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Low-energy excitations in spin glasses from exact ground states
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We investigate the nature of the low-energy, large-scale excitations in the three-dimensional Edwards-
Anderson Ising spin glass with Gaussian couplings and free boundary conditions, by studying the response of
the ground state to a coupling-dependent perturbation introduced previously. The ground states are determined
exactlyfor system sizes up to 123 spins using a branch-and-cut algorithm. The data are consistent with a picture
where the surface of the excitations is not space filling, such as the droplet or the trivial-non-trivial~TNT!
picture, with only minimal corrections to scaling. When allowing for very large corrections to scaling, the data
are also consistent with a picture with space-filling surfaces, such as replica symmetry breaking. The energy of
the excitations scales with their size with a small exponentu8, which is compatible with zero if we allow
moderate corrections to scaling. We compare the results with data for periodic boundary conditions obtained
with a genetic algorithm, and discuss the effects of different boundary conditions on corrections to scaling.
Finally, we analyze the performance of our branch-and-cut algorithm, finding that it is correlated with the
existence of large-scale, low-energy excitations.
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I. INTRODUCTION

There is still considerable debate about the nature of
spin-glass state in finite-dimensional spin glasses. Two p
cipal theories have been investigated: the ‘‘droplet theo
proposed by Fisher and Huse1 ~see also Refs. 2 and 3!, and
the replica symmetry-breaking picture of Parisi.4–6 In the
droplet theory, the lowest-energy excitation of length scal
~a ‘‘droplet’’ ! has energy of the order ofl u, whereu is a
positive exponent. Furthermore, the droplets have a sur
with fractal dimensionds less than the space dimensiond.

Replica symmetry breaking~RSB! is well established in
mean-field theory, but it remains to be proven in finite
mensions. The precise nature of RSB in finite dimension
not uniquely defined but it is generally agreed that a k
feature of RSB is the existence of excitations whose ene
unlike that of droplets, remains of the order of unity even
their size tends to infinity. Furthermore, upon the creation
such a large-scale, finite-energy excitation, a finite fraction
the bonds changes state~from satisfied to unsatisfied, or vic
versa! or, equivalently, the surface of these excitations
space filling, i.e.,ds5d.

Recently, Krzakala and Martin7 ~KM !, and two of us8

@Palassini and Young~PY!#, have argued, on the basis
numerical calculations at zero temperature, in favor of
intermediate scenario where there are large-scale excita
whose energy does not increase with size, as in RSB,
which have a surface withds,d. Following KM, we shall
denote this the trivial-non-trivial~TNT! scenario. In the TNT
scenario, it is necessary to introducetwo exponents that de
scribe the growth of the energy of an excitation of scaleL: ~i!
u(.0) such thatLu is the typical change in energy when th
0163-1829/2003/68~6!/064413~16!/$20.00 68 0644
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boundary conditions are changed, for example, from perio
to antiperiodic, in a system of sizeL, and ~ii ! u8, which
characterizes the energy of clusters excited within the sys
for a fixed set of boundary conditions (u8 was calledug in
Ref. 7!. The TNT picture has been challenged~although in
opposite senses! by Marinari and Parisi9 and by Middleton.10

Subsequently, low-temperature Monte Carlo simulation11

have found results consistent with the TNT scenario. T
RSB, droplet, TNT and some other scenarios have been
studied by Newman and Stein.12,13 For some recent relate
work, see Refs. 14 and 15.

The work of KM and PY determined the ground state w
and without a certain perturbation~which was different in the
two cases!, designed so that the ground state of the pertur
system is a large-scale excitation of the original syste
They usedheuristic algorithms, i.e., algorithms which ar
not guaranteedto give the exact ground state, although bo
KM and PY argue that they do find the exact ground state
most cases.

In this paper, we reconsider the problem of determin
u8 and ds , following the perturbation approach of PY, de
scribed in Sec. II, but we apply anexactalgorithm, known as
‘‘branch and cut,’’16 so we are guaranteed that the tr
ground state is reached every time. Exact optimization al
rithms have been used before for spin glasses, see, e.g.,
17–19, but, to our knowledge, their use in three dimensi
has been restricted to smaller sizes than studied here,
they were not used to investigate the real-space structur
the low-energy excitations.

Our implementation of the branch-and-cut technique c
handle significantly larger sizes for free boundary conditio
~BC! than for periodic BC,20 so we use free BC here. W
©2003 The American Physical Society13-1
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consider a different~and enlarged! set of observables tha
PY, in the attempt to gain a fuller understanding of wh
picture fits better the whole set of observables. We also
form a similar analysis of the data of PY, who used perio
BC, in order to investigate the effects of different types
boundary conditions. The various pictures discussed refe
the large volume limit, while the sizes that can be curren
reached are rather small. We will, therefore, pay particu
attention to properly take into accountcorrections to scaling.
In particular, we will try to determine what values of th
parametersu8 and d2ds fit the data in the more ‘‘natural’’
way, namely, with the smallest corrections to scaling for
range of sizes considered.

A summary of our results is as follows. We find that f
periodic BC, a simple scaling ansatz fits the results in
natural way, i.e., with negligible corrections to scaling a
no adjustable parameters besidesd2ds and u8. This gives
d2ds50.4260.03; u8520.0160.03 ~the meaning of the
error bars will be explained later!, which agrees with the
results of PY, and is compatible with the TNT picture. W
cannot rule out crossover to either the droplet or the R
picture at length scales larger than our system sizes, but t
scenarios, especially the latter, would require larger cor
tions to scaling than the TNT picture.

For free BC, all forms of fitting require some correction
to scaling. The most natural scenario, in the sense expla
above, gives d2ds50.4560.02; u850.1860.03, with
small corrections~of the order of3%), which is compatible
with the droplet picture. Allowing somewhat larger corre
tions ~of the order of 10%), the data are also compati
with u850, namely, with the TNT picture. Finally, if we
allow for very large corrections, the data are also consis
with the RSB picture.

In the second part of the paper, we analyze the per
mance of the branch-and-cut algorithm. We find that
number of elementary operations required to find the gro
state increases exponentially with the size, as expected s
computing a ground state of a three-dimensional spin-g
system is anNP-hard problem.21 We also find, interestingly
enough, that the CPU time is larger for samples in wh
there is an excited state close in energy to the ground-s
energy, yet different from the ground state in the orientat
of a large number of spins. We are not aware of any previ
quantitative measures of this trend, which we expect to
common to other algorithms as well.

The rest of this paper is organized as follows. In Sec.
we describe the method of perturbing the ground states to
information about low-energy excitations, introduced by P
Our results for the nature of the large-scale, low-energy
citations are given in Sec. III. A discussion and summary
the results are given in Sec. III D. A short description of t
branch-and-cut algorithm used is given in Sec. IV, and
performance of the algorithm is analyzed in Sec. V. Our c
clusions are summarized in Sec. VI.

II. GROUND-STATE PERTURBATION METHOD

The Hamiltonian of the spin-glass model is given by

H52(
^ i , j &

Ji j SiSj , ~1!
06441
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where the sitesi lie on a simple cubic lattice withN5L3

spins in dimensiond53, Si561, and theJi j are nearest-
neighbor interactions chosen from a Gaussian distribu
with zero mean and standard deviation unity. Free bound
conditions are applied in all directions.

For a given set of bonds, we determine the exact gro
state using a branch-and-cut algorithm discussed in Sec
Let Si

(0) be the ground-state spin configuration. As discus
by PY, we then perturb the couplingsJi j by an amount pro-
portional toSi

(0)Sj
(0) in order to increase the energy of th

ground state relative to the other states and therefore pos
induce a change in the ground state. This perturbation, wh
depends upon a positive parametere, is defined by

DHe5
e

Nb
(
^ i , j &

Si
(0)Sj

(0)SiSj , ~2!

where Nb5dLd21(L21) is the number of bonds in th
Hamiltonian. We denote the unperturbed ground-state en
by E(0) and the perturbed energy of thesamestate byEe

(0) .
The energy of the unperturbed ground state will thus incre
exactly by an amountDE(0)[Ee

(0)2E(0)5e. The energy of
any other state, saya, will increase by the lesser amoun
DE(a)[Ee

(a)2E(a)5e ql
(0,a) , whereql

(0,a) is the ‘‘link over-
lap’’ between the states ‘‘0’’ anda, defined by

ql
(0,a)5

1

Nb
(
^ i , j &

Si
(0)Sj

(0)Si
(a)Sj

(a) , ~3!

in which the sum is over all theNb nearest-neighbor bonds
Note that thetotal energy of the states changes by an amo
of the order of unity.

As we apply the perturbation, the energydifferencebe-
tween a low-energy excited state and the ground state
creases by the amount

DE(0)2DE(a)5e~12ql
(0,a)!. ~4!

If there is at least one excited state such thatE(a)2E(0)

,DE(0)2DE(a), then one of these excited states will b
come the ground state of the perturbed Hamiltonian. We
note the new ground-state spin configuration byS̃i

(0) , and
indicate byql and q, with no indices, the link and the spi
overlap between the new and old ground statesSi

(0) andS̃i
(0) ,

whereq is defined as usual byq51/N(Si
(0)S̃i

(0) .
Due to the spin-flip symmetry of the Hamiltonian~1!, the

ground state is doubly degenerate, and therefore the distr
tion of q is symmetric22 aroundq50. Hence, in the rest o
the paper we will restrict ourselves toq>0 without loss of
information.

Consider the probabilityP(e,L) ~with respect to the ran-
dom couplings! thatq is less than unity, namely thatSi

(0) and

S̃i
(0) differ in a finite fraction of the spins. As discussed b

PY, we assume thatP(e,L) is dominated by those samples
which Si

(0) and S̃i
(0) differ by flipping a single connected

cluster of spins, with linear sizeL. Deviations from this as-
sumption give rise to corrections to scaling, as pointed ou
Middleton,10 and will be analyzed in Sec. III. There are tw
3-2
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energy scales in the problem: the typical energy above
ground state of such an excitation, which scales asLu8 (u8
5u in the droplet picture!, and the threshold energy of Eq
~4!, which scales aseL2(d2ds) since 12ql is proportional to
the surface of the excitation, 12ql;L2(d2ds). Hence, the
dimensionless probabilityP(e,L) is a function of the ratio of
these two energy scales:

P~e,L !5g~eL2m!, ~5!

whereg(x) is a scaling function and

m[u81d2ds . ~6!

From this we obtain scaling relations for various obse
ables. For example, since 12q;O(1) and 12ql
;L2(d2ds), we obtain8

^12q&5Fq~eL2m!, ~7!

^12ql&5L2(d2ds)Fql
~eL2m!, ~8!

where^•••& is the average with respect to the random co
plings. By measurinĝ12q& and^12ql& we can then deter
mine d2ds and u8, the two exponents discriminating th
various pictures of the spin-glass phase discussed in Se

For small e, we expect the probability that the groun
state changes to be proportional toe ~for fixed L), which
implies g(x);x for x→0. HenceFq(x) and Fql

(x) also
vary linearly for smallx, and theasymptotic scalingbehavior
for L@e1/m is

^12q&;eL2m, ~9!

^12ql&;eL2m l, ~10!

where

m l[u812~d2ds!. ~11!

In the RSB case,d2ds5u850, and thereforem5m l
50. The scaling relations in Eqs.~7! and ~8! reduce in this
case to

^12q&5Fq~e!, ^12ql&5Fql
~e! ~RSB!, ~12!

and the asymptotic scaling behavior to

^12q&;e, ^12ql&;e ~RSB!. ~13!

We see that both scaling and asymptotic scaling are
sense trivial in RSB, since theL dependence disappear
Nevertheless, we will still use the termscaling.

It is also convenient to analyze just those samples
which the unperturbed and perturbed ground states are
different, i.e., whereq<qmax, a threshold value. Denotin
such restricted averages by^•••&c , we have

^12ql&c5L2(d2ds)Fql

c ~eL2m!. ~14!
06441
e
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This is of the same form as in Eq.~8!, but, for sufficiently
small qmax, the behavior of the scaling functionsFql

(x) and

Fql

c (x) at small argument will be different for the following

reason. If we average over all samples, we need to incl
the probabilityP(e,L) that the perturbation generates an e
citation with q,1. This is proportional toeL2m for eL2m

!1, which is the reason whyFq(x);x for small x. How-
ever, this factor is automatically taken into account in t
selectionof the samples in the restricted average in Eq.~14!,
and so should not be included again when performing
average. As a result,Fql

c (x) tends to a constant forx→0,

therefore the asymptotic scaling is

^12ql&c;L2(d2ds). ~15!

In particular, in RSB this becomes

^12ql&c;const ~RSB!. ~16!

Note that in both cases the asymptotic scaling isindependent
of e.

When analyzing the numerical data, we must be aw
that there are corrections to both~simple! scaling and
asymptotic scaling that occur whenL is not large enough.
Corrections to simple scaling take the form ofadditivecor-
rections to relations such as Eqs.~5!, ~7!, ~8!, and ~14!,
whose amplitude is characterized by a correction-to-sca
exponentv. For example, including the leading correctio
Eq. ~14! becomes

^12ql&c5
1

Ld2ds
H Fql

c ~eL2m!1
1

Lv
Gql

~eL2m!J . ~17!

For eL2m→0, this gives the correction to asymptotic scalin
corresponding to Eq.~15!,

^12ql&c5
1

Ld2ds
S a1

b

LvD . ~18!

For the RSB case, this goes over to

^12ql&c5a1
b

Lv , ~19!

rather than Eq.~16!.
Even when these corrections to~simple! scaling are neg-

ligible and the scalingform, such as Eq.~14!, is valid, the
argument of the scaling function may not be sufficien
small for asymptotic scaling to hold. In this regime, wh
fitting the data to asymptotic scaling we have to consi
further corrections to~asymptotic! scaling, whose form is
obtained by expanding the scaling function in its argume
For example, the leading correction to Eq.~15!, coming from
expanding theFql

c in Eq. ~14! to second order, will be

^12ql&c5
1

Ld2ds
S a1b

e

LmD , ~20!
3-3
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PALASSINI, LIERS, JUENGER, AND YOUNG PHYSICAL REVIEW B68, 064413 ~2003!
which goes over tô 12ql&c5a1be in RSB. In general,
both types of corrections need to be borne in mind wh
fitting the data.

III. RESULTS

We applied the perturbation method described in the p
ceding section to systems of sizeL54,6,8,10, and 12. Fo
each size, we considered five values of the perturba
strengthe, namely,e/t5 1

4 , 1
2 ,1,2, and 4, wheret5A6 is the

mean-field transition temperature, except forL512 for
which only e/t5 1

4 and 1 were considered. We choose th
value oft so that we can compare our results with the res
of PY for periodic BC. In order to discriminate between t
different pictures, it is important to have high statistics. Ta
I reports the number of samples computed for each s
Note that the number of samples necessary to achiev
given statistical error increases ase decreases, since the fra
tion of samples in whichS̃(0)ÞS(0) decreases.

A. Spin and link overlap

1. Qualitative analysis

We start with a qualitative analysis of the results. In F
1, we show scatter plots in the (q,ql) plane forL54,10 and
e/t5 1

4 ,1, where each point represents one of 2000 r
domly generated samples. Clearly, the link and spin over
are strongly correlated. We note that, ase decreases, ther
are less points with smallq, and that asL increases the dat
shift towards larger values ofql . Similar plots23 for periodic
BC show thatql is significantly lower than for free BC
While q has a large variance~the points are distributed alon
the wholeq axis!, the link overlap has a much smaller var
ance, which decreases asL increases, suggesting that in th
thermodynamic limitql either tends to 1 or becomes a we
defined function ofq.

To quantify this, in Fig. 2 we show the standard deviati
of ql ,

s5A^ql
2&c2^ql&c

2, ~21!

restricted over samples withq<qmax, as a function of the
system size fore/t51. We takeqmax50.2, since we are
interested in the region of smallq, which corresponds to
large-scale excitations. A power laws5aL2d fits well the
data withd50.5260.03 (x251.80, the best fit is shown in
Fig. 2!. Here and in the following, unless stated otherwi
the error bars on the fit parameters are purely statistica

TABLE I. Number of independent realizations of the disord
~samples! used in the computations.

L e/t5
1
4 e/t5

1
2 e/t51 e/t52 e/t54

4 50 000 50 000 50 000 50 000 50 000
6 20 000 20 000 20 000 20 000 20 000
8 15 000 13 467 13 467 6000 6000

10 10 000 7440 6000 4918 4000
12 5670 4202
06441
n

-

n

s

e
e.
a

.

-
s

,
in

relation to the fitting form considered.25 Restricting the av-
erage in Eq.~21! to different intervals ofq gives results also
compatible with a power law. A vanishings in the thermo-
dynamic limit is consistent with RSB, which predicts thatql
is a ~nontrivial! function of q. It is also trivially consistent
with the droplet model or the TNT picture, whereql51 for
all q.

We also measured how the standard deviation ofq varies
with L, finding that it varies between 0.28 and 0.32. It can
fitted both to a constant~as expected in RSB! or to a power
law with a small exponent around 0.1. However, the er
bars are very large, hence the fits are not very informativ

FIG. 1. Scatter plots in the (q,ql) plane for different values of
the sizeL and perturbation strengthe.

FIG. 2. A plot of the standard deviation of the link overlaps
5(^ql

2&c2^ql&c
2)1/2, where the average is restricted to samples s

that q<0.2. The line represents a power-law fit with exponentd
50.52.
3-4
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LOW-ENERGY EXCITATIONS IN SPIN GLASSES FROM . . . PHYSICAL REVIEW B68, 064413 ~2003!
Under the RSB hypothesis, it is interesting to study
functional relationship betweenq andql . In Fig. 3, we show
the average value of ql , restricted to intervals q
P@qmin ,qmax#, as a function of the mean value ofq in each
interval24 for e/t51. For fixed L, a quadratic formql
5a(L)1b(L)q2, motivated by the infinite-range
Sherrington-Kirkpatrick model whereql5q2, fits well the
data forq less than some cutoff value which increases withL
~see Fig. 3!. The quadratic fit works well also for other va
ues ofe, anda(L) andb(L) show a modest variation with
e. We also tried global fits including data for all values ofq
andL, obtaining similar results.

Extrapolatinga(L) and b(L) to L→` with fits of the
form a(L)5a1b/Lc, b(L)5b1b8/Lc8, we obtain

ql5~0.7760.02!1~0.2760.03!q2, ~22!

where again the errors are purely statistical for the functio
form considered. This nontrivial relation betweenq andql in
the thermodynamic limit is consistent with RSB, while in th
droplet or TNT pictures the data in Fig. 3 would shift toql
[1 in this limit.

The power-law form 12a(L)5b/Lc, b(L)5b8/Lc8,
which impliesql51 in the large volume limit, fits poorly the
data if we include all sizes. However, if we exclude theL
54 data, the quality of the fit becomes as good as that of
RSB fit just discussed. Hence, allowing for small correctio
to scaling, a scenario withd–ds.0, as in the droplet and th
TNT pictures, is consistent with the data.

This already shows that care must be taken to prop
consider corrections to scaling when comparing the fits
various pictures. In the following, we will investigate in d
tail the validity of the various pictures by considering seve
observables and explicitly discussing the corrections to s
ing.

FIG. 3. Average of the link overlap restricted to intervals ofq of
width 0.1, as a function ofq for different sizesL ~from bottom to
top, L54,6,8,10,12). The continuous lines represent quadratic
including values ofq up to where the lines end. The dashed lin
are a guide to the eye.
06441
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2. Determination of dÀds

We start with the determination ofd2ds from various
observables. We will show that for all observables, a w
range of values ofd2ds fits well the data when allowing
corrections to scaling, but that for all observables the sm
est corrections are attained for a value ofd2ds around 0.44
in agreement with the results of PY.

The main part of Fig. 4 plotŝ12ql&c as a function ofL,
for various values ofe andqmax50.4 (qmax50.2 gives essen-
tially the same results!. First, note that, independently o
what picture holds in theL→` limit, the data deviate sig-
nificantly from asymptotic scaling, see Eq.~15!, in which the
variouse values should collapse on a single curve. Seco
the data have a noticeable positive~upward! curvature for all
values ofe. In Sec. III C, we will show that in the case o
periodic BC, the data have a much smaller dependencee
and a much smaller curvature~see Fig. 12!.

In order to determine how the various pictures fit the d
of Fig. 4, we start by considering, following Ref. 9, the fo
lowing three functional forms:

form I, ^12ql&c5a1b/Lc,

form II, ^12ql&c5a1b/L1c/L2, ~23!

form III, ^12ql&c5b/Lc.

Form I corresponds to the RSB prediction including t
leading correction to scaling, see Eq.~19!, with c[v. Form

ts

FIG. 4. ~Color online! Logarithmic plot of the averagê1
2ql&c , restricted to samples withuqu<0.4, as a function of the
system sizeL. Only three values ofe are displayed for clarity. The
lower continuous line is the best fit with a power-law form III in E
~23! for e/t5

1
4 , wheret5A6, and theL54 data have been ex

cluded from the fit. The dashed lines are the best fits with form
Eq. ~23!. The inset shows a scaling plot of the data in the m
figure, excluding theL54 data, according to Eq.~14!. Here and in
the following figures, note that the data for variouse are correlated,
since the samples used for largee were also used for smalle.
3-5
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PALASSINI, LIERS, JUENGER, AND YOUNG PHYSICAL REVIEW B68, 064413 ~2003!
II is a different parametrization of the corrections to scalin
Form III corresponds to the asymptotic behavior of both
TNT and droplet pictureswithout corrections to scaling, se
Eq. ~15!, with c[d2ds .

The results of these fits~performed byx2 minimization!
are reported in Table II. From the table we see that form
and II, appropriate to RSB, fit well the data with a lowx2

anda.0 outside the error bars. The best fits with form I a
shown by the dashed lines in Fig. 4. The variation ofa be-
tween forms I and II provides a measure of the system
error associated with the unknown corrections to scali
Within this error,a is independent ofe, as predicted by RSB
Therefore, the data for̂12ql&c are compatible with RSB
and our central estimate under the RSB hypothesis is

lim
L→`

^12ql&c50.2060.02 ~RSB!, ~24!

where the error takes into account also the uncertainty in
form of the corrections to scaling, assuming that the corr
tions considered in either form I or II describe well the da
in the whole range of sizes considered. Marinari and Pa9

fitted form I ~II ! to their data for periodic boundary cond
tions, L<14 ande/t54, and obtaineda50.24 (a50.30),
from which we estimate a central valuea50.2760.05. This
is just in agreement with our estimate above for free B
suggesting that the infinite volume limit of^12ql&c , if non-

TABLE II. Fits to ^12ql&c with qmin50 and qmax50.4. The
four groups of data refer, from top to bottom, to the three fitti
functions I, II, and III in Eq.~23!, and form IV in Eq.~25! with d
2ds50.44. For form III, data forL54 were not included in the fit.
The errors are the standard errors of a nonlinear fitting routine~Ref.
25!, andQ is the goodness-of-fit parameter.

Form e/t x2 Q a b c

0.25 0.014 0.99 0.171~2! 1.068~5! 0.890~8!

0.5 0.015 0.90 0.185~2! 1.14~1! 0.96~1!

I 1 3.04 0.22 0.201~14! 1.26~7! 1.04~7!

2 0.39 0.52 0.206~6! 1.42~3! 1.08~3!

4 0.27 0.60 0.215~4! 1.73~3! 1.14~2!

0.25 0.037 0.98 0.182~1! 1.29~2! 20.40~5!

0.5 0.010 0.92 0.189~1! 1.23~1! 20.14(3)
II 1 3.01 0.22 0.198~8! 1.16~10! 0.16~27!

2 0.47 0.49 0.199~4! 1.21~5! 0.31~14!

4 0.42 0.52 0.202~3! 1.31~4! 0.64~11!

0.25 1.40 0.49 0.85~2! 0.44~1!

0.5 1.63 0.20 0.87~3! 0.45~2!

III 1 9.81 0.007 0.88~3! 0.44~2!

2 6.75 0.009 0.95~4! 0.47~2!

4 11.4 0.0007 1.09~5! 0.51~2!

0.25 0.55 0.76 0.808~4! 7~8! 3.6~8!

0.5 0.65 0.42 0.811~6! 6~7! 3.2~8!

IV 1 5.91 0.05 0.828~7! 18~37! 4.0~1.5!
2 2.80 0.09 0.844~9! 5~5! 2.9~7!

4 3.01 0.08 0.87~1! 3.8~1.6! 2.3~3!
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zero, may be independent of the boundary conditions,
though we do not have an argument why this should be
case.

The power-law form, III, appropriate to the droplet mod
or the TNT scenario, does not fit well the data if we inclu
all the sizes, but if we excludeL54, it does fit well for
e/t,2, and the fit parametersb and c are almost indepen
dent ofe. The quality of the fit of form III is worse than tha
of forms I and II, but still acceptable. The main point w
want to stress, however, is that the worse fit of form III alo
doesnot necessarily favor the RSB picture, since form
does not include corrections to scaling, while forms I and
do. In other words, forms I and II are rather ‘‘forgiving’’ with
the RSB picture, allowing corrections of magnitude 100%
200% of the predictedL-independent asymptote, while form
III demands that the power-law scenario fits with correctio
smaller than the~very small! statistical errors. By looking a
Fig. 4, it is clear that the data are closer to a power law th
to anL-independent behavior.

Therefore, in order to try a comparison that puts the va
ous pictures on an equal footing, we performed fits with
following more general functional form:

form IV, Ld2ds^12ql&c5a1b/Lc, ~25!

where we fixd2ds and minimizex2 with respect toa,b,c,
repeating the procedure for different values ofd2ds . For
d2ds50, form IV reduces to form I, while ford2ds.0, it
corresponds to form III plus a correction-to-scaling ter
with correction-to-scaling exponentv5c. We find that, as
we might have expected from the previous discussion, fo
IV fits well the data for a wide range of values ofd2ds . For
example, fore/t5 1

4 , a value ofd2ds between 0 and 0.45
gives a goodness-of-fit parameterQ>0.43, which is entirely
acceptable.

This shows that, when allowing for corrections to scali
for all pictures, the droplet and TNT pictures are as good
RSB as far as the statistical quality of the fits is concern
However, within the interval of acceptable values ofd
2ds , clearly the larger isd2ds the smaller are the correc
tions to asymptotic scaling. For example, fore/t5 1

4 and d
2ds50.42, the correction termb/Lc in form IV amounts to
only 0.1% of the total forL512, while for d2ds50 it
amounts to 43%. Hence, a large value ofd2ds may be
regarded as more natural in this range of sizes.

If we impose that the correction to scaling forL>8 is less
than a~arbitrary! limit of 3%, we obtain the estimate

d2ds50.4460.03, ~26!

where the error is purely statistical within this assumption.
Table II, we show the fits obtained with form IV imposin
this value. This value agrees with the estimated2ds50.42
60.02 of PY for periodic BC~see also Sec. III C of this
paper!, which is reassuring, sinced2ds should not depend
on the boundary conditions.

Note that ford2ds50, corresponding to form I, correc
tions within 3% from the asymptotic limit would only b
attained for a sizeL.200. We also note that, as we di
cussed in Sec. II, even in the regime where corrections
3-6
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scaling are negligible, asymptotic scaling sets in only forL
@e1/m. This explains why, ifd2ds.0.44, the quality of the
power-law fit in Table II becomes progressively worse ae
increases. In particular, the deviation from asymptotic sc
ing is large fore/t54, hence from the data ofe/t54 alone
one should not necessarily conclude9 that an asymptotic
power-law behavior is ruled out. This is seen also in the in
of Fig. 4, which shows that, if we excludeL54, the data are
compatible with the scaling relation, Eq.~8!, where the ex-
ponentm is independently determined below.

PY determinedd2ds from the ratioR5^12ql&/^12q&
which has the same scaling behavior as the quantity^1
2ql&c used here, namely,R5L2(d2ds)FR(e/Lm) with
FR(x); const asx→0. Middleton10 observed that, in two
dimensions, small droplets introduce significant correctio
to scaling, and suggested that this may be the case als
three dimensions, possibly invalidating the conclusions
PY. The quantitŷ 12ql&c is less sensitive to these corre
tions, since, by restricting to smallq, small droplets should
give a smaller contribution, because we have eliminated
part at largeq where one can haveonly small droplets.
Hence, to investigate these corrections, we fitted our data
R with forms I–IV above~with R replacing^12ql&c). The
results we find are very similar to those for^12ql&c : forms
I and II fit well the data with a lowx2, giving a50.27
60.03 independent ofe within the error bars. A power law
fits well the data if we excludeL54, with an exponentd
2ds50.4360.03 nearly independent ofe and in agreemen
with Eq. ~26!. The residual dependence one is well ac-
counted for by a scaling plot similar to the inset in Fig.
Form IV also fits well the data for a wide range of values
d2ds . Again, a power law is more natural in the sense t
corrections to scaling are smaller, and the smallest cor
tions are obtained ford2ds around 0.43 as for̂12ql&c .

We interpret the fact that the two quantities give the sa
value of d2ds as evidence that corrections due to sm
droplets are indeed not important in three dimensions in
range of sizes. In Sec. III C, we will show that this is also t
case for periodic BC.

To summarize this part, the data for bothR and ^1
2ql&c are compatible with a wide range of values ofd2ds
between zero~corresponding to RSB! and .0.44, but a
value at the higher end of this range describes the data
more natural way, in the sense that the corrections to sca
are smaller.

3. Determination ofu8

Next, we turn to the exponentm defined in Eq.~6!, from
which we will extractu8 which is the other exponent, with
d2ds , characterizing the spin-glass phase. To this end,
consider the ratio

B5
^12ql&

2

^~12ql !
2&

, ~27!

which follows the scaling law

B5FB~eL2m!. ~28!
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The factorLd2ds does not appear here since it cancels
tween numerator and denumerator of Eq.~27!, thus allowing
us to determinem independently ofd2ds . Following the
arguments in Sec. II, we expectFB(x);x for small x since
both Ld2ds^12ql& andL2(d2ds)^(12ql)

2& vary ase/Lm for
e/Lm→0, hence the asymptotic scaling ofB is B;e/Lm.

To determinem, we fit the scaling law, Eq.~28!, to our
data assuming a polynomial form of the order ofn for
FB(x), namely,FB(x)5( i 50,ncix

i , with c0 set to zero in
order to satisfy the asymptotic scalingFB(x);x as x→0.
We repeat the fit in an interval of values form, and deter-
mine the value ofm which gives the best fit, varyingn until
x2 of the best fit becomes approximately constant. In t
way, we obtain

m50.6360.03, ~29!

where the error is purely statistical, under the assump
that the corrections to scaling are smaller than the statis
errors of the data. As shown in Fig. 5, scaling is quite sa
factory, with all the data collapsing on one curve, althou
the data for differente overlap only slightly. The best fit for
n56 is displayed by the continuous line. We emphasize t
this scaling plot is obtained with onlyoneadjustable param-
eter,m. Note that in the asymptotic scaling regime the da
should follow a straight line~power law!, while the data in
the figure show a pronounced curvature. Significant corr
tions to asymptotic scaling must be expected for largee,
sinceB must satisfy the inequalityB<1. The dashed line in
Fig. 5 represents the linear term ofFB(x), corresponding to
asymptotic scaling, and the deviation from it gives a meas
of the corrections to asymptotic scaling. Thee/t5 1

4 data are
quite close to asymptotic scaling, while the data for largee
deviate significantly from it. Another manifestation of the

FIG. 5. ~Color online! Scaling plot of the ratioB5^1
2ql&

2/^(12ql)
2& according to Eq.~28!. The continuous line is a

polynomial fit of ordern56, which givesx2 per degree of freedom
~d.o.f! of 1.09 and a goodness-of-fit parameterQ50.35. The
dashed line is the linear term of the polynomial fit, corresponding
the asymptotic scaling forL→`.
3-7
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corrections is that, if we fit the data with a power lawB

5b/L m̃, the effective exponentm̃ varies strongly withe,
converging towards 0.63 fore→0.

In RSB, B;e as L→` since m50. To test the RSB
prediction, we performed fits ofB using form I and form II in
Eq. ~23!, ~where ^12ql&c is replaced byB). form I gives
unphysical~negative! values ofa, while form II gives an
acceptable fit with a positivea roughly proportional toe.
Therefore, the data forB cannot rule out RSB. Note that,
RSB holds asymptotically, the data in Fig. 5 would devia
from the scaling curve for largerL, saturating to a constan
value for small values ofe/Lm. The good data collapse w
observed, therefore, would be entirely accidental.

We believe that the observed data collapse is a good
dication towards the validity of a scaling scenario with lar
m. Certainly this scenario is more natural, since it fits t
data with~almost! no corrections to~simple! scaling, while
the corrections for RSB are very large as apparent from
5. A similar conclusion was reached in the determination
d2ds .

As a further test, we can obtain a second estimate om
from the quantity^12ql& (q unrestricted!, whose scaling
and asymptotic scaling are given in Eqs.~8! and ~10!. We
find results similar to those forB: A power-law fit ^12ql&
5b/L m̃ l ~form III ! gives acceptable fits fore/t< 1

2 and for all
values ofe if we excludeL54. As for B, the effective ex-

ponentm̃ l changes significantly withe, due to corrections to
asymptotic scaling, and by extrapolating it toe50 we obtain
m l51.1560.08. This givesm5m l2(d2ds)50.6060.09
which agrees with the estimatem50.6360.03 from B. As
for B, the data collapse reasonably well on one curve fom
50.6460.05 according to Eq.~8!, although the quality of
the scaling is somewhat worse than that of Fig. 5. To ch
the RSB prediction, we fitted the data to forms I and
~where now^12ql&c is replaced bŷ 12ql&), finding that
they both fit well the data, witha roughly proportional toe
as expected in RSB, although, for smalle, a is also compat-
ible with zero. Therefore, as forB, the data are also consis
tent with RSB, but this scenario requires large correction
scaling, while the hypothesism50.63 fits the data with al-
most no corrections to~simple! scaling.

In the analysis so far, we have determined the expon
m andd2ds using just the link overlapql . By contrast, PY
determinedm ~for periodic BC! from the scaling of the spin
overlapq. An advantage ofql is that its variance is much
lower, as shown in Fig. 1. In any event, we have verified t
the scaling relation, Eq.~7!, fits well the data forq, giving
m50.6560.02, in agreement with the estimates fromB and
^12ql&.

Summarizing this part, we find that the data forall the
quantities considered, namely,B, ^12ql&, and ^12q&, are
consistent with the RSB prediction thatm50 asymptotically,
but large corrections to scaling are required in the fit, sim
larly to what we observed in the determination ofd2ds .
The data are also fitted very well by a scaling scenario w
m.0.63, with almost negligible corrections to scaling~but
with sizable corrections to asymptotic scaling, which inste
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were small for the observables considered ford2ds). Under
the natural assumption of small corrections to scaling, fr
the estimates ofm andd2ds in Eqs.~29! and~26!, we obtain

u85m2~d2ds!50.1960.06, ~30!

where, again, the error is purely statistical subject to the c
dition of having small~less than 3%! corrections to scaling.
This result agrees with the droplet theory which predicts t
u85u.0, and is compatible with the value ofu.0.2 char-
acterizing the energy of domain walls induced by a chang
boundary conditions.26 By contrast, for periodic BC and un
der the same assumption of small corrections to scaling,u8 is
compatible with zero~see work of PY in Ref. 8 and Sec
III C !. In Sec. III D, we will analyze the origin of this dis
crepancy, and show that by allowing small~of the order of
10%) corrections to scaling the free boundary-condition d
can be reconciled withu8.0.

B. Box overlap

So far we have analyzed the link and spin overlaps wh
are computed on the whole system~bulk!. We now turn to a
different observable, thebox overlapdefined as

qB5
1

LB
d (

i
Si

(0)S̃i
(0) , ~31!

where the sum runs over the sites contained in a central c
box of fixedsizeLB52. In the following, we will only con-
sider the absolute valueuqBu, which we still callqB for sim-
plicity. When a large-scale cluster of spins is flipped, f
largeL the probability that its surface goes across the cen
box is proportional to the ratio of its surface area,;Lds, to
the volume,Ld. Therefore, 12qB;L2(d2ds) from which we
obtain the scaling laws

^12qB&5L2(d2ds)FqB
~eL2m!, ~32!

^12qB&c5L2(d2ds)FqB

c ~eL2m!, ~33!

where, as for the corresponding scaling functions forql ,
FqB

(x);x and FqB

c (x); const for small x. Hence, the

asymptotic scaling forL→` is

^12qB&;eL2m l, ~34!

^12qB&c;L2(d2ds). ~35!

In RSB, this reduces tô12qB&;e and ^12qB&c; const.
An advantage ofqB over ql is that the former, being mea
sured away from the boundaries, should have smaller cor
tions to scaling and be less sensitive to boundary conditio
Indeed, Monte Carlo simulations27,28show thatqB has rather
small corrections to scaling. This is likely to be particular
important for the free boundary conditions used here.

Figure 6 shows therestricted average^12qB&c , with
qmax50.4, as a function ofL for two values ofe. The data
are clearly decreasing withL, are essentially independent o
e, as expected from Eq.~35!, and are close to a straight lin
on the logarithmic plot. This indicates that the power-law
3-8



s
es
r

ns
-
is

n

ar
ith

o

t i

e
to

g

be
the
c-
ex-
k

as

r-
r

fo

-

sent

g
f

er
fit,

LOW-ENERGY EXCITATIONS IN SPIN GLASSES FROM . . . PHYSICAL REVIEW B68, 064413 ~2003!
form III, appropriate to the droplet and TNT scenario
should work well and indeed it does, even for the larg
value of e ~we note, however, that the statistical errors a
larger than for the link overlap, hence the fits are less se
tive to corrections to scaling!. The exponent is almost inde
pendent ofe, varying between 0.48 and 0.52, and from th
we obtain the estimate

d2ds50.4860.03, ~36!

which is in agreement with the estimatesd2ds50.44
60.03 from^12ql&c andd2ds50.4360.03 fromR.

Forms I and II ~with qB replacingql) also fit well the
data, witha between 0.14 and 0.36~with no discernible trend
with e). Hence, the data are also compatible with RSB, a
under the RSB hypothesis, we estimate

lim
L→`

^12qB&c50.2560.10 ~RSB!. ~37!

As usual, we note that the RSB scenario requires rather l
corrections to scaling, while the power law fits the data w
no corrections.

Figure 7 shows the unrestricted average^12qB& multi-
plied byt/e, which asymptotically should be independent
e. The data show a small curvature and a significante de-
pendence, indicating that for this quantity we are not ye
the asymptotic scaling regime~similarly to what we ob-
served for the quantityB). The data are fitted well by a
power law, with an exponent that changes withe and tends
towardsm.0.63 for e→0. Fits using forms I and II givea
compatible with zero. We also determinedm from the scaling
relation, Eq.~32!, by fixing d2ds50.44 and using the sam
fitting procedure as forB ~which assumes no corrections
scaling!, finding

FIG. 6. ~Color online! Logarithmic plot of the average box ove
lap, restricted to samples such thatq<0.4. We show the data fo
just two values ofe for clarity. The data for other values ofe are
superimposed. The lower continuous line is a power-law fit
e/t54. The dashed line is the fit with form II in Eq.~23!, with qB

replacingql . The slope gives the exponentd2ds .
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m50.6260.04 ~38!

which agrees with the various estimates ofm obtained from
B, ^12ql&, and ^12q&. Figure 8 shows the correspondin
scaling plot, in which the data collapse is fairly good.

To conclude this section, the data for box overlaps can
fitted with smaller corrections to scaling than the data for
bulk link and spin overlaps. A fit to the generic scaling pi
ture, with no corrections to scaling, gives results for the
ponentsd2ds andm in agreement with those from the bul
quantities analyzed in the previous sections. However,

r

FIG. 7. ~Color online! Logarithmic plot of the average box over
lap, multiplied byt/e in order to highlight the deviation from the
asymptotic behavior of Eq.~34! in which the data for variouse
should collapse on a single curve. The continuous lines repre
fits with the power-law form III excludingL54. The dashed lines
represent fits with form I in Eq.~23!.

FIG. 8. ~Color online! Scaling plot of the box overlap accordin
to Eq. ~32!. The continuous line is a polynomial fit of the order o
n56, which givesx2/d.o.f50.63 and a goodness-of-fit paramet
Q50.85. The dashed line is the linear term of the polynomial
corresponding to the asymptotic behavior forL→`.
3-9
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PALASSINI, LIERS, JUENGER, AND YOUNG PHYSICAL REVIEW B68, 064413 ~2003!
with the bulk observables, assuming large corrections
scaling, the data can also be fitted to the RSB picture.

C. Comparison with periodic boundary conditions

In order to assess the effect of different boundary con
tions, we have repeated part of the analysis above~with the
exclusion of box overlaps! for the data of PY~Ref. 8! for
periodic boundary conditions andL<8. The ground states
were obtained using a hybrid genetic algorithm as descri
by PY. This does not guarantee to find the true ground st
but the systematic errors due to occasionally missing it
smaller than the statistical errors.8

Figures 9 and 10 show the equivalent for periodic BC
Figs. 4 and 5 for free BC. The data in Fig. 9 show much l
curvature and also a smaller dependence one than the cor-

FIG. 9. ~Color online! Same as Fig. 4 but for periodic bounda
conditions, using the data of PY~Ref. 8!.

FIG. 10. ~Color online! Same as Fig. 5 but for periodic bound
ary conditions, using the data of PY~Ref. 8!.
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responding data for free BC in Fig. 4, indicating that corre
tions to scaling are smaller for periodic BC. Table III repo
the best fits using the three functional forms of Eq.~23!.
Form I fits well the data, buta varies significantly withe,
and for smalle it is compatible with zero. Form II also fits
well, with a independent ofe within the statistical errors.
From this fit we estimate

lim
L→`

^12ql&c50.2860.03 ~RSB! ~39!

@see the comment after Eq.~24! as to the meaning of the
error bar#, which agrees with the estimate 0.24 of Marina
and Parisi,9 and is just consistent with our estimate 0.2
60.02 for free BC.

The power-law fit with no corrections, form III, fits wel
the data for the two smallest values ofe and, if we exclude
L53, for all but the largest value ofe. The exponentc[d
2ds is nearly independent ofe and gives

d2ds50.4360.02 ~periodic BC!. ~40!

This result agrees with the estimated2ds50.4260.02 of
PY obtained from the ratioR defined above, confirming tha
corrections due to small droplets should not be importan
three dimensions, and with our estimated2ds50.4460.03
for free BC, indicating thatd2ds does not depend on bound
ary conditions.

We also performed fits with form IV which includes co
rections to scaling. As for free BC, a wide range of values
d2ds from zero to around 0.44 give a good fit, with th
largest values giving the smallest corrections to scaling. T

TABLE III. Fits to ^12ql&c with qmin50 and qmax50.4 for
periodic boundary conditions. The three groups of data refer, fr
top to bottom, to the three fitting functions I, II, and III in Eq.~23!,
respectively, and form IV in Eq.~25! with d2ds50.43.

Form e/t x2 Q a b c

0.25 0.003 0.99 20.076(7) 1.256~6! 0.384~4!

0.5 0.92 0.62 0.05~4! 1.16~2! 0.47~3!

I 1 1.58 0.45 0.10~3! 1.16~2! 0.52~3!

2 2.20 0.33 0.12~3! 1.18~2! 0.54~4!

4 1.58 0.45 0.20~2! 1.270~4! 0.68~2!

0.25 0.33 0.56 0.279~7! 1.90~5! 21.5(1)
0.5 5.22 0.073 0.28~1! 1.90~9! 21.5(2)

II 1 0.69 0.71 0.280~4! 1.89~3! 21.40(6)
2 0.04 0.98 0.283~1! 1.90~1! 21.33(2)
4 0.36 0.83 0.291~2! 1.86~2! 21.01(4)

0.25 0.02 0.887 1.204~2! 0.433~1!

0.5 0.35 0.838 1.193~3! 0.427~2!

III 1 5.14 0.076 1.21~2! 0.434~6!

2 7.82 0.020 1.24~2! 0.440~8!

4 25.7 2 1026 1.31~2! 0.46~1!

1 3.59 0.16 1.205~4! 0.3~1.5! 3~4!

IV 2 4.69 0.09 1.214~7! 0.2~5! 2~2!

4 8.38 0.01 1.231~8! 0.7~5! 2.3~7!
3-10
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LOW-ENERGY EXCITATIONS IN SPIN GLASSES FROM . . . PHYSICAL REVIEW B68, 064413 ~2003!
results of the fit ford2ds50.43 are shown in Table III. Fo
the two smaller values ofe, the fits are difficult because
corrections to scaling are very small, hence they are
shown.

We determined the exponentm from the ratioB using Eq.
~28! and the fitting procedure described for free BC, obta
ing

m50.4260.03 ~periodic BC!, ~41!

where, as for the estimate ofd2ds above, the errors are
purely statistical with the assumption that corrections to s
ing are smaller than the statistical errors of the data. Sca
is rather satisfactory as shown in Fig. 10. This value agr
with the estimatem50.4460.02 of PY from the scaling of
the spin overlap but incompatible, within the statistical er
bars, with the resultm50.6360.03 for free BC. We will
return in Sec. III D to the origin of the discrepancy betwe
free and periodic BC. The inset of Fig. 9 shows that, w
these values ofm and d2ds , the scaling form for^1
2ql&c , Eq. ~14!, is also well satisfied. Finally, we verifie
that, if d2ds50.43, the unrestricted average^12ql& satis-
fies scaling, givingm50.4560.02 in agreement with the es
timate fromB.

Combining Eqs.~40! and ~41!, we obtain the estimate o
u8 for periodic BC:

u85m2~d2ds!520.0160.03 ~periodic BC!. ~42!

This is compatible with zero and, within the error ba
incompatible with the valueu85u.0.2, whereu character-
izes the energy of domain walls induced by bounda
condition changes. A scenario in whichu850 and d2ds
.0 is consistent with the TNT picture. Finally, we note th
although our analysis of the data of PY uses different qu
tities to extract exponents, our results agree with those g
by PY.

D. Discussion and summary of the results

In the previous sections, we have seen that for both
and periodic BC, the analysis of all the different observab
considered gives consistent results for the exponentsd2ds
andu8 under the assumption of minimal corrections to sc
ing. However, while the results ford2ds for free and peri-
odic BC agree with each other, the results foru8 apparently
do not, having foundu8520.0160.03 for periodic BC and
u850.1960.06 for free BC. Sinceu8, like d2ds , should
not depend on the type of boundary conditions, the discr
ancy must be due to different corrections to scaling for
two boundary conditions.

Therefore, it is important to analyze further the corre
tions to scaling. First, we recall that the scaling plots for
quantityB in Figs. 5 ~free BC! and 10~periodic BC!, from
which we have determinedm ~and henceu8), are obtained
by imposing that thewholedata set~namely, all values ofe
and L) satisfies scaling with corrections to scaling smal
than the statistical errors, which are less than 1%. Clea
this is a very stringent requirement. If we relax this requi
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ment, allowing some corrections to~simple! scaling, we can
accommodate a larger range of values form.

This is shown in Fig. 11, which gives a scaling plot f
free BC, analogous to Fig. 5 but assuming the valuem
50.42 determined fromperiodicBC. The polynomial fitting
curve was obtained by excluding from the fit the data poi
for L54 and 6. One can see that for largerL, the data col-
lapse reasonably well on the curve. The deviation of theL
54, 6 data from the curve, less than 10%, is a measure
the corrections to scaling. Therefore, we see that correct
to scaling of less than 10% for the two smallest sizes
sufficient to remove the discrepancy in the value ofu8 be-
tween free and periodic BC. We verified that also the ot
quantities considered, namely,^12ql&c , R, ^12ql&, ^1
2q&, can be fitted in a similar way.

We also tried the converse operation, namely, a sca
plot of the data for periodic BC but using the valuem
50.63. We find that one can get a relatively good data c
lapse excluding the sizesL53, 4, and 5, which deviate from
the scaling curve by less than 10%. However, now the d
for a givene approach the scaling curve from the right si
instead of from the left side as in Fig. 11, but since they ha
an upward curvature, the correction to scaling should cha
curvature twice asL increases, which is not very plausibl
Hence, we believe that it is more natural to conclude that
correct value ofm is closer to 0.42 than to 0.63, namely, th
corrections to scaling are smaller for periodic than for fr
BC.

Indeed, in general, it is reasonable to expect that cor
tions are larger for free BC, because these BC have a
surface on which lie a fraction of sites which is quite su
stantial for moderate sizes. In Fig. 12, we plot together
^12ql&c data of Figs. 4 and 9 for free and periodic BC. T
data for free BC lie significantly below those for period

FIG. 11. ~Color online! Scaling plot of the ratioB5^1
2ql&

2/^(12ql)
2& according to Eq.~28!. The continuous line is a

polynomial fit of the order ofn55, excluding the data withL54
and 6, which givesx2/d.o.f 51.26. The dashed line is the linea
term of the polynomial fit, corresponding to the asymptotic scal
for L→`.
3-11
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BC, indicating that the surface of the excitations is sma
for free BC. For periodic BC, the domain wall has to ‘‘bend
to return to the same point on the ‘‘top surface’’ as it had
the ‘‘bottom surface.’’ This may be the source of the ex
surface area.

Under the hypothesisd2ds.0.44, Fig. 12 then shows
that the corrections toasymptoticscaling are larger for free
BC, since the free boundary-condition data show a m
marked deviation from the asymptotice-independent behav
ior, and display a larger curvature. This is further indicati
that free BC have larger corrections.

Evidence that free BC have larger corrections was a
found recently in Monte Carlo simulations,29 where some
evidence was observed that the free BC data might ha
crossover from dropletlike to either TNT- or RSB-like b
havior at large sizes.

Incidentally, note that if RSB is the correct asympto
pictureand the L→` limit of ^12ql&c is the same for peri-
odic and free BC, then Fig. 12 would indicate that the c
rections aresmaller for free BC~since the data are closer t
their nonzero asymptotic value!, which is not very plausible
Note, however, that we do not have an argument why in
thermodynamic limit ^12ql&c should be independent o
boundary conditions.

To summarize the first part of the paper, we have analy
several quantities for periodic and free BC. For both types
boundary conditions, all the data are well described b
general scaling picture involving only two scaling expone
d2ds and u8 with only small corrections to scaling. Som
observables show significant corrections to asymptotic s
ing, which are larger for free boundary conditions. Fitti
this scaling picture to our data, we obtain comparable val
of d2ds for periodic (0.4360.02) and free boundary cond
tions (0.4460.03).

By imposing that corrections to scaling are less than
statistical errors of about 1%, for periodic boundary con
tions we obtainu8.0, which fits well the TNT scenario

FIG. 12. ~color online! This plot shows together the data of Fi
4 for free boundary conditions and Fig. 9 for periodic bounda
conditions.
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(d2ds.0, u850), while for free boundary conditions w
obtain u850.1960.06, which fits well the droplet picture
(d2ds.0, u8.0). By relaxing this requirement and allow
ing larger corrections to scaling of the order of 10%, the d
for free BC can be also fitted by a scenario withu8.0.
Therefore, the data for free BC are also consistent with
TNT picture provided moderate corrections to scaling
allowed, larger than those for periodic BC. We have a
provided direct evidence that indeed free BC have lar
corrections to scaling.

Data for the box overlap for free BC indicate small
corrections to asymptotic scaling, which is reasonable si
the box is away from the surface, and are consistent with
scenario described above.

For both free and periodic BC, the data are also fitted w
by the RSB picture (d2ds50, u850), but only if we allow
very large corrections to scaling. In this case, the good s
ing behavior we observed for all the observables conside
would only be a finite-size artifact, and would disappear
larger sizes. To test this possibility, large system sizes will
needed.

This concludes the first part of the paper, dedicated to
physical results. In the second part, we will describe
branch-and-cut algorithm employed, and analyze its per
mance in our computations.

IV. THE BRANCH-AND-CUT ALGORITHM

Branch and cut is, to our knowledge, the fastest ex
method for determining ground states of spin glasses in th
dimensions. To apply this technique, we transform the pr
lem of minimizing the Hamiltonian in Eq.~1! into a standard
combinatorial optimization problem known as themaximum
cut problem.~For a detailed description of optimization an
related topics, see Ref. 30.! Consider the interaction grap
G5(V,E) associated with the spin-glass Hamiltonian, whe
G contains vertices 1, . . . ,L3PV associated with the spin
sites and edges (i j )PE with weight ci j 52Ji j associated
with the couplings.

Given a partition of V into two sets,W,V and its
complementV\W, thecut d(W) associated withW is defined
as the set of edges with one end point,i say, inW and the
other end point,j say, in V\W. In formulas,d(W)5$( i j )
PEu i PW, j PV\W%. Theweightof a cutd(W) is defined as
the sum of the weights of the cut edges( ( i j )Pd(W)ci j . A
maximum cutis a cut with maximum weight among all pa
titions W. It is easy to show that minimizing the Hami
tonian, Eq.~1!, is equivalent to finding a maximum cut inG,
see Ref. 19. If we know a maximum cut with node partitio
W andV\W, the corresponding ground-state spin configu
tion can be read off by assigning the value up to the spin
W and down to the spins inV\W, or vice versa.

The branch-and-cut algorithm solves the maximum
problem through simultaneous lower and upper bound co
putations. By definition, the weight of any cut gives alower
boundon the optimal cut value. Thus, we can start from a
cut and iteratively improve the lower bound using determ
istic heuristic rules~local search and other specialized he
ristics, see Ref. 31 for details!. How do we decide when a cu
3-12
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is optimal? This can be done by additionally maintaini
upper boundson the value of the maximum cut. Upon iter
tion of the algorithm, progressively tighter bounds are fou
until optimality is reached.

Since the availability of upper bounds marks the diffe
ence between a heuristic and an exact solution, we now s
marize how the upper bound is computed~for more details,
see Ref. 31!. To each edge (i j ), we associate a real variab
xi j and to each cutd(W) an incidence vectorxd(W)PRE with
componentsx i j

d(W) associated with each edge (i j ), where
x i j

d(W)51 if ( i j )Pd(W) and x i j
d(W)50 otherwise. Denoting

by PC(G) the convex hull of the incidence vectors, it can
shown that a basic optimum solution32 of the linear program

maxH (
( i j )PE

Ji j xi jUxPPC~G!J ~43!

is a maximum cut. In order to solve Eq.~43! with linear
programming techniques, we would have to expressPC(G)
in the form

PC~G!5$xPREuAx<b,0<x<1% ~44!

for some matrixA and some vectorb. Whereas the existenc
of A and b is theoretically guaranteed, even the subsets
Ax<b known in the literature contain a huge number
inequalities that render a direct solution of Eq.~43! imprac-
tical.

Instead, the branch-and-cut algorithm proceeds by o
mizing over asuperset PcontainingPC(G), and by itera-
tively tighteningP, generating in this way progressively be
ter upper bounds. The supersetsP are generated by acutting
plane approach. Starting with someP, we solve the linear
program max$((ij )PEJijxij uxPP% by Dantzig’s simplex
algorithm.32 Optimality is proven if either of two conditions
is satisfied:~i! the optimal value equals the lower bound;~ii !
the solution vectorx̄ is the incidence vector of a cut.

If neither is satisfied, we have to tightenP by solving the
separation problem. This consists in identifying inequalitie
that are valid for all points inPC(G), yet are violated byx̄,
or reporting that no such inequality exists. The inequalit
found in this way are added to the linear programming f
mulation, obtaining a new tighter partial systemP8,P

which does not containx̄. The procedure is then repeated
P8 and so on.

At some point, it may happen that~i! and ~ii ! are not
satisfied, yet the separation routines do not find any n
cutting plane. In this case, webranch on some fractional
edge variablexi j ~i.e., a variablexi j P” $0,1%), creating two
subproblems in whichxi j is set to 0 and 1, respectively. W
then apply the cutting plane algorithm recursively for bo
subproblems.

V. PERFORMANCE
OF THE BRANCH-AND-CUT ALGORITHM

In this section, we study the performance of our curr
implementation of the branch-and-cut algorithm, in partic
lar, the dependence of the number of computer operation
06441
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the system size. The results for sizeL512 were obtained
with a more efficient version of the code, so performance
this size cannot be compared with that for the smaller siz
Hence, in this section, we shall just consider sizes up toL
510.

Finding the ground state of the Hamiltonian, Eq.~1!, in
three dimensions is anNP-hard problem,21 and all known
algorithms to solve this class of problems require a num
of operations that grows exponentially on the size of
input, in the worst case.

However, depending on the problem, the number of
erations fortypical instances~for the spin-glass problem, a
instance is a realization of the random couplings, or sam!
can grow considerably more slowly than the worst case
ponential behavior. Furthermore, the number of operati
can vary significantly from one instance to another. It
therefore, useful to investigate experimentally the perf
mance of the algorithm for typical instances, in order to
to extrapolate the computational resources necessary to g
larger sizes, and possibly to identify which parameters of
problem affect most the performance. De Simoneet al.19

measured the average CPU time used by the branch-an
algorithm to find the ground state of the two-dimensional6J
spin glass with periodic BC, up toL570, showing that the
average CPU time was approximated by a function prop
tional to L6.

Here we analyze the performance of the branch-and
algorithm for the three-dimensional spin glass with free B
and Gaussian couplings. In order to do this, we first nee
good measure of the performance. For a complex algori
such as branch-and-cut, a simple and absolute measure o
number of operations is not available. Two possible measu
are the CPU time and the number of linear programs sol
during the run of the algorithm. In Table IV, we summari
the average running time needed for calculating an unp
turbed ground state for the different system sizes.

The CPU time is not an accurate measure, since it
pends on the machine architecture and load. Furtherm
our computations were carried out on several different m
chines, so the CPU time is not useful here. We take inst
the number of linear programs solved,np , because~i! it is a
well-defined and machine-independent quantity;~ii ! we have
observed that about 95% of the time is spent in solving lin
programs;~iii ! for a fixed system size,np correlates strongly,
and almost linearly, with the CPU time. This is shown in F
13, which plots the CPU time versusnp for 1000 randomly
generated samples withL510, computed on the same ma
chine. Note that since thesizeof the linear programs is also

TABLE IV. Mean CPU time per sample in seconds for the c
culation of the unperturbed ground state, averaged also over
different machines.

L Mean CPU time per sample

4 0.065
6 0.662
8 10.11

10 338
3-13
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PALASSINI, LIERS, JUENGER, AND YOUNG PHYSICAL REVIEW B68, 064413 ~2003!
growing with the system size, the CPU time per linear p
gram increases strongly withL: the average~median! CPU
time goes from 0.0077~0.044! sec forL54 to 0.833~0.784!
sec forL510.

Hence,np severely underestimates the rate at which
number of operations increases withL.

From Fig. 13, we also note that the distribution ofnp ~and
CPU times! is very broad, extending over three orders
magnitude. The histogram distribution ofnp for different
system sizes is shown in Fig. 14. In addition to shifting
larger np , the distribution broadens asL increases. Also,
there is some evidence of a double-peak structure. FoL
510, we verified that the peak at smallernp corresponds to
samples that could be solved without branching, while
other peak corresponds to samples where branching was
essary. Since in each branching step the number of subp
lems to be solved doubles, the number of linear progra
increases rapidly and the second peak is at significa
largernp .

FIG. 13. Scatter plot of the CPU time to find the unperturb
ground state (e50) versus the corresponding number of linear p
grams solved (np). Each point represents a randomly genera
sample withL510. All the computations for this set of sample
were run on the same machine. The dashed line indicates a l
behavior.

FIG. 14. ~Color online! Histogram of the number of linear pro
grams solved by the branch-and-cut algorithm to find the unp
turbed ground state for different system sizes.
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In order to identify which parameters of the problem,
addition to the size, affect the performance, we ask whe
np correlates with the physical observables we measure.
significant correlation was observed with the ground-st
energy. Figure 15 plots33 ^ log10np& for the unperturbed
ground state (e50) andL510 versus the overlap betwee
this state and the perturbed ground state withe/t54. We
observe a distinct correlation betweennp andq: for small q,
more linear programs are needed than for largeq. The figure

FIG. 16. ~Color online! Averagenp , mediannp , and condi-
tional averages ofnp restricted touqu<0.1 and touqu>0.9, as a
function of the number of bondsNb . The data fornp are for L
510 and e50 ~unperturbed ground state!, and q is the overlap
between thee50 ande/t54 ground states.

-
d

ar

r-

FIG. 15. The circles are a plot of^ log10np&, wherenp is the
number of linear programs solved to compute the unpertur
ground stateS0, versus the overlap betweenS(0) and the perturbed

ground stateS̃(0). The data is fore/t54 and the samples wer
selected from a set of randomly generated samples withL510, in
such a way that the same number of samples is plotted for e
consecutiveq interval of length 0.1, in order to sample equally a
regions of q. The triangles show the standard deviation, amo
samples, of log10np as a function ofq.
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LOW-ENERGY EXCITATIONS IN SPIN GLASSES FROM . . . PHYSICAL REVIEW B68, 064413 ~2003!
shows that the typical number of linear programs is close
an order of magnitude larger ifq.0 than if q.1. We ob-
served a similar correlation for other values ofe as well, and
also between the CPU time andq. Again, the distribution of
np is quite broad as shown by the data for the standard
viation of log10np in Fig. 15.

In order to quantify how the correlation betweennp andq
changes with the system size, we show in Fig. 16 the ave
and median ofnp as a function ofNb , as well as the condi-
tional averages ofnp restricted to samples with large (uq
u>0.9) and small (uqu<0.1) overlaps. We take the numb
of bonds,Nb , as a measure of the input size, since the ma
mum cut problem is specified in terms of the edge variab
in the graph. From Fig. 16 we see that, first, all measu
show an approximately exponential increase withNb , with
corrections for smallNb , and second, the difference betwe
the conditional averages with small and largeq seems to
increase with the system size, and is about one order of m
nitude forL510.

A qualitative difference between samples with small a
large overlaps is that samples with a smalluqu have a rougher
‘‘energy landscape,’’ namely, states with an energy close
the ground-state energy yet a spin configuration very dif
ent from the ground state. It is then intuitively clear why o
would observe a correlation betweenq and the running time
for a stochastic algorithm employing local search heurist
such as simulated annealing, since when the algorithm
counters one of these configurations with small overlap
must retrace its steps by a large amount.

For the branch-and-cut algorithm, the reason for the c
relation betweennp andq is less obvious, but some insight
provided by an analysis of ‘‘reduced cost fixing.’’ This is
feature of the branch-and-cut algorithm speeding up
computations. In every iteration of the algorithm, reduc
cost fixing gives us a sufficient condition to decide whi
variables~corresponding to the edges in the graph! have al-
ready attained their optimal value. Therefore, we can fix
variables with ‘‘optimal’’ status to their current value for a
the subsequent iterations of the algorithm, resulting in l
overall computational effort. The more variables that can
fixed, the faster the algorithm is in practice.

Since the samples with small overlap have ‘‘almost op
mal’’ solutions with spin configurations very different from
the ground state, a smaller number of variables can be fi
Here we do not have the ‘‘correct’’ edge values availa
until the end. As an example, we checked that forL510 and
e5t, for 100 randomly chosen samples with small over
(uqu<0.1), in average 409639 of the 2700 edge variable
could be fixed in the first sub problem, i.e., before branch
takes place. In contrast, for 100 randomly chosen sam
with big overlap (uqu>0.9), 921634 of the edge variable
could be fixed in the first sub problem, about twice as ma
Of course, the less variables that can be fixed in the first
problem, the more overall branching is necessary, resul
in more overall computational effort for samples with sm
overlap.
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A consequence of the broad distribution of the CPU tim
and of its correlation with the physical observables of int
est is that a cutoff in the CPU time produces a system
error in these quantities. One has, therefore, to ensure
the cutoff is large enough so that the systematic erro
smaller than the statistical error.

It is interesting to try to extrapolate the running tim
needed to deal with larger sizes. The average CPU tim
Table IV varies approximately as;exp(aNb) with a some-
where between 0.0024 and 0.003. Extrapolating toL514
(Nb57644), this gives an average CPU time of arou
10861 sec per sample, which is clearly very demanding. F
thermore, memory limitations will set in before we can rea
this size. Again, note thatnp increases much more slowl
with Nb . The data foruqu<0.1 in Fig. 16, for example, vary
approximately as;exp(aNb) with a smaller a around
0.0017, showing that the dominant limiting factor is the s
lution of the linear programs. Note that the program used
L512 is significantly faster than that used in this extrapo
tion. This long extrapolated running time gives us the furth
motivation to continue our research on the improvement
this algorithm.

VI. CONCLUSIONS

Using anexact‘‘branch-and-cut’’ optimization algorithm,
we have studied the large-scale, low-energy excitations in
Ising spin glass in three dimensions withfreeboundary con-
ditions, and compared the results with those obtained ea
by PY for periodic boundary conditions.

In the first part of the paper, we have discussed in de
how the whole set of observables analyzed is fitted b
general scaling picture characterized by two exponentd
2ds and u8 and how the values of these parameters p
dicted by the various physical pictures proposed for the sp
glass phase fit our data. Our conclusions have been sum
rized at the end of Sec. III D.

In the second part of the paper, we have analyzed
performance of the branch-and-cut algorithm, finding th
the performance is worse when there is a low-energy exc
state close in energy to the ground state but far away
configuration space, and have given a quantitative analys
this effect.
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