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Nonperturbative renormalization group approach to the Ising model:
A derivative expansion at order ­4

Léonie Canet,1 Bertrand Delamotte,1 Dominique Mouhanna,1 and Julien Vidal2
1Laboratoire de Physique The´orique et Hautes E´nergies, CNRS UMR 7589, Universite´ Pierre et Marie Curie Paris 6,

UniversitéDenis Diderot Paris 7, 2 place Jussieu, 75252 Paris Cedex 05, France
2Groupe de Physique des Solides, CNRS UMR 7588, Universite´ Pierre et Marie Curie Paris 6, Universite´ Denis Diderot Paris 7,

2 place Jussieu, 75251 Paris Cedex 05, France
~Received 20 May 2003; published 22 August 2003!

On the example of the three-dimensional Ising model, we show that nonperturbative renormalization group
equations allow one to obtain very accurate critical exponents. Implementing the order]4 of the derivative
expansion leads ton50.632 and to an anomalous dimensionh50.033 which is significantly improved com-
pared with lower orders calculations.
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Many problems in high-energy as well as in statistic
physics call for nonperturbative methods. On the one ha
several physical systems are described by field theorie
their strong coupling regime so that the usual perturba
techniques become troublesome. They fail either beca
only the first orders of perturbation are computed and do
suffice, or because, even when high orders are known, s
dard resummation techniques do not provide converged
sults. On the other hand, some phenomena such as con
ment in QCD or phase transitions induced by topologi
defects are genuinely nonperturbative.

Apart from some methods restricted to specific dime
sions or situations, very few nonperturbative techniques
available. During the last years, the Wilson approach1 to the
renormalization group~RG! has been turned into an efficien
tool.2–4 This nonperturbative RG can be implemented in ve
general situations and, in particular, in any dimension, so
it has allowed one to study several issues difficult to tac
within a perturbative framework among which the thre
dimensional Gross-Neveu model,5 frustrated magnets,6 the
randomly dilute Ising model,7 and the Abelian Higgs model.8

This method relies on a nonperturbative renormalizat
of the effective actionG, i.e., the Gibbs free energy. It con
sists in building an effective actionGk at therunningscalek
by integrating out only fluctuations greater thank. At the
scalek5L, L21 denoting the spacing of the underlying la
tice, Gk coincides with the HamiltonianH since no fluctua-
tion has yet been taken into account while, atk50, it coin-
cides with the standard effective actionG since all
fluctuations have been integrated out. Thus,Gk continuously
interpolates between the microscopic HamiltonianH and the
free energyG. The running effective actionGk follows an
exact equation which controls its evolution with the runni
scalek2:

] tGk@f#5
1

2E ddq

~2p!d ] tRk~q!$Gk
(2)@f~q!#1Rk~q!%21,

~1!

where t5 ln(k/L) and Gk
(2)@f# is the second functional de

rivative of Gk with respect to the fieldf(q). In Eq. ~1!,
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Rk(q) is an infrared cutoff function which suppresses t
propagation of the low-energy modes without affecting t
high-energy ones.

Although exact, Eq.~1! is a functional partial integrodif-
ferential equation which cannot be solved exactly. To han
it, one has totruncateGk . A natural and widely used trun
cation is the derivative expansion, which consists in expa
ing Gk in powers of]f, keeping only the lowest order term
Physically, this truncation rests on the assumption that
long-distance physics of a given model is well described
the lowest derivative terms, the higher ones correspondin
less relevant operators. Up to now, only truncations up
order ]2 have been considered since, in many cases, t
turn out to be sufficient to get a satisfying qualitative a
even sometimes quantitative description of both univer
and nonuniversal behaviors.9

Nevertheless, several important issues concerning the
liability of the method remain open. The first one concer
the convergence of the derivative expansion. This poin
particularly delicate since, within this kind of truncatio
there is no expansion parameter in terms of which the se
obtained can be analyzed and controlled. It has been m
over suggested that the expansion could be o
asymptotic.10 Actually, this question of convergence has on
been addressed within the perturbative context. In R
11,12, it has indeed been shown that the two-loop pertu
tive result for theO(N) model can be recovered from
summation of the derivative expansion. However, in its f
generality, this problem still appears as a major challen
The second issue, the truly interesting one from a pract
point of view, concerns the accuracy of the results provid
by low orders truncations. This has been thoroughly stud
only at order]0 within the O(N) model and at order]2

within the Ising model through the optimization of the cuto
function Rk ~Refs. 13,14! ~see also related studies with th
Polchinski equation15,16 and within the proper time RG
formalism17!. Let us emphasize that, even for these mode
the anomalous dimensionh remains poorly determined. Thi
likely originates in the crudeness of the order]2 truncation
that fails to capture the essential momentum dependenc
the two-point correlation function. In this respect, an impo
©2003 The American Physical Society21-1
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tant remark is that in the critical theory, and atk50, this
function is nonanalytic,Gk50

(2) (q);q22h, so it appears non
trivial to retrieveh from a derivative expansion. Howeve
for kÞ0, the infrared fluctuations (q!k) are suppressed an
Gk

(2)(q) should become regular with the standardq2 behav-
ior. This means that the nonanalyticity builds up smoothly
k vanishes. Bergeset al.9 have proposed that this functio
behaves approximately asq2(q21ck2)2h/2, where c is a
constant. Roughly speaking, forGk

(2) , the derivative expan-
sion consists in expanding this function aroundq50 and in
computingh from its behavior ink2, instead ofq2. It is not
trivial that the resulting series forh converge since it
amounts to correct the normalq2 behavior with higher pow-
ers ofq2. The aim of this paper is to investigate this questi
by including order]4 terms in the derivative expansion ofGk
for the three-dimensional Ising model.

The effective average actionGk of the Ising model trun-
cated at order]4 is written as

Gk@f#5E ddxS Uk~r!1
1

2
$Zk~r!~¹f!21Wk

a~r!~Df!2

1Wk
b~r!~¹f!2~fDf!1Wk

c~r!@~¹f!2#2% D , ~2!

wherer5f2/2 is theZ2 invariant. Compared with its expan
sion at order]2, Gk involves three new terms denotedWk

s(r)
s5a,b,c, linearly independent with respect to the integr
tion by parts. The evolution equation for the potentialUk is
derived by evaluating Eq.~1! for a uniform field configura-
tion. By contrast, the definition and, thus, the evolution
the functionsZk andWk

s are linked to a specific momentum
dependence of the functional derivatives ofGk , in the limit
of vanishing external momenta

Zk~r!5 lim
pi→0

]p
1
2

d2Gk

df~p1!df~p2!
, ~3!

Wk
a~r!5 lim

pi→0
]p

1
4

d2Gk

df~p1!df~p2!
, ~4!

Wk
b~r!52

1

2A2r
lim

pi→0
]p

1
2p

2
2

d3Gk

df~p1!df~p2!df~p3!
, ~5!

Wk
c~r!52

1

4
lim

pi→0
]p

1
2pW 2 .pW 3

d4Gk

df~p1!df~p2!df~p3!df~p4!
.

~6!

As usual, to find a fixed point, we use the associated dim
sionless renormalized quantitiesr̄,uk , zk , andwk

s . The flow
equations of these functions, derived from Eq.~1!, are far too
long to be displayed.

As in Ref. 14, we have implemented a further approxim
tion which consists in expanding each running functionuk ,
zk , and thewk

s in powers ofr̄. The motivation which under-
lies this is twofold. First, in systems having a symme
group smaller thanO(N), the number of functions analogou
06442
s

-

f

n-

-

to uk , zk , andwk
s grows as well as the number of argumen

analogous tor̄, on which they depend. In this case, deali
with the full field dependence at each order of the derivat
expansion can be very demanding and the field expan
becomes almost unavoidable. Second, this expansion
vides valuable indications about the orders in field necess
to correctly describe the critical behavior. Here, we expa
the uk , zk , and wk

s functions around the configurationr̄
5 r̄0 that minimizesuk since it leads to a better convergen
than the expansion aroundr̄50 ~Ref. 18!

zk5(
j 50

pz

z j ,k~ r̄2 r̄0! j , ~7!

wherez stands foru,z,wa,wb,wc. The RG equation~1! then
leads to a set of ordinary coupled differential equations
the coupling constants$z j ,k%. The nonperturbative feature
of their flows with the running scalek are entirely encoded in
a finite set of integrals, called threshold functions. There
six—three of them being specifically linked to the inclusio
of the ]4 order terms—which are written

Fn
d5E dyyd/221]̃ tS f ~y!

1

@p~y!1m2#nD , ~8!

where ]̃ t means that the derivative only acts on the cut
function Rk(q)5Z0,kq

2r (y) with y5q2/k2; p(y)5y@1
1w0,k

a y1r (y)#, m252u2,kr̄0, and f (y) can be either
y(]yp) i with i 50, . . . ,4 or y]y

2p. The occurence of]y
2p

imposes the cutoff functionRk to be at least of classC3,
which dismisses for instance the theta cutoff introduced
Ref. 19. Here, we choose the exponential cutoff defined2

Rk~q!5a
Z0,kq

2

eq2/k2
21

, ~9!

which fulfills this condition and constitutes an efficient reg
lator. We remind that any truncation ofGk introduces a spu-
rious dependence of the results onRk . Here, we study this
influence by varying the cutoff through the amplitude para
eter a. For each truncation, the optimala is determined
through a principle of minimum sensitivity~PMS! which in-
deed corresponds to an optimization of the accuracy of
critical exponents.14

At each order of the derivative expansion, up to order]4,
and for higher and higher order field truncations, we co
pute the fixed point and the associated critical exponenn
and h, as functions ofa. Then, for each truncation, we
determine the optimized exponents from the PMS, which
referred to, in the following, as PMS exponents. We fi
expand in fields the potentialuk and thenzk which, respec-
tively, constitute the orders]0 and ]2 of the derivative ex-
pansion. The corresponding PMS exponents are displaye
functions ofpu,z—which denote the orders of the truncatio
in r̄ of uk and zk—in the first two zones of Fig. 1. At this
stage, it is worth emphasizing that strong oscillations oc
at the first orders in the field expansion for both orders]0
1-2
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and ]2. It follows that the PMS exponents become almo
steady only frompu,z54. As discussed in Ref. 14, the trun
cationpu58 andpz56 allows one to obtain a very accura
approximation of the order]2 results. Indeed, the corre
sponding exponentsnPMS50.6291 andhPMS50.0440 differ
by less than 1% compared with their ‘‘asymptotic’’ valu
obtained for largepu,z ~see Table I!. Note also that, already a
this order]2, nPMS agrees well with the best known value
whereas, as mentioned above, this is not the case forhPMS.

Let us come to the role of the order]4 terms. We choose
to simultaneously expand in fields the three functionswk

s ,
s5a,b,c, up topws55, while fixing pu58 andpz56. Ac-

FIG. 1. nPMS andhPMS as functions of the truncation. The thre
zones I, II, and III correspond to the expansions ofuk , zk , and the
wk

s , respectively. In zone III, the two values atpws53 reflect the
different choices of PMS solutions~see below!.

TABLE I. Critical exponents of the three-dimensional Isin
model.

method n h

LPA a 0.6506 0
]2 a 0.6281 0.0443
]4 b 0.632 0.033

7-loopc 0.6304~13! 0.0335~25!

MC d 0.6297~5! 0.0362~8!

a
Effective average action method~field expansion! ~Ref. 14!.

b
Present work.

c
7-loop calculations~Ref. 20!.

d
Monte Carlo simulations~Ref. 21!.
06442
t

tually, the highest truncation corresponds topwc55 and
pwa,b54 for the following reason. Figure 2 displays, for ea
wk

s considered independently, the evolutions of the PMS
ponents with the order of the field truncation. It shows th
the exponents associated withwk

a or wk
b have almost con-

verged, up to a few tenths of percent, as soon aspwa,b53.
On the contrary,hPMS andnPMS related towk

c still oscillate at
this order. We have checked that, within the simultane
expansion of the threewk

s , wk
c indeed dictates the variation

of the critical exponentswj ,k
a and wj ,k

b exerting a minor in-
fluence forj >3. This, together with the fact that we encou
ter here the limits of our computational capacities, justifi
our choice (pwa,pwb,pwc)5(4,4,5) for the last truncation.

We can now concentrate on the behavior of the expone
at the order]4. At the low order field truncations, corre
sponding topws50,1, and 2, each exponent exhibits a sing
PMS solution,nPMS, andhPMS, which are thus unambigu
ously defined. As displayed in Fig. 3, several PMS solutio
appear for the next two truncations, corresponding topws

53,4. This renders the optimization procedure in these ca
~see discussion below! unclear.

Concerning the largest truncation,hPMS is unambiguously
determined from the unique PMS solution. Forn, several
PMS solutions exist. However, provided the field expans
has almost converged at this order, a unique PMS solu
can also be selected forn. The argument underlying this
choice originates from the fact that when no truncation
derivatives is performed, the results are independent of
cutoff. Therefore, the best cutoff is the one achieving
weakest sensitivity of the results with respect to the orde
the derivative expansion, i.e., leading to the fastest con
gence~see Ref. 14 for a detailed discussion!. In practice, this
consists in minimizing the difference between the values on
determined at order]n and at order]n11. In our case, this
selects the PMS solution located ata.0.6 ~see Fig. 3!.

Let us now discuss the convergence of the field exp
sion. To this end, we first examine the two truncationspws

53,4 for which multiple PMS solutions exist for both expo
nents. There is no argument to clearly settle between

FIG. 2. nPMS and hPMS as functions of the order of the field
truncation for each functionwk

s separately. Forwc, the two values at
pwc53 reflect the different choices of PMS solutions~see below!.
1-3
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PMS solutions. We present two sensible way to favor reas
able PMS solutions. First, one can choose to minimize,
these orders, the oscillations induced by the field expans
This, in turn, corresponds to improving the rapidity of co
vergence of the field expansion. This choice correspond
the full line in the third zone of Fig. 1. Alternatively, one ca
decide to follow a given PMS solution~characterized by its

FIG. 3. Variations of the critical exponentsn and h with the
cutoff parametera, Eq. ~9!, for the highest orders truncations la
beled by (pwa,pwb,pwc).
ev

h,

06442
n-
r
n.

to

concavity and its locationa!, order by order in the field
expansion, starting from the low orderspws50,1,2, where
the PMS solutions are unique. This corresponds to
dashed line in Fig. 1. Note that both criteria lead to the sa
PMS solution forpws54. Finally, the important features o
the exponents evolution remain essentially unchanged w
ever choice is adopted: low orders generate strong osc
tions that tend to vanish after a few orders. Indeed, the
sults forpws54: nPMS50.6234 andhPMS50.0289, are very
close to those for pws55: nPMS50.6321 and hPMS
50.0330. Although the exponents are not rigorously stea
this suggests that the asymptotic regime is just entered.
is consistent with the fact that, at orders]0 and ]2, the os-
cillations die down for the same order of truncationpu,z
.4. This legitimates our former assumption of field conv
gence. We therefore approximate the order]4 results by the
pws55 estimates~see Table I!. To summarize, we have com
puted the critical exponents of the three-dimensional Is
model up to the]4 order in the derivative expansion. Th
successive contributions significantly decrease with the
der, which supports good convergence properties of this
pansion and, in particular, a correct behavior of its imp
mentation aroundq50. We emphasize that the exponentn is
almost unaltered at order]4 compared with its value at the
order]2, whereash undergoes a substantial correction whi
drives it within a few percents of the best known values. T
confirms the statement that the inclusion of the]4 order
terms allow one to improve the anomalous dimension. N
that although fully converged results would require to han
the full field dependence ofuk , zk , and wk

s ,22 this study
shows that the truncation in fields constitutes a reliable w
to compute critical exponents. Finally, the present wo
brings out convincing evidence of the ability of the effecti
average action method to provide very accurate estimate
physical quantities.
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5F. Höfling, C. Nowak, and C. Wetterich, Phys. Rev. B66, 205111

~2002!.
6M. Tissier, B. Delamotte, and D. Mouhanna, Phys. Rev. Lett.84,

5208 ~2000!; Phys. Rev. B67, 134422~2003!.
7M. Tissier, D. Mouhanna, J. Vidal, and B. Delamotte, Phys. R

B 65, 140402~2002!.
8B. Bergerhoff, F. Freire, D. Litim, S. Lola, and C. Wetteric

Phys. Rev. B53, 5734~1996!.
9J. Berges, N. Tetradis, and C. Wetterich, Phys. Rep.363, 223

~2002!.
10C. Bagnuls and C. Bervillier, Phys. Rep.348, 91 ~2001!.
.

11T. Papenbrock and C. Wetterich, Z. Phys. C65, 519 ~1995!.
12T.R. Morris and J.F. Tighe, J. High Energy Phys.08, 007 ~1999!.
13D. Litim, Nucl. Phys. B631, 128 ~2002!.
14L. Canet, B. Delamotte, D. Mouhanna, and J. Vidal, Phys. Rev

67, 065004~2003!.
15R.D. Ball, P.E. Haagensen, J.I. Latorre, and E. Moreno, Ph

Lett. B 347, 80 ~1995!.
16J. Comellas, Nucl. Phys. B509, 662 ~1998!.
17M. Mazza and D. Zappala, Phys. Rev. D64, 105013~2001!.
18K.I. Aoki, K. Morikawa, W. Souma, J.I. Sumi, and H. Terao

Prog. Theor. Phys.99, 451 ~1998!.
19D. Litim, Phys. Rev. D64, 105007~2001!.
20R. Guida and J. Zinn-Justin, J. Phys. A31, 8103~1998!.
21M. Hasenbusch, Int. J. Mod. Phys. C12, 911 ~2001!.
22L. Canet, B. Delamotte, D. Mouhanna, and J. Vidal~unpub-

lished!.
1-4


