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Quantum impurity in an antiferromagnet: Nonlinear sigma model theory
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We present a formulation of the theory of an arbitrary quantum impurity in an antiferromagnet, using the
O(3) nonlinear sigma model. We obtain the low-temperature expansion for the impurity spin susceptibilities of
antiferromagnets with magnetic long-range order in the ground state. We also consider the bulk quantum phase
transition ind52 to the gapped paramagnet (d is the spatial dimension!: The impurity is described solely by
a topological Berry phase term that is an exactly marginal perturbation to the critical theory. The physical
properties of the quantum impurity near criticality are obtained by an expansion in (d21).
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I. INTRODUCTION

Recent papers1,2 have presented a general field-theoreti
discussion of the low-energy properties of a spinS impurity
embedded in an antiferromagnet or a superconductor w
is in the vicinity of a bulk spin-ordering quantum transitio
These studies were motivated by a variety of recent exp
ments studying Zn and Ni impurities in the cuprate superc
ductors and spin-gap compounds. The motivations and p
work have been discussed in some detail in Ref. 2~hereafter
referred to as I! and so will not be repeated here. Furth
theoretical,3,4 numerical,5–7 and experimental8 work on these
issues has also appeared, and we will discuss some of t
results below. There has also been related work on impu
models in systems with fermionic excitations.9,10

The purpose of this paper is to provide additional resu
for the same quantum impurity problem using a differe
field-theoretic formulation. The results in I were obtain
using an expansion in (32d), whered is the spatial dimen-
sionality. Stimulated mainly by the recent results of Ho¨glund
and Sandvik,6 we have succeeded in obtaining a formulati
which permits an expansion ine5d21, and this will be
described in the present paper. The universal scaling st
ture we shall describe below in the (d21) expansion turns
out to be identical to that obtained in I using the (32d)
expansion. This is strong evidence that a fixed point with
same scaling properties does indeed describe the phy
situation ind52.

Throughout this paper, we will implicitly assume in ou
discussion that 1,d,3, unless stated otherwise. The on
exception is Appendix C, where we will present results
d53. Also we will sete5(d21), whereas in I the sam
symbol was used for (32d).

Let us outline the main results of I and those that will
presented here. Consider a simple two-dimensional quan
antiferromagnet which undergoes a quantum transition fr
a magnet Ne´el state to a gapped, confining paramagnet w
only integer spin excitations—e.g., a model of coupled s
ladders.11 We tune the antiferromagnet across this transit
with a generalized couplingg0, such that there is Ne´el order
for g0,gc and a gapped paramagnet forg0.gc . Insert an
0163-1829/2003/68~6!/064419~13!/$20.00 68 0644
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arbitrary quantum impurity~e.g., a vacancy! which leads to
a net deficit or excess of spinS in its vicinity ~after account-
ing for the sublattice alternation!. At a temperatureT above
the gapped paramagnet phase, withg0.gc and a spin gapD,
this impurity will contribute an impurity spin susceptibility

x imp5
S~S11!

3T
, g0.gc , ~1.1!

with exponentially small corrections asT→0 ~we set \
5kB51 and have absorbed factors of the gyromagnetic r
and the Bohr magneton in the definition of the external m
netic field!. We can view Eq.~1.1! as a definition of the value
of S ~which must be an integer or half odd integer! for the
quantum impurity. In the magnetically ordered phase w
g0,gc , there are much stronger corrections to the isola
impurity behavior because of the presence of broken-s
rotation symmetry atT50 and gapless excitations in th
bulk; in dimensionsd<2 the symmetry is restored at an
T.0, and corrections to the impurity susceptibility can
written in the scaling form2

x imp5
1

T
FS T

@c(d22)rs#
1/(d21)D , g0<gc , ~1.2!

wherers is the spin stiffness of the bulk-ordered antiferr
magnet in the absence of the impurity andc is the bulk
spin-wave velocity. In the limitT→0, it was argued in I that
F(0)5S2/3 exactly. This prediction has been verified r
cently in the numerical study by Ho¨glund and Sandvik.6 On
the basis of the (32d) expansion, the subleading behavi
F(y→0)5S2/31C3y, with C3 a universal number, was pro
posed ford52 in I. Höglund and Sandvik6 also tested this
subleading behavior and argued that it did not hold—inst
they proposed the presence of ln(1/T) term. We will show
here that their proposal is indeed correct and that precise
d52 the behavior in the limitT!rs is
©2003 The American Physical Society19-1
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F~y→0!5
S2

3
1

S2

3p
y ln~1/y!1 C̃3y2

S2

6p2
y2ln~1/y!

1 C̃4y21•••, ~1.3!

with C̃3,4 unknown universal constants. The ln(1/y) depen-
dence is special tod52 and does not appear at any fini
order in the (32d) expansion, and this is the reason it w
overlooked in I. Subleading singularities in the smally ex-
pansion do appear naturally in the (d21) expansion pre-
sented in this paper. We also note here that Eq.~1.3! was
obtained with no assumptions on the value ofS: theSdepen-
dences in the coefficients are therefore exact.

The subdominant ln(1/T) dependence implied by Eq
~1.3! @and the anomalous powers ofy in Eq. ~3.14!# is a
consequence of spin-wave Goldstone fluctuations in 1,d
<2 and does not involve the critical singularities atg05gc
in an essential way. Consequently, ind52, this ln(1/T) de-
pendence should also be present in antiferromagnets
g0!gc , which are not especially close to any quantum cr
cal point. In this situation can surmise that Eq.~1.3! implies

x imp5
S2

3T F11
T

prs
lnS C1rs

T D2
T2

2p2rs
2

lnS C2rs

T D
1OS T

rs
D 3G , g0!gc , T→0, d52, ~1.4!

where, in general, the constantsC1,2 arenonuniversal; only
as we approach the quantum critical point andrs→0 doC1,2
become universal, and then Eq.~1.4! is seen to be consisten
with Eq. ~1.3!. The ln(1/T) correction in Eq.~1.4! is related
to the logarithmic frequency dependences discussed by
gaosaet al.12 and Chernyshevet al.13 To the extent that sharp
spin waves are also present in ordered metallic antiferrom
nets, Eq.~1.4! may also apply to such systems.14

As we will see shortly, Eq.~1.4! is obtained for the case
where the coupling between the impurity and bulk antifer
magnet has scaled to infinity. This implies that at low en
gies the impurity moment is effectively locked along the
rection of the local orientation of the bulk antiferromagne
order. While such locking is appropriate near the quant
critical point, it is nota priori clear whether it should also
hold at low T above a well-ordered antiferromagnet wi
g0!gc . We will briefly address this issue by also examini
the case of finite coupling~see Appendix B!: we find that the
coefficient of the (1/rs)ln(1/T) term in Eq. ~1.4! remains
universal, but there are nonuniversal corrections to
T ln(1/T) term.

A separate category of our results concernsx imp at the
quantum critical pointg05gc . These correspond to the larg
y, T@rs , limit of Eq. ~1.2!. Here, it was argued in I that

F~y→`!5C1 , ~1.5!

with C1 a universal number. A (32d) expansion forC1 was
provided in I, and it contained nontrivial corrections to t
free moment value ofS(S11)/3. Sushkov3 has questioned
the existence of such corrections, but we reply to his ar
06441
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ments in Appendix D. The present paper will show that E
~1.5! is obeyed also in the (d21) expansion: in this case th
(d21) expansion provides terms as corrections to the ‘‘cl
sical’’ moment value ofS2/3, and details of this appear in th
body of the text, and the final result is in Eq.~4.13!.

A number of other results for universal properties of t
impurity correlations were provided in I using the (32d)
expansion. All of these can also be computed in the (d21)
expansion, and in every case we find complete agreeme
the structure of the scaling properties. Details of such co
putations also appear in the body of this paper.

The following section will introduce the nonlinear sigm
model field theory which describes the dynamics of an i
purity in a quantum antiferromagnet. Section III will the
discuss the perturbative structure of this theory, with det
of the perturbative computations appearing in Appendix
We will show how to deduce low-temperature properties
ing this perturbation theory. Finally, Sec. IV presents a ren
malization analysis which allows us to deduce the phys
characteristics of the critical point.

II. FIELD THEORY

This section will introduce the field-theoretical formula
tion of the quantum impurity dynamics which enables
expansion of its universal properties in the (d21) expan-
sion. In contrast to our earlier (32d) expansion, which used
a ‘‘soft-spin’’ formulation of the bulk antiferromagnetic fluc
tuations, the present (d21) expansion will use the ‘‘fixed-
length’’ representation of the O~3! nonlinear sigma model.

We begin by recalling our earlier soft-spin formulatio
The bulk spin fluctuations of the antiferromagnet are rep
sented by the real fieldfa(x,t), with a51, . . . ,3 anindex
representing the spin component,x a d-dimensional spatial
coordinate, andt the imaginary time. The impurity spin is
placed at the origin of coordinates,x50, and is represented
by a unit length fieldna(t), and the bulk and impurity fluc-
tuations are coupled in the partition function

Z̃5E Dfa~x,t!Dna~t!d~na
221!exp~2S̃b@fa#2S̃imp!,

S̃imp5E
0

1/T

dtF iSAa~n!
dna~t!

dt
2gSfa~x50,t!na~t!G .

~2.1!

The transition in the bulk antiferromagnet is described by
usualfa

4 theory which is represented byS̃b@fa# as in I. The

first term in the impurity actionS̃imp is the Berry phase of the
impurity at siter, andAa(n) is a ‘‘Dirac monopole’’ function
which satisfies

eabg

]Ag~n!

]nb
5na . ~2.2!

Finally, g is the coupling between the impurity and bu
degrees of freedom which will be important in our consid
ations below. At theg50 fixed point, the bulk and boundar
degrees of freedom are decoupled, and the couplingg is a
9-2
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QUANTUM IMPURITY IN AN ANTIFERROMAGNET: . . . PHYSICAL REVIEW B 68, 064419 ~2003!
relevant perturbation with scaling dimension (32d2h)/2
(h is the anomalous dimension of the bulk critical point, a
its value is very close to zero!. The small scaling dimension
of g neard53 was the key feature which was used to ge
erate the (32d) expansion of the coupled bulk-impurit
theory.

Let us now turn to spatial dimensions just aboved51.
For the bulk theory, it is known that an expansion of t
critical properties can be generated in ae5d21 expansion
by representing the bulk spin fluctuations by a fixed-len
field Na(x,t)}fa(x,t) and with the action of the O~3! non-
linear sigma model.15 At the same time, the couplingg has a
scaling dimension'1 and so is strongly relevant nearg
50. This suggests that a better approach now would b
start near theg5` limit. At g5`, the impurity degrees o
freedomna(t) would follow the bulk spin fluctuations per
fectly, and hencena(t)5Na(x50,t). In this manner we
obtain the central field theory of interest in this paper:

Z5E DNa~x,t!d~Na
221!exp~2Sb@Na#2Simp!,

Sb@Na#5
1

2cg0
E ddxE

0

1/T

dt@~]tNa!21c2~¹xNa!2#,

Simp5E
0

1/T

dtF iSAa~n!
dna~t!

dt G
with na~t![Na~x50,t!. ~2.3!

We will setc51 in the remainder of the paper as it does n
appear in any essential manner in any of our expressions
it can be easily reinserted by dimensional analysis. The B
phase inSimp is invariant under global spin rotations and
independent of the gauge choice forAa . Using an analysis
very similar to that presented in I, it can be shown, order
order in (d21), that there are no relevant perturbations
the terms shown in Eqs.~2.3! at the quantum critical point
Furthermore, the Berry phaseSimp turns out to be anexactly
marginal perturbation to the bulk critical point, whose co
pling constant~S! is protected by its topological nature
There is only a single remaining coupling constant inZ, and
that is the bulk couplingg0, and its renormalization is unaf
fected by the presence of a single impurity spin. As in R
15, all bulk and impurity spin correlations can be compu
order by order ing0 in a diagrammatic perturbation theor
We defer discussion of the structure of this diagramma
expansion to Appendix A. We note here that this perturbat
theory makes no assumptions on the value of the impu
spin S, and the Berry phase is fully accounted for at ea
order in the perturbation theory ing0.

It is worth noting here that a perturbation theory in po
ers ofg0 can also be generated for an arbitrary value ofg,
with na(t)ÞNa(x50,t) ~no expansion ing or S is needed
here!. In this case there is an additional gapped excitat
corresponding to the deviation of the impurity spin from t
bulk antiferromagnetic spin fluctuations~the gap of this ex-
citation is of orderg). This perturbation theory is somewh
more cumbersome and is discussed briefly in Appendix
06441
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III. PERTURBATION THEORY AT LOW T

Before embarking upon the subtleties of a renormalizat
group analysis~and the associated analytic continuation
dimensionality!, it is useful to examine the expressions
Appendix A 1 directly in 1,d<2, in a regime where pertur
bation theory is valid. Perturbation theory holds for smallg0
or, alternatively, for ‘‘large’’rs . Consequently, direct pertur
bative results can be obtained in the renormalized-class
region withT!rs .

We discuss some important features of the perturba
theory here, with further details appearing in Appendix
For dimensions 1,d<2, there is long-range magnetic ord
for g0,gc at T50, but rotation symmetry is restored at an
T.0. This singular phenomenon is accounted for by a tw
step integration procedure which has been discussed in d
in Secs. 6.3.2 and 7.1.2 of Ref. 16: first we integrate out
modes with Matsubara frequencyvnÞ0 and then subse
quently perform a rotational average over the static modes
an exact procedure. The first step is easily performed b
perturbation theory in which we assume that the local m
netic order is polarized along, say, the (0,0,1) direction.
obtain an expansion for the free energy in the presence o
applied magnetic fieldHa , which we assume has the valu

Ha5~H' ,0,H i!. ~3.1!

This expansion is discussed in some detail in Appendix
and yields the following expression for the free energy:

F52T ln Z5F02mHi2
1

2
x iH i

22
1

2
x'H'

2 ; ~3.2!

hereF0 is the free energy in zero field. In Eq.~3.2!, m has
the apparent interpretation of the local magnetic momen
the impurity, whilex',i appear to be the transverse and lo
gitudinal susceptibilities. However, it must be kept in min
that we are working in aT.0 regime where the magneti
order is ultimately averaged over and som, x i ,' are merely
intermediate quantities which arise in our computation a
do not have independent physical meaning. Forg0,gc the
momentm is quantized exactly at the valuem5S at T50,
but corrections do appear atT.0, as shown in Appendix
A 1. Following the method discussed in Sec. 6.3.2 of Ref.
to the order in perturbation theory being considered here,
second step of rotational averaging over the directions of
local magnetization leads to the following expression for
physical magnetic susceptibility:

x5
m2

3T
1

1

3
x i1

2

3
x' . ~3.3!

Only the final quantityx imp is a physical observable a
T.0.

We can divide the contributions to the quantities in E
~3.3! to those arising from the bulk antiferromagnet~which
are proportional to its volume! and to those associated wit
the impurity. First, for completeness, we recall results for
bulk susceptibilities, which are implicitly expressed per u
volume; there is no bulk contribution to the magnetic m
mentm. The results of bare perturbation theory for the bu
9-3
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susceptibilities quantities are given in Eqs.~A6! and ~A7!.
We reexpress the results by replacingg0 by the physicalrs ;
these two quantities are related by16

rs5
1

g0
F12g0E ddk

~2p!d

1

2k
1O~g0

2!G . ~3.4!

In this manner, we obtain

x',b5rs2E ddk

~2p!d S 1

k~ek/T21!
2

T

k2D ,

x i ,b5E ddk

~2p!d S 1

2sinh2@k/~2T!#
2

2T

k2 D . ~3.5!

Notice that both expressions have an ultraviolet diverge
for d>2 and so depend on the upper cutoff of the mom
tum integration. However, this divergence disappears in
physical bulk susceptibility

xb5
1

3
x i ,b1

2

3
x',b

5
2

3
rs1

1

3E ddk

~2p!d S 1

2sinh2@k/~2T!#
2

2

k~ek/T21!
D

5
2rs

3c2
1

T

3pc2
for d52. ~3.6!

The last expression has been evaluated ind52, and we have
reinserted factors ofc; this result has appeared earlier in t
literature.17,18

It is also interesting to see how Eq.~3.6! can also be
obtained by the dimensionally regularized expressions
Eqs.~A6! and ~A7!. In dimensional regularization, the rela
tionship ~3.4! becomes simplyrs51/g0; substituting this
into the integrals already evaluated in Eqs.~A6! and~A7! we
obtain

xb5
2rs

3
2

2

3
pd/222G~22d/2!z~22d!Td21; ~3.7!

hereG(s) is the gamma function andz(s) is the Riemann
zeta function. Equation~3.7! agrees with Eq.~3.6! after using
z(0)521/2.

After subtracting out the bulk contributions to Eq.~3.2!,
we are left with the impurity magnetization and susceptib
ties. These can be computed by the same method as fo
bulk susceptibilities. We will discuss the impurity respon
to a uniform magnetic field atT.0 in Sec. III A. Section
III B will consider the case of a local magnetic field applie
only in the vicinity of the impurity site, while Sec. III C
generalizes our results to a uniform magnetic field atT50.

A. Impurity susceptibility at TÌ0

Evaluating first the frequency summations in Eqs.~A9!,
then inserting Eq.~3.4!, we obtain the following result for
the impurity magnetic momentm as an expansion in 1/rs :
06441
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m5SF11
T

rs
H E ddk

~2p!d S 1

k2
2

1

4T2sinh2@k/~2T!#
D J

3H 11
T

rs
E ddp

~2p!d S 1

pT~ep/T21!

2
1

4T2sinh2@p/~2T!#
D J G . ~3.8!

Notice that while intermediate terms@like those in Eq.~3.4!#
had a linear ultraviolet divergence ind52, the final expres-
sions only have a logarithmic dependence upon the ultra
let cutoff in d52. Unlike the case for the bulk susceptibilit
above, this divergence will not cancel against any other te
We can evaluate the integrals in Eq.~3.8! with a cutoffL in
d52 and obtain in the limitL/T→`

m5SF11S T

2prs
2

T2

4p2rs
2D ln

L

T G , d52. ~3.9!

As we noticed above for the bulk susceptibility, the res
~3.9! can also be obtained in a somewhat simpler manne
the dimensionally regularized expressions in Appendix A
Using the integrals already evaluated in Eqs.~A9! we obtain

m5S1m1

Td21

rs
1m2

T2(d21)

rs
2

, ~3.10!

where

m15
S~12d!

2p22d/2
G~12d/2!z~22d!,

m25
S~d223d12!

4p42d
@G~12d/2!z~22d!#2. ~3.11!

Finally, we take the limitd→2 in Eqs.~3.11!. This is found
to be singular, asm1,2 both develop poles in (22d). In par-
ticular m1→1/@2p(22d)# and m2→21/@4p2(22d)#. As
is conventional, we may identify the poles in (22d) with the
logarithmic dependence upon the cutoff, and in this man
our earlier result~3.9! is seen to be perfectly consistent wi
Eqs.~3.10! and ~3.11!.

We may proceed in a similar manner to an evaluation
the expressions forx', imp and x i , imp in Eqs. ~A10! and
~A11!. Here, rather than using a momentum cutoff, we u
the insights gained above to proceed with the simpler dim
sional regularization method. Inserting the resulting expr
sions into Eq.~3.3! we obtain the final result

x imp5
1

T FS2

3
1x1

Td21

rs
1x2

T2(d21)

rs
2 G , ~3.12!

where

x15
S2~12d!

3p22d/2
G~12d/2!z~22d!,
9-4
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x25
S2

24p42d
@G~12d/2!#2$~2d226d15!z~422d!

12~3d228d15!@z~22d!#2%. ~3.13!

As below Eqs.~3.11!, upon taking the limitd→2, the ex-
pressions in Eqs.~3.13! are seen to have simple poles in (
2d) with x15S2/@3p(22d)# and x252S2/@6p2(2
2d)#; we replace the poles by ln(L/T) and thence obtain the
result ~1.4! announced in the Introduction. We have al
checked Eq.~1.4! directly in d52 by estimating the value o
momentum integrals with a finite cutoff, using integran
similar to Eq.~3.8! obtained from Appendix A 1.

Close to the critical point, the expansion~3.12! implies
that for general 1,d,2, the smally expansion of the scal
ing functionF(y) in Eq. ~1.2! has the structure

F~y→0!5
S2

3
1x1yd211x2y2(d21)1•••, ~3.14!

with the universal numbersx1,2 specified in Eqs.~3.13!. The
d→2 limit of x1,2 then leads directly to Eq.~1.3!. We are
unable to obtain the values of the universal constantsC̃3,4
because accurate results for the critical point are only p
sible for d close to 1, but in that case the logarithms of E
~1.3! are absent.

A significant feature of these results forx imp is that while
there is a (T/rs)ln(1/T) term, the (T/rs)

2ln2(1/T) terms
have canceled against each other; alternatively stated
double pole in (22d) that is apparently present in Eq
~3.13! „associated with@G(12d/2)#2

… turns out to have van
ishing residue becausez(0)521/2. This is an indication
that this particular logarithmic singularity does not expone
tiate upon inclusion of higher-order terms and is rathe
consequence of Goldstone spin-wave fluctuations, as
posed to a critical singularity.

B. Local susceptibility at TÌ0

We now consider thelocal susceptiblityx loc which is the
response to a field applied at the impurity site only. This is
be distinguished from the impurity susceptibility which is t
response to a uniform field, after subtracting out the b
contribution. The smallg0 expansion forx loc is discussed in
Appendix A 2. The relationship~3.3! now generalizes to

x loc5
mloc

2

3T
1

1

3
x i , loc1

2

3
x', loc , ~3.15!

and expressions for the terms on the right-hand side~RHS!
appear in Eq.~A12!. Evaluating the frequency summation
and the momentum integrals with a cutoffL we obtain in
d52

x loc5
Sloc

2

3T
1S S2

3prs
1

C3L1C4T

rs
2 D lnS L

T D1•••.

~3.16!

HereSloc is a nonuniversal impurity moment which depen
upon microscopic details like the local coupling consta
06441
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and the precise location over which the field is applied. It
in general, not equal toS, the moment which appears i
x imp . Similarly, C3,4 are nonuniversal numbers. Note, how
ever, that as in Eq.~1.4!, there is no term of order
(T/rs

2)ln2(1/T).

C. Zero-temperature response to an applied field

The divergent impurity susceptibilities obtained above
T→0 suggest that the response to a field will be singula
T50.

At T50, the magnetic symmetry is broken ford.1 and
small g0, and so the quantitiesm, x i , imp, andx', imp retain
their separate physical identities and can be distinguis
experimentally.

The calculation of the impurity response to a magne
field at T50 proceeds in a manner similar to that atT.0.
The first crucial observation is that we now have2

m5S,

x i , imp50, ~3.17!

to all orders ing0. This is a consequence of a ‘‘gauge inva
ance’’ of the actionZ associated with the preserved symm
try of rotations about thez axis and the transformation~A1!.
Explicitly, it is not difficult to check that upon converting th
frequency summations to integrals in Eqs.~A9! and ~A11!
and evaluating the frequency integrals, the results in E
~3.17! hold to orderg0

2—this is a strong check on our com
putations.

It remains to compute the transverse susceptibilityx', imp.
Because of the broken-spin rotation symmetry, this quan
is not protected by gauge invariance~the gauge symmetry is
‘‘broken’’ !, and it has nonzero contributions at each order
perturbation theory. However, certain terms in the pertur
tion theory have an infrared divergence ford<2 in the pres-
ence of the fully O~3!-symmetric Hamiltonian, and so w
examine the full nonlinear dependence of the impurity fr
energy on the applied field,Fimp(H'). The perturbative
computation ofFimp is described in Appendix A 4, and from
Eq. ~A16! we obtain for 1,d,2

Fimp~H'!2Fimp~0!52 f 1

H'
d

rs
1•••,

f 1[
S2G~12d/2!

2~4p!d/2
. ~3.18!

This result and the structure of the perturbation theory
Appendix A 4 suggest the follow universal scaling form f
the critical behavior ofFimp(H') near the critical point:

Fimp~H'!2Fimp~0!52H'FFS H'

rs
1/(d21)D ; ~3.19!

the results here and in I imply that this scaling form holds
all 1,d,3. The results of I implicitly assumed an analyt
dependence ofFimp on small H'

2 , so thatFF(y);y for
9-5
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smally. However, our computations here show that this a
lyticity holds only for d.2 and that there is a leadin
nonanalytic dependence withFF(y→0);yd21 for 1,d
,2. Precisely, ind52, there is a pole inf 1 defined in Eqs.
~3.18!, and as in our discussion form, this implies a loga-
rithmic singularity

FF~y→0!5
S2

4p
y ln~1/y!1 C̃Fy1•••, ~3.20!

where C̃F is an unknown universal number. In the order
state ind52, well away from the critical point, we hav
from Eq. ~A16! and as in Eq.~1.4!,

Fimp~H'!2Fimp~0!52
S2H'

2

4prs
lnS C3rs

H'
D ,

g0!gc , H'→0, ~3.21!

whereC3 is a nonuniversal number. The logarithmic sing
larities in Eqs. ~3.20! and ~3.21! can be cutoff by spin
anisotropies in the underlying Hamiltonian, as has been
lustrated in Appendix A 4.

IV. RENORMALIZATION GROUP THEORY
OF CRITICAL PROPERTIES

There is already a well-established theory15 for the bulk
phase transition atg05gc . Here we will show how this
theory can be extended to impurity correlations. This will
done with a single additional impurity wave function reno
malization constantZ8—from the perspective of boundar
critical phenomena, this is a boundary renormalization fac
at the impurity sitex50. As noted earlier, the Berry phase
Simp is an exactly marginal perturbation to the bulk critic
point: it is protected by its topological nature, and hen
there is no additional coupling constant renormalization
sociated with the impurity spin. We will use this critica
theory to obtain results for the impurity and local suscep
bilities at T.0 and for the field dependence of the free e
ergy atT50.

First, let us recall the bulk renormalization theory fro
Ref. 15. There is a field renormalization factorZ defined by

Na~x,t!5AZNR,a~x,t!, xÞ0, ~4.1!

whereNRa is the renormalized field. In the present quantu
impurity context, this renormalization will be adequate at
spatial points away from the impurity, as has been indica
above. Second, Ref. 15 has a coupling constant renorma
tion

g05
gZ1m12d

Sd11
, ~4.2!

where g is the renormalized dimensionless coupling co
stant,m is a cutoff momentum scale, and

Sd[
2pd/2

~2p!dG~d/2!
~4.3!
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is a phase-space factor. To two-loop order and in the mini
subtraction scheme, these bulk renormalization constants
given by15

Z511
2g

e
1

3g2

e2
,

Z1511
g

e
1

g2

e2
~11e/2!, ~4.4!

where

e5d21. ~4.5!

These constants give the beta function

b~g!5eg2g22g3, ~4.6!

which has a fixed point atg5g* which describes the bulk
quantum critical point, with

g* 5e2e21O~e3!. ~4.7!

Let us now turn to the impurity correlations. These r
quire only an additional boundary wave function renorm
ization which we define by

Na~x50,t!5AZ8NR,a~x50,t!. ~4.8!

We discuss the computation ofZ8 in Appendix A 3, where
we find

Z8

Z
512

2p2g3S2

3e
1O~g4!. ~4.9!

This renormalization constant implies that impurity spin co
relations behave as

^Na~x50,t!Na~x50,0!&;
1

th8
, g05gc , ~4.10!

where

h85e1h1b~g!
d lnZ8

dg U
g5g*

5e1h22p2S2e31O~e4!.

~4.11!

Hereh is the nearly vanishing anomalous dimension of t
bulk critical point which was mentioned in Sec. II—it con
trols the decay ofNa correlations sufficiently far away from
the impurity:

^Na~x,t!Na~x,0!&;
1

te1h
, g05gc , x→`.

~4.12!

The results in Appendix A 1 can also be easily used
obtain ane expansion for the universal constantC1 in Eq.
~1.5! which determines the anomalous Curie response ofx imp
at the critical point. We begin by substituting the renorm
ized couplingg defined by Eq.~4.2! into the dimensionally
regularized expression forx imp defined by Eqs.~3.3!, ~A9!,
9-6
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~A10!, and ~A11!. We expand the resulting expression
orderg2 and then expand the coefficient of each such term
powers ofe. Consistency of the theory demands that poles
e cancel at this point, and this is indeed the case. Finally
substitute the fixed-point valueg5g* in Eq. ~4.7! into this
expression. We find that all dependence uponm disappears a
this point, which is strong evidence for the universality e
pressed by Eq.~1.2!; the final expression then yields

C15
S2

3 F112e1S 11
p2

12D e21O~e3!G . ~4.13!

As is also the case with the bulk exponents in thed511e
expansion, we do not expect the estimate of Eq.~4.13! to be
accurate ate51. As discussed in I, we expect on physic
grounds thatS2/3,C1,S(S11)/3.

Next we consider the local susceptibility. As in I, th
diverges near the critical point as

x loc;T211h8F locS T

rs
1/(d21)D , ~4.14!

with F loc a universal scaling function; the small argume
behavior ofF loc should be compatible with Eq.~3.16!, while
its infinite argument limit is a constant. By analysis similar
that outlined in the previous paragraph, the expression
Appendix A 2 can be verified to be consistent with Eq.~4.14!
and the value ofh8 in Eq. ~4.11!.

Finally, we turn to the response to an applied field aT
50, discussed earlier in Sec. III C and also in Appendix A
At the critical point, any appliedH' will induce long-range
magnetic order in the bulk19 for d.1. The scaling form Eq.
~3.19! nevertheless holds asrs→0, and we therefore obtain

Fimp~H'!2Fimp~0!52CFH' , g05gc , ~4.15!

where CF[FF(`) is a universal number. This univers
number can be obtained directly from Eq.~A16! by the
methods discussed above forx imp , and we obtain

CF5
pS2

2
e1O~e2!. ~4.16!

V. CONCLUSIONS

This paper has introduced the field theory~2.3! as a de-
scription of the low-temperature properties of arbitrary sta
impurities in quantum antiferromagnets. The bulk fluctu
tions of the antiferromagnet are described by the fami
O~3! quantum nonlinear sigma model. Remarkably, this v
erable and strongly interacting field theory permits an
actly marginal perturbation, albeit on a ‘‘boundary,’’ whic
has not been noticed before: this is the topological Be
phase of a spinS impurity. We have computed here th
physical consequences of this marginal perturbation and
obtained a new description of the spin dynamics of the
purity.

A preliminary comparison has been made20 between our
theoretical result~1.4! and the numerical results of Ref. 6
Reasonable agreement is found for the impurity suscept
06441
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ity of a vacancy, and a more detailed comparison will app
later.

Near the quantum critical point associated with the loss
long-range antiferromagnetic order, our results were obtai
in an expansion in (d21). Key scaling features of thes
results were found to be in good accord with those obtai
earlier in a (32d) expansion in I. In particular, right at th
critical point, we confirmed the existence of a Curie 1T
impurity spin susceptibility but with an anomalous Cur
constant not given by an integer or half-odd-integer sp
Our new result for the Curie constant is in Eq.~4.13!. Al-
though the numerical estimates for critical properties o
tained from the (d21) expansion seem rather unreliabl
this expansion nevertheless provides convincing evidence
the existence of a strongly coupled impurity fixed point w
the physical properties discussed herein and in I.
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APPENDIX A: DIAGRAMMATIC PERTURBATION
THEORY

We will consider perturbation theory in the presence of
applied uniform magnetic fieldHa under which Eq.~2.3! is
modified by

]tNa→]tNa2 i eabgHbNg ,

Simp→Simp2SHaE
0

1/T

dtNa~x50,t!. ~A1!

This construction ensures thatHa couples to a conserve
total spin of the Hamiltonian.

As in Refs. 15 and 16, the perturbation theory ing0 is
generated by assuming thatNa is locally polarized along a
particular direction@say ~0,0,1!# and by expanding in devia
tions of Na about this direction. We do this here with th
following parametrization in terms of a complex fieldc,
adapted from the Holstein-Primakoff representation:

Na5S c1c*

2
A22ucu2,

c2c*

2i
A22ucu2,12ucu2D .

~A2!

The advantage of the representation~A2! is that with the
gauge choice

Aa~n!5
1

11nz
~2ny ,nx ,0!, ~A3!

the Berry phase takes the following simple exact form:
9-7
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iAa~n!
dna

dt
5

1

2 S c*
]c

]t
2c

]c*

]t D , ~A4!

where the right-hand side is to be evaluated atx50. Further-
more, the measure term in the functional integral also has
simple form

E DNad~Na
221!5

1

2E DcDc* . ~A5!

The remaining terms in the action are obtained by inser
Eqs.~A1! and~A2! into Eqs.~2.3! and expanding the result
in powers ofc—this yields a number of nonlinearities whic
are analogous to those that appear in Ref. 15, and these
be used to generate a Feynman graph expansion in a si
manner. We summarize the propagator and the vertices
the order needed in our computation here, in Fig. 1.

First, we recall the results for the bulk response in
absence of the impurity. The free energy is expanded a
Eq. ~3.2!, and this leads to the diagrams in Fig. 2 to orderg0

0.
There is no bulk linear dependence onHa to all orders ing0,
and hencem50 in the absence of the impurity. To quadra
order in Ha we have the bulk susceptibilities~per unit vol-
ume!

FIG. 1. Propagator and vertices appearing in the calculatio

the order needed. The weight of the fifth term is@kW2•kW31v2v3

1kW1•(kW21kW32kW1)1v1(v21v32v1)#/(4g0).
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x',b5
1

g0
1~2a!,

~2a!52T (
vnÞ0

E ddk

~2p!d

1

vn
21k2

522Td21J1~2p!d22z~22d! ~A6!

and

x i ,b5~2a!1~2b!,

~2a!52T (
vnÞ0

E ddk

~2p!d

1

vn
21k2

54Td21J1~2p!d22z~22d!,

~2b!524T (
vnÞ0

E ddk

~2p!d

vn
2

~vn
21k2!2

528Td21J2~2p!d22z~22d!, ~A7!

where

Ja[
G~a2d/2!

~4p!d/2G~a!
. ~A8!

As discussed in Sec. III, all intermediate Matsubara f
quencies in all diagrams in this appendix are summed o
over nonzero values; the integration over the ze
Matsubara-frequency modes leads to Eq.~3.3!. There are no
infrared divergences in any graph~because of the summatio
over nonzero Matsubara frequencies!, while ultraviolet di-
vergences appear in individual graphs ford>1. We also list
the expressions for the individual graphs obtained in the
mensional regularization method, obtained by analytic c
tinuation from thed,1 region—these will be useful in ou
renormalization group analysis. The dimensionally regu
ized expressions ware obtained by first performing the m
mentum integrations, and the frequency summations are
naturally expressed in terms of the Riemann zeta func
z(s). There are also many sensitive cancellations in

to

FIG. 2. Diagrams for the bulk susceptibilities to orderg0
0.
9-8
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ultraviolet divergences of the various graphs considered
this appendix, and these will appear as a cancellation
poles in the dimensionally regularized expressions. In S
III we have also considered the expressions of this appe
directly in d52 without dimensional regularization, an
these results illustrate the cancellation of ultraviolet div
gences upon expression of the results in terms of phys
observables.

The application of the perturbation theory towards co
putation of physical properties of the impurity in differe
regimes will be presented in separate subsections below

1. Impurity susceptibility at TÌ0

We first address the computation of the impurity magne
susceptibility,x imp at nonzero temperatures.

The diagrams for the perturbative expressions for the
purity contributions to the quantities in Eq.~3.2! are shown
in Figs. 3–5. Now there is a contribution to linear order
H i , and Fig. 3 yields the following expressions form:

m5S1~3a!1~3b!1~3c!1~3d!,

FIG. 3. Diagrams contributing tom to orderg0
2.

FIG. 4. Diagram contributing tox', imp to orderg0
2 at T.0.
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~3a!52Sg0T (
vnÞ0

E ddk

~2p!d

1

vn
21k2

522Sg0Td21J1~2p!d22z~22d!,

~3b!52Sg0T (
vnÞ0

E ddk

~2p!d

vn
2

~vn
21k2!2

54Sg0Td21J2~2p!d22z~22d!,

~3c!522Sg0
2T2F (

vnÞ0
E ddk1

~2p!d

vn
2

~vn
21k1

2!2G
3F (

enÞ0
E ddk2

~2p!d

1

en
21k2

2G
528Sg0

2T2d22J1J2@~2p!d22z~22d!#2,

~3d!54Sg0
2T2F (

vnÞ0
E ddk

~2p!d

vn
2

~vn
21k2!2G 2

516Sg0
2T2d22J 2

2@~2p!d22z~22d!#2. ~A9!

Similarly, for x', imp we only have the diagram in Fig. 4
which yields

FIG. 5. Diagrams contributing tox i , imp to orderg0
2.
9-9
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x', imp5~4!,

~4!5S2g0
2T (

vnÞ0
E ddk1

~2p!d

ddk2

~2p!d

vn
2

~vn
21k1

2!2

1

~vn
21k2

2!
,

52S2g0
2T2d23J1J2~2p!2d24z~422d!. ~A10!

Finally, for x i , imp, we have the diagrams in Fig. 5, from
which we obtain

x i , imp5~5a!1~5b!1~5c!1~5d!1~5e!,

~5a!5S2g0
2T (

vnÞ0
E ddk1

~2p!d

ddk2

~2p!d

1

~vn
21k1

2!

1

~vn
21k2

2!

52S2g0
2T2d23J 1

2~2p!2d24z~422d!,

~5b!54S2g0
2T (

vnÞ0
E ddk1

~2p!d

ddk2

~2p!d

vn
4

~vn
21k1

2!2

1

~vn
21k2

2!2

58S2g0
2T2d23J 2

2~2p!2d24z~422d!,

~5c!58S2g0
2T (

vnÞ0
E ddk1

~2p!d

ddk2

~2p!d

vn
4

~vn
21k1

2!3

1

~vn
21k2

2!

516S2g0
2T2d23J3J1~2p!2d24z~422d!,

~5d!528S2g0
2T (

vnÞ0
E ddk1

~2p!d

ddk2

~2p!d

3
vn

2

~vn
21k1

2!2

1

~vn
21k2

2!

5216S2g0
2T2d23J1J2~2p!2d24z~422d!,

~5e!522S2g0
2T (

vnÞ0
E ddk1

~2p!d

ddk2

~2p!d

3
vn

2

~vn
21k1

2!2

1

~vn
21k2

2!

524S2g0
2T2d23J1J2~2p!2d24z~422d!.

~A11!

2. Local susceptibility at TÌ0

The response to a field applied only near the impurity s
can be computed as in Appendix A 2. Only the graphs
Figs. 3~a! and 5~a! now contribute, and we have therefore

mloc5S1~3a!,

x i , loc5~5a!,

x', loc50, ~A12!
06441
e
n

where the values of the respective graphs are as specifie
Eqs.~A9! and ~A11!.

3. Spin correlations atTÄ0

The methods above can also be extended to obtain im
rity spin correlations atT50 and g05gc . As long as we
restrict ourselves to rotationally invariant correlation fun
tions, direct perturbation theory ing0 is free of infrared di-
vergences. For the impurity spin correlation in Eq.~4.10!, the
first corrections which depend upon the presence of the
purity do not appear until orderg0

3: these arise from the
graphs shown in Fig. 6 and lead to the following expressi

^Na~x50,t!Na~x50,0!&

5112g0
3S2E dv

2p

ddk1

~2p!d

ddk2

~2p!d

ddk3

~2p!d

3
v2@12cos~vt!#

~v21k1
2!~v21k3

2!~v21k3
2!

1•••.

~A13!

Here the ellipses denote numerous lower-order terms wh
do not depend upon the presence of the impurity and he
are the same atx50 andxÞ0; the first term which breaks
translational invariance is shown in Eq.~A13!. The integrals
in Eq. ~A13! can be easily evaluated in dimensional regul
ization, and the second term in Eq.~A13! equals

2
2g0

3S2@G„~22d!/2…#3G~3d23!cos@3p~d21!/2#

~4p!3d/2pt3d23
.

~A14!

Picking out the pole ine in Eq. ~A14!, we immediately ob-
tain Eqs.~4.9!.

4. Response to a field atTÄ0

As discussed in Sec. III C, we need the impurity cont
bution to the free energy in the presence of an applied tra
verse magnetic fieldH' , Fimp(H'). We will see that the
response is singular asH'→0. The singularity can be cutof
by an easy-axis spin anisotropy, and for completeness,
perform the computation in the presence of such an ani
ropy. So we modify the action by

Sb@Na#→Sb@Na#2
D

2 E ddxE
0

1/T

dtNz
2 . ~A15!

FIG. 6. Lowest-order diagram contributing to the correlator
Eq. ~A13! which depends upon the presence of the impurity. T
3 ’s denote external sources for the fields.
9-10
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Because we are now computing the free energy to
orders in the applied field, the Feynman graph expansio
quite tedious, and we will be satisfied by obtaining the res
only to orderg0. The computation is done most simply usin
the Cartesian components;„c1c* ,2 i (c2c* )…, and to
leading order ing0, only the graph shown in Fig. 7 contrib
utes. Note that this diagram did not appear in the comp
tion at T.0 because of the restriction there to summat
over nonzero Matsubara frequencies and thed function in
frequency associated with the vertex in Fig. 7; the lead
term inx', imp was of orderg0

2 at T.0. From the diagram in
Fig. 7 we obtain

Fimp~H'!52
g0H'

2 S2

2 E ddk

~2p!d

1

k21D1H'
2

52
g0H'

2 S2

2
J1~D1H'

2 !(d22)/2. ~A16!

This graph has a logarithmic singularity ind52. The same
logarithm appeared in a different manner in theT.0 com-
putation: it was present in Fig. 3~a!. Ultimately it is onlyx imp
that is physically measurable atT.0, and it is clear now tha
the logarithm appears in different places depending upon
different organizations of perturbation theory atT50 and
T.0.

APPENDIX B: PERTURBATION THEORY
FOR GENERAL g

The computations elsewhere in this paper have been
ited to the case in which the coupling between the impu
spin and bulk antiferromagnetic spin fluctuations,g, has ef-
fectively been sent to infinity. We have argued that this lim
appears naturally in the vicinity of the quantum critical poi
This appendix will consider the generalg case and conside
the extent to which the low-T properties away from the criti
cal point are independent of the value ofg.

We shall be concerned here with the partition function

Zg5E DNa~x,t!d~Na
221!Dnad~na

221!

3exp~2Sb@Na#2Simp,g!,

Simp,g5E
0

1/T

dtF iSAa~n!
dna~t!

dt
2gSNa~x50,t!na~t!G ,

~B1!

whereSb@Na# is as in Eqs.~2.3! andAa(n) is defined by Eq.
~2.2!. In principle, it is possible to generate an expansion

FIG. 7. Diagram contributing to the free energyF(H') to order
g0. at T50. The propagator represents thex component ofNa and
includes the open square vertex in Fig. 1 to all orders inH' , along
with the easy-axis anisotropy in Eq.~A15!; it equalsg0 /(v21k2

1D1H'
2 ).
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powers ofg0, with each term containing its exact depe
dence ong and S; this requires an exact treatment of th
impurity spin fluctuations, and this can be done by t
method described in Appendix C of I. Here, we shall use
method described above in Appendix A with a parametri
tion similar to Eq.~A2! applied also tona . By this method,
it is not difficult to obtain results order by order ing0, drop-
ping only diagrams with a ‘‘tadpole’’ factor of the impurity
spin propagator~i.e., with a simple closed loop of the impu
rity spin propagator!—these are easily seen to have a pr
actor of e2g/T ~we assume, without loss of generality, th
g.0).

We now present results to orderg0 for the impurity spin
susceptibility atT.0, computed above in Appendix A 1. W
will omit all details and merely present final results to lea
ing order ing0. Dropping terms with a prefactor ofe2g/T,
we found

m5S2g2Sg0T (
vnÞ0

E ddk

~2p!d F 1

~vn
21k2!~2 ivn1g!2

1
2ivn

~vn
21k2!2~2ivn1g!

G,
x i , imp52gSg0T (

vnÞ0
E ddk

~2p!d F 4vn
2

~vn
21k2!3

2
1

~vn
21k2!2

1
g

~vn
21k2!~2 ivn1g!3

1
g

~vn
21k2!2~2 ivn1g!

1
2igvn

~vn
21k2!2~2 ivn1g!2

2
4gvn

2

~vn
21k2!3~2 ivn1g!

G ,

x', imp5gSg0T (
vnÞ0

E ddk

~2p!d F 1

~vn
21k2!2

2
g

~vn
21k2!2~2 ivn1g!

G . ~B2!

It is now easy to check that theg→` limit of these expres-
sions is finite and indeed agrees precisely with the orderg0
results forx imp obtained in Sec. III A and Appendix A 1; this
is a nontrivial check of our computations. Evaluation of t
frequency summations in Eqs.~B2! is a tedious but straight
forward exercise. After this, we combine the results us
Eq. ~3.3! and evaluate the momentum integrals at lowT as in
Sec. III, while keepingg finite; in the limit of T!g,L we
obtain ind52

x imp5
S2

3T F11S T

prs
2

T2

pSrsg
D lnS L

T D G . ~B3!

Notice that the coefficient of the (1/rs)ln(1/T) is indepen-
dent ofg and that it agrees with Eq.~1.4!. Also, at finiteg,
the Tln(1/T) term does acquire a nonuniversalg-dependent
correction.
9-11
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APPENDIX C: LOW-TEMPERATURE PROPERTIES
IN dÄ3

This appendix briefly describes the extension of our
sults tod53. The bulk quantum critical point ind53 does
not satisfy strong-scaling properties, and so we will not c
sider it here. We will focus only on the low-T properties
within the magnetically ordered state, well away from a
quantum critical point.

Magnetic long-range order is present for a finite range
T.0, and so the magnetic response remains anisotrop
T→0. The quantitiesm, x', imp, x i , imp retain their separate
physical identities and can be measured separately.

The low-T expansions form, x', imp, and x i , imp are ob-
tained as in Appendix A. Indeed, now we need not sepa
thevn50 and thevnÞ0 modes as there is long-range ord
for T.0: the expressions in Appendix A can therefore
used here, after converting all frequency summations to
over both zero and nonzero values of Matsubara frequen
In this manner, Eq.~3.8! is modified to

m5SF12
T

rs
H E d3k

~2p!3

1

4T2sinh2@k/~2T!#
J

3H 11
T

rs
E d3p

~2p!3 S 1

pT~ep/T21!

2
1

4T2sinh2@p/~2T!#
D J G . ~C1!

Evaluating the momentum integrations and reinserting f
tors of c, we obtain

m5SS 12
T2

6crs
1

T4

72c2rs
2

1••• D . ~C2!

Interestingly, the expression~C2! can also be obtained sim
ply by settingd53 in Eq. ~3.10!. For the finite-g case, dis-
cussed in Appendix B, theT2 term above remains un
changed, while theT4 term does acquireg-dependent
corrections.

The results forx i , imp and x', imp now follow from Eqs.
~A11! and~A10!. Settingd53 in the dimensionally regular
ized expressions here, we find that the coefficient of the u
versalT3 term vanishes for both quantities. However, the
are nonuniversalT2 corrections for bothx i , imp and x', imp,
and these have to be estimated directly from the express
in Eqs.~A11! and~A10!: the frequency summations have
be evaluated first~including the zero Matsubara frequencie!,
and then the momentum integrations have to be evalu
with a finite cutoff.

Similar techniques apply to the response to a local fi
discussed in Appendix A 2. Now we obtain the universal c
rection

mloc~T!2mloc~0!52
ST2

12crs
~C3!
06441
-

-

f
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te
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-

along with nonuniversalT2 corrections tox', loc and x i , loc .
The factor of 2 difference between theT2 terms in Eqs.~C3!
and ~C2! is an interesting characteristic of the theory.

APPENDIX D: QUANTUM CRITICAL IMPURITY
SUSCEPTIBILITY

It has been claimed by Sushkov3 that the Curie constan
remainsC151/4 for aS51/2 impurity at the quantum critica
point of an antiferromagnet. Here we show using the mo
of his paper that there is a perturbative correction to
impurity susceptibility and that this implies an anomalo
Curie constant. Of course, the possibility remains open
the (32d) and (d21) expansions both fail ind52 near the
critical point, but reasons for such a possible failure do
appear in Sushkov’s arguments.

Sushkov models the bulk spin fluctuations at the quant
critical point using aS51 bosonta , as in Ref. 21. These
bosons are coupled to the external magnetic fieldH ~assumed
oriented along thez axis! and to the impurity momentŜa .
This gives us the model considered by Sushkov:

H5H01H1 ,

H05(
k

(
m50,61

~«~k!2mH!tm
† ~k!tm~k!2HŜz ,

H15lfaŜa , ~D1!

wherek is the momentum of theta bosons with energy«(k)
and

fa5(
k

1

A2«~k!
@ ta~k!1ta

†~k!# ~D2!

and

tx5~ t11t21!/A2,

ty5 i ~ t12t21!/A2,

tz5t0 . ~D3!

It can be checked thatH couples to the total spin, which
commutes with the Hamiltonian.

Now we compute the free energyF in a power series inl
in arbitrary H. To second order inl, this is done by the
familiar formula

F52T ln Tre2H0 /T

2TE
0

1/T

dtE
0

t

dt1

Tr@e2H0 /TH1~t!H1~t1!#

Tre2H0 /T
, ~D4!

where

H1~t!5eH0tH1e2H0t. ~D5!

Everything in Eqs.~D4! and ~D5! can be evaluated analyti
cally by simple means, and then we can perform the integ
over t and t1—this was done using the computer progra
9-12
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MATHEMATICA for arbitraryH andS, without using any dia-
grammatic perturbation theory. Finally, we can expand
result in powers ofH and obtain for the impurity suscept
bility

x imp5
S~S11!

3T
1

2l2S~S11!

3T2 (
k

e«(k)/T

«~k!2~e«(k)/T21!2
.

~D6!

This result agrees precisely with that obtained using a
grammatic approach in I. It disagrees with that of Sushk
who did not obtain any correction to the first free-mome
term—he does not appear to have considered the cross
relation between the bulk magnetization of theta and the
impurity magnetization. Note that this disagreement appe
n

ys
d

06441
e

-
v,
t
or-

rs

already at the level of bare perturbation theory and does
involve any of the subtleties associated with approaching
scaling limit at the critical point in thee or 1/N expansions.

In the quantum-disordered regime above the paramagn
phase, we can model«(k)5Ac2k21DT

2, whereDT;D.0
is the spin gap2,21; here Eq.~D6! predicts a contribution of
order e2D/T to the susceptibility, and so the moment is i
deed precisely quantized atS.

However, in the quantum critical region2 we haveDT

;T, and then Eq.~D6! yields a contribution to the suscep
tibility of order l2Td24. For d,3, the dimensionless com
bination l2Td23 approaches a universal value at the fix
point, and a universal irrational correction to the Curie te
applies, as shown in much detail in I.
. B
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