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Thermodynamic properties of thin films of superfluid 3He-A

A. B. Vorontsov and J. A. Sauls
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA

~Received 1 April 2003; published 22 August 2003!

The pairing correlations in superfluid3He are strongly modified by quasiparticle scattering off a surface or
an interface. We present theoretical results and predictions for the order parameter, the quasiparticle excitation
spectrum, and the free energy for thin films of superfluid3He. Both specular and diffuse scatterings by a
substrate are considered, while the free surface is assumed to be a perfectly reflecting specular boundary. The
results are based on self-consistent calculations of the order parameter and quasiparticle excitation spectrum at
zero pressure. We obtain results for the phase diagram, free energy, entropy, and specific heat of thin films of
superfluid3He.
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I. INTRODUCTION

The superfluid phases of bulk3He are condensates o
p-wave, spin-triplet Cooper pairs. The order parameters
scribing theA andB phases spontaneously break orbital- a
spin-rotational symmetries, as well as discrete symmetrie
space and time inversion, of the normal Fermi-liquid pha
of 3He.1 Pairing transitions of this type are called ‘‘unco
ventional,’’ and such systems exhibit novel phenomena a
ciated with the spontaneously broken symmetries of the
der parameter. A generic feature of superfluids with
unconventional order parameter is their sensitivity to scat
ing by impurities, defects, and boundaries. Scattering of q
siparticles by these objects leads to the suppression of
order parameter~pair breaking! and suppression of the supe
fluid transition as well as more subtle physical effects as
ciated with the interplay of scattering and particle-hole c
herence in the superfluid state. These effects persist
several coherence lengths, which for3He is j0
5\v f /2pkBTc.102–103 Å. When 3He is placed in a con-
tainer or confined to a geometry with dimensions of the or
of the coherence length scale the effects of the boundarie
the superfluid extend to all parts of the liquid, and there is
this sense no ‘‘bulk’’ phase.

Superfluidity of 3He films was first reported in 1985.2

Basic properties of superfluid films, such as the transit
temperature, critical current, and superfluid density, h
been measured in several laboratories.3–5 Evidence of a pre-
sumedA-B phase transition has been reported by sev
groups, and a phase diagram has been constructed o
limited range of temperatures and film thickness.6–8 Experi-
mental observation of third sound in3He films also shows
anomalies in the mode spectrum as a function of tempera
and film thickness which cannot be accounted for within
hydrodynamic theory applicable to superfluid4He.9 There
are many open questions about the nature of the super
phases of3He in restricted geometries, including the iden
fication of the superfluid order parameter and whether or
additional phases may be stabilized depending on the ge
etry and surface structure of the confining geometry.

Theoretical models and calculations of the surface str
ture and excitation spectrum of superfluid3He films are im-
portant for understanding both thermodynamic and none
librium properties of superfluid films. Detailed comparis
0163-1829/2003/68~6!/064508~13!/$20.00 68 0645
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between theory and experiment for the temperature dep
dence of the heat capacity and entropy allows us to de
mine the density of states and low-lying excitations of t
film. The heat capacity and entropy also enter the hydro
namic equations that describe damping of low-frequency c
lective modes of superfluid films.

In this paper we report a theoretical study of superflu
3He in films with thickness ranging fromD;1j0 to 15j0.
This is a system similar to3He in a slab, except the3He is in
general confined between different interfaces. Essentia
any theory of superfluid3He in confined geometry are th
boundary conditions that describe the effects of surface s
tering on the pairing correlations, the quasiparticle spectr
and quasiparticle distribution functions in the case of no
equilibrium properties.

Early theoretical investigations focused on pair break
of the order parameter near a wall in the Ginzburg-Land
~GL! regime, and the implications of the pair-breaking effe
on the boundary conditions for the hydrodynamic variab
describing theA phase, in particular the, vector.10 These
calculations, as well as calculations of the suppression of
transition temperature for superfluid3He in confined
geometry,11 were based on de Gennes’ formulation of inh
mogeneous superfluidity in terms of semiclassical correla
functions and a heuristic model of surface roughness wh
interpolated between specular and diffuse scattering of q
siparticles. More recent analyses based on the GL theory
the phase diagram and dynamical properties of3He in slabs
and cylindrical pores are described in Refs. 12 and 13.

Extensions of surface pair-breaking calculations beyo
the GL limit require a more detailed theoretical formulatio
of inhomogeneous states of superfluid3He. The most pow-
erful theory of superfluid3He is based on the quasiclassic
transport equations.14–16This theory is the natural extensio
of Landau’s theory of normal Fermi liquids to include BC
pairing correlations. The quasiclassical theory is applica
to a broad range of phenomena and nonequilibrium state
inhomogeneous3He. The central objects of the quasiclas
cal theory are the propagators that describe both the qu
particle excitations of the condensed phases and the co
lated pairs that form the condensate. Theoretical calculat
based on the quasiclassical theory for the surface order
rameter and excitation spectrum near a wall or interface
quire boundary conditions for the quasiclassical propagat
©2003 The American Physical Society08-1
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generally formulated from scattering theory and a spec
model for the surface or interface.

Boundary conditions describing reflection from an atom
cally rough surface were developed by Buchholtz a
Rainer17 and implemented in the form of the random
rippled wall ~RRW! approximation for3He-B.18,19 Alterna-
tive formulations of diffuse boundary conditions were imp
mented by Zhanget al.20 based on scattering from a thi
layer of atomic-size impurities coating an otherwise smo
surface and by Thuneberget al.21 based on scattering from
distribution of ‘‘randomly oriented mirror’’~ROM! surfaces.
Boundary conditions describing rough surfaces which
neither perfectly specular nor fully diffuse were develop
by Nagai22 in terms of a randomS matrix. In the diffuse
scattering limit the results of Ref. 23 for the order parame
suppression in3He-B agree well with those obtained b
Zhanget al.20 based on the thin-dirty-layer~TDL! model.

We report a theoretical analysis of the structure, excitat
spectrum, and thermodynamic properties of superfluid3He
films. The free surface is modeled as a specular surface,
the film resides on a substrate that we assume is atomic
rough. We model the scattering of quasiparticles by the s
strate by introducing a thin layer of atomic-size impuriti
randomly distributed on the surface~TDL model!. The width
d of the impurity layer is assumed to be much less than
superfluid coherence length, while the mean free pathl imp for
quasiparticles propagating in the layer is much smaller t
the widthd. Thus, quasiparticles are strongly scattered ins
the layer, but eventually scatter out of the layer at an an
uncorrelated with the incident trajectory. The limitd/ l imp
→` as d→0 describes a rough surface in the diffuse sc
tering limit. The specific formulation of the impurity mode
for diffuse scattering that we use was introduced
Ovchinnikov24 for diffuse scattering from atomically roug
metallic interfaces and was implemented for superfluid3He
by Kopnin et al.25

We start from the quasiclassical theory of superfluid
with the boundary conditions described above and calcu
the equilibrium properties of films of superfluid3He in the
weak-coupling limit. We calculate suppression of the ord
parameter in the film, the quasiparticle density of states,
perfluid free energy, entropy, and heat capacity. We are e
cially interested in films of thicknessD&DAB , whereDAB
'9j0 marks the transition from theB-like phase for thicker
films to theA-like phase for thinner films. It is in this regio
that most film experiments have been done. We find t
because of diffuse scattering at one of the interfaces, a b
of subgap states is formed and these states exist throug
the film for sufficiently thin films. The thermodynamic prop
erties of theA phase are changed significantly by these g
less excitations.

The main sections of this paper are organized as follo
In Sec. II we describe the theoretical formulation of the qu
siclassical transport equations and the boundary condit
that we use in our calculations. Results for the thin-fi
phase diagram are summarized in Sec. III. In Sec. IV
discuss the excitation spectrum for both specular and diff
scattering, while in Sec. V we present the results for the f
energy, entropy, and heat capacity of thin films. More te
06450
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nical aspects of computing the free energy and implemen
the diffuse boundary condition in the Riccati formulation
the transport equations are included in appendixes.

II. THEORETICAL MODEL

We assume that the3He film is on a substrate that i
atomically rough on a scale much shorter than cohere
length j0. The film has a well-defined thicknessD that is
larger than the atomic scale. The free surface of the film
assumed to be atomically smooth; cf. Fig. 1. We assume
there is negligible evaporation and vapor above the fi
Thus, the liquid in the film is essentially under zero pressu
In this model 3He quasiparticles are specularly reflected
the free surface. We also assume that the film is invar
under translations and rotations in the plane of the film~xy
plane!,38 and thus the physical properties of the film depe
only on thez coordinate, which is normal to the substrate a
the free surface.

The calculations we report were carried out using the q
siclassical theory for superfluid3He,26 supplemented by
boundary conditions for surface scattering at the vapor-liq
interface and film substrate. The central object of the qu
classical theory is the propagatorĝ (p̂,R;«m), which is a 4
34 Nambu matrix—denoted by a wide caret—in the co
bined particle-hole and spin spaces and is defined in term
an integration of the full Nambu propagator,

Ĝ ~p,R;«m!5E
0

b

dtei«mtE d3re2 ip•r

2^TtC~R1r /2,t!C̄~R2r /2,0!&, ~1!

over a shell,uv f(p2pf)u,«c!Ef , in momentum space nea
the Fermi surface,

ĝ ~ p̂,R;«m!5
1

aE2«c

1«c
djp t̂ 3 Ĝ ~p,R;«m!. ~2!

The propagator is normalized by dividing by the weight
the quasiparticle pole in the spectral functiona. We use the
Matsubara representation to calculate equilibrium propert
the fermion Matsubara frequencies are«m5(2m11)pkBT.
The four-component Nambu field operators are defined

FIG. 1. A thin film of 3He on an atomically rough substrate~at
z50) with a free surface (z5D) which is specular.
8-2
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THERMODYNAMIC PROPERTIES OF THIN FILMS OF . . . PHYSICAL REVIEW B 68, 064508 ~2003!
terms of the bare fermion field operators byC

5(c↑ ,c↓ ,c↑
† ,c↓

†) andC̄(r ,t)5C†(r ,2t).
For pure spin-triplet pairing the quasiclassical propaga

ĝ may be parametrized in particle-hole space by 232 spin

matrices for the diagonal~quasiparticle! and off-diagonal
~Cooper pair! propagators,

ĝ5S ĝ f̂

f̂ ĝ
D 5S g1ŝ•g ~ i ŝŝy!•f

~ i ŝyŝ!•f g1ŝtr
•g

D . ~3!

The 232 spin matrices are denoted by ordinary carets, e
ĝ. The spin vectorsŝ5(ŝx ,ŝy ,ŝz) are the Pauli matrices
One deviation from the matrix notation isp̂, which denotes a
unit vector in the direction of the Fermi velocityvf(p̂)
5v f p̂. The components of the quasiclassical propagator
not all independent. The upper and lower particle-hole co
ponents are related by symmetries that follow from the f
mion anticommutation relations

f̂ ~ p̂,R;«m!5 f̂ ~2p̂,R;«m!* 52 f̂ ~ p̂,R;2«m!†,

ĝ~ p̂,R;«m!5ĝ~2p̂,R;«m!* 5ĝ~2p̂,R;2«m! tr, ~4!

whereĝtr is the matrix transpose ofĝ.
The quasiclassical transport equation that governs

evolution of the quasiclassical propagatorĝ (p̂,R;«m) is14,26

@ i«m t̂ 32 D̂~ p̂,R!, ĝ ~ p̂,R;«m!#1 ivf~ p̂!•“ ĝ ~ p̂,R;«m!50,
~5!

with a constraint given by Eilenberger’s normalization co
dition on ĝ ,

ĝ ~ p̂,R;«m!252p2 1̂ . ~6!

We have omitted the Landau molecular field self-energy
the transport equation, and we consider the pairing s

energy D̂ in the weak-coupling limit, which is a convenien

choice for the order parameter. It is off diagonal in partic
hole space,

D̂5S 0 D̂

D̂ 0
D 5S 0 i ŝŝy•D

i ŝyŝ•D* 0
D ~7!

and parametrized by a spin-triplet order parameter define
the vectorD(p̂,R). In the weak-coupling limit the order pa
rameter is determined by the off-diagonal pair amplitu
f(p̂,R;«m) from the gap equation

D~ p̂,R!5T (
m

u«mu,«c E dV p̂8
4p

V~ p̂,p̂8!f~ p̂8,R;«m!, ~8!

where V(p̂,p̂8) is the interaction in the spin-triplet pairin
channel. For purep-wave pairing we retain only the attrac
tive ,51 interactionV53V1p̂•p̂8. The cutoff«c and inter-
actionV1 are not measurable, but they are related to the b
transition temperature by
06450
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u«mu,«c 1

u«mu
' ln

1.13«c

Tc
, ~9!

which is used to eliminate the cutoff and pairing interacti
in favor of the measured bulk transition temperatureTc .

The order parameter must be determined self-consiste
with the solution of the transport equation for the propaga
This procedure and the quasiclassical transport equation
be simplified by introducing a parametrization for the prop
gator that satisfies the normalization condition by constr
tion and reduces the number of independent component

ĝ 52 ip N̂ S 1̂1ââ 2â

22â 21̂2ââ
D , ~10!

where the prefactor is given by

N̂5S ~ 1̂2ââ!21 0

0 ~ 1̂2ââ!21D . ~11!

The amplitudesâ and â are 232 matrices in spin space
which obey matrix Ricatti equations27–29

ivf•“â12i«mâ2âD̂â1D̂50,

ivf•“â22i«mâ2âD̂â1D̂50. ~12!

We refer toâ and â as the Ricatti amplitudes. The two R
catti amplitudes are related to the particlelike and holel
projections of the off-diagonal propagators,

â52~ ip2ĝ!21 f̂ , â5~ ip1ĝ!21 f̂ , ~13!

where the projection operators for the particlelike (P̂ 1) and

holelike (P̂ 2) sectors are given by

P̂ 15
1

2
S 11

ĝ

2 ip
D , P̂ 25

1

2
S 12

ĝ

2 ip
D . ~14!

For the case of spin-triplet pairing in zero field these amp
tudes can be parametrized as

â5~ i ŝ•ŝy!•a and â5~ i ŝyŝ!•a. ~15!

The Ricatti amplitudes are also related to each other b
symmetry that follows from symmetry relations for th
propagators in Eqs.~4!,

â~ p̂,R;«m!* 5â~2p̂,R;«m!. ~16!

The Ricatti equations are easily integrated numerically,
numerically stable, and provide a more efficient approach
solving the quasiclassical transport equations than the ‘
plosion method.’’30 Equations~12! are solved by integration
along classical trajectories—forward forâ and backward for
â—starting from an initial value. The Ricatti equations mu
be supplemented by boundary conditions at the two in
faces. We do not have a bulk region in the3He film, so
generally we start from an arbitrary initial value at the fr
surface and compute along a classical trajectory with m
8-3
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A. B. VORONTSOV AND J. A. SAULS PHYSICAL REVIEW B68, 064508 ~2003!
tiple reflections until the Ricatti amplitude at the surface co
verges. The integration procedure is described in more d
in Appendix A.

The boundary conditions for the Ricatti amplitudes at
two interfaces are obtained from boundary conditions for
quasiclassical propagators. Specular reflection at the free
face requires matching of the propagators at the free sur
for two trajectories,p̂ and p̂, which are related byp̂5p̂
22n̂(n̂•p̂),

ĝ ~ p̂,D;«m!5 ĝ ~ p̂,D;«m!. ~17!

Then the Ricatti amplitudes are also matched at the sur
in the same way,

â~ p̂,D;«m!5â~ p̂,D;«m!, ~18!

â~ p̂,D;«m!5â~ p̂,D;«m!. ~19!

The boundary condition for the quasiclassical propagato
an atomically rough surface is more complicated. A physi
model for an atomically rough surface is provided by a TD
model for surface roughness obtained by coating a spec
surface with a layer~of thicknessd) of randomly distributed
impurities characterized by a mean free path ofl imp .31 In the
TDL model the ratior5d/ l imp describes the degree of su
face roughness. Forr50 we recover a specularly reflectin
surface, whiler→` corresponds to the fully diffuse surfac
In the fully diffuse limit we implement Ovchinikov’s bound
ary condition, which is a special case of the diffuse limit
the TDL boundary condition. The Ovchinnikov bounda
condition requires self-consistent determination of
Green’s function at the diffuse surface,ĝ (p̂,0;«m). For out-
going trajectories (p̂z.0) the boundary condition for the Ri
catti amplitude is

â~ p̂,0!52~ ip2ĝTDL!21 f̂ TDL , ~20!

where ĝTDL(«m) and f̂ TDL(«m) are the propagators deep
the dirty layer and which are related to the surface propa
tor by

ĝ TDL~«m!5 E
p̂z.0

p̂z,0

dV p̂

p
u p̂zu ĝ ~ p̂,0;«m!. ~21!

We give a short derivation of this boundary condition
Appendix A.

Order parameter

We consider two possible phases in superfluid3He films
that have the same or nearly the same symmetry, as theA and
B phases of bulk superfluid3He when one restricts the or
bital symmetry group to SO(2). Theorder parameter for the
B-like phase is of the form

DB5„D i~z! p̂x ,D i~z! p̂y ,D'~z!p̂z…, ~22!

while that for theA-like ~‘‘axial’’ ! phase is given by
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DA5„0,0,D i~z!~ p̂x1 i p̂y!…, ~23!

wherei and' refer to orbital motion, characterized by th
direction of the relative momentump̂, parallel and perpen-
dicular to the surfaces of the film. Theplanar phase is a
special case of theB phase withD'50. For theA-like phase
we haveDAi,5 ẑ in order to minimize the nuclear dipola
energy. For theB phase the order parameter in Eq.~22! is
multiplied by a spin-orbit rotation matrixR(n,q), which is
fixed by the dipole energy.

The spatial profiles of the order parameter components
shown in Fig. 2 for both theB-like ~left panel! and A-like
~right panel! phases. The dashed lines correspond to a fi
with two specular surfaces, while the solid lines represen
film with diffuse scattering from a substrate atz50 and
specular reflection from the free surface.

The orbital components of the order parameter that
perpendicular to the film interface,D' , are suppressed a
both interfaces. This suppression is related to the chang
sign ofD'p̂z when a quasiparticle is reflected by the surfa
The parallel componentD i is suppressed by diffuse scatte
ing at the substrate in both phases. In theB phaseD' is
slightly increased for diffuse scattering because some of
spectral weight that is lost fromD i is transferred toD' .

The orbital structure of the order parameter for theA
phase leads to a simplification for the boundary condition
the diffuse substrate. If we parametrize the off-diagonal co
ponent ofĝ by

f5„0,0,f i~ p̂z!~ p̂x1 i p̂y!…, ~24!

then the angular integration in Eq.~21! gives f̂ TDL50. Thus,
we have an explicit value for the Ricatti amplitudeâ at that
surface,

â~ p̂,0;«m!50, p̂z.0. ~25!

The quasiclassical Green’s function atz50 is then

FIG. 2. The order parameters for theB-like andA-like phases of
3He in a thin film. The coherence lengthj05\v f /2pkBTc is ap-
proximately equal to 73 nm at zero pressure.
8-4
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THERMODYNAMIC PROPERTIES OF THIN FILMS OF . . . PHYSICAL REVIEW B 68, 064508 ~2003!
ĝ ~ p̂,0,«m!52 ipS 1̂ 0

22â 21̂
D , p̂z.0. ~26!

The boundary value in Eq.~25! speeds up numerical integra
tion since the calculation ofâ( p̂z.0) andâ( p̂z,0) are now
initial value problems; we start atz50 with â( p̂z.0,0;«m)
50, or â( p̂z,0,0;«m)50 and integrate the Ricatti equation
directly to obtainâ( p̂z.0,z;«m) and â( p̂z,0,z;«m).

III. PHASE DIAGRAM

At zero pressure bulk3He is in the superfluidB phase for
temperatures belowTc50.93 mK. When we confine the su
perfluid to a slab between two surfaces or form a film on
substrate, we observe changes in the superfluid as we
crease the film thicknessD. The phase diagram of3He in
superfluid films, as far as it is known, is shown in Fig.
Several phase transition lines calculated theoretically
shown, as well as points indicating possible phase transit
based on anomalies in several experiments.

If one starts from the bulk superfluidB phase and then
reduces the film thicknessD at constant temperature, we e
pect to cross at least two phase boundaries. AsD is reduced
the perpendicular componentD'(z) is suppressed, and at
critical film thickness,DAB(T), D'(z) vanishes. This signi-
fies a transition to theplanar phase with an order paramet
of the form DP5D i(z)( p̂x ,p̂y,0). The componentD'(z)

FIG. 3. Phase diagram for superfluid3He films. The thick solid
line represents theAB transition for a film in contact with a rough
substrate and a specular free surface. The thin solid line is theAB
phase boundary for a film with two specular surfaces. The in
shows an enlarged portion of theAB phase boundary, where th
second-order transition is reentrant,A→B→A, as a function of
temperature. The dashed line shows the normal~N! to A-phase
boundary, with suppression of the superfluid transition,Tc

film,Tc ,
resulting from diffuse scattering by the substrate. The individ
points correspond to observed anomalies in measurements tha
indicate a phase transition in the superfluid film:~a! thin dashed
line, anomaly inrs(T,D) ~Ref. 7!; ~b! open squares, mode anoma
in third sound~Ref. 9!; ~c! open circle, flow anomaly~Ref. 5!; ~d!
open diamonds, flow anomaly~Ref. 3!.
06450
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vanishes continuously, so this transition is second order
the weak-coupling limit the planar and axial phases are
generate. However, in bulk3He strong-coupling correction
lower the free energy of the axial phase relative to the pla
phase. Thus, if strong-coupling effects also stabilize the a
phase relative to the planar phase in a thin film, then
second-order transition from theB phase to the planar phas
is preempted by a transition from theB phase to the axialA
phase. Measurements of the heat capacity jump in bulk3He
indicate that strong-coupling corrections are small at z
pressure; thus, theAB transition in the film is likely to be
very weakly first order. With the exception of the possib
fine structure of the phase diagram close to the second-o
transition lineDAB(T) and properties such as the latent he
of transition, calculations of the thermodynamic properties
thin films based on the weak-coupling approximation are
pected to be accurate.

The perpendicular component of the order paramete
suppressed to zero even for a specular wall, so theAB tran-
sition occurs even in a film bounded by two specular s
faces. For a film on a rough substrate, the suppression oD i
by diffuse scattering leads to a small enhancement ofD'(z).
As a result theB to A transition requires slightly thinner films
for a rough substrate. This result, although the detailed sh
of the phase boundary is slightly different, agrees with
calculations reported by Nagato and Nagai34 based on a dif-
ferent theoretical model for the surface roughness. Howe
NMR measurements8 on thin slabs of superfluid3He show
that theAB transition occurs at larger values of film thickne
than predicted by the weak-coupling theory. This may in
cate that the first-orderAB phase boundary needs to be ca
culated with leading-order strong-coupling corrections
cluded in the theory, even at zero pressure.

An interesting feature of the calculated weak-couplingAB
phase boundary belowT/Tc'0.4 is shown in the inset o
Fig. 3. For films in contact with either a specular or rou
substrate the second-order phase boundary is reentrant
function of temperature for a narrow range of film thic
nesses. For example, for a film on a rough surface withD
.9.4j0, upon decreasing the temperature belowTc

film the A
to B transition occurs atTAB'0.55Tc . As the temperature
drops further a reentrantB to A transition occurs atTBA
.0.23Tc . Whether or not this reentrance will surviv
strong-coupling corrections is not known. The reentran
may also signal that a translationally invariantA or B phase
is unstable to the formation of an inhomogeneous phase
lower free energy. In any event the fine structure of the ph
diagram at low temperatures nearD.9.5j0 and the possibil-
ity of new phases stabilized by strong-coupling correctio
or which spontaneously break translation symmetry in
plane of the film is outside the scope of this paper.

For films that are thinner than (9.5–10)j0 the planar or
axial A phase is the stable phase relative to theB-like phase.
For the purpose of calculating the thermodynamic proper
we assume that strong-coupling corrections stabilize thA
phase relative to the planar phase in the film; however, th
really an open question. Strong-coupling corrections to
free energy for phases with strong spatial variations, as
curs in thin films, have not been calculated, so the rela

et
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stability of the planar andA phase in thin films is unknown
either theoretically or experimentally.

If the substrate were an ideal specularly reflecting surfa
then the superfluidA phase would persist for film thicknesse
approaching a few monolayers or until the Fermi-liqu
properties and pairing interaction were modified by fini
size effects. But the pair-breaking effect of scattering of
rough substrate suppresses the transition temperature int
A phase, and at a film widthDAN(T), which is substantially
smaller thanDAB(T), the superfluidA phase is destroyed
The calculated transition temperature for diffuse scatterin
shown in Fig. 3. This phase boundary was calculated
identifying the temperature and film thickness where the
der parameter vanishes. We also obtained the superfluid
sition from the calculated free energy by a least-square
of the known Ginzburg-Landau form for the free energ
a(T2Tc

film)2.
Calculations of the transition temperature in thin slabs

3He were carried out by Kja¨ldmanet al. 11 using a linearized
gap equation and de Gennes’ formulation of the kerne
terms of the classical limit for the normal-state curre
current correlation function.10 Our calculations agree we
with the results for a slab if we take into account that t
width of the thin film of 3He-A is equivalent to a
3He-A slab of twice the width of the film.

It should be noted that the phases considered here,
for thin 3He films, assume thicknessesD@ Å. We do not
consider the two-dimensional~2D! limit of one or two
atomic layers of3He atoms on the surface of a substrate. T
properties of 2D superfluid3He, if it exists, are expected t
be influenced by the reduced dimensionality. Ising-like
well as Kosterlitz-Thouless-type transitions are predicted
2D superfluid3He-A.32,33

One additional note: observing the equilibrium pha
boundaries may be complicated by metastability. Ev
though the planar phase—i.e., theB phase withD'50—and
the axialA phase are degenerate in weak coupling, they
unrelated by symmetry and, therefore, separated by an
ergy barrier. Thus, once established, the axialA phase will be
metastable with respect to theB phase. The calculation of th
barrier and corresponding metastability lines in the ph
diagram would provide an important result, but are outs
the scope of this article.

IV. DENSITY OF STATES

Pair breaking by surface scattering leads to quasipar
states below the gap. These excitations play an impor
role in the thermodynamic and transport properties of t
films of superfluid3He. The subgap excitations are surfa
Andreev bound states. The mechanism leading to their
mation is closely related to the formation of bound states
the core of a vortex.35 Andreev bound-state formation occu
when the order parameter changes sign or phase alo
quasiparticle trajectory. In the case of surface scattering
incident and reflected trajectories generally correspond
very different order parameters; this is typically the case
an unconventional order parameter which breaks rotatio
symmetry.
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For example, consider theB-phase in contact with a
specular surface. For an incident trajectory normal to
interface, p̂i ẑ, the B-phase order parameter changes s
upon reflection: i.e.,D(p̂)52D(p̂) for p̂→p̂52p̂. This
sign change leads to a multiple Andreev reflection that g
erates a surface bound state at the Fermi level: i.e.,«50. For
trajectories away from normal incidence the components
theB-phase order parameter corresponding to orbital mo
in the plane are present and do not change sign upon re
tion. As a result the surface Andreev bound state disperse
a function of the incident and reflected angles relative to
interface normal.

The bound-state energy dispersion can be calculated
proximately by neglecting the suppression of the order
rameter at the surface and assuming that surface scatt
occurs on a cone defined by the angleu from thexy plane—
i.e., (u,f1)→(p2u,f2),f5f22f1—as shown in Fig. 4.
We then find bound-state poles in the retarded propagator
either theB or A phase, given by

«b56D isinu cos
f

2
. ~27!

The density of states~DOS! can be calculated once th
order parameter and Landau molecular fields have been
termined self-consistently. The most detailed information
contained in the angle-resolved local density of states, wh
is obtained from the diagonal component of the retarded q
siclassical propagator,

N~ p̂,R;«!52
1

p
Im gR~ p̂,R;«!, ~28!

where gR(p̂,R;«) is found by solving the quasiclassica
transport equation for real energies: i.e.,i«m→«1 i01 and
the known order parameter and molecular fields. The lo
density of states for theB phase near a wall shows quasipa
ticle states which develop below the bulk gap and are bo
to the surface; i.e., their spectral weight vanishes a few
herence lengths away from the surface.

For example, the angle-resolved spectrum of superfl
3He-B near a specular surface, calculated numerically fo
self-consistently determined order parameter, is shown
Fig. 5. For the specular reflection the position of the positi
energy surface bound state depends on the angle of the

FIG. 4. Skew scattering by the substrate.
8-6
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dent trajectory,u, approximately as«b5D isinu. For normal
incidence the bound state is at zero energy and dispe
towards, eventually merging into, the continuum edge as
incident trajectory approaches grazing incidence. There
also a weak dispersion in the continuum edge reflecting
enhancement ofD' by surface scattering.

At an atomically rough surface diffuse scattering coup
an incident trajectory to all outgoing trajectories. This lea
to mixing of states with different energies and thus to a ba
of subgap states for a given incident trajectory as shown
Fig. 6. The suppression ofD i for diffuse scattering also lead
to the formation of additional subgap states bound by m
tiple Andreev reflection within the ‘‘pair potential’’ provided
by the suppressed order parameterD i(z). These states ap
pear only near grazing incidence and are weakly bound w
energies just below the continuum edge.

Subgap states do not appear in3He-A at a specular wall
since there is no change in phase of the order paramete
specular reflection when,i ẑ. Thus, all quasiparticle state
belong to the continuum. This situation changes dramatic

FIG. 5. The angle-resolved local DOS for the3He-B near a
specular surface. The spectrum is calculated forT50.5Tc . For clar-
ity we have broadened the Andreev bound states with a width
rameter ofh51023D0.
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for a rough surface. Now there are scattering processes
necting an incident trajectory with a reflected trajectory th
is at a skew anglefÞp in the xy plane ~see Fig. 4!. For
3He-A the order parameter for a trajectory,p̂5cosuẑ
1sinu(cosfx̂1sinfŷ), is DA(p̂)5 ẑD isinueif. The change
in phase of the order parameter upon skew scattering lead
strong pair breaking and the formation of subgap states.
the diffuse scattering the coupling of skew trajectories w
all possible azimuthal angles generates a band of st
which fill the subgap spectrum as shown in Fig. 7 for seve
incident trajectories.

The self-consistent spectrum calcuated numerically
shown in Fig. 7 is well described by the spectrum obtain
by calculating the retarded propagator for a constant or
parameterD i everywhere in the film. The spectrum is the
determined entirely by the changes in the order param
induced by diffuse scattering. The transport equation can
solved analytically with Ovchinnikov’s boundary conditio
for the Riccati amplitudes. For the diagonal part of the qu
siclassical propagator we obtain

a-

FIG. 6. The angle-resolved local DOS for the3He-B near a
diffuse surface. The spectrum is calculated forT50.5Tc . For clar-
ity we have broadened the Andreev bound states near grazing
dence with a width parameter ofh51023D0.
nergy
g~u,z;«m!52 ipF 11
1

11
«m

D i
2sin2u

~«m1v tanh@2vD/v fcosu#!

S cosh@2v~z2D !/v fcosu#

cosh@2vD/v fcosu#
21D G , ~29!

wherev25D(u)21«m
2 with D(u)5D isinu. We calculate the retarded propagator by analytic continuation to the real e

axis, i«m→«1 i01. The result for the local density of states is then

N~u,z;«!/Nf511Q„«22D~u!2
…

1

12
«2

D~u!2
~11tan2@2vD/v fcosu#!

S cos@2v~z2D !/v fcosu#

cos@2vD/v fcosu#
21D

1Q„D~u!22«2
…

1

12
«2

D~u!2
~12tanh2@2vD/v fcosu#!

S cosh@2v~z2D !/v fcosu#

cosh@2vD/v fcosu#
21D , ~30!
8-7
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wherev is now

v5Au«22D~u!2u. ~31!

Equation~30! shows both the band of the subgap states g
erated by diffuse scattering and the Tomasch oscillations
energies above the continuum. The positions of the max
are determined by the condition for constructive interfere
of particlelike and holelike excitations with energies abo
the gap,uD isinuu, reflecting from the specular surface,

2A«22D i
2sin2u

v fcosu
D5np, n50,1,2. . . . ~32!

The spectral weight of the Tomasch oscillations also depe
on distance from the surface. Some peaks are suppress
special positions in the film due to spatial oscillations of t
particle-hole interference amplitudes. This suppression
spectral weight is most visible for angles close tou5p/2
near the free surface. For example, the density of states
u50.4p at z519/20D shows that every second peak
suppressed.

The subgap states are bound to the surface on the le
scale set by coherence lengthj0 and decay exponentially
into the bulk. However, the situation is different for th
films; the bound states extend over the entire width of
film. Figure 8 shows the total DOS averaged over the fi
N(«)5*dz/D*dV p̂/4pN(p̂,z;«). The spectrum is gaples
over the entire energy range«,D0 and is finite at«50. The
inset to Fig. 8 shows the evolution of the total DOS as
function of temperature. The gapless states fill the spect
«,D0 completely asT→Tc

film .
At low temperaturesT→0, the DOS is insensitive to tem

perature, and the value of the DOS at«50,0,N(0),Nf ,
persists above«50. If we decrease the film thickness, th
subgap states fill the gap and a transition to the normal s
will occur when this process is complete. As shown in Fig
the density of states is almost equal to that for the nor
state over the whole energy range forD50.8j0. The A to
normal transition occurs for a slightly smaller film thicknes

FIG. 7. The density of states in theA phase for a film of thick-
nessD54j0 at temperatureT50.01Tc . The excitation energy is
scaled in units ofD0(T), the bulk value ofD i at temperatureT.
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As a consequence of the gapless spectrum the therm
namic properties of the films of3He-A will be very different
from those of bulk3He. For example, the low-temperatu
behavior of the specific heat vanishes exponentially in b
3He-B for T!DB ,CB

bulk(T)→(Tc /T)3/2exp(2D0 /T), while
for bulk 3He-A the nodal excitations have zero energy
isolated points on the Fermi surface. The bulk density
states vanishes at the Fermi level asNA

bulk(«→0);«2, and
the specific heat exhibits a power lawCA

bulk;(T/Tc)
3.

The specific heat of films of superfluid3He-A is expected
to have a different power-law behavior at low temperatur
The density of states is finite and nearly constant in the lo
energy range above the Fermi level. As a result the spe
heat will have the linear temperature dependence asT→0,
just as for normal3He, except that the Sommerfeld coeffi
cient is reduced in the superfluid film by the ratioN(0)/Nf .

V. THERMODYNAMIC PROPERTIES

To compute the thermodynamic properties of superfl
3He films we need a free-energy functional formulated
terms of the quasiclassical propagator and self-energ
Such a functional has been derived starting from the gen
Luttinger-Ward functional, formulated in terms of the fu
Green’s function and self-energy, by eliminating the hig
energy, short-wavelength intermediate states and thus c
puting only corrections to the ground-state energy to lead
order in the small expansion parameters of Fermi-liq
theory. The conceptual formulation of this problem is d
cussed in detail by Rainer and Serene.36 The formulation of a
quasiclassical free-energy functional for inhomogene
equilibrium states is similar, but there are additional tech
cal approaches to incorporating inhomogeneities of the o
parameter.26,30,37Our approach is similar to that of Ref. 2
and is outlined in Appendix B.

We start from the quasiclassical free energy in the we
coupling limit expressed in terms of the quasiclassical pro

gator ĝ (p̂,R;«m) and order parameterD̂(p̂,R) derived in
Eq. ~B16!,

FIG. 8. The total DOS averaged over film for several film thic
nesses forT!Tc

film . The inset shows the gapless excitations fillin
the gap fort5T/Tc

film→1.
8-8
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DV@ ĝ , D̂#52
1

4
Sp8~ D̂ ĝ !1

1

2E0

1

dl Sp8~ D̂ ĝ l!.

~33!

The symbol Sp8 denotes the sum over relevant variables:
volume of the3He film, position on the Fermi surface, Ma
subara energies, and a trace over spin and particle-hole
grees of freedom,

Sp8~••• !5NfE d3RE dV p̂

4p
T(

m
Tr4~••• !. ~34!

There is an additional integration over the variable coupl
parameterl in Eq. ~33! involving an auxiliary propagato
ĝ l , which is the solution of the quasiclassical transp

equation in Eq.~5!, but with the self-energy scaled byl: D̂

→ D̂l5l D̂. The transport equation forĝ l is not solved

self-consistently, but with a single integration for each va
of l. Thus, ĝ l is a function of the exact order parameter

the film. This procedure and the application of boundary c
ditions for computing the auxiliary propagator and t
quasiclassical free energy functional are also explained
Appendix B.

Equation~33!, when evaluated with the self-consistent
determined propagator and order parameter in the film, g
the difference of the thermodynamic potential,DV5VS
2VN , from which the change in entropy and specific he
can be calculated,

DS~T!52
] DV

]T
, DC~T!52T

]2 DV

]T2
. ~35!

The normal-state free energy for3He of volume V is

given byVN(T)5EN2V( 1
2 gNT2), whereEN is the ground-

state energy for normal3He andgN5(2p2/3)NfkB
2 is the

normal-state Sommerfeld coefficient.
The reduction of the free energy below the normal-st

value represents the gain in energy due to the formation
condensate of pairs in the film. The free energy
3He-A films in the limit of diffuse scattering by the sub
strate is shown in Fig. 9 for several film thicknesses. T
reduction in the free energy is given by the Ginzburg-Land
form DV}2(12T/Tc

film)2 for temperatures just below th
superfluid transition temperatureTc

film of the film. At low
temperatures the gapless excitations dominate the therm
namics. The density of states at the Fermi energy is non
and approximately constant at low energies. As a result
low-temperature limit for the free energy of the superflu

state decreases asVS2ES52V( 1
2 gST2), wheregS,gN is

the Sommerfeld coefficient for the low-energy excitations
the superfluid film andES is theT50 condensation energy

From the numerical results shown in Fig. 9 we can cal
late temperature dependence of the entropy and specific
of the 3He-A film. The results for the entropy are shown
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the inset of Fig. 9. The linear temperature dependence
the entropy resulting from the gapless excitations is clea
visible.

Numerical calculations of the specific heat are shown
Fig. 10. These results show the decrease of the heat cap
jump at Tc

film with decreasing film thickness, as well as th
linear temperature dependence of the specific heat resu
from the gapless excitations~see inset of Fig. 9!. This behav-
ior for 3He-A films is in sharp contrast to the low
temperature heat capacity of bulk3He-A, which varies as
CS;T3.

Results for the heat capacity jumpDC(Tc
film)/gNTc

film and
the Sommerfeld coefficientgS are summarized in Fig. 11 a
a function of the film thicknessD. The Sommerfeld coeffi-
cient gS was calculated by two independent methods.
calculatedgS directly by numerically differentiating the tem

FIG. 9. Superfluid correction to the thermodynamic potential
reduced temperature for several films of superfluid3He-A on a
rough substrate. The inset shows the reduction in the entropy o
superfluid film.

FIG. 10. The specific heat of a superfluid3He-A film as a func-
tion of reduced temperature for several film thicknesses. The i
shows the ratioCS(T)/CN(T).
8-9
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perature dependence of the superfluid free energy. We
also relate the Sommerfeld coefficient directly to the den
of states at the Fermi energy,N(0). Thus, gS /gN
5N(0)/Nf . The first calculation is carried out entirely in th
Matsubara formalism, while the calculation of the DOS
the Fermi level is obtained by the solving for the retard
quasiclassical propagator on the real energy axis. Both
sults agree and are shown in Fig. 11 and give us confide
in our numerical calculations for the propagators, free
ergy, entropy, and heat capacity.

VI. CONCLUSION

We have calculated the thermodynamic properties of t
films of superfluid3He in the weak-coupling limit, expecte
to be applicable to films at zero pressure. We calculated
phase diagram for the superfluid film, including theAB tran-
sition, the suppression of the superfluid transition tempe
ture, suppression of the order parameter, the quasipar
density of states, and thermodynamic potential. Our analy
based on the quasiclassical method, shows a spectrum
superfluid films with gapless excitations formed by the co
bination of reflection by a rough substrate and Andreev s
tering induced by changes in the order parameter along c
sical trajectories of quasiparticles. The gapless excita
spectrum depends on the film thickness and dominates
low-temperature thermodynamic potential, entropy, and s
cific heat.
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APPENDIX A: DIFFUSE SCATTERING

The boundary condition for the quasiclassical propaga
at a rough surface is obtained by solving the transp
equation

FIG. 11. Specific heat jumpDC(Tc
film)/gNTc

film at Tc
film and the

ratio of the low-temperature Sommerfeld coefficient,gS /gN , for
the superfluid film as a function of film thicknessD. For compari-
son, DC(Tc)/gNTc51.19 for bulk 3He-A in the weak-coupling
limit.
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@ i«m t̂ 32 Ŝ imp~ p̂,R;«m!2 D̂~ p̂,R!, ĝ ~ p̂,R;«m!#

1 ivf•“ ĝ ~ p̂,R;«m!50 ~A1!

in the dirty layer and matching this solution to the quasicl
sical propagator in the superfluid. In the limit of strong d
order within the impurity layer,uSimpu@u«mu,u Du. Thus,
deep in the impurity layer,

@ Ŝ imp~ p̂,R;«m!, ĝ ~ p̂,R;«m!#50, ~A2!

with the impurity self-energy evaluated in the Born appro
mation,

Ŝ imp5
1

2pE dV p̂8
4p

t21~ p̂,p̂8! ĝ ~ p̂8,R;«m!, ~A3!

wheret21(p̂,p̂8) is the rate for quasiparticles to scatter fro
p̂→p̂8 on the Fermi surface. These equations are solved
an isotropic propagatorĝ TDL(«m), which is normalized to

ĝ TDL
2 52p2 1̂ . This propagator isnot the normal-state

propagator for the isolated normal metal because the p
imity coupling to the superfluid layer produces a ‘‘rotation
of ĝ N(«m)→ ĝ TDL(«m) in particle-hole space. To fix this
rotation we include the leading corrections to Eq.~A2! due to
spatial variations of the propagator in both the TDL and
perfluid film and match the solutions at the interface. In t
TDL the transport equation is

ivf•“ ĝ ~ p̂,R;«m!5@ Ŝ imp~ p̂,R;«m!, ĝ ~ p̂,R;«m!#.
~A4!

Equations~A3! and~A4! are solved by expanding the prop
gator in a basis of Nambu matrices. For superfluid3He films
in zero field the basis is limited to matrices in 232 particle-
hole space, with the spin degrees of freedom fixed. Th
three linearly independent matrices$ ĝ 1 , ĝ 2 , ĝ 3% are re-
quired @the identity matrix drops out of Eq.~A4!#. These
matrices satisfy the algebraic relations of the Pauli matric

@ ĝ i , ĝ j #1522p2d i j , @ ĝ i , ĝ j #2522p« i jk ĝ k .
~A5!

We choose ĝ 35 ĝ TDL and express the propagator in th

TDL as

ĝ ~ p̂,R;«m!5B1~ p̂,R! ĝ 1~«m!1B2~ p̂,R! ĝ 2~«m!

1B3~ p̂,R! ĝ 3~«m!, ~A6!

where ĝ 65( ĝ 16 i ĝ 2)/A2. The linear differential equa
tions for $B3(p̂,R),B1(p̂,R),B2(p̂,R)% are easily solved
with Ovchinnikov’s model of forward scattering,t21(p̂,p̂8)
54t21p̂zp̂z8 for p̂zp̂z8.0; otherwise,t21(p̂,p̂8)50. Thus,
quasiparticles enter the dirty layer, scatter forward towa
the specular wall, and after reflection diffuse out of the TD
The limit d→0,v ft→0,v ft/d→0 corresponds to diffuse
scattering by the impurity layer.
8-10
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The propagator in the TDL is matched to the propaga
ĝ (p̂,0;«m), in the superfluid at the interface to the TDL. W
use the same basis to express

ĝ ~ p̂,0;«m!5 ĝ TDL~«m!1C1~ p̂,0! ĝ 1~«m!

1C2~ p̂,0! ĝ 2~«m!. ~A7!

The coefficients of this expansion satisfy the following re
tions obtained by Ovchinnikov24:

C1~ p̂,0!50, p̂z,0, E
p̂z.0

dV p̂

p
u p̂zuC1~ p̂,0!50,

C2~ p̂,0!50, p̂z.0, E
p̂z,0

dV p̂

p
u p̂zuC2~ p̂,0!50.

~A8!

The propagator deep in the dirty layer is also related to
physical propagator at the boundary,

ĝ TDL~«m!5
E

p̂z.0

p̂z,0

dV p̂

p
u p̂zu ĝ ~ p̂,0,«m!. ~A9!

The boundary conditions~A7!–~A9! can be written in a com-
pact form using the commutation relations~A5!,

ĝ ~ p̂,0;«m!2 ĝ TDL~«m!5
sgn~ p̂z!

2p i
@ ĝ TDL~«m!, ĝ ~ p̂,0;«m!#.

~A10!

This condition is solved self-consistently with Eq.~A9! for
ĝ TDL and ĝ (p̂,0;«m).

The boundary condition forĝ (p̂,0;«m) can be cast into a
more compact form using the Ricatti representation for
propagatorĝ . For an outgoing trajectoryp̂z.0, Eq. ~A10!

is solved by

â~ p̂,0!52~ ip2ĝTDL!21 f̂ TDL . ~A11!

Thus, integration along an outgoing trajectory should s
with the value ofâ given by the value deep in the thin dirt
layer. The second Ricatti amplitudeâ is known at the TDL
substrate, since we integrateâ along a trajectory withp̂z
.0 in the backward direction. Thus, Eqs.~A9! and ~A11!,
together withâ(p̂,0;«m) and the Ricatti parametrization~10!,
~11!, are iterated until they converge to a value forâ(p̂,0).

We use the fourth-order Runge-Kutta method to num
cally integrate the Ricatti equations along a classical tra
tory for the Ricatti amplitudesâ(p,z;«m) and â(p,z;«m).
Azimuthal symmetry for scattering in the plane of the fil
allows us to consider trajectories defined byu and f50
~Fig. 12!. The integration procedure is slightly different fo
the A andB phases. In the case of theA phase we know the
Riccati amplitudes at the interface with the substrate@Eq.
~25!#: â(u,0;«m)5â(u,0;«m)50. For any trajectory we star
at point 1 and integrate forward along trajectory 12S22,
06450
r,

-

e

e

rt

i-
c-

with specular reflection atS, to obtain the amplitudeâ. To
calculate â we integrate along the same trajectory in t
reverse direction starting at point 2.

For theB phase we do not know the initial values of th
Ricatti amplitudes anywhere. In this case we start with
initial guess for the amplitudeâ, e.g., at the pointS. Using
Eq. ~16! and inversion in the azimuthal plane we find a sta
ing value for the amplitudeâ. We then integrate fromS to 2
to obtainâ(u,0;«m) and fromS8 to 2 to obtainâ(u,0;«m).
We implement the diffuse boundary conditions at point 2
obtainâ(u,0;«m) and then integrate from 2 toS8. This gives
us an updated initial value for the amplitudeâ ~and by sym-
metry for â). The integration procedure is repeated un
convergence is reached.

APPENDIX B: FREE-ENERGY FUNCTIONAL

We start with the Luttinger-Ward functional for the fu

Nambu Green’s functionĜ and self-energyŜ,

V@ Ĝ , Ŝ#52
1

2
Sp$ Ŝ Ĝ1 ln~2 Ĝ 0

211 Ŝ !%1F@ Ĝ #,

~B1!

where

Sp$•••%5T(
«m

E d3RE d3p

~2p!3
Tr4$•••%, ~B2!

Ŝ(p,R;«m) is the self-energy, andĜ 0
21(p,R;«m)5 i«m t̂ 3

2j0(p) 1̂ is the inverse Green’s function for a noninteracti
reference system of bare3He. The stationarity condition
with respect to the Green’s function,

dV

d Ĝ tr
50 Ŝ5 Ĝ skel@ Ĝ #52

dF@ Ĝ #

d Ĝ tr
, ~B3!

relates the functionalF@ Ĝ # to the self-energy via the skel
eton expansion for the self-energy, while the stationarity c
dition with respect to the self-energy,

FIG. 12. Integration along classical trajectories.
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dV

d Ŝ tr
50 Ĝ 215 Ĝ 0

212 Ŝ, ~B4!

gives Dyson’s equation for the Nambu propagator. Th
equations provide a starting point for deriving the Ferm
liquid theory for superfluid3He. In particular, the leading
order expansion of Dyson’s equation in the small parame
of Fermi-liquid theory can be transformed into Eilenberge
transport equation@Eq. ~5!# for the quasiclassical propagato

In order to derive a free-energy functional of the qua
classical propagatorĝ and quasiclassical self-energy

Ŝ~ p̂,R;«m![a@ Ŝ~pf p̂,R;«m!2 ŜN# t̂ 3 , ~B5!

we remove the normal-state stationary point (Ĝ N , ŜN) from

the Luttinger-Ward functional@Eq. ~B1!# by defining D Ŝ

5 Ŝ 2 ŜN , D Ĝ5 Ĝ2 Ĝ N and introducing the subtracte
functional

DV@ Ĝ , D Ŝ#5V@ Ĝ , Ŝ#2V@ Ĝ N , ŜN#

52
1

2
Sp$ D Ŝ Ĝ1 ln~2 Ĝ N

211 D Ŝ!

2 ln~2 Ĝ N
21!%1 DF@ Ĝ #, ~B6!

which has as inputs the normal-state propagatorĜ N

5( Ĝ 0
212 ŜN)21 and self-energyŜN rather than the bare

propagator. The subtractedF functional

DF@ Ĝ #5F@ Ĝ #2F@ Ĝ N#2
1

2
Sp$ ŜN~ Ĝ2 Ĝ N!%

~B7!

is confined to the low-energy region of phase space s
pairing corrections to the normal-state propagator contrib
only in the low-energy regionkBTc!Ef . The diagrammatic
perturbation expansion forDF can be reorganized as a
asymptotic expansion in the small parameters of Fer
liquid theory36 that is formally an expansion in the number
low-energy propagator lines.

To convert Eq.~B6! to a functional of the quasiclassica
propagator and self-energy we integrate out the momen
dependence normal to the Fermi surface over a region
momentum space near the Fermi surface,ujpu,«c . The low-
energy self-energy is a slowly varying function ofjp and can

be evaluated withp5pf p̂. Thus, the termD Ŝ Ĝ in Eq. ~B6!
is jp integrated to give

Sp$D Ŝ Ĝ %⇒Sp8$ Ŝ ĝ %

[NfT(
m

E d3RE dV p̂

4p

3Tr4@ Ŝ~ p̂,R;«m! ĝ ~ p̂,R;«m!#. ~B8!
06450
e
-

rs

-

e
te

i-

m
of

To integrate the ln functional we introduce an auxilia
functional defined by introducing a variable coupling co

stant for the self-energy andF functional: D Ŝ→ D Ŝl

[l D Ŝ and DF→ DFl[l DF. Thus, the auxiliary func-
tional is

DVl@ Ĝ , D Ŝl#52
1

2
Sp$ D Ŝl Ĝ1 ln~2 Ĝ N

211 D Ŝl!

2 ln~2 Ĝ N
21!%1l DF@ Ĝ #. ~B9!

The stationarity conditions with respect toĜ andD Ŝl give

a new equation for an auxiliary propagator,Ĝ l
21[ Ĝ N

21

2D Ŝl . The auxiliarly functional can bejp integrated after
first differenting with respect to the coupling parameter, th
carrying out thejp integration to obtain

] DVl

]l
52

1

2
Sp8$ Ŝ ĝ %1

1

2
Sp8$ Ŝ ĝ l%1 DF@ ĝ #,

~B10!

where

ĝ l~ p̂,R;«m!5
1

aE2«c

1«c
djp t̂ 3 Ĝ l~p,R;«m! ~B11!

is the quasiclassical auxiliary propagator. We can integr
Eq. ~B10! with respect to the coupling constant. Sin
DVl5050 and DVl515 DV, we obtain the desired free
energy functional in terms of the quasiclassical propagatoĝ

and self-energyŜ ,

DV@ ĝ , Ŝ #5
1

2E0

1

dl Sp8$ Ŝ~ ĝ l2 ĝ !%1 DF@ ĝ #.

~B12!

The stationarity conditions for the subtracted free-ene
functional reduce to the quasiclassical transport equation
self-energy expansion obtained from the asymptotic exp
sion of theF functional,

@ i«m t̂ 32 Ŝ , ĝ #1 ivf•“ ĝ 50, Ŝ52
d DF@ ĝ #

d ĝ tr
.

~B13!

These equations are supplemented by boundary condit
for the propagatorĝ which describe the effects of scatterin

by a surface or interface.
The auxiliary propagatorĝ l is a functional of the exac

quasiclassical self-energy and is obtained by solving the q

siclassical transport equation withŜ→l Ŝ ,

@ i«m t̂ 32l Ŝ , ĝ l#1 ivf•“ ĝ l50. ~B14!

This auxiliary transport equation is solved once~not self-

consistently! for each value ofl with Ŝ as a predetermined
8-12
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input function. The diffuse boundary condition forĝ l is

given by Eq.~A10! with ĝ TDL fixed by the self-consistently
determined solution of the quasiclassical equations
boundary condition forl51.

A further simplification for DV is possible in the weak
coupling limit when the self-energy is purely off diagon
and given by the order parameterŜ5 D̂. The self-
consistency equation
3

on

e

.C

Lo

ar

T.

N

.

06450
d
D̂52

d DF@ ĝ #

d ĝ tr
~B15!

can be used to evaluateDF@ ĝ #5 1
4 Sp8$ D̂ ĝ %. The result-

ing free energy reduces to

DV5
1

2E0

1

dl Sp8H D̂S ĝ l2
1

2
ĝ D J . ~B16!
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