for SGV
the A andB phases. In the case of thephase we know the

Riccati amplitudes at the interface with the substidg.  relates the functionaP[ G] to the self-energy via the skel-
(25)]: a(6,0;e ) =a(0,0;e,,,) =0. For any trajectory we start eton expansion for the self-energy, while the stationarity con-
at point 1 and integrate forward along trajectory $—2, dition with respect to the self-energy,

The boundary condition@\7)—(A9) can be written in a com-
pact form using the commutation relatio(%5),

APPENDIX B: FREE-ENERGY FUNCTIONAL

We start with the Luttinger-Ward functional for the full

T}, (B2

o a o 8D[G]
=0-3=CulGl=2—=~ (B3
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50 . _ . To integrate the In functional we introduce an auxiliary
0~ G 1= Ggl— S, (B4)  functional defined by introducing a variable coupling con-

stant for the self-energy and functional: AS A’ix

gives Dyson’s equation for the Nambu propagator. These=A A Y and Ad— Ad, =\ Ad. Thus, the auxiliary func-
equations provide a starting point for deriving the Fermi-tional is
liquid theory for superfluid®He. In particular, the leading- 1
order expansion of Dyson’s equation in the small parameters = AT - I R =-1 3
of Fermiﬂiquid theoryycan be ?ransformed into Eilgnberger’s ALLG, A%, ]= ESp{ AZGHIN(=Gy '+ AZy)
transport equatiofEq. (5)] for the quasiclassical propagator. - -

In order to derive a free-energy functional of the quasi- —In(=GyH}+N AD[G]. (B9)

classical propagato'j and quasiclassical self-energy

5

The stationarity conditions with respect@) andA’ix give

—~ A ~, - S -~ a new equation for an auxiliary propagatdg, '=Gy!
S(p,Riem)=al 2(pip,R;em)— 3n]73,  (BY) ew ed Y propagatds, "=Gu
N —AZ2, . The auxiliarly functional can bég, integrated after
we remove the normal-state stationary poi@ty(, > y) frOLﬂ first differenting with respect to the coupling parameter, then
the Luttinger-Ward functionalEq. (B1)] by defining A3 ~ carrying out theg, integration to obtain

=3 -3,,AG=G-Gy and introducing the subtracted aAQ, 1 1 L .
functional =—5SP{69}+5SP{S g\j+ AP[g],

2N
(B10)

AQ[G,AS]=0[G,3]-Q[ Gy, 3y] where

+e

1 ~~— — =
=— SR ASG+In(-Gy'+ A .~
5 S AXG+In(-Gy 2) dép73G(p,Riem)  (BLL)

—~ - 1
g)\(er;Sm):af

—&

=~ —~
~In(=GyI}+ AQ[G], (B6) is the quasiclassical auxiliary propagator. We can integrate

, ) —_ Eq. (B10) with respect to the coupling constant. Since
which has as inputs the normal-state propaga®g AQ,_,=0and AQ,_,= AQ, we obtain the desired free-

=(Go'—3y) " and self-energyXy rather than the bare energy functional in terms of the quasiclassical propaggtor
propagator. The subtractekl functional and self-energ)’é,

— — — 1 ~ o~ o~
AB[G]=P[G]- DGyl 5 SHSn(G -Gy} m[a,@]=%J:dxsy{%@—@m ADB[G].
(B7) (B12)

is confined to the Iow;]energy r<|-:-gion of phase space §ti)nce The stationarity conditions for the subtracted free-energy
pairing corrections to the normal-state propagator contributg,, tional reduce to the guasiclassical transport equation and

only in the low-energy regiokgT <E;. The diagrammatic  geif energy expansion obtained from the asymptotic expan-
perturbation expansion foA®d can be reorganized as an s of thed functional

asymptotic expansion in the small parameters of Fermi-

liquid theory*® that is formally an expansion in the number of L R . 5A®[Q]
low-energy propagator lines. l[iemms— 6,09]+iv;-Vg=0, & =2— =

To convert Eq.B6) to a functional of the quasiclassical 69
propagator and self-energy we integrate out the momentum (B13)

dependence normal to the Fermi surface over a region ofhese equations are supplemented by boundary conditions

momentum space near the Fermi surfaggl<ec. The low-  for the propagatog which describe the effects of scattering
energy self-energy is a slowly varying functiongfand can

be evaluated witlp=p;p. Thus, the termA 3 G in Eq. (B6)
is £, integrated to give

by a surface or interface.
The auxiliary propagatog, is a functional of the exact

quasiclassical self-energy and is obtained by solving the qua-
SHASG}=Sp{& g} siclassical transport equation with —\ &,

NTS fngf dQp [iemTs—N 6,9, ]+ivi-Vg,=0. (B14)
4
" This auxiliary transport equation is solved or{oet self-
XTr[&(p,Riem) 9(p,R;em)]. (B8  consistently for each value ok with & as a predetermined
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input function. The diffuse boundary condition f@h is

~ ~  _8AD[g
given by Eq.(A10) with gp, fixed by the self-consistently AZZ# (B15)
determined solution of the quasiclassical equations and 59
boundary condition fon=1. can be used to evaluatd®[ g =1 Sp{Ag}. The result-

coupling limit when the self-energy is purely off diagonal

and given by the order paramete®=A. The self- AQ=Efld)\ sp Z(a _Ea) (816
consistency equation 2)o N2 '
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