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Quantum impurity in an antiferromagnet: Nonlinear sigma model theory
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We present a formulation of the theory of an arbitrary quantum impurity in an antiferromagnet, using the
0O(3) nonlinear sigma model. We obtain the low-temperature expansion for the impurity spin susceptibilities of
antiferromagnets with magnetic long-range order in the ground state. We also consider the bulk quantum phase
transition ind=2 to the gapped paramagnet is the spatial dimensionThe impurity is described solely by
a topological Berry phase term that is an exactly marginal perturbation to the critical theory. The physical
properties of the quantum impurity near criticality are obtained by an expansiah-id ).
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[. INTRODUCTION arbitrary quantum impurity(e.g., a vacangywhich leads to
a net deficit or excess of spBiin its vicinity (after account-
Recent papefs have presented a general field-theoreticaling for the sublattice alternatipnAt a temperaturd above
discussion of the low-energy properties of a sBiimpurity  the gapped paramagnet phase, wijb>g. and a spin gap,
embedded in an antiferromagnet or a superconductor whicthis impurity will contribute an impurity spin susceptibility
is in the vicinity of a bulk spin-ordering quantum transition.
These studies were motivated by a variety of recent experi-
ments studying Zn and Ni impurities in the cuprate supercon- _S(S+1)
ductors and spin-gap compounds. The motivations and prior Ximp= "3 90~ e (1.1
work have been discussed in some detail in Reheteafter

referred to as)land so will not be repeated here. Further ) ]
theoreticaP* numericall~" and experimentiwork on these ~ With exponentially small corrections a&—0 (we setf:

issues has also appeared, and we will discuss some of thes&ks=1 and have absorbed factors of the gyromagnetic ratio
results below. There has also been related work on impuritfind the Bohr magneton in the definition of the external mag-
models in systems with fermionic excitatioh¥ netic flelq). We can view Eq(l.l) asa deflnltlo_n of the value
The purpose of this paper is to provide additional result£f S (which must be an integer or half odd intepéor the
for the same quantum impurity problem using a differentquantum impurity. In the magnetically ordered phase with
field-theoretic formulation. The results in | were obtained90<9c. there are much stronger corrections to the isolated
using an expansion in (3d), whered is the spatial dimen- impurity behavior because of the presence of broken-spin
sionality. Stimulated mainly by the recent results cigimd ~ rotation symmetry aff=0 and gapless excitations in the
and Sandvil, we have succeeded in obtaining a formulationPulk; in dimensionsd<2 the symmetry is restored at any
which permits an expansion ie=d—1, and this will be T>0, and corrections to the impurity susceptibility can be
described in the present paper. The universal scaling strud¥ritten in the scaling forrh
ture we shall describe below in the{1) expansion turns
out to be identical to that obtained in | using the—<8)
expansion. This is strong evidence that a fixed point with the 1 P
same scaling properties does indeed describe the physical Ximp™= T
situation ind=2.
Throughout this paper, we will implicitly assume in our
discussion that £d< 3, unless stated otherwise. The only wherepg is the spin stiffness of the bulk-ordered antiferro-
exception is Appendix C, where we will present results inmagnet in the absence of the impurity ands the bulk
d=3. Also we will sete=(d—1), whereas in | the same spin-wave velocity. In the limiT—0, it was argued in | that
symbol was used for (3d). ®(0)=S?%/3 exactly. This prediction has been verified re-
Let us outline the main results of | and those that will becently in the numerical study by Htund and Sandvik.On
presented here. Consider a simple two-dimensional quantuthe basis of the (3 d) expansion, the subleading behavior
antiferromagnet which undergoes a quantum transition fron®(y— 0)= S?/3+ Cgy, with C; a universal number, was pro-
a magnet Nel state to a gapped, confining paramagnet withposed ford=2 in I. Hoglund and Sandvfkalso tested this
only integer spin excitations—e.g., a model of coupled spirsubleading behavior and argued that it did not hold—instead
ladders'! We tune the antiferromagnet across this transitiorthey proposed the presence of IA{Lterm. We will show
with a generalized coupling,, such that there is N order  here that their proposal is indeed correct and that precisely in
for gp<g. and a gapped paramagnet fgy>>g.. Insert an d=2 the behavior in the limiT <ps is

-
[c(d=2) -1

) ' gOSQC! (12)
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P g2 B ? ments in Appendix D. The present paper will show that Eq.
d(y—0)= 3 + 3.7 In(1ly)+C3y— —2y2In(1/y) (1.5 is obeyed also in thed(—1) expansion: in this case the
™ 6 (d—1) expansion provides terms as corrections to the “clas-
sical” moment value 06%/3, and details of this appear in the
body of the text, and the final result is in E¢.13.

with C5, unknown universal constants. The In(L/depen- A n_umber of qther results for univgrsal p.roperties of the
dence is special td=2 and does not appear at any finite MPUrity correlations were provided in | using the {8)
order in the (3-d) expansion, and this is the reason it was&xPansion. All of these can also be computed in de {)
overlooked in I. Subleading singularities in the smakéx-  €xpansion, and in every case we find complete agreement in
pansion do appear naturally in the{1) expansion pre- the structure of the scallng properties. _Detalls of such com-
sented in this paper. We also note here that @@ was Putations also appear in the body of this paper. ,
obtained with no assumptions on the valueSothe S depen- The f_ollowmg section will mt_roduce the nonl!near sigma
dences in the coefficients are therefore exact. model field theory which describes the dynamics of an im-
The subdominant In(T) dependence implied by Eq. pgrity in a quantum gntiferromagnet. _Section 1] \{vill theq
(1.3 [and the anomalous powers gfin Eq. (3.14] is a discuss the pert_urbanve structure of this .theqry, with dgtalls
consequence of spin-wave Goldstone fluctuations 4nd1 O the perturbative computations appearing in Appendix A.
<2 and does not involve the critical singularitiesgat=g. We W!” show hovy to deduce ]ow-temperature properties us-
in an essential way. Consequently,ds- 2, this In(LT) de- ing fchls_perturbatu_)n thgory. Finally, Sec. IV presents a renor-
pendence should also be present in antiferromagnets wi alization analysis which allows us to deduce the physical

9o<9., which are not especially close to any quantum criti-characteristics of the critical point.
cal point. In this situation can surmise that E#.3 implies

+Cpy2+ - -, (1.3

Il. FIELD THEORY

2 2
i ST |n(C1pS) T |n(C2pS) This section will introduce the field-theoretical formula-
P3T TPs T 2m2p? T tion of the quantum impurity dynamics which enables an
5 expansion of its universal properties in the—<1) expan-
Lo I < 7.0, d=2, (14 sion. In contrast to our earlier (3d) expansion, which used
ps) |’ Yo=Ye. ' ' ’ a “soft-spin” formulation of the bulk antiferromagnetic fluc-

tuations, the presentd(-1) expansion will use the “fixed-
where, in general, the constar@s , are nonuniversalonly  length” representation of the @) nonlinear sigma model.
as we approach the quantum critical point agd-0 doC, , We begin by recalling our earlier soft-spin formulation.
become universal, and then Hd.4) is seen to be consistent The bulk spin fluctuations of the antiferromagnet are repre-
with Eq. (1.3). The In(1) correction in Eq(1.4) is related  sented by the real fiele,(x,7), with =1, . ..,3 anindex
to the logarithmic frequency dependences discussed by Naepresenting the spin componerta d-dimensional spatial
gaosaet al!?and Chernysheet al* To the extent that sharp coordinate, andr the imaginary time. The impurity spin is
spin waves are also present in ordered metallic antiferromaglaced at the origin of coordinates=0, and is represented
nets, Eq(1.4 may also apply to such systerts. by a unit length fieldh,(7), and the bulk and impurity fluc-

As we will see shortly, Eq(1.4) is obtained for the case tuations are coupled in the partition function

where the coupling between the impurity and bulk antiferro-
magnet has scaled to infinity. This implies that at low ener- - 5 ~ ~
gies the impurity moment is effectively locked along the di- Z:j D a(X, 1) PN o(7) 5N~ 1) XA — Sl o] = Simp).
rection of the local orientation of the bulk antiferromagnetic
order. While such locking is appropriate near the quantum _ T
critical point, it is nota priori clear whether it should also SimpIJ dr —¥S¢o(Xx=0,7)n,(7) |.
hold at low T above a well-ordered antiferromagnet with 2.
0o0<<g.. We will briefly address this issue by also examining ‘
the case of finite couplingsee Appendix B we find that the  The transition in the bulk antiferromagnet is described by the
coefficient of the (145)In(1/T) term in Eq.(1.4) remains usualg? theory which is represented B[ ¢,] as in I. The

universal, but there are nonuniversal corrections to th?irst term in the impurity actioﬁa‘imp is the Berry phase of the

Tin(L/T) term. impurity at siter, andA,(n) is a “Dirac monopole” function
A separate category of our results concefns, at the purity at siter, @ P
which satisfies

guantum critical poingy=g,.. These correspond to the large
y, T>pg, limit of Eq. (1.2). Here, it was argued in | that JA.(n)
Y

dn,(7)

T

ISA,(n)

€upy——— =N,. 2.2
D(y—=) =0y, (1.5 7 on 2.2
with C; a universal number. A (3d) expansion foiC; was  Finally, v is the coupling between the impurity and bulk
provided in 1, and it contained nontrivial corrections to the degrees of freedom which will be important in our consider-
free moment value 08(S+ 1)/3. Sushko¥ has questioned ations below. At they=0 fixed point, the bulk and boundary
the existence of such corrections, but we reply to his argudegrees of freedom are decoupled, and the coupying a
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relevant perturbation with scaling dimension<8-— %)/2 Ill. PERTURBATION THEORY AT LOW T
(7 is the anomalous dimension of the bulk critical point, and
its value is very close to zeyoThe small scaling dimension
of v neard=3 was the key feature which was used to gen-
erate the (3-d) expansion of the coupled bulk-impurity
theory.

Let us now turn to spatial dimensions just abale 1.
For the bulk theory, it is known that an expansion of the
critical properties can be generated ikrad—1 expansion ;
by representing the bulk spin fluctuations by a fixed-length
field N (x, 7)< ¢,(x,7) and with the action of the @3) non-
linear sigma mode® At the same time, the coupling has a
scaling dimensionr=1 and so is strongly relevant near
=0. This suggests that a better approach now would be t
start near they=c limit. At y=<, the impurity degrees of
freedomn,(7) would follow the bulk spin fluctuations per-
fectly, and hencen,(7)=N_,(x=0,7). In this manner we
obtain the central field theory of interest in this paper:

Before embarking upon the subtleties of a renormalization
group analysigand the associated analytic continuation in
dimensionality, it is useful to examine the expressions in
Appendix A1 directly in k<d=<2, in a regime where pertur-
bation theory is valid. Perturbation theory holds for snggll
or, alternatively, for “large”ps. Consequently, direct pertur-
bative results can be obtained in the renormalized-classical
egion withT<<py.

We discuss some important features of the perturbation
theory here, with further details appearing in Appendix A.
For dimensions ¥ d=<2, there is long-range magnetic order
for go<g. atT=0, but rotation symmetry is restored at any
$>0. This singular phenomenon is accounted for by a two-
step integration procedure which has been discussed in detail
in Secs. 6.3.2 and 7.1.2 of Ref. 16: first we integrate out the
modes with Matsubara frequenay,#0 and then subse-
quently perform a rotational average over the static modes by

an exact procedure. The first step is easily performed by a
Z=f DN, (X,7) 5(Ni— Lyexp(— SNyl = Simp)s perturbation theory in which we assume that the local mag-

netic order is polarized along, say, the (0,0,1) direction. We
obtain an expansion for the free energy in the presence of an

1 ur
SN, 1= Fgof ddxf0 dr{(d,N,)%+c?(VN,)?], applied magnetic fieltH,,, which we assume has the value
Ha:(HL 101H||) (31)
wo dn,(7) : o : . .
Simpzf d7|iSA,(n) q This expansion is discussed in some detail in Appendix A1l
0 T and yields the following expression for the free energy:
with  n (7)=N_,(x=0,7). (2.3

1 1
F=-ThZ2=F—mH-sxHf-5x.H?; (3.2
We will setc=1 in the remainder of the paper as it does not 0 1= 2 XM~ g X 3.2

appear in any essential manner in any of our expressions, arﬁ%re}}) is the free energy in zero field. In E(@.2), m has

Yhe apparent interpretation of the local magnetic moment of
the impurity, whilex, | appear to be the transverse and lon-
itudinal susceptibilities. However, it must be kept in mind
that we are working in &>0 regime where the magnetic
order is ultimately averaged over and 80 x| , are merely
intermediate quantities which arise in our computation and
do not have independent physical meaning. §g< g, the
momentm is quantized exactly at the value=S at T=0,
but corrections do appear at>0, as shown in Appendix
A l. Following the method discussed in Sec. 6.3.2 of Ref. 16,
to the order in perturbation theory being considered here, the
'second step of rotational averaging over the directions of the
ocal magnetization leads to the following expression for the
cphysical magnetic susceptibility:

phase inSiy, is invariant under global spin rotations and is
independent of the gauge choice fy,. Using an analysis
very similar to that presented in |, it can be shown, order b
order in d—1), that there are no relevant perturbations to
the terms shown in Eq$2.3) at the quantum critical point.
Furthermore, the Berry phasg,, turns out to be aexactly
marginal perturbation to the bulk critical point, whose cou-
pling constant(S) is protected by its topological nature.
There is only a single remaining coupling constanginand
that is the bulk couplingy, and its renormalization is unaf-
fected by the presence of a single impurity spin. As in Ref
15, all bulk and impurity spin correlations can be compute
order by order ingq in a diagrammatic perturbation theory.
We defer discussion of the structure of this diagrammati

expansion to Appendix A. We note here that this perturbation m2 1 2

theory makes no assumptions on the value of the impurity X= 3—T+ §XH+§XJ. . 3.3

spin S and the Berry phase is fully accounted for at each

order in the perturbation theory iy. Only the final quantity iy, is a physical observable at
It is worth noting here that a perturbation theory in pow-T>0.

ers ofgy can also be generated for an arbitrary valueypf We can divide the contributions to the quantities in Eq.

with n,(7) #N,(x=0,7) (no expansion iny or Sis needed (3.3 to those arising from the bulk antiferromagrethich
herg. In this case there is an additional gapped excitatiorare proportional to its volumeand to those associated with
corresponding to the deviation of the impurity spin from thethe impurity. First, for completeness, we recall results for the
bulk antiferromagnetic spin fluctuatiorithe gap of this ex-  bulk susceptibilities, which are implicitly expressed per unit
citation is of ordery). This perturbation theory is somewhat volume; there is no bulk contribution to the magnetic mo-
more cumbersome and is discussed briefly in Appendix B. mentm. The results of bare perturbation theory for the bulk
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susceptibilities quantities are given in Eq86) and (A7).
We reexpress the results by replacingby the physicaps;
these two quantities are related'by

1

Ps=——
* go

In this manner, we obtain

1-— fﬂiﬂ% 2) (3.4
gO (27T)d 2k gO . .

- _J' d% 1 _ l
X1,b=Ps (2’7T)d k(ek/T_l) k2 y

- f dv ( 1 _ 2_T (3.5
Xo= ) 2md | 2sinfik(2T)] K2 |

PHYSICAL REVIEW B68, 064419 (2003

m=S| 1

ll

ddk ( 1 1 )
(2m)9\ k>  AT%sink[k/(2T)]

o I 9 ( !

ps) (2m)9\ pT(ePT-1)
- ! (3.9
AT%sint[p/(2T)]1/ | | '

Notice that while intermediate ternfiike those in Eq(3.4)]

had a linear ultraviolet divergence @+ 2, the final expres-
sions only have a logarithmic dependence upon the ultravio-
let cutoff ind=2. Unlike the case for the bulk susceptibility
above, this divergence will not cancel against any other term.
We can evaluate the integrals in E8.8) with a cutoff A in

Notice that both expressions have an ultraviolet divergencq_» and obtain in the limit\/T — oc
for d=2 and so depend on the upper cutoff of the momen-

tum integration. However, this divergence disappears in the

physical bulk susceptibility

1 2

szgXll,b+§XJ_,b
2 +1f ddk( 1 2
377 3) (2m)\ 2sinf[k/(2T)]  Kk(e&¥T—1)
2ps T
=—+4 for d=2. 3.6
3c?  3mc? 38

The last expression has been evaluated=t2, and we have

reinserted factors of; this result has appeared earlier in the

literature!”18

It is also interesting to see how E(B.6) can also be

T2
27ps 4772p§

A
T

m=S| 1+ In—=|, d=2. (3.9

As we noticed above for the bulk susceptibility, the result
(3.9 can also be obtained in a somewhat simpler manner by
the dimensionally regularized expressions in Appendix A1l.
Using the integrals already evaluated in E@$9) we obtain

obtained by the dimensionally regularized expressions in

Egs. (A6) and (A7). In dimensional regularization, the rela-

tionship (3.4) becomes simplyp,=1/gy; substituting this
into the integrals already evaluated in E(s6) and(A7) we
obtain

20, 2
Xo= g~ 5 m (2= d2) (2 - )T,

3.7
hereI'(s) is the gamma function and(s) is the Riemann
zeta function. EquatiofB8.7) agrees with Eq(3.6) after using
(0)=—-1/2.

After subtracting out the bulk contributions to E®.2),

Td*l TZ(d*l)
m=S+m, +my———, (3.10
Ps Ps
where
S(1—d)
ml=mf(1—d/2)§(2—d),
S(d?—3d+2) ,
mzzﬁ[r(l—d/Z)g(Z—d)] . (311)
aa

Finally, we take the limid—2 in Eqgs.(3.11). This is found
to be singular, as; , both develop poles in (2d). In par-
ticular m;—1[27(2—d)] and m,— —1[47?(2—d)]. As
is conventional, we may identify the poles in<{2l) with the
logarithmic dependence upon the cutoff, and in this manner
our earlier result3.9) is seen to be perfectly consistent with
Egs.(3.10 and(3.13).

We may proceed in a similar manner to an evaluation of
the expressions foly, imp and x imp iN Egs. (A10) and

we are left with the Impurlty magnetization and SUSCGptlblIl-(Al]_) Here, rather than using a momentum cutoff, we use
ties. These can be computed by the same method as for thge insights gained above to proceed with the simpler dimen-

bulk susceptibilities. We will discuss the impurity responsesjonal regularization method. Inserting the resulting expres-
to a uniform magnetic field at>0 in Sec. lll A. Section  sjons into Eq(3.3) we obtain the final result

[l B will consider the case of a local magnetic field applied
only in the vicinity of the impurity site, while Sec. Il C
generalizes our results to a uniform magnetic field &t0.

T2(d-1)

+ X2 ;
Ps ps

1 SZ Td*l

Ximp:? ?"'Xl

(3.12

A. Impurity susceptibility at T>0 where

Evaluating first the frequency summations in EG&9),
then inserting Eq(3.4), we obtain the following result for
the impurity magnetic momemh as an expansion in Af:

_SH(1-d)

X1 WF(l—d/Z)g(Z—d),
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? and the precise location over which the field is applied. It is,
X2=—4_d[1“(1—d/2)]2{(2d2—6d+5){(4—2d) in general, not equal t& the moment which appears in
24 Ximp- Similarly, C5 4 are nonuniversal numbers. Note, how-
+2(3d?—8d+5)[£(2—d)]2). (3.13 ever, that as in Eq.1.4), there is no term of order

(T/p2)In¥(LIT).

As below Egs.(3.11), upon taking the limitd—2, the ex-
pressions in Eqe3.13 are seen to have simple poles in (2 C. Zero-temperature response to an applied field
—d) with x;=S%Y[37(2—d)] and y,=—S%[67%(2 _ _ _ —_— :
—d)]; we replace the poles by IA(T) and thence obtain the The divergent impurity susceptibilities obtained above as
result (1.4) announced in the Introduction. We have also ! —0 suggest that the response to a field will be singular at
checked Eq(1.4) directly ind=2 by estimating the value of '~ ) _
momentum integrals with a finite cutoff, using integrands At T=0, the magnetic symmetry is broken fdr-1 and
similar to Eq.(3.8) obtained from Appendix A1. small go, and so the quantitiesy, x| imp, andx.imp retain

Close to the critical point, the expansi¢8.12 implies their separate physical identities and can be distinguished

that for general £d<2, the smally expansion of the scal- &Xperimentally.

ing function®(y) in Eq. (1.2) has the structure . The calculation of the impurity response to a magnetic
field at T=0 proceeds in a manner similar to thatTat0.
? The first crucial observation is that we now have
D(y—0)=—+x1y HHxy? @Y+ (319
3 m=S,

with the universal numberg, , specified in Eqs(3.13. The
d—2 limit of x;, then leads directly to Eq1.3. We are X|.imp=0, (3.17

unable to obtain the values of the universal const@¥s g all orders ing,. This is a consequence of a “gauge invari-

b_ecause accurate results_for the critical point are only possnce” of the actionZ associated with the preserved symme-

sible ford close to 1, but in that case the logarithms of Eq. v of rotations about the axis and the transformatiog1).

(1.3 are absent. _ _ Explicitly, it is not difficult to check that upon converting the
AS|gn|f|cant feature of these results f)pz{mpzls that while frequency summations to integrals in EGA9) and (A11)

there is a T/pg)In(L/T) term, the [T/pg)“IN“(1/T) terms  4nq evaluating the frequency integrals, the results in Egs.

have canceled against each other; alternatively stated, trtgl?) hold to orderg2—this is a strong check on our com-

double pole in (2-d) that is apparently present in Egs. putations. 0

(3.13 (associated withl"(1-d/2)]*) tumns outto have van- ™"y o raing 1 compute the transverse susceptibiitym, -

ishing residue becausi{0)=—1/2. This is an indication pgeca,se of the broken-spin rotation symmetry, this quantity
that this particular logarithmic singularity does not exponen+q ot protected by gauge invariantthe gauge symmetry is
tiate upon inclusion of higher-order terms and is rather ayoren) and it has nonzero contributions at each order in
consequence of Goldstone spin-wave fluctuations, as ORsertyrhation theory. However, certain terms in the perturba-
posed to a critical singularity. tion theory have an infrared divergence tb&2 in the pres-
ence of the fully @3)-symmetric Hamiltonian, and so we

B. Local susceptibility at T>0 examine the full nonlinear dependence of the impurity free

We now consider théocal susceptiblityy,,. which is the —energy on the applied field7,,(H,). The perturbative
response to a field applied at the impurity site only. This is tocomputation ofF;,,, is described in Appendix A4, and from
be distinguished from the impurity susceptibility which is the Ed. (A16) we obtain for kd<2
response to a uniform field, after subtracting out the bulk g
contribution. The smaly, expansion fory,,. is discussed in F(H )= Fo (0)=—f EJF o
Appendix A 2. The relationshig3.3) now generalizes to impA =~ L 'mp Y ps '
mi. 1

2 2 _
Xloc:3_T+§X|\,Ioc+§XJ_,IOCv (3.19 ST(1-d?)

fiI=——m~—. 1
to20am (.18
and expressions for the terms on the right-hand sRidS) ) ) )
appear in Eq(A12). Evaluating the frequency summations This res_ult and the structure of th_e perturbatl_on theory in
and the momentum integrals with a cutoff we obtain in Appendix A4 suggest the follow universal scaling form for

d=2 the critical behavior ofFi,,(H,) near the critical point:
She [ S CaA+C,T| (A B Ho |
- oc il DT FioH) = Fimp(0)=—H, & A ———|; (3.19
Xloc 3T + 37Tps + pg n T + . impUt i imp 1L ¥ F p;_/(d 1)

(316 the results here and in | imply that this scaling form holds for
Here S is a nonuniversal impurity moment which dependsall 1<d<3. The results of | implicitly assumed an analytic
upon microscopic details like the local coupling constantsdependence ofF,,, on small H?, so that® y)~y for
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smally. However, our computations here show that this anais a phase-space factor. To two-loop order and in the minimal
lyticity holds only for d>2 and that there is a leading subtraction scheme, these bulk renormalization constants are
nonanalytic dependence with {y—0)~y®~* for 1<d  given by®

<2. Precisely, id=2, there is a pole iri; defined in Eqgs.

(3.18, and as in our discussion fan, this implies a loga- 2g 3¢°
R : z=1+ =2+ =
rithmic singularity € 2
o 0) s IN(1iy)+Cry+ (3.20 2
—~0)=—vVvIn S i
AY=0= 42y 7 2,=1+ 2+ % (1+ef2), (4.4
€

whereC is an unknown universal number. In the ordered

state ind=2, well away from the critical point, we have "here

from Eq.(A16) and as in Eq(1.4), e=d—1. (4.5
SPH? [ Caps These constants give the beta function
~EmMHL}_fMﬁ0):__4WP H J 2 3
s B(9)=€eg—g°—g°, (4.6
0o<0., H,—0, (3.2)  which has a fixed point aj=g* which describes the bulk

. . o uantum critical point, with
whereC; is a nonuniversal number. The logarithmic smgu-q P

larities in Egs.(3.20 and (3.21) can be cutoff by spin g* =e— 2+ O(€%). 4.7
anisotropies in the underlying Hamiltonian, as has been il-
lustrated in Appendix A4. Let us now turn to the impurity correlations. These re-
quire only an additional boundary wave function renormal-
IV. RENORMALIZATION GROUP THEORY ization which we define by
OF CRITICAL PROPERTIES
N, (x=0,7)=Z'Ng o(x=0,7). (4.9
There is :_all_ready a_well—establlshed _thelarf.or the buIl§ We discuss the computation @ in Appendix A3, where
phase transition ajo=g.. Here we will show how this we find
theory can be extended to impurity correlations. This will be
done with a single additional impurity wave function renor- Z' 2m2g3S?
malization constanZ’—from the perspective of boundary 7=1— TJrO(g“). 4.9

critical phenomena, this is a boundary renormalization factor
at the impurity sitex=0. As noted earlier, the Berry phase in This renormalization constant implies that impurity spin cor-
Simp IS @n exactly marginal perturbation to the bulk critical relations behave as
point: it is protected by its topological nature, and hence
there is no additional coupling constant renormalization as-
sociated with the impurity spin. We will use this critical
theory to obtain results for the impurity and local suscepti-
bilities at T>0 and for the field dependence of the free en-where
ergy atT=0.

First, let us recall the bulk renormalization theory from _,_ ( din
Ref. 15. There is a field renormalization facébdefined by

1
<Na(X:017)Na(X=OIO)>~_1 90=9Yc» (410

’
-

!

=e+ -2+ O(e%).
g=g*
(4.12)

Here 7 is the nearly vanishing anomalous dimension of the
whereNg, is the renormalized field. In the present quantumbulk critical point which was mentioned in Sec. Il—it con-
impurity context, this renormalization will be adequate at alltrols the decay oN, correlations sufficiently far away from
spatial points away from the impurity, as has been indicateghe impurity:

above. Second, Ref. 15 has a coupling constant renormaliza-

tion

N,(X,7)=VZNg o(X,7), X#0, (4.0

(N4(X,7)N,(X,0))~

d et 90=Ge, X=*.
4.2 (4.12

The results in Appendix A1 can also be easily used to
obtain ane expansion for the universal constaiit in Eq.
(1.5 which determines the anomalous Curie responsg.qf

o 2 at the critical point. We begin by substituting the renormal-
S(j;# (4.3  ized couplingg defined by Eq(4.2) into the dimensionally
(27)T'(d/2) regularized expression foyim, defined by Eqs(3.3), (A9),

g 94
S

where g is the renormalized dimensionless coupling con-
stant,u is a cutoff momentum scale, and
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(A10), and (A11). We expand the resulting expression to ity of a vacancy, and a more detailed comparison will appear
orderg? and then expand the coefficient of each such term idater.

powers ofe. Consistency of the theory demands that poles in  Near the quantum critical point associated with the loss of
€ cancel at this point, and this is indeed the case. Finally wéong-range antiferromagnetic order, our results were obtained
substitute the fixed-point valug=g* in Eq. (4.7) into this in an expansion ind—1). Key scaling features of these
expression. We find that all dependence upodisappears at results were found to be in good accord with those obtained
this point, which is strong evidence for the universality ex-earlier in a (3-d) expansion in . In particular, right at the
pressed by Eq1.2); the final expression then yields critical point, we confirmed the existence of a Curid 1/
impurity spin susceptibility but with an anomalous Curie
constant not given by an integer or half-odd-integer spin.
Our new result for the Curie constant is in Eg.13. Al-
though the numerical estimates for critical properties ob-
tained from the —1) expansion seem rather unreliable,
this expansion nevertheless provides convincing evidence for
the existence of a strongly coupled impurity fixed point with
the physical properties discussed herein and in I.

C —SZ 1+ il
173 12
As is also the case with the bulk exponents in thel+ e
expansion, we do not expect the estimate of @dl3 to be
accurate ak=1. As discussed in I, we expect on physical
grounds thaS?/3<C;<S(S+1)/3.
Next we consider the local susceptibility. As in |, this
diverges near the critical point as

2

1+2e+ €+ 0(ed)|. (4.13
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Finally, we turn to the response to an applied fieldTat
=0, discussed earlier in Sec. lll C and also in Appendix A4.
At the critical point, any appliedH, will induce long-range We will consider perturbation theory in the presence of an
magnetic order in the bulk for d>1. The scaling form Eq. applied uniform magnetic fieltf , under which Eq(2.3) is
(3.19 nevertheless holds gag—0, and we therefore obtain modified by

XlochilJr 7 Do

APPENDIX A: DIAGRAMMATIC PERTURBATION
THEORY

Fimp(H1) = Fimp(0)=—C/AH. . Go=0c,  (4.19 INy— 3Ny —i€gzHgN,,
where C=® () is a universal number. This universal
number can be obtained directly from EEA16) by the _ . ur B
methods discussed above fgf,,, and we obtain Simp— Simp™ SHa 0 d7N,(x=0.7). (A1)

2

TS
C}-ZTE-FO(GZ). (4.16

This construction ensures thét, couples to a conserved
total spin of the Hamiltonian.

As in Refs. 15 and 16, the perturbation theorygg is
generated by assuming thist, is locally polarized along a
particular directior{say(0,0,1] and by expanding in devia-

This paper has introduced the field the¢®3) as a de- tions of N, about this direction. We do this here with the
scription of the low-temperature properties of arbitrary staticfollowing parametrization in terms of a complex field,
impurities in quantum antiferromagnets. The bulk fluctua-adapted from the Holstein-Primakoff representation:
tions of the antiferromagnet are described by the familiar

V. CONCLUSIONS

O(3) quantum nonlinear sigma model. Remarkably, this ven- A =t
erable and strongly interacting field theory permits an ex- Ng= 2 v2—|¢|2,Tv2—|¢|2,1—|¢|2 :
actly marginal perturbation, albeit on a “boundary,” which (A2)

has not been noticed before: this is the topological Berry
phase of a spirS impurity. We have computed here the The advantage of the representatigh®) is that with the
physical consequences of this marginal perturbation and sgauge choice
obtained a new description of the spin dynamics of the im-
purity.
A preliminary comparison has been malibetween our
theoretical resul{1.4) and the numerical results of Ref. 6.
Reasonable agreement is found for the impurity susceptibilthe Berry phase takes the following simple exact form:

1
Aa(n)zl_l_—nz(_ny!n)(lo)l (AB)
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ok 9o
” @2+k2
o,k ® (a)
1> —@——2 _S(-in+H)

(b)

FIG. 2. Diagrams for the bulk susceptibilities to orasgr

1
Xi,b:_+(2a)7
Yo

di 1
2a)=—T —_—
(2a) wnz;zo (2m)9 w2+k?
=—2T9" t 7 (2m) 9 2(2—d) (AB)
o,k o,k
—B—— (H,2-H2/2)/g, and
=(2a)+(2b),
ok ok X|,b=(2a)+(2b)
—<—#% —>—+# 228H d(w)
di 1
FIG. 1. Propagator and vertices appearing in the calculation to (2a)=2T 2;&0 W Tkz
the order needed. The weight of the fifth term[ls- kz+ w,w3 " ) @n
+Ky - (Ko+ kg—Ky) + 01( 02+ 03— 01)1/(490). =474 17 (2m) 9 2¢(2—d),
dn, 1( A aw*) ddk w?
iAg(n) —— =S| ¢* ——— : A4 2b)=—4T T
( ) dr 2 aT aT ( ) ( ) w%O (27T)d (wﬁ+ k2)2
_ d-1 d-2
where the right-hand side is to be evaluate®-a0D. Further- = 8T " Jp(2m)" 7{(2—d), (A7)
more, the measure term in the functional integral also has th\?/here
simple form
I'(a—d/2)
) 1 jaE T (A8)
J DNaﬁ(Na—1)=§J DYDy*. (A5) (4m)7<T'(a)

As discussed in Sec. lll, all intermediate Matsubara fre-

The remaining terms in the action are obtained by insertingjuencies in all diagrams in this appendix are summed only
Egs.(Al) and(A2) into Egs.(2.3) and expanding the results over nonzero values; the integration over the zero-
in powers ofiyy—this yields a number of nonlinearities which Matsubara-frequency modes leads to B33). There are no
are analogous to those that appear in Ref. 15, and these cifrared divergences in any gragbecause of the summation
be used to generate a Feynman graph expansion in a similaver nonzero Matsubara frequengiewhile ultraviolet di-
manner. We summarize the propagator and the vertices, igergences appear in individual graphs @ee1. We also list
the order needed in our computation here, in Fig. 1. the expressions for the individual graphs obtained in the di-

First, we recall the results for the bulk response in themensional regularization method, obtained by analytic con-
absence of the impurity. The free energy is expanded as itinuation from thed<1 region—these will be useful in our
Eq. (3.2, and this leads to the diagrams in Fig. 2 to org&r renormalization group analysis. The dimensionally regular-
There is no bulk linear dependenceldp to all orders ingg, ized expressions ware obtained by first performing the mo-
and hencen=0 in the absence of the impurity. To quadratic mentum integrations, and the frequency summations are then
order inH_, we have the bulk susceptibilitigper unit vol-  naturally expressed in terms of the Riemann zeta function
ume {(s). There are also many sensitive cancellations in the
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-
.

180

FIG. 3. Diagrams contributing tm to orderg3.

ultraviolet divergences of the various graphs considered in
this appendix, and these will appear as a cancellation of
poles in the dimensionally regularized expressions. In Sec.
[l we have also considered the expressions of this appendix
directly in d=2 without dimensional regularization, and
these results illustrate the cancellation of ultraviolet diver-
gences upon expression of the results in terms of physical
observables.

The application of the perturbation theory towards com-
putation of physical properties of the impurity in different
regimes will be presented in separate subsections below.

1. Impurity susceptibility at T>0

We first address the computation of the impurity magnetic
susceptibility, yinp at nonzero temperatures.

The diagrams for the perturbative expressions for the im-
purity contributions to the quantities in E¢B.2) are shown
in Figs. 3—5. Now there is a contribution to linear order in
H, and Fig. 3 yields the following expressions for

m=S+(3a) +(3b) +(3c)+(3d),

PHYSICAL REVIEW B 68, 064419 (2003

FIG. 5. Diagrams contributing tg iy, to ordergﬁ.

(32— —SgT S d% 1
a)=— —_—
® on70 ) (27)9 wi+k?

=—2Sg T4 17 (2m) 9 2 (2—d),

d w?
o) (2m)9 (02+k?)?
=4Sg T4 1 7,(2m)9 2¢(2—d),

» f dik, o

w70 ) (27)9 (wi+k3)?

(3b)=2Sg,T >,
wn#

(3c)=—2SET?

d'%, 1
X J d 2 2
670 J (2m)° €,+k5

=—8SET 27, [ (2m) ¢~ 2¢(2—d)]?,

ddk w3 2
2 f )21

on20 J (2m)9 (02+K?

(3d)=4SET?

=16SETX 273 (2m) % 2¢(2—d)]2.  (A9)

Similarly, for x, inp, we only have the diagram in Fig. 4

FIG. 4. Diagram contributing tq, jmp to orderg3 at T>0. which yields

064419-9
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XJ_,imp:(4),

dd, ddk, 3 1
2m)* 2m (02+k?)? (wi+kd)’

(4)=S?g3T 2

=2SPgaT?4 73 7, Tp(2m) 2974 (4—2d). (A10)

Finally, for x| imp, We have the diagrams in Fig. 5, from

which we obtain

X|,imp=(5a) +(5b)+(5¢c) + (5d) + (5e),

ddk, d%, 1 1
(2m)9 (2m)9 (02+K2) (w2+K))

(5a)=S?g2T Z

=28%g3T?4 3 72(277)29 47 (4—2d),

do%, d% w? 1
(5b)=4Sg5T >, ld 2d 2 nz 2 2
on20 J (2m)8 (27) (02+K2)? (02+K5)

=8S%g3T?4 3 75(27)29 4 ¢(4—2d),

di%; d%, o 1

_aqc2
(5¢)=85g TE (2m)% (2m) 9 (02+Kk3)® (02+K5)

= 165293298 7,7, (2m) 24~ 4¢ (4—2d),

di%k, d%,
(2m)9 (2m)¢

(5d)=—8S%g2T Z

2
Wy 1

(wZ+kD)? (wi+K3)

= —1652g3T 37, Jp(2m) 20 4¢(4—2d),

d%; d%,
(2m? (2m)°

(5e)=—2S?g2T E

2
wp, 1

(02+kD)? (02+k3)

= —4S2g3T2973 7, T,(2m) %8~ 4¢ (4 2d).
(A11)

2. Local susceptibility at T>0

The response to a field applied only near the impurity site
can be computed as in Appendix A2. Only the graphs in
Figs. 3a) and 3a) now contribute, and we have therefore

m|oc: S+ (3a),
X||,Ioc=(53)a

X1,loc— 0, (AlZ)

PHYSICAL REVIEW B68, 064419 (2003

FIG. 6. Lowest-order diagram contributing to the correlator in
Eq. (A13) which depends upon the presence of the impurity. The
X’s denote external sources for the fields.

where the values of the respective graphs are as specified in
Eqgs.(A9) and (Al11).

3. Spin correlations atT=0

The methods above can also be extended to obtain impu-
rity spin correlations all=0 andgg=g.. As long as we
restrict ourselves to rotationally invariant correlation func-
tions, direct perturbation theory igy is free of infrared di-
vergences. For the impurity spin correlation in E410), the
first corrections which depend upon the presence of the im-
purity do not appear until ordeg: these arise from the
graphs shown in Fig. 6 and lead to the following expression:

(N,(x=0,7)N,(x=0,0))

dw ddkl ddk2 ddk3

=1+2g35% | —
9] 27 2m)0 (2m)0 (2m)

y w[1-codwT)]
(0?+K3)(0?+K3) (0?+K))

(A13)

Here the ellipses denote numerous lower-order terms which
do not depend upon the presence of the impurity and hence
are the same at=0 andx#0; the first term which breaks
translational invariance is shown in E@\13). The integrals

in Eq. (A13) can be easily evaluated in dimensional regular-
ization, and the second term in E@\13) equals

293S7[T'((2—d)/2)]°T'(3d — 3)cog 37(d— 1)/2]
N (47r)3002; 7303

(A14)

Picking out the pole ire in Eq. (A14), we immediately ob-
tain Eqs.(4.9).

4. Response to a field aT =0

As discussed in Sec. Il C, we need the impurity contri-
bution to the free energy in the presence of an applied trans-
verse magnetic field, , Fny(H,). We will see that the
response is singular &, —0. The singularity can be cutoff
by an easy-axis spin anisotropy, and for completeness, we
perform the computation in the presence of such an anisot-
ropy. So we modify the action by

D T
Sb[Na]HSb[Na]—ffddxf d7NZ.  (A15)
0

064419-10



QUANTUM IMPURITY IN AN ANTIFERROMAGNET: . .. PHYSICAL REVIEW B 68, 064419 (2003

{:‘, ( _’:r powers ofgg, with each term containing its exact depen-
dence ony and S this requires an exact treatment of the
FIG. 7. Diagram contributing to the free ener@yH ) to order impurity Spln.fluct.uatlons, gnd this can be done by the
go. at T=0. The propagator represents theomponent oN,, and method descn_bed in Appgndlx C of I.. Here_, we shall use_the
includes the open square vertex in Fig. 1 to all orderd jn along ~ Method described above in Appendix A with a parametriza-
with the easy-axis anisotropy in EA15); it equalsgy/(w?+k?  tion similar to Eq.(A2) applied also ta, . By this method,
+D+H?). it is not difficult to obtain results order by order @, drop-
ping only diagrams with a “tadpole” factor of the impurity
Because we are now computing the free energy to alspin propagatofi.e., with a simple closed loop of the impu-
orders in the applied field, the Feynman graph expansion igty spin propagatgr—these are easily seen to have a pref-
quite tedious, and we will be satisfied by obtaining the resulctor ofe™ T (we assume, without loss of generality, that
only to orderg,. The computation is done most simply using ¥>0).
the Cartesian components(y+ ¢*,—i(y—¢*)), and to We now present results to ordgy for the impurity spin
leading order irgo, only the graph shown in Fig. 7 contrib- susceptibility afr>0, computed above in Appendix A 1. We
utes. Note that this diagram did not appear in the Computawi“ omit all details and merely present final results to lead-
tion at T>0 because of the restriction there to summationing order ing,. Dropping terms with a prefactor @& ',
over nonzero Matsubara frequencies and éheunction in ~ we found
frequency associated with the vertex in Fig. 7; the leading

. . . d
terminy, jmp was of ordergS atT>0. From the diagram in 2 d°k 1
. : . m=S—y*SqgT
Fig. 7 we obtain L w%O (2m)9] (02 + k) (—iwn+y)?
goH?S? [ d% 1 Diw,
]:imp(HL): - 2 f d 2 2 + 2 12\20 i !
22
=— %oHLS Jy(D+H?2)d=2)72 (A16) d 40?2 1
2 X|,imp=27S®T 2 -1 -
’ wnr0 (279 (wi+Kk?)®  (wi+k?)?

This graph has a logarithmic singularity th=2. The same
logarithm appeared in a different manner in the0 com- v v
putation: it was present in Fig(&@. Ultimately it is only xim, 2 L T2 o -

that is physically measurable &t-0, and it is clear now that (@p Tk (—Tont )" (0p Tk (—Tonty)

the logarithm appears in different places depending upon the %i v Ayw?
different organizations of perturbation theory B0 and +—— 27 .” ST T ”_ ,
T>0. (wn+k) (—iwpty) (wn+k) (—lwyt+y)
APPENDIX B: PERTURBATION THEORY _ysgT S f d’ 1
FOR GENERAL y Xbimp= Y= T &, (2m)%] (w2+k?)?
The computations elsewhere in this paper have been lim-
ited to the case in which the coupling between the impurity _ Y _ (B2)
spin and bulk antiferromagnetic spin fluctuations,has ef- (w2+k>)2(—iwy+7y)

fectively been sent to infinity. We have argued that this limit o

appears naturally in the vicinity of the quantum critical point. It is now easy to check that thg— limit of these expres-
This appendix will consider the generglcase and consider Sions is finite and indeed agrees precisely with the ogder
the extent to which the loW- properties away from the criti- "€sults forym, obtained in Sec. Ill A and Appendix A1; this
cal point are independent of the value pf is a nontrivial check of our computations. Evaluation of the

We shall be concerned here with the partition function ~frequency summations in Eq2) is a tedious but straight-
forward exercise. After this, we combine the results using

Eq. (3.3 and evaluate the momentum integrals at Ibas in
Z‘y:f DN,(X,7) 8(NZ—1)Dn,d(n%—1) Sec. Ill, while keepingy finite; in the limit of T<y,A we
obtain ind=2
X exp( — SplNo] = Simp,y)

oA RN S EY)

UT Ximp= 3+ - AR

Simp,y:J' i iSAa(n)dngf_T) —SNL(x=0.7n,(7) . P 3T mps TSPy T

0 (B1) Notice that the coefficient of the (44)In(1/T) is indepen-

dent of y and that it agrees with Eq1.4). Also, at finitey,
whereS[N,] is as in Eqs(2.3) andA(n) is defined by Eq. the TIn(1/T) term does acquire a nonuniversgldependent
(2.2). In principle, it is possible to generate an expansion incorrection.
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APPENDIX C: LOW-TEMPERATURE PROPERTIES along with nonuniversal? corrections tox | ioc @Nd X joc-
IN d=3 The factor of 2 difference between tfié terms in Eqs(C3)

This appendix briefly describes the extension of our re-and (C2) is an interesting characteristic of the theory.

sults tod=3. The bulk quantum critical point id=3 does '
not satisfy strong-scaling properties, and so we will not con- APPENDIX D: QUANTUM CRITICAL IMPURITY
sider it here. We will focus only on the low-properties SUSCEPTIBILITY

within the magnetically ordered state, well away from any |t has been claimed by SushKbthat the Curie constant
quantum critical point. remainsC, = 1/4 for aS=1/2 impurity at the quantum critical
Magnetic long-range order is present for a finite range ofygint of an antiferromagnet. Here we show using the model
T>0, and so the magnetic response remains anisotropic &% his paper that there is a perturbative correction to the
T—0. The quantitiesn, x, imp, X|,imp retain their separate jmpurity susceptibility and that this implies an anomalous
physical identities and can be measured separately. Curie constant. Of course, the possibility remains open that
The low-T expansions fom, x, imp, and xj imp are ob-  the (3—d) and d—1) expansions both fail id= 2 near the
tained as in Appendix A. Indeed, now we need not separatgritical point, but reasons for such a possible failure do not
the w,=0 and thew,#0 modes as there is long-range ordergppear in Sushkov's arguments.
for T>0: the expressions in Appendix A can therefore be = Sushkov models the bulk spin fluctuations at the quantum
used here, after converting all frequency summations to rugritical point using aS=1 bosont,,, as in Ref. 21. These
over both zero and nonzero values of Matsubara frequenciegosons are coupled to the external magnetic fieldssumed

In this manner, Eq(3.8) is modified to oriented along the axis) and to the impurity momen$, .
This gives us the model considered by Sushkov:

o1 T J d3k 1
m=S§ 1-— =Ho+
Ps (27)3 AT2sink[k/(2T)] H=Hot Ha,
ol T - Ho=3 3 (k) mHtKtn(k)~HS,,
ps) (2m)3\ pT(e’T-1) a
1 Hl:)\(ﬁa’\sav (Dl)
- AT?%sint[p/(2T)]) | | €D Wwherek is the momentum of the, bosons with energy (k)
and
Evaluating the momentum integrations and reinserting fac-
tors ofc, we obtain 1
' = t, (k) +th(k D2
¢§28(k)[(> (k)] (D2)
T2 T4
m=S| 1- —+ S+ (c2 and
6Cps 7202ps
te=(ti+t1)/\2,
Interestingly, the expressiait2) can also be obtained sim-
ply by settingd=3 in Eq.(3.10. For the finitey case, dis- ty:i(tl—t_l)/\/i,
cussed in Appendix B, th@? term above remains un-
changed, while theT* term does acquirey-dependent t,=tg. (D3)
corrections.

The results fory|,imp and x. imp NOW follow from Egs. It can be checked thatl couples to the total spin, which

(A11) and(A10). Settingd=3 in the dimensionally regular- commutes with the Hamiltonian. . .

ized expressions here, we find that the coefficient of the uni- NOV.V we compute the free ener_gym a power series n

versal T3 term vanishes for both quantities. However, there:cn a.T_bltr?ryH.l To second order in\, this is done by the

are nonuniversal? corrections for bothy | imp @nd X imp> amifiar formuia

and these have to be estimated directly from the expressions  r— _ 1|4 Tre~Ho/T

in Egs.(A1l) and(A10): the frequency summations have to

be evaluated firdincluding the zero Matsubara frequengies T  Te M/ TH () H()]

and then the momentum integrations have to be evaluated —Tj dTJ dry T

with a finite cutoff. 0 0 Tre "o
Similar techniques apply to the response to a local fieldyhere

discussed in Appendix A2. Now we obtain the universal cor-

rection Hy(7)=eo"H, e Mo, (D5)

, (D4)

ST Everything in Egs(D4) and (D5) can be evaluated analyti-
(3 cally by simple means, and then we can perform the integrals

Mige(T) —Mip(0) = —
ol )~ Mioc(0) 12cps over 7 and r;—this was done using the computer program
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MATHEMATICA for arbitraryH and S without using any dia- already at the level of bare perturbation theory and does not
grammatic perturbation theory. Finally, we can expand thénvolve any of the subtleties associated with approaching the
result in powers oH and obtain for the impurity suscepti- scaling limit at the critical point in the or 1/N expansions.
bility In the quantum-disordered regime above the paramagnetic
SS+1) 2A2S(S+1) eI phase, we can modei(k) = Vek2+ A_z, whereA~A>0
o n _ is the spin gap?L here Eq.(D6) predicts a contribution of
P33T 372 K e(k)2(esW/T—1)2 ordere *'T to the susceptibility, and so the moment is in-
(D6)  deed precisely quantized &t

This result agrees precisely with that obtained using a dia- However, in the quantum critical regibrwe have At
grammatic approach in I. It disagrees with that of Sushkov,~ T, and then Eq(D6) yields a contribution to the suscep-
who did not obtain any correction to the first free-momenttibility of order \?T9~%. Ford<3, the dimensionless com-
term—he does not appear to have considered the cross cdrnation A>T~ approaches a universal value at the fixed
relation between the bulk magnetization of theand the point, and a universal irrational correction to the Curie term
impurity magnetization. Note that this disagreement appearapplies, as shown in much detail in I.
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