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Nonperturbative renormalization group approach to the Ising model:
A derivative expansion at order *
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On the example of the three-dimensional Ising model, we show that nonperturbative renormalization group
equations allow one to obtain very accurate critical exponents. Implementing thesrdéthe derivative
expansion leads to=0.632 and to an anomalous dimensiga 0.033 which is significantly improved com-
pared with lower orders calculations.
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Many problems in high-energy as well as in statisticalR,(q) is an infrared cutoff function which suppresses the
physics call for nonperturbative methods. On the one handyropagation of the low-energy modes without affecting the
several physical systems are described by field theories ihigh-energy ones.
their strong coupling regime so that the usual perturbative Although exact, Eq(1) is a functional partial integrodif-
techniques become troublesome. They fail either becausgrential equation which cannot be solved exactly. To handle
only the first orders of perturbatior_1 are computed and do nof one has tdruncateT’,. A natural and widely used trun-
suffice, or because, even when high orders are known, stagation is the derivative expansion, which consists in expand-
dard resummation techniques do not provide converged 'GAg ', in powers ofde, keeping only the lowest order terms.
sults. On the other hand, some phenomena such as confiNggicaly this truncation rests on the assumption that the
dmeefgtct!]a?eCDer?l;ir?Qlase tran?tl%n? induced by toIOOIOg'callong-distance physics of a given model is well described by

9 y nonperturbative. e the lowest derivative terms, the higher ones corresponding to

Apart from some methods restricted to specific dimen-,

. . . . ; less relevant operators. Up to now, only truncations up to
sions or situations, very few nonperturbative techniques are P P ’ y P

available. During the last years, the Wilson apprdaohthe order 5° have beer_1 _con5|dered since, In many cases, they
renormalization grougRG) has been turned into an efficient tUrn out to be sufficient to get a satisfying qualitative and
tool 2-4This nonperturbative RG can be implemented in very€Ven somgtlmes quantl.tatlve description of both universal
general situations and, in particular, in any dimension, so th@nd nonuniversal behawq‘i‘s. _ .
it has allowed one to study several issues difficult to tackle Nevertheless, several important issues concerning the re-
within a perturbative framework among Wh|Ch the three_“abl“ty Of the method I’emain Open. The fiI’St one concerns
dimensional Gross-Neveu moc?efrustrated magne[%,the the convergence of the derivative expansion. This point is
randomly dilute Ising modeland the Abelian Higgs modé&l. particularly delicate since, within this kind of truncation,
This method relies on a nonperturbative renormalizatiorthere is no expansion parameter in terms of which the series
of the effective actiorT’, i.e., the Gibbs free energy. It con- obtained can be analyzed and controlled. It has been more-
sists in building an effective actiof, at therunningscalek ~ over suggested that the expansion could be only
by integrating out only fluctuations greater thinAt the  asymptotic:® Actually, this question of convergence has only
scalek=A, A ! denoting the spacing of the underlying lat- been addressed within the perturbative context. In Refs.
tice, I', coincides with the Hamiltoniai since no fluctua- 11,12, it has indeed been shown that the two-loop perturba-
tion has yet been taken into account whilekat0, it coin-  tive result for theO(N) model can be recovered from a
cides with the standard effective actioR since all summation of the derivative expansion. However, in its full
fluctuations have been integrated out. THilscontinuously ~ generality, this problem still appears as a major challenge.
interpolates between the microscopic Hamiltorthand the ~ The second issue, the truly interesting one from a practical
free energyl’. The running effective actiof’, follows an point of view, concerns the accuracy of the results provided
exact equation which controls its evolution with the runningPy low orders truncations. This has been thoroughly studied
scalek® only at orderd® within the O(N) model and at ordep?
within the Ising model through the optimization of the cutoff
1( di function R, (Refs. 01?31%91 (see also related studies with the
i (2) -1 Polchinski equatio™> and within the proper time RG
ad &) 2f (2m) HRAAHTET A1+ Rl formalisnt?). cIl_et us emphasize that, eveﬁ fopr these models,
(1) the anomalous dimensiomremains poorly determined. This
likely originates in the crudeness of the ord&rtruncation
wheret=In(k/A) andI'{?)[ ¢] is the second functional de- that fails to capture the essential momentum dependence of
rivative of I', with respect to the fieldp(q). In Eq. (1), the two-point correlation function. In this respect, an impor-
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tant remark is that in the critical theory, andlat 0, this  tou,, z,, andw; grows as well as the number of arguments,
function is nonanalyticl“(kzz)o(q)~q2‘ 7, S0 it appears non- analogous tg, on which they depend. In this case, dealing
trivial to retrieve » from a derivative expansion. However, with the full field dependence at each order of the derivative
for k0, the infrared fluctuationgy<k) are suppressed and expansion can be very demanding and the field expansion
I'{¥(q) should become regular with the standarfdbehav- becomes almost unavoidable. Second, this expansion pro-
ior. This means that the nonanalyticity builds up smoothly ag/ides valuable indications about the orders in field necessary
k vanishes. Bergest al® have proposed that this function to correctly describe the critical behavior. Here, we expand
behaves approximately a3?(q%+ck?)~ 72 wherec is a  the uy, z, andw} functions around the configuratiop
constant. Roughly speaking, f62), the derivative expan- = p, that minimizesu, since it leads to a better convergence
sion consists in expanding this function aroupd 0 and in  than the expansion around=0 (Ref. 18

computingz from its behavior irk?, instead ofg?. It is not

trivial that the resulting series fom converge since it Pe o

amounts to correct the normaf behavior with higher pow- = Z {k(p=po), (7)

ers ofg?. The aim of this paper is to investigate this question )70

by including ordes* terms in the derivative expansion Bf where{ stands fou,z,w? wP,w¢. The RG equatioril) then

for the three-dimensional Ising model. leads to a set of ordinary coupled differential equations for
The effectlv4e average actidn of the Ising model trun-  the coupling constant§; \}. The nonperturbative features
cated at order” is written as of their flows with the running scaleare entirely encoded in

a finite set of integrals, called threshold functions. There are

Fk[¢]=J ddx< Uk(p)+ ={Zi(p)(V )2+ W2(p) (A )2 S|x—thr4ee of them being specifically linked to the inclusion
2 of the 9" order terms—which are written

+WR(p) (V)2 ($A )+ WR(p)[(VA)* T} |, (2) ci_ f iy y”z—%(f ) ®

1 )
o o - [p(y)+m?]")”
wherep = ¢“/2 is theZ, invariant. Compared with its expan-

i 2 ; ~
sion at ordew”, I', involves three new terms de”Ot‘M‘%(P) where'd, means that the derivative only acts on the cutoff
s=a,b,c, linearly independent with respect to the integra-f,nction Re(Q)=ZoG%r (y) with y=g2/k% p(y)=y[1
tion by parts. The evolution equation for the potentigl is + WA y+r(y)] mz’ZZUZKFO and f(y) can be either
derived by evaluating Eq1) for a uniform field configura- i ik G 2 2

tion. By contrast, the definition and, thus, the evolution of.y(ayp) with i =0, ... 4 orydyp. The occurence ofyp

he f ionsz dWe linked ii imposes the cutoff functio®, to be at least of clas€?,
the functionsz and W, are linked to a specific momentum i gismisses for instance the theta cutoff introduced in
dependence of the functional derivativesIgf, in the limit

o= Ref. 19. Here, we choose the exponential cutoff defined by
of vanishing external momenta

2
8T, ZoxQ
Z(p)=lim §p———x— 3 Ra@)=a—z——, €)
0= I o 502 56(py) @ o1
ST which fulfills this condition and constitutes an efficient regu-
R(p)=1lima — ok (4) lator. We remind that any truncation bf introduces a spu-
<r P156(p1) 56(P2)’ i i
pi—0 P1 P2 rious dependence of the results Bp. Here, we study this
influence by varying the cutoff through the amplitude param-
X 1 8T, eter . For each truncation, the optimal is determined
Wi(p)=— —=1Iim d,2,2 , (5 through a principle of minimum sensitivifPMS) which in-
2\2pp—0 "2 0¢(P1) 5¢(P2) 9 () deed corresponds to an optimization of the accuracy of the
critical exponentg?
WE( o) = — E im o.2- - L I At each order of the derivative expansion, up to oréfer
p)= 4p:To P1P2-Ps §h(py) S (P,) Sb(P3) Sd(Py) and for higher and higher order field truncations, we com-

(6) pute the fixed point and the associated critical exponents
and 7, as functions ofa. Then, for each truncation, we
As usual, to find a fixed point, we use the associated dimendetermine the optimized exponents from the PMS, which are
sionless renormalized quantitipsuy , z,, andwy. The flow  referred to, in the following, as PMS exponents. We first
equations of these functions, derived from EQ, are fartoo  expand in fields the potentiai, and thenz, which, respec-
long to be displayed. tively, constitute the orderg® and ¢ of the derivative ex-

As in Ref. 14, we have implemented a further approxima-pansion. The corresponding PMS exponents are displayed as
tion which consists in expanding each running functign  functions ofp, ,—which denote the orders of the truncation
z,, and thew}, in powers ofp. The motivation which under- in p of u, andz—in the first two zones of Fig. 1. At this
lies this is twofold. First, in systems having a symmetrystage, it is worth emphasizing that strong oscillations occur
group smaller tha®(N), the number of functions analogous at the first orders in the field expansion for both ordéts
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FIG. 1. vpys and npys as functions of the truncation. The three
zones |, Il, and Il correspond to the expansionsipf z,, and the

w;, respectively. In zone llI, the two values pj;s=3 reflect the
different choices of PMS solution(see below.

and ¢°. It follows that the PMS exponents become almost

steady only fromp, ,=4. As discussed in Ref. 14, the trun-
cationp,= 8 andp,= 6 allows one to obtain a very accurate
approximation of the ordep? results. Indeed, the corre-
sponding exponentspys=0.6291 andypys=0.0440 differ

by less than 1% compared with their “asymptotic” values

obtained for largg,, , (see Table)l Note also that, already at
this orderd?, vpys agrees well with the best known values
whereas, as mentioned above, this is not the casegdps.
Let us come to the role of the ordeéf terms. We choose
to simultaneously expand in fields the three functions
s=a,b,c, up top,s=>5, while fixingp,=8 andp,=6. Ac-

TABLE |I. Critical exponents of the three-dimensional Ising
model.

method v 7
LPA? 0.6506 0
P 0.6281 0.0443
9P 0.632 0.033
7-loop® 0.630413) 0.033525)
mc ¢ 0.62975) 0.03628)

:Effective average action methdfield expansion (Ref. 19.
Present work.

:7-Ioop calculationgRef. 20.

Monte Carlo simulationgRef. 21).
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FIG. 2. vpys and npys as functions of the order of the field
truncation for each functiow; separately. Fow®, the two values at
pwe=23 reflect the different choices of PMS solutiofzee below.

tually, the highest truncation corresponds pgc.=5 and
pwab=4 for the following reason. Figure 2 displays, for each
w,, considered independently, the evolutions of the PMS ex-
ponents with the order of the field truncation. It shows that
the exponents associated withf or w have almost con-
verged, up to a few tenths of percent, as soopas=3.

On the contraryzpus and vpys related towy, still oscillate at
this order. We have checked that, within the simultaneous
expansion of the threer;, wy indeed dictates the variations
of the critical exponentsv?, and W}"k exerting a minor in-
fluence forj=3. This, together with the fact that we encoun-
ter here the limits of our computational capacities, justifies
our choice pya, Pub, Puwc) = (4,4,5) for the last truncation.

We can now concentrate on the behavior of the exponents
at the orderg*. At the low order field truncations, corre-
sponding top,,s=0,1, and 2, each exponent exhibits a single
PMS solution,vpys, and npys, Which are thus unambigu-
ously defined. As displayed in Fig. 3, several PMS solutions
appear for the next two truncations, correspondingoje
=3,4. This renders the optimization procedure in these cases
(see discussion belgwinclear.

Concerning the largest truncationg),s is unambiguously
determined from the unique PMS solution. Fer several
PMS solutions exist. However, provided the field expansion
has almost converged at this order, a unique PMS solution
can also be selected far. The argument underlying this
choice originates from the fact that when no truncation in
derivatives is performed, the results are independent of the
cutoff. Therefore, the best cutoff is the one achieving the
weakest sensitivity of the results with respect to the order of
the derivative expansion, i.e., leading to the fastest conver-
gence(see Ref. 14 for a detailed discussioim practice, this
consists in minimizing the difference between the values of
determined at orde#” and at order"*?. In our case, this
selects the PMS solution located @t0.6 (see Fig. 3.

Let us now discuss the convergence of the field expan-
sion. To this end, we first examine the two truncatigns
=3,4 for which multiple PMS solutions exist for both expo-
nents. There is no argument to clearly settle between the
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R concavity and its locationw), order by order in the field
0.05 expansion, starting from the low ordepgs=0,1,2, where
the PMS solutions are unique. This corresponds to the
0.04 dashed line in Fig. 1. Note that both criteria lead to the same
= PMS solution forp,s=4. Finally, the important features of
= 0.03 the exponents evolution remain essentially unchanged what-
7 ever choice is adopted: low orders generate strong oscilla-
0.02 R tions that tend to vanish after a few orders. Indeed, the re-
0.01 sults forp,s=4: vpys= 0.6234 andypys=0.0289, are very
N close to those forp,s=5: vpys=0.6321 and 7pys
051152253354 45 5 =0.0330. Although the exponents are not rigorously steady,
this suggests that the asymptotic regime is just entered. This
is consistent with the fact that, at orde% and 2, the os-
0.7 F ™ (222)% (4449 cillations die down for the same order of truncatipg,,
068 [ ¢ " (B.3.3)% (44,5 =4. This legitimates our former assumption of field conver-
i gence. We therefore approximate the orééresults by the
= 0.66 pws=5 estimategsee Table)l To summarize, we have com-
= 064 puted the critical exponents of the three-dimensional Ising
model up to thes* order in the derivative expansion. The
062 £ "m successive contributions significantly decrease with the or-
06 E der, which supports good convergence properties of this ex-
— pansion and, in particular, a correct behavior of its imple-
051152253354455 mentation around=0. We emphasize that the exponetis

o almost unaltered at ordef* compared with its value at the
orderd?, whereasy undergoes a substantial correction which
cutoff parametery, Eq. (9), for the highest orders truncations la- drlvgs it within a few percents of th? best knownu\?/fglues. This
beled by Bye, Pub Puc). confirms the statement that the inclusion o_f (_)rder

terms allow one to improve the anomalous dimension. Note
PMS solutions. We present two sensible way to favor reasorthat although fully converged results would require to handle
able PMS solutions. First, one can choose to minimize, fothe full field dependence aof, z,, and Wﬁ,zz this study
these orders, the oscillations induced by the field expansiorshows that the truncation in fields constitutes a reliable way
This, in turn, corresponds to improving the rapidity of con-to compute critical exponents. Finally, the present work
vergence of the field expansion. This choice corresponds tbrings out convincing evidence of the ability of the effective
the full line in the third zone of Fig. 1. Alternatively, one can average action method to provide very accurate estimates of
decide to follow a given PMS solutioftharacterized by its physical quantities.

FIG. 3. Variations of the critical exponenisand 7 with the
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