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Low-energy excitations in spin glasses from exact ground states
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We investigate the nature of the low-energy, large-scale excitations in the three-dimensional Edwards-
Anderson Ising spin glass with Gaussian couplings and free boundary conditions, by studying the response of
the ground state to a coupling-dependent perturbation introduced previously. The ground states are determined
exactlyfor system sizes up to $2&pins using a branch-and-cut algorithm. The data are consistent with a picture
where the surface of the excitations is not space filling, such as the droplet or the trivial-nonfrNigl
picture, with only minimal corrections to scaling. When allowing for very large corrections to scaling, the data
are also consistent with a picture with space-filling surfaces, such as replica symmetry breaking. The energy of
the excitations scales with their size with a small expor#ntwhich is compatible with zero if we allow
moderate corrections to scaling. We compare the results with data for periodic boundary conditions obtained
with a genetic algorithm, and discuss the effects of different boundary conditions on corrections to scaling.
Finally, we analyze the performance of our branch-and-cut algorithm, finding that it is correlated with the
existence of large-scale, low-energy excitations.
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[. INTRODUCTION boundary conditions are changed, for example, from periodic
to antiperiodic, in a system of sizZke, and (i) ', which

There is still considerable debate about the nature of theharacterizes the energy of clusters excited within the system
spin-glass state in finite-dimensional spin glasses. Two prinfor a fixed set of boundary conditionsg( was calledd, in
cipal theories have been investigated: the “droplet theory’Ref. 7). The TNT picture has been challeng@dthough in
proposed by Fisher and Husesee also Refs. 2 and,3and  opposite sensedy Marinari and PariSiand by Middleton'°
the replica symmetry-breaking picture of Pafist.In the  Subsequently, low-temperature Monte Carlo simulatibns
droplet theory, the lowest-energy excitation of length stale have found results consistent with the TNT scenario. The
(a “droplet”) has energy of the order df, where @ is a RSB, droplet, TNT and some other scenarios have been also
positive exponent. Furthermore, the droplets have a surfacstudied by Newman and Stetfr*® For some recent related
with fractal dimensiordg less than the space dimensidn work, see Refs. 14 and 15.

Replica symmetry breakingRSB) is well established in The work of KM and PY determined the ground state with
mean-field theory, but it remains to be proven in finite di-and without a certain perturbatigwhich was different in the
mensions. The precise nature of RSB in finite dimensions iswo casep designed so that the ground state of the perturbed
not uniquely defined but it is generally agreed that a keysystem is a large-scale excitation of the original system.
feature of RSB is the existence of excitations whose energylhey usedheuristic algorithms, i.e., algorithms which are
unlike that of droplets, remains of the order of unity even asot guaranteedo give the exact ground state, although both
their size tends to infinity. Furthermore, upon the creation olKM and PY argue that they do find the exact ground state in
such a large-scale, finite-energy excitation, a finite fraction omost cases.
the bonds changes stdfeom satisfied to unsatisfied, or vice In this paper, we reconsider the problem of determining
versa or, equivalently, the surface of these excitations is¢’ andd,, following the perturbation approach of PY, de-
space filling, i.e.ds=d. scribed in Sec. Il, but we apply axactalgorithm, known as

Recently, Krzakala and Martin(KkM), and two of u§8  “branch and cut,’® so we are guaranteed that the true
[Palassini and YoundPY)], have argued, on the basis of ground state is reached every time. Exact optimization algo-
numerical calculations at zero temperature, in favor of arithms have been used before for spin glasses, see, e.g., Refs.
intermediate scenario where there are large-scale excitatiod¥—19, but, to our knowledge, their use in three dimensions
whose energy does not increase with size, as in RSB, butas been restricted to smaller sizes than studied here, and
which have a surface witd,<d. Following KM, we shall  they were not used to investigate the real-space structure of
denote this the trivial-non-triviglTNT) scenario. In the TNT the low-energy excitations.
scenario, it is necessary to introduweo exponents that de- Our implementation of the branch-and-cut technique can
scribe the growth of the energy of an excitation of s¢al&) handle significantly larger sizes for free boundary conditions
6(>0) such that? is the typical change in energy when the (BC) than for periodic BG® so we use free BC here. We
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consider a differentand enlargedset of observables than where the sites lie on a simple cubic lattice wittN=L3

PY, in the attempt to gain a fuller understanding of whatspins in dimensioni=3, S=+1, and theJ;; are nearest-
picture fits better the whole set of observables. We also pemeighbor interactions chosen from a Gaussian distribution
form a similar analysis of the data of PY, who used periodicwith zero mean and standard deviation unity. Free boundary
BC, in order to investigate the effects of different types ofconditions are applied in all directions.

boundary conditions. The various pictures discussed refer to For 5 given set of bonds, we determine the exact ground
the large volume limit, while the sizes that can be currentlysiate ysing a branch-and-cut algorithm discussed in Sec. IV.

reached are rather small. We will, therefore, pay particulag oy 5(0) g the ground-state spin configuration. As discussed
attention to properly take into accourtrrections to scaling by PY, we then perturb the couplindg by an amount pro-

Lnarg?]:gg:g} \;Vr?d\g"_l (;Zyﬁ:()th(lege;gl?ne thwg ?]goigllﬂﬁztgra}!?e portional to SfO)S](?) in order to increase the energy of the_z

way, namely, with the smallest corrections to scaling for theground state relat_lve to the other states gnd therefo_re possllbly

range of sizes considered. induce a change in the ground state. This perturbation, which
A summary of our results is as follows. We find that for depends upon a positive parameteris defined by

periodic BC, a simple scaling ansatz fits the results in a

natural way, i.e., with negligible corrections to scaling and _ € 0)(0

no adjustable parameters besidesdg and 6’. This gives AHE_N_WE,D Si( )SJ( )Sis'* @

d—ds=0.42+0.03; 6'=—0.01+0.03 (the meaning of the

error bars will be explained laterwhich agrees with the where Np=dL% *(L—1) is the number of bonds in the

results of PY, and is compatible with the TNT picture. We Hamiltonian. We denote the unperturbed ground-state energy

cannot rule out crossover to either the droplet or the RSBy E(©) and the perturbed energy of tsamestate byE(EO).

picture at length scales larger than our system sizes, but theie energy of the unperturbed ground state will thus increase

scenarios, especially the latter, would require larger correcexactly by an amoum\E(o)EE(EO)— E(®=¢. The energy of

tions to scaling than the TNT picture. _any other state, saw, will increase by the lesser amount
For free BC, all forms of fitting require some corrections E%E(Q)EE(:)_ E@=¢ q©, whereq(®® is the “link over-
p

to scaling. The most natural scenario, in the sense explained _, . i
above, %ives d—d,=0.45:0.02; §'=0.18+0.03, with between the states “0" and, defined by
small correctiongof the order 0f3%), which is compatible 1
with the droplet picture. Allowing somewhat larger correc- ql%=—" SI(O)SI(O)SI(”‘)SJ(”‘), 3
tions (of the order of 10%), the data are also compatible Np @)

with ¢’=0, namely, with the TNT picture. Finally, if we 3\ nich the sum is over all thal, nearest-neighbor bonds.

al]ow for very "’?‘fge corrections, the data are also consisteq{lote that thetotal energy of the states changes by an amount
with the RSB picture. of the order of unity.
In the second part of the paper, we analyze the perfor- 5o\ o apply the perturbation, the enerdifferencebe-

mange Off trlle branch-and-cut algorlthma Wef_ f|(;1dhthat theyeen a low-energy excited state and the ground state de-
number of elementary operations required to find the ground e ce< by the amount

state increases exponentially with the size, as expected since

computmg a ground state of :il three-dlmens!onal spm-glass AE(O)_AE(Q)ze(l_qI(O,a)). @)
system is an\’P-hard problenf! We also find, interestingly

enough, that the CPU time is larger for samples in whichif there is at least one excited state such tE&t—E(©)
there is an excited state close in energy to the ground-state AE(Y— AE(®, then one of these excited states will be-
energy, yet different from the ground state in the orientatiorcome the ground state of the perturbed Hamiltonian. We de-

of a large number of spins. We are not aware of any previougote the new ground-state spin configuration®, and
quantitative measures of this trend, which we expect to bgdicate byq, andg, with no indices, the link and the spin

common to other algorithms as well. (0)
The rest of this paper is organized as follows. In Sec. ”'overlap between the new and old ground std@%andsl ’

we describe the method of perturbing the ground states to géhereq is defined as usual by= UNESi(O)FSi(O?' _

information about low-energy excitations, introduced by PY. Due to the spin-flip symmetry of the Hamiltoniah), the
Our results for the nature of the large-scale, low-energy eXground state is doupl)lzdegenerate, and therefore the distribu-
citations are given in Sec. Ill. A discussion and summary offion of q is symr_netrlé aroundq=0. Hence, in the rest of
the results are given in Sec. Il D. A short description of theth® paper we will restrict ourselves g=0 without loss of
branch-and-cut algorithm used is given in Sec. IV, and thénformat_lon. 3 _

performance of the algorithm is analyzed in Sec. V. Our con- Consider the probabilitf(e,L) (with respect to the ran-

clusions are summarized in Sec. V. dom couplingsthatq is less than unity, namely th&f® and
SO differ in a finite fraction of the spins. As discussed by
Il. GROUND-STATE PERTURBATION METHOD PY, we assume th&(e,L) is dominated by those samples in

The Hamiltonian of the spin-glass model is given by ~ which S{* and S{) differ by flipping a single connected
cluster of spins, with linear sizke. Deviations from this as-
H=- J.SS (1) sumption give rise to corrections to scaling, as pointed out by
T Middleton® and will be analyzed in Sec. Ill. There are two
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energy scales in the problem: the typical energy above th&his is of the same form as in E), but, for sufficiently

ground state of such an excitation, which scaleg %{s(a’
=6 in the droplet picturg and the threshold energy of Eq.
(4), which scales asL ~(979) since 1-q, is proportional to
the surface of the excitation,-1g,~L~(9~9)_ Hence, the
dimensionless probabiliti?(e,L) is a function of the ratio of
these two energy scales:

P(e,L)=g(eL™#), (5)
whereg(x) is a scaling function and
w=0"+d—ds. (6)

From this we obtain scaling relations for various observ-

ables. For example, since -1g~0O(1) and 1-q

~L~@=d9 \we obtaif

(1—a)=Fq(eL™"), @)

(1-q)=L""%F, (eL™#), (®)

where(- - -) is the average with respect to the random cou-

plings. By measuringl—q) and{1—q,) we can then deter-
mine d—dg and #’, the two exponents discriminating the
various pictures of the spin-glass phase discussed in Sec.

For small e, we expect the probability that the ground
state changes to be proportional ¢o(for fixed L), which
implies g(x)~x for x—0. HenceF4(x) and F(x) also
vary linearly for smallx, and theasymptotic scalindpehavior
for L> e is

(1—-g)~eL™#, 9
(1—qp)~eL™", (10

where
m=0'+2(d—dy). (11

In the RSB cased—ds=6'=0, and thereforeu= pu,
=0. The scaling relations in Eqgé7) and(8) reduce in this
case to

(1-a)=Fq(e), (1-q)=Fq(e) (RSB, (12
and the asymptotic scaling behavior to
(1-a)~e, (1-q)~e (RSB). (13

We see that both scaling and asymptotic scaling are in

sense trivial in RSB, since thke dependence disappears.

Nevertheless, we will still use the terataling

small q,,ax, the behavior of the scaling functimh‘sh(x) and
Fgl(x) at small argument will be different for the following

reason. If we average over all samples, we need to include
the probabilityP(e,L) that the perturbation generates an ex-
citation with q<1. This is proportional taL ~# for eL ™ #

<1, which is the reason whifq(x)~x for small x. How-
ever, this factor is automatically taken into account in the
selectionof the samples in the restricted average in @4),

and so should not be included again when performing the
average. As a resuIEgl(x) tends to a constant far—0,

therefore the asymptotic scaling is

(1=ag)e~L~ 79, (15
In particular, in RSB this becomes
(1—q)).~const (RSB). (16)

Note that in both cases the asymptotic scalingpéependent

of e.

When analyzing the numerical data, we must be aware
that there are corrections to bottsimple scaling and
asymptotic scaling that occur whenis not large enough.
fCorrections to simple scaling take the formanfditive cor-
rections to relations such as Eq®), (7), (8), and (14),
whose amplitude is characterized by a correction-to-scaling
exponentw. For example, including the leading correction,
Eqg. (14) becomes

1 1
<1—q|>c=m[Fgl(eL—uHFqu(eL—M)]. (17)

ForeL™#—0, this gives the correction to asymptotic scaling
corresponding to Eq.15),

1 b
<1_q'>°:|_d——ds at (18)
For the RSB case, this goes over to
<1_ql>c:a+ Lo (19

rather than Eq(16).

Even when these corrections geimple scaling are neg-
ligible and the scalindgorm, such as Eq(14), is valid, the
argument of the scaling function may not be sufficiently
amall for asymptotic scaling to hold. In this regime, when
fitting the data to asymptotic scaling we have to consider
further corrections tdasymptoti¢ scaling, whose form is

It is also convenient to analyze just those samples irpbtained by expandin_g the scali_ng function in it_s argument.
which the unperturbed and perturbed ground states are vefyor example, the leading correction to E#j5), coming from

different, i.e., whereq=<(q,,ax, @ threshold value. Denoting
such restricted averages by- - )., we have

(L=qi)e=L"9Fg (eL ™). (14)

expanding thngI in Eq. (14) to second order, will be

(20

1 €
<l_q'>°:|_d_*ds atbiz/,
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TABLE I. Number of independent realizations of the disorder 1
(sampleg used in the computations.

L elr=3 er=3 er=1 €er=2 €lr=4

4 50000 50000 50000 50000 50000 & 0.5
6 20000 20000 20000 20000 20000
8 15000 13467 13467 6000 6000

10 10000 7440 6000 4918 4000

12 5670 4202

—~ QO

which goes over td1—q;).=a+be in RSB. In general,
both types of corrections need to be borne in mind when R
fitting the data. & 0.5 {2i

Ill. RESULTS

We applied the perturbation method described in the pre- B 17T 7
ceding section to systems of site=4,6,8,10, and 12. For
each size, we considered five values of the perturbatior
strengthe, namely,e/7=1%,%,1,2, and 4, where= /6 is the
mean-field transition temperature, except foe=12 for FIG. 1. Scatter plots in theg(q,) plane for different values of
which only e/7=% and 1 were considered. We choose thisthe sizeL and perturbation strength

value of 7 so that we can compare our results with the results

of PY for periodic BC. In order to discriminate between the re|ation to the fitting form considered.Restricting the av-
different pictures, it is important to have high statistics. Tal_)Ieerage in Eq(21) to different intervals ofj gives results also
| reports the number of samples computed for each sizgompatible with a power law. A vanishing in the thermo-

Note that the number of samples necessary to achieve @namic limit is consistent with RSB, which predicts tlgt
given statistical error increases aslecreases, since the frac- js a (nontrivial) function of g. It is also trivially consistent

tion of samples in whicfs(®)# S decreases. with the droplet model or the TNT picture, whegg=1 for
all g.
A. Spin and link overlap We also measured how the standard deviatioq eéries

with L, finding that it varies between 0.28 and 0.32. It can be

1. Qualitative analysis fitted both to a constarias expected in RSBor to a power

We start with a qualitative analysis of the results. In Fig.law with a small exponent around 0.1. However, the error

1, we show scatter plots in the,@,) plane forL=4,10 and bars are very large, hence the fits are not very informative.
e/T=3,1, where each point represents one of 2000 ran-

domly generated samples. Clearly, the link and spin overlaps 0.1 o — T .
are strongly correlated. We note that, aslecreases, there £ ]
are less points with smad], and that as. increases the data 0.09 [\, |q|<=O.2 3
shift towards larger values af; . Similar plot$® for periodic E 'y, 3
BC show thatq, is significantly lower than for free BC. 0.08 - -]
While g has a large variandghe points are distributed along C ]
the wholeq axis), the link overlap has a much smaller vari- 0.07 4
ance, which decreases hsncreases, suggesting that in the b C (1% ]
thermodynamic limity, either tends to 1 or becomes a well- L -
defined function of. 0.06 I~ X B
To quantify this, in Fig. 2 we show the standard deviation r ]
ofar, 0.05 - {I J
o= (aP)e—(a)?, (21) L e=V6 v
: . . L | [ L1 ]
restricted over samples with<q,ax, as a function of the 4 5 6 8 910

|
system size fore/7=1. We takeq,,=0.2, since we are E
interested in the region of smad], which corresponds to
large-scale excitations. A power law=aL~° fits well the FIG. 2. A plot of the standard deviation of the link overlap
data with6=0.52£0.03 (y*=1.80, the best fit is shown in = ((g2).—(q,)2)*2 where the average is restricted to samples such
Fig. 2). Here and in the following, unless stated otherwise that g<0.2. The line represents a power-law fit with exponént
the error bars on the fit parameters are purely statistical iB-0.52.
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FIG. 3. Average of the link overlap restricted to intervalgaff
width 0.1, as a function o for different sizesL (from bottom to
top, L=4,6,8,10,12). The continuous lines represent quadratic fits
including values ofg up to where the lines end. The dashed lines
are a guide to the eye.

FIG. 4. (Color online Logarithmic plot of the average€l
—q))¢, restricted to samples witfg|<0.4, as a function of the
system sizd.. Only three values o€ are displayed for clarity. The

Under the RSB hypothesis, it is interesting to study theower continuous line is the best fit with a power-law form Il in Eq.
functional relationship betweemandg; . In Fig. 3, we show (23 for e/7=3, wherer=6, and theL=4 data have been ex-
the average value of q,, restricted to intervalsq cluded from the fit. The dashed lines are the best fits with form | in
€[ Umin,Omax], @S a function of the mean value qfin each  Eg. (23). The inset shows a scaling plot of the data in the main

interval® for e/r=1. For fixed L, a quadratic formq, figure, excluding the.=4 data, according to Eq14). Here and in
= a(L)+ B(L)g> motivated by the infinite-range the following figures, note that the data for variauare correlated,

Sherrington-Kirkpatrick model wherg,=g?, fits well the since the samples used for largavere also used for smadl.

data forq less than some cutoff value which increases with
(see Fig. 3 The quadratic fit works well also for other val-
ues ofe, anda(L) and B(L) show a modest variation with We start with the determination af—dg from various

€. We also tried global fits including data for all valuesgpf observables. We will show that for all observables, a wide

2. Determination of d—dg

andL, obtaining similar results. range of values ofl—d; fits well the data when allowing
Extrapolatinga(L) and B(L) to L—c with fits of the  corrections to scaling, but that for all observables the small-
form a(L)=a+b/LS, B(L)=B+b’/L®, we obtain est corrections are attained for a valuedoefdg around 0.44

in agreement with the results of PY.
The main part of Fig. 4 ploté1—q,). as a function ot
q;=(0.77+£0.02 +(0.27+0.03 ¢2, (22)  for various values o0& andgma=0.4 (Uma=0.2 gives essen-
tially the same resuljs First, note that, independently of
what picture holds in thé.—co limit, the data deviate sig-
where again the errors are purely statistical for the functionahificantly from asymptotic scaling, see Hd5), in which the
form considered. This nontrivial relation betwegandq, in  variouse values should collapse on a single curve. Second,
the thermOdynamiC limit is consistent with RSB, while in the the data have a noticeable positmward curvature for all
droplet or TNT pictures the data in Fig. 3 would shiftdp  values ofe. In Sec. Ill C, we will show that in the case of

=1 in this limit. / periodic BC, the data have a much smaller dependence on
The power-law form *a(L)=b/L® B(L)=b'/L®, and a much smaller curvatufsee Fig. 12
which impliesq,=1 in the large volume limit, fits poorly the In order to determine how the various pictures fit the data

data if we include all sizes. However, if we exclude the of Fig. 4, we start by considering, following Ref. 9, the fol-
=4 data, the quality of the fit becomes as good as that of theowing three functional forms:
RSB fit just discussed. Hence, allowing for small corrections

to scaling, a scenario witti-ds>0, as in the droplet and the form 1, (1—q)c.=a+b/L"
TNT pictures, is consistent with the data.
This already shows that care must be taken to properly formll, (1—q)).=a+b/L+c/L?, (23
consider corrections to scaling when comparing the fits to
various pictures. In the following, we will investigate in de- form I, (1—q;).=b/LE.

tail the validity of the various pictures by considering several
observables and explicitly discussing the corrections to scal- Form | corresponds to the RSB prediction including the
ing. leading correction to scaling, see E9), with c=w. Form
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TABLE II. Fits to (1—q;)c with =0 andgn,=0.4. The  zero, may be independent of the boundary conditions, al-
four groups of data refer, from top to bottom, to the three fittingthough we do not have an argument why this should be the
functions 1, Il, and Il in Eq.(23), and form IV in Eq.(25 with d case.

—dS:O.44. For form 1, data fot. =4 were not included in the fit. The power-|aw form7 |||, appropriate to the drop'et model
The errors are the standard errors of a nonlinear fitting rodReé. or the TNT scenario, does not fit well the data if we include
25), andQ is the goodness-of-fit parameter. all the sizes, but if we exclude=4, it does fit well for

e/ 7<<2, and the fit parameteits and c are almost indepen-
dent ofe. The quality of the fit of form Il is worse than that
0.25 0.014 099 0.172) 1.0685 0.8908) of forms | and II, but still acceptable. The main point we

Form el7 )2 Q a b c

05 0015 090 0183 1.141) 0.961) want to stress, however, is that the worse fit of form IIl alone
I 1 304 022 02004 1.267) 1.047) doesnot necessarily favor the RSB picture, since form |IlI
2 039 052 0206) 1423 1.083) does not include corrections to scaling, while forms | and Il

4 027 060 0218 1733 1.142) do. In other words, forms land Il are rather “forgiving" with
the RSB picture, allowing corrections of magnitude 100%—
0.25 0.037 0.98 0.182 1.292) -—0.405) 200% of the predictetl-independent asymptote, while form
0.5 0.010 0.92 0.189) 1.231) —0.14(3) Il demands that the power-law scenario fits with corrections
Il 1 3.01 022 0.19® 1.16100 0.1627) smaller than thévery smal) statistical errors. By looking at
2 047 049 0.19@) 1.215 0.31(14) Fig. 4, it is clear that the data are closer to a power law than
4 042 052 0208 1.314) 0.641) to anL-independent behavior.
Therefore, in order to try a comparison that puts the vari-

025 140 049 0.82)  0.441) ous pictures on an equal footing, we performed fits with the
05 163 020 0.88) 0452 following more general functional form:
1 1 9.81 0.007 0.88) 0.442)
2 675 0.009 0.98) 0472 form IV, L9 9(1—q,).;=a+b/LS, (25)
4 11.4 0.0007 108 0512 where we fixd—dg and minimizey? with respect toa,b,c,
025 055 0.76 0.808) 7(8) 3.6(8) repeating the procedure for different valuesdof dg. For
05 065 042 0.816) 6(7) 3.28) d—ds=0, form IV reduces to form I, while fod—d>0, it
v 1 591 0.05 0.828) 1837  4.01.5 corresponds to form Ill plus a correction-to-scaling term,
2 280 0.09 0.84®) 5(5) 2.97) with correction-to-scaling exponemi=c. We find that, as
4 3.01 0.08 0.8M) 3.81.6 2.33) we might have expected from the previous discussion, form

IV fits well the data for a wide range of valuesaf dg. For

example, fore/7=3, a value ofd—dg between 0 and 0.45

Il is a different parametrization of the corrections to scaling.gives a goodness-of-fit parame@e0.43, which is entirely

Form Ill corresponds to the asymptotic behavior of both theacceptable.

TNT and droplet picturesvithout corrections to scaling, see This shows that, when allowing for corrections to scaling

Eq. (15), with c=d—d;. for all pictures, the droplet and TNT pictures are as good as
The results of these fitgerformed byy? minimization RSB as far as the statistical quality of the fits is concerned.

are reported in Table Il. From the table we see that forms However, within the interval of acceptable values af

and I, appropriate to RSB, fit well the data with a oy —d, clearly the larger igl—dg the smaller are the correc-
anda>0 outside the error bars. The best fits with form | aretions to asymptotic scaling. For example, forr=; andd
shown by the dashed lines in Fig. 4. The variatioradfe- —ds=0.42, the correction terr/L® in form IV amounts to

tween forms | and Il provides a measure of the systemationly 0.1% of the total forL=12, while ford—ds=0 it
error associated with the unknown corrections to scalingamounts to 43%. Hence, a large value dbf dg may be
Within this error,a is independent o, as predicted by RSB. regarded as more natural in this range of sizes.

Therefore, the data fof1—q,). are compatible with RSB, If we impose that the correction to scaling fox8 is less
and our central estimate under the RSB hypothesis is than a(arbitrary) limit of 3%, we obtain the estimate
lim(1—q,).=0.20-0.02 (RSB), (24) d—ds=0.44+0.03, (26)

Lo

where the error is purely statistical within this assumption. In
where the error takes into account also the uncertainty in th&able 1I, we show the fits obtained with form IV imposing
form of the corrections to scaling, assuming that the correcthis value. This value agrees with the estimdteds=0.42
tions considered in either form | or Il describe well the data*0.02 of PY for periodic BC(see also Sec. Il C of this
in the whole range of sizes considered. Marinari and Parisipapey, which is reassuring, sinogé— d should not depend
fitted form 1 (Il) to their data for periodic boundary condi- on the boundary conditions.
tions,L=<14 ande/r=4, and obtaine&a=0.24 (a=0.30), Note that ford—ds=0, corresponding to form I, correc-
from which we estimate a central valae=0.27+0.05. This  tions within 3% from the asymptotic limit would only be
is just in agreement with our estimate above for free BCattained for a sizd.=200. We also note that, as we dis-
suggesting that the infinite volume limit 01 —q,)., if non-  cussed in Sec. Il, even in the regime where corrections to
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scaling are negligible, asymptotic scaling sets in onlyLfor free b.c.

> eV This explains why, id—ds=0.44, the quality of the L D B R
power-law fit in Table Il becomes progressively worseeas 1= 1=0.63 ]
increases. In particular, the deviation from asymptotic scal- 0.8 —
ing is large fore/ 7=4, hence from the data ef =4 alone
one should not necessarily conclddihat an asymptotic
power-law behavior is ruled out. This is seen also in the inset
of Fig. 4, which shows that, if we exclude=4, the data are
compatible with the scaling relation, E(), where the ex-
ponentu is independently determined below.

PY determinedd—dg from the ratioR=(1-q,)/{1—q)
which has the same scaling behavior as the quartity
—q))c used here, namelyR=L (@7 9IF(e/L*) with
Fr(x)~ const asx—0. Middletort® observed that, in two =6
dimensions, small droplets introduce significant corrections 0.1 Lok Ll Ll
to scaling, and suggested that this may be the case also in o1 05 1 5 10
three dimensions, possibly invalidating the conclusions of e/ [

PY. The quantity(1—q,). is less sensitive to these correc-

tipns, since, by rest_ricting to smail small droplet_s _should FIG. 5. (Color online Scaling plot of the ratioB=(1
give a smaller contribution, because we have eliminated the_q|>2/<(1_q|)2> according to Eq(28). The continuous line is a

part at largeq where one can havenly small droplets.  polynomial fit of ordem=6, which givesy? per degree of freedom
Hence, to investigate these corrections, we fitted our data fQe.0.f of 1.09 and a goodness-of-fit paramet®r=0.35. The
R with forms |1-IV above(with R replacing(1—q,).). The  dashed line is the linear term of the polynomial fit, corresponding to
results we find are very similar to those fdr—q,).: forms  the asymptotic scaling fdr — .
| and 1l fit well the data with a lowy?, giving a=0.27
+0.03 independent of within the error bars. A power law The factorL9~% does not appear here since it cancels be-
fits well the data if we excludé =4, with an exponend tween numerator and denumerator of E2y), thus allowing
—ds=0.43+0.03 nearly independent efand in agreement us to determineu independently ofd—d. Following the
with Eq. (26). The residual dependence a@nis well ac- arguments in Sec. Il, we expeEg(x)~x for smallx since
counted for by a scaling plot similar to the inset in Fig. 4.both L9~ 9(1—q,) andL?@~9)((1—q,)?) vary ase/L* for
Form IV also fits well the data for a wide range of values ofe/L#— 0, hence the asymptotic scaling Bfis B~ e/L*.
d—ds. Again, a power law is more natural in the sense that To determineu, we fit the scaling law, Eq(28), to our
corrections to scaling are smaller, and the smallest correaata assuming a polynomial form of the order mffor
tions are obtained fod—dg around 0.43 as fof1—q)).- Fg(x), namely, Fg(X)=2i_nCiX', With ¢, set to zero in

We interpret the fact that the two quantities give the samerder to satisfy the asymptotic scalifgg(x)~x as x—0.
value of d—ds as evidence that corrections due to smallWe repeat the fit in an interval of values far, and deter-
droplets are indeed not important in three dimensions in thignine the value ofx which gives the best fit, varying until
range of sizes. In Sec. Il C, we will show that this is also they? of the best fit becomes approximately constant. In this
case for periodic BC. way, we obtain

To summarize this part, the data for bok and (1
—qp). are compatible with a wide range of valuesdt dg u=0.63+0.03, (29
between zero(corresponding to RSBand =0.44, but a
value at the higher end of this range describes the data in\&here the error is purely statistical, under the assumption

more natural way, in the sense that the corrections to scalingjat the corrections to scaling are smaller than the statistical
are smaller. errors of the data. As shown in Fig. 5, scaling is quite satis-

factory, with all the data collapsing on one curve, although
3. Determination of@’ the data for different overlap only slightly. The best fit for
n=6 is displayed by the continuous line. We emphasize that
this scaling plot is obtained with onlgne adjustable param-
eter, . Note that in the asymptotic scaling regime the data
€hould follow a straight linédpower law, while the data in
the figure show a pronounced curvature. Significant correc-
tions to asymptotic scaling must be expected for lagge

0.6 —

04 —
4T

2T
b
T/2
T/4

(1—q?/((1—-q,)?)

Next, we turn to the exponent defined in Eq(6), from
which we will extractd’ which is the other exponent, with
d—dg, characterizing the spin-glass phase. To this end, wi
consider the ratio

B= (1-a)? 27) sinceB must satisfy the inequalitB=<1. The dashed line in
((1—q)?) ' Fig. 5 represents the linear term Bg(x), corresponding to
asymptotic scaling, and the deviation from it gives a measure
which follows the scaling law of the corrections to asymptotic scaling. Thle=; data are
quite close to asymptotic scaling, while the data for la¢ge
B=Fg(eL™#). (28)  deviate significantly from it. Another manifestation of these
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corrections is that, if we fit the data with a power |&v were small for the observables consideredderd,). Under
=b/L7‘, the effective exponenf. varies strongly withe, the natural assumption of small corrections to scaling, from
converging towards 0.63 far— 0. the estimates oft andd—ds in Egs.(29) and(26), we obtain

In RSB, B~€¢ asL—» since u=0. To test the RSB P ) —
prediction, we performed fits @& uleiLng form | and form Il in 6'=p~(d=dy)=0.19:0.06, 0
Eq. (23), (where(1—q,), is replaced byB). form | gives Where, again, the error is purely statistical subject to the con-
unphysical(negative values ofa, while form Il gives an dition of having smallless than 3%corrections to scaling.
acceptable fit with a positiva roughly proportional toe. This result agrees with thg droplet theory which predicts that
Therefore, the data fdB cannot rule out RSB. Note that, if ¢ =0>0, and is compatible with the value 6=0.2 char-

RSB holds asymptotically, the data in Fig. 5 would deviateaCteriZing the e_n_erg)é of domain walls indL_Jce_d by a change in
from the scaling curve for largdr, saturating to a constant boundary conditions? By contrast, for periodic BC and un-

value for small values o&/L*. The good data collapse we der the same assumption of small corrections to scalihé

observed, therefore, would be entirely accidental. compatible with zerosee work of PY in Ref. 8 and Sec.

We believe that the observed data collapse is a good inIII C). In Sec. Il D, we will analyze the origin of this dis-

- - . o crepancy, and show that by allowing sméaif the order of
dication t_oward_s the vallc_hty of a scaling scenario W'th Iarge10%) corrections to scaling the free boundary-condition data
M. Cer_tamly this scenario IS more r_1atural, since it flt_s thecan be reconciled with#’ =0 .
data with(almos}) no corrections tdsimple scaling, while
the corrections for RSB are very large as apparent from Fig.
5. A similar conclusion was reached in the determination of
d—ds. So far we have analyzed the link and spin overlaps which

As a further test, we can obtain a second estimatg of aré computed on the whole systebulk). We now turn to a
from the quantity(1—q,) (g unrestricteti whose scaling different observable, theox overlapdefined as
and asymptotic scaling are given in E¢8) and (10). We 1
find results similar to those fdB: A power-law fit(1—q,) de={a >, S50, (31)
B

=b/L*™ (form IIl) gives acceptable fits far/ 7<% and for all '
values ofe if we excludeL=4. As for B, the effective ex- where the sum runs over the sites contained in a central cubic

ponentz, changes significantly witk, due to corrections to P0X of fixedsizeLg=2. In the following, we will only con-
asymptotic scaling, and by extrapolating itde-0 we obtain ~ Sider the absolute valueg|, which we still callgg for sim-
w=1.15+0.08. This givesu=pu,—(d—d.)=0.60+=0.09 plicity. When a large-scale cluster of spins is flipped, for
wlhich agrees with the estimayfe:lo 63+0 33 from_B As largeL the probability that its surface goes across the central

box is proportional to the ratio of its surface areal, %, to
for B, the data collapse reasonably well on one curveufor e .
=0.64+0.05 according to Eq(8), although the quality of the \{olume,Ld. .Therefore, gL~ ("% from which we
the scaling is somewhat worse than that of Fig. 5. To checl?btaln the scaling laws
the RSB prediction, we fitted the data to forms | and Il _ _| —(d—dy -
(where now(1—q). is replaced by1—q,)), finding that (1=0e)=L Faglel ). 32
they both fit well the data, witla roughly proportional toe
as expected in RSB, although, for smalla is also compat-
ible with zero. Therefore, as fd, the data are also consis-
tent with RSB, but this scenario requires large corrections t
scaling, while the hypothesig =0.63 fits the data with al- ) , ,
most no corrections tésimple scaling. asymptotic scaling fok — o< is
In the analysis so far, we have determined the exponents _
oo ) (1—qg)~eL ™M, (34)
p andd—dg using just the link overlap, . By contrast, PY
determinedu (for periodic BQ from the scaling of the spin (1—qg)e~L (@99 (35)
overlapg. An advantage ofy, is that its variance is much B/c '
lower, as shown in Fig. 1. In any event, we have verified thatn RSB, this reduces t¢1—qg)~e and(1—qg).~ const.
the scaling relation, Eq.7), fits well the data fomg, giving  An advantage ofjz over q, is that the former, being mea-
n=0.65=0.02, in agreement with the estimates fr@&@and  sured away from the boundaries, should have smaller correc-
(1—qp). tions to scaling and be less sensitive to boundary conditions.
Summarizing this part, we find that the data fit the  Indeed, Monte Carlo simulatiof’s®® show thatgg has rather
quantities considered, nameB, (1—q,), and(1—q), are  small corrections to scaling. This is likely to be particularly
consistent with the RSB prediction that=0 asymptotically, important for the free boundary conditions used here.
but large corrections to scaling are required in the fit, simi- Figure 6 shows theestricted average(1—gg)., Wwith
larly to what we observed in the determination af d. Omax=0.4, as a function ot for two values ofe. The data
The data are also fitted very well by a scaling scenario withare clearly decreasing with, are essentially independent of
n=0.63, with almost negligible corrections to scaliffjut €, as expected from E@35), and are close to a straight line
with sizable corrections to asymptotic scaling, which insteacbn the logarithmic plot. This indicates that the power-law fit,

B. Box overlap

(1—gg)c=L""9F] (eL™4), (33)

where, as for the corresponding scaling functions dpr
cIEqB(x)~x and FgB(x)fv const for smallx. Hence, the
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FIG. 7. (Color onling Logarithmic plot of the average box over-
lap, multiplied by /e in order to highlight the deviation from the
asymptotic behavior of Eq34) in which the data for varioug
should collapse on a single curve. The continuous lines represent
fits with the power-law form Il excludind.=4. The dashed lines
represent fits with form | in Eq23).

FIG. 6. (Color onling Logarithmic plot of the average box over-
lap, restricted to samples such tlipE0.4. We show the data for
just two values ofe for clarity. The data for other values efare
superimposed. The lower continuous line is a power-law fit for
e/ 7=4. The dashed line is the fit with form Il in E3), with qg
replacingq, . The slope gives the exponet-d;.

form 1ll, appropriate to the droplet and TNT scenarios, ©=0.62£0.04 (38
should work well and indeed it does, even for the largest

value of € (we note, however, that the statistical errors areyhich agrees with the various estimatesiobbtained from
larger than for the link overlap, hence the fits are less sensi (1—q,), and(1—q). Figure 8 shows the corresponding

tive to corrections_ to scalingThe exponent is almost inde—_ scaling plot, in which the data collapse is fairly good.
pendent ofe, varying between 0.48 and 0.52, and from this 14 conclude this section, the data for box overlaps can be
we obtain the estimate fitted with smaller corrections to scaling than the data for the
bulk link and spin overlaps. A fit to the generic scaling pic-
ture, with no corrections to scaling, gives results for the ex-
ponentsd—dg and u in agreement with those from the bulk
quantities analyzed in the previous sections. However, as

d—d,=0.48+0.03, (36)

which is in agreement with the estimates—d,=0.44
+0.03 from(1—q). andd—ds=0.43+0.03 fromR.
Forms | and Il(with gg replacingq,) also fit well the
data, witha between 0.14 and 0.3&ith no discernible trend Tl R R R
with €). Hence, the data are also compatible with RSB, and 1
under the RSB hypothesis, we estimate -

©u=0.62 =
d-d =0.44

lim (1—qg).=0.25-0.10 (RSB). (37)

Lo

As usual, we note that the RSB scenario requires rather large
corrections to scaling, while the power law fits the data with
no corrections.

Figure 7 shows the unrestricted avergde-qg) multi- 0.1
plied by 7/ e, which asymptotically should be independent of
e. The data show a small curvature and a significaule-
pendence, indicating that for this quantity we are not yet in A L Lol e
the asymptotic scaling regimésimilarly to what we ob- 0.1 05 1 5 10
served for the quantityB). The data are fitted well by a ’ .e pir
power law, with an exponent that changes wétland tends
towardsu=0.63 fore—0. Fits using forms | and Il give FIG. 8. (Color onling Scaling plot of the box overlap according
compatible with zero. We also determingdrom the scaling  to Eq.(32). The continuous line is a polynomial fit of the order of
relation, Eq.(32), by fixing d—d;=0.44 and using the same n=6, which givesy?d.o.f=0.63 and a goodness-of-fit parameter
fitting procedure as foB (which assumes no corrections to Q=0.85. The dashed line is the linear term of the polynomial fit,
scaling, finding corresponding to the asymptotic behavior Fors oo,

(1 - <qB>) La-d4
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TABLE IlI. Fits to (1—q). with gn=0 and gma=0.4 for

- | 1 | | ] periodic boundary conditions. The three groups of data refer, from
C v 13l R R IR R top to bottom, to the three fitting functions I, 11, and Il in E®3),
0.9 = s L u=042 8] respectively, and form IV in Eq.25) with d—d¢=0.43.
- R d-d,=043 & | 4
0.8 | ~ | gtg 14 Form e/r  x? Q a b c
= U‘ & =
B T 12l sa™ 4]
o - = ] T 025 0.003 0.99 -0.076(7) 1.2565) 0.3844)
5 0.7 01 051 5 101 05 092 062 008 1162 0473
T C e/ Lr ] 1 158 045 0.1B8) 1.162) 0.523)
— 0.6 . n 2 2.20 0.33 0.1®) 1.182) 0.544)
Tr ‘-/ : 4 1.58 0.45 0.2@) 1.2704) 0.682)
L s 1/a ]
& 7/2 ] 0.25 0.33 0.56 0.2719) 1.905) —1.5(1)
05 F" T — 05 522 0.073 028 1909 —1.5(2)
L 1 I 1 069 071 0280 1.893) —1.40(6)
' L L L L] 2 004 098 0283 1901 -1.33(2)
3 4 5 I? 7 8910 4 036 083 0292 1862 —1.01(4)
0.25 0.02 0.887 1.202) 0.4331)
FIG. 9. (Color onling Same as Fig. 4 but for periodic boundary 05 035 0.838 1.193) 0.4272)
conditions, USing the data of PCRef a 1l 1 5.14 0.076 12ﬂ2) 04346)
. . , 2 782 0.020 1.20) 0.44Q8)
with the bulk observables, assuming large corrections to 4 257 210° 1.312)  0.461)
scaling, the data can also be fitted to the RSB picture.
1 3.59 0.16 1.208}) 0.31.5 3(4)
. . - o \Y 2 4.69 0.09 1.21&) 0.2(5) 2(2)
C. Comparison with periodic boundary conditions 4 838 0.01 1.23B) 0.75) 2.37)

In order to assess the effect of different boundary condi
tions, we have repeated part of the analysis alewth the
exclusion of box overlapsfor the data of PY(Ref. 8 for

responding data for free BC in Fig. 4, indicating that correc-

periodic boundary conditions arid<8. The ground states tions to scaling are smaller for periodic BC. Table Ill reports
were obtained using a hybrid genetic algorithm as describethe best fits using the three functional forms of E23).

by PY. This does not guarantee to find the true ground staté;orm | fits well the data, bu& varies significantly withe,

but the systematic errors due to occasionally missing it ar@nd for smalle it is compatible with zero. Form Il also fits

smaller than the statistical errdts.

Figures 9 and 10 show the equivalent for periodic BC ofFrom this fit we estimate

Figs. 4 and 5 for free BC. The data in Fig. 9 show much less
curvature and also a smaller dependence: dhan the cor-

lim (1—q;)¢=0.28+0.03 (RSB

L—oo

well, with a independent ofe within the statistical errors.

(39

(1—q)?/((1-q,)?)

0.8
0.6

0.4 —

0.2

0.1

periodic b.c.

L B T

n=0.42

=86

Jlllllll 1

II|IIJI

0.5 1
e/ L~

5

10

[see the comment after E€R4) as to the meaning of the
error ball, which agrees with the estimate 0.24 of Marinari
and Parisf and is just consistent with our estimate 0.20
+0.02 for free BC.

The power-law fit with no corrections, form 11, fits well
the data for the two smallest values ©find, if we exclude
L=3, for all but the largest value af. The exponent=d
—d is nearly independent of and gives

d—d,=0.43+0.02

(periodic BQ.

(40)

This result agrees with the estimade-d,=0.42+0.02 of

PY obtained from the rati® defined above, confirming that

corrections due to small droplets should not be important in

three dimensions, and with our estimate d,=0.44+0.03

for free BC, indicating thatl— ds does not depend on bound-

ary conditions.
We also performed fits with form IV which includes cor-

rections to scaling. As for free BC, a wide range of values of
d—d from zero to around 0.44 give a good fit, with the
largest values giving the smallest corrections to scaling. The

FIG. 10. (Color onling Same as Fig. 5 but for periodic bound-
ary conditions, using the data of RRef. 8.
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results of the fit fod—d,=0.43 are shown in Table IIl. For free b.c.

the two smaller values o€, the fits are difficult because T Tt torrTTn

corrections to scaling are very small, hence they are not 1= u=0.42

shown. 08 %
We determined the exponepntfrom the ratioB using Eq. r

(28) and the fitting procedure described for free BC, obtain-

ing

0.6 —

0.4 - slope 1 ]
u=0.42+0.03 (periodic BQ, (41) :

where, as for the estimate af—dg above, the errors are
purely statistical with the assumption that corrections to scal-
ing are smaller than the statistical errors of the data. Scaling
is rather satisfactory as shown in Fig. 10. This value agrees
with the estimateu=0.44+0.02 of PY from the scaling of
the spin overlap but incompatible, within the statistical error 0.1 Ll
bars, with the resuliu=0.63+0.03 for free BC. We will 0.1 05 1 5 10

return in Sec. Il D to the origin of the discrepancy between e/ L~

free and periodic BC. The inset of Fig. 9 shows that, with

these values ofu and d—dg, the scaling form for(1 FIG. 11. (Color onling Scaling plot of the ratioB=(1
—a)e, Eq.(14), is also well satisfied. Finally, we verified —a)?/((1—q,)?) according to Eq(28). The continuous line is a
that, if d—ds=0.43, the unrestricted averaggé—q,) satis- polynomial_ fit of_ the order oh=5, excluding the _data_ with =4
fies scaling, givingw=0.45+0.02 in agreement with the es- and 6, which gives¢?/d.o.f =1.26. The dashed line is the linear

02 —

(1=q,)2/((1—q)?)

=6

timate fromB. term of the polynomial fit, corresponding to the asymptotic scaling
Combining Eqs(40) and (41), we obtain the estimate of o L—=.
0" for periodic BC: ment, allowing some corrections teimple scaling, we can
accommodate a larger range of values for
0'=u—(d—dg)=—0.01=0.03 (periodic BQ. (42 This is shown in Fig. 11, which gives a scaling plot for

free BC, analogous to Fig. 5 but assuming the value
This is compatible with zero and, within the error bars, =0.42 determined frorperiodic BC. The polynomial fitting
incompatible with the valu®’ = #=0.2, whered character- Curve was obtained by excluding from the fit the data points
izes the energy of domain walls induced by boundaryfor L=4 and 6. One can see that for larderthe data col-
condition changes. A scenario in whigh =0 andd—d; lapse reasonably well on the curve. The deviation oflthe
>0 is consistent with the TNT picture. Finally, we note that, =4, 6 data from the curve, less than 10%, is a measure of
although our analysis of the data of PY uses different quanthe corrections to scaling. Therefore, we see that corrections

tities to extract exponents, our results agree with those givet® scaling of less than 10% for the two smallest sizes are
by PY. sufficient to remove the discrepancy in the valuegbfbe-

tween free and periodic BC. We verified that also the other
quantities considered, namelyl—q;)., R (1—q), (1
—(q), can be fitted in a similar way.

In the previous sections, we have seen that for both free We also tried the converse operation, namely, a scaling
and periodic BC, the analysis of all the different observableglot of the data for periodic BC but using the valye
considered gives consistent results for the exponéntds;  =0.63. We find that one can get a relatively good data col-
and @’ under the assumption of minimal corrections to scal-lapse excluding the sizés=3, 4, and 5, which deviate from
ing. However, while the results faf—d; for free and peri-  the scaling curve by less than 10%. However, now the data
odic BC agree with each other, the results forapparently  for a givene approach the scaling curve from the right side
do not, having found®’ = —0.01+0.03 for periodic BC and instead of from the left side as in Fig. 11, but since they have
0'=0.19+0.06 for free BC. Since’, like d—dg, should an upward curvature, the correction to scaling should change
not depend on the type of boundary conditions, the discrepeurvature twice at increases, which is not very plausible.
ancy must be due to different corrections to scaling for theHence, we believe that it is more natural to conclude that the
two boundary conditions. correct value ofu is closer to 0.42 than to 0.63, namely, that

Therefore, it is important to analyze further the correc-corrections to scaling are smaller for periodic than for free
tions to scaling. First, we recall that the scaling plots for theBC.
quantity B in Figs. 5(free BO and 10(periodic BQ, from Indeed, in general, it is reasonable to expect that correc-
which we have determined (and henced’), are obtained tions are larger for free BC, because these BC have a free
by imposing that thevholedata se{namely, all values o€ surface on which lie a fraction of sites which is quite sub-
and L) satisfies scaling with corrections to scaling smallerstantial for moderate sizes. In Fig. 12, we plot together the
than the statistical errors, which are less than 1%. Clearly,1—q,). data of Figs. 4 and 9 for free and periodic BC. The
this is a very stringent requirement. If we relax this require-data for free BC lie significantly below those for periodic

D. Discussion and summary of the results
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(d—=ds>0, #’=0), while for free boundary conditions we
obtain ¢’ =0.19+0.06, which fits well the droplet picture
(d—dg>0, #’>0). By relaxing this requirement and allow-
ing larger corrections to scaling of the order of 10%, the data
for free BC can be also fitted by a scenario with=0.
Therefore, the data for free BC are also consistent with the
TNT picture provided moderate corrections to scaling are
allowed, larger than those for periodic BC. We have also
provided direct evidence that indeed free BC have larger
corrections to scaling.

Data for the box overlap for free BC indicate smaller
corrections to asymptotic scaling, which is reasonable since
the box is away from the surface, and are consistent with the
scenario described above.

N For both free and periodic BC, the data are also fitted well

v 8910 by the RSB pictured—d;=0, #'=0), but only if we allow
very large corrections to scaling. In this case, the good scal-
ing behavior we observed for all the observables considered

FIG. 12. (color online This plot shows together the data of Fig. Would only be a finite-size artifact, and would disappear at
4 for free boundary conditions and Fig. 9 for periodic boundarylarger sizes. To test this possibility, large system sizes will be
conditions. needed.

This concludes the first part of the paper, dedicated to the
BC, indicating that the surface of the excitations is smallemhysical results. In the second part, we will describe the
for free BC. For periodic BC, the domain wall has to “bend” branch-and-cut algorithm employed, and analyze its perfor-
to return to the same point on the “top surface” as it had onmance in our computations.
the “bottom surface.” This may be the source of the extra
surface area. _ _ IV. THE BRANCH-AND-CUT ALGORITHM

Under the hypothesisl—d,=0.44, Fig. 12 then shows
that the corrections tasymptoticscaling are larger for free Branch and cut is, to our knowledge, the fastest exact
BC, since the free boundary-condition data show a morenethod for determining ground states of spin glasses in three
marked deviation from the asymptotéeindependent behav- dimensions. To apply this technique, we transform the prob-
ior, and display a larger curvature. This is further indicationlem of minimizing the Hamiltonian in Eq1) into a standard
that free BC have larger corrections. combinatorial optimization problem known as tiraximum

Evidence that free BC have larger corrections was alseut problem.(For a detailed description of optimization and
found recently in Monte Carlo simulatioR®,where some related topics, see Ref. 30Consider the interaction graph
evidence was observed that the free BC data might have @=(V,E) associated with the spin-glass Hamiltonian, where
crossover from dropletlike to either TNT- or RSB-like be- G contains vertices,1 .. L3eV associated with the spin
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havior at large sizes. sites and edgesij() € E with weight c;;=—J;; associated
Incidentally, note that if RSB is the correct asymptotic with the couplings.
pictureandthe L — limit of (1—q). is the same for peri- Given a partition ofV into two sets,WCV and its

odic and free BC, then Fig. 12 would indicate that the cor-complement/\W, thecut §(W) associated withVis defined
rections aresmallerfor free BC(since the data are closer to as the set of edges with one end poinsay, inW and the
their nonzero asymptotic valuevhich is not very plausible. other end pointj say, in VAW. In formulas, §(W)={(ij)
Note, however, that we do not have an argument why in thez E|i e W,j e VA\W}. Theweightof a cut§(W) is defined as
thermodynamic limit(1—q,). should be independent of the sum of the weights of the cut edg&s)c swCij- A
boundary conditions. maximum cuts a cut with maximum weight among all par-
To summarize the first part of the paper, we have analyzetitions W. It is easy to show that minimizing the Hamil-
several quantities for periodic and free BC. For both types ofonian, Eq.(1), is equivalent to finding a maximum cut @,
boundary conditions, all the data are well described by @ee Ref. 19. If we know a maximum cut with node partitions
general scaling picture involving only two scaling exponentsw and VAW, the corresponding ground-state spin configura-
d—ds and 6" with only small corrections to scaling. Some tion can be read off by assigning the value up to the spins in
observables show significant corrections to asymptotic scaW and down to the spins iW\W, or vice versa.
ing, which are larger for free boundary conditions. Fitting The branch-and-cut algorithm solves the maximum cut
this scaling picture to our data, we obtain comparable valueproblem through simultaneous lower and upper bound com-
of d—d for periodic (0.43:0.02) and free boundary condi- putations. By definition, the weight of any cut givesosver
tions (0.44-0.03). boundon the optimal cut value. Thus, we can start from any
By imposing that corrections to scaling are less than theut and iteratively improve the lower bound using determin-
statistical errors of about 1%, for periodic boundary condi-istic heuristic ruleqlocal search and other specialized heu-
tions we obtaind’=0, which fits well the TNT scenario ristics, see Ref. 31 for detajlsHow do we decide when a cut

064413-12



LOW-ENERGY EXCITATIONS IN SPIN GLASSES FROM . .. PHYSICAL REVIEW B8, 064413 (2003

is optimal? This can be done by additionally maintaining TABLE IV. Mean CPU time per sample in seconds for the cal-

upper bound®n the value of the maximum cut. Upon itera- culation of the unperturbed ground state, averaged also over the

tion of the algorithm, progressively tighter bounds are founddifferent machines.

until optimality is reached.
Since the availability of upper bounds marks the differ- L Mean CPU time per sample

ence between a heuristic and an exact solution, we now sum-

4 0.065
marize how the upper bound is computéar more details, 6 0.662
see Ref. 31 To each edgeif), we associate a real variable 8 16 11
x;; and to each cuf(W) anincidence vectog °™) e RF with 10 338

componentsy") associated with each edgéj), where

xoM=1if (ij) e (W) and x{")=0 otherwise. Denoting
by Pc(G) the convex hull of the incidence vectors, it can bethe system size. The results for size=12 were obtained
shown that a basic optimum solutirof the linear program  with a more efficient version of the code, so performance for

this size cannot be compared with that for the smaller sizes.
Hence, in this section, we shall just consider sizes up to
max{(ij)E;E JijXij "0

Finding the ground state of the Hamiltonian, Edf), in
is @ maximum cut. In order to solve E3) with linear  three dimensions is afP-hard problenf® and all known
programming techniques, we would have to expegéG)  algorithms to solve this class of problems require a number
in the form of operations that grows exponentially on the size of the
e input, in the worst case.

Pc(G)={xe RF|Ax<b,0=x=<1} (44) However, depending on the problem, the number of op-
erations fortypical instancegfor the spin-glass problem, an
%nstance is a realization of the random couplings, or sample
can grow considerably more slowly than the worst case ex-
ponential behavior. Furthermore, the number of operations
can vary significantly from one instance to another. It is,
therefore, useful to investigate experimentally the perfor-
mance of the algorithm for typical instances, in order to try
to extrapolate the computational resources necessary to go to
larger sizes, and possibly to identify which parameters of the
problem affect most the performance. De Simarteal®
measured the average CPU time used by the branch-and-cut
algorithm to find the ground state of the two-dimensiondl
spin glass with periodic BC, up tb=70, showing that the
average CPU time was approximated by a function propor-

Xe PC(G)] (43)

for some matrixA and some vectdn. Whereas the existence
of A andb is theoretically guaranteed, even the subsets o
Ax=<b known in the literature contain a huge number of
inequalities that render a direct solution of E43) imprac-
tical.

Instead, the branch-and-cut algorithm proceeds by opti
mizing over asuperset PcontainingP<(G), and by itera-
tively tighteningP, generating in this way progressively bet-
ter upper bounds. The supersBtare generated by eutting
plane approach. Starting with sonfe, we solve the linear
program mafl.eijX;/xeP} by Dantzig's simplex
algorithm®? Optimality is proven if either of two conditions
is satisfied{(i) the optimal value equals the lower bourtii)

the solution vectok is the incidence vector of a cut. tional to LS.

I nei_ther IS satisfieq, we hgve to Fight@ht_)y s_olving t_hg Here we analyze the performance of the branch-and-cut
separation problemThis consists in identifying inequalities 515qrithm for the three-dimensional spin glass with free BC
that are valid for all points iPc(G), yet are violated b,  and Gaussian couplings. In order to do this, we first need a
or reporting that no such inequality exists. The inequalitiesyjood measure of the performance. For a complex algorithm
found in this way are added to the linear programming for-such as branch-and-cut, a simple and absolute measure of the
mulation, obtaining a new tighter partial systeRTCP  number of operations is not available. Two possible measures
which does not contair. The procedure is then repeated onare the CPU time and the number of linear programs solved
P’ and so on. during the run of the algorithm. In Table 1V, we summarize

At some point, it may happen that) and (i) are not the average running time needed for calculating an unper-
satisfied, yet the separation routines do not find any newurbed ground state for the different system sizes.
cutting plane. In this case, weranch on some fractional The CPU time is not an accurate measure, since it de-
edge variablex;; (i.e., a variablex;; ¢{0,1}), creating two pends on the machine architecture and load. Furthermore,
subproblems in whiclx;; is set to 0 and 1, respectively. We our computations were carried out on several different ma-
then apply the cutting plane algorithm recursively for bothchines, so the CPU time is not useful here. We take instead
subproblems. the number of linear programs solved,, becausdi) it is a

well-defined and machine-independent quantiiy;we have
V. PERFORMANCE observed that about 95% of the time is spent in solving linear
OF THE BRANCH-AND-CUT ALGORITHM programsyiii) for a fixed system sizey, correlates strongly,
and almost linearly, with the CPU time. This is shown in Fig.

In this section, we study the performance of our currentl3, which plots the CPU time versug for 1000 randomly
implementation of the branch-and-cut algorithm, in particu-generated samples with=10, computed on the same ma-
lar, the dependence of the number of computer operations arhine. Note that since th&izeof the linear programs is also
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FIG. 13. Scatter plot of the CPU time to find the unperturbed

ground state =0) versus the corresponding number of linear pro-

—_

FIG. 15. The circles are a plot dfog;gn,), wheren,, is the

grams solved 1f,). Each point represents a randomly generatednumber of linear programs solved to compute the unperturbed
sample withL=10. All the computations for this set of samples ground states®, versus the overlap betwe&? and the perturbed
were run on the same machine. The dashed line indicates a lineground stateS(?). The data is fore/7=4 and the samples were
selected from a set of randomly generated samples witti0, in

such a way that the same number of samples is plotted for each
growing with the system size, the CPU time per linear pro-consecutivey interval of length 0.1, in order to sample equally all

behavior.

gram increases strongly with: the averagémediar) CPU
time goes from 0.0077.044) sec forL=4 to 0.833(0.7849

sec forL=10.

Hence,n, severely underestimates the rate at which the

number of operations increases with

From Fig. 13, we also note that the distributionngf(and

regions ofq. The triangles show the standard deviation, among
samples, of logn, as a function of.

In order to identify which parameters of the problem, in

addition to the size, affect the performance, we ask whether

n, correlates with the physical observables we measure. No

CPU times is very broad, extending over three orders ofsignificant correlation was observed with the ground-state

magnitude. The histogram distribution of, for different

energy. Figure 15 plot$ (logyn,) for the unperturbed

system sizes is shown in Fig. 14. In addition to shifting toground state é=0) andL =10 versus the overlap between

larger n,, the distribution broadens ds increases. Also,

this state and the perturbed ground state with=4. We

there is some evidence of a double-peak structure.LFor observe a distinct correlation betweepandg: for smallg,
=10, we verified that the peak at smallgy corresponds to  more linear programs are needed than for layg€he figure
samples that could be solved without branching, while the

other peak corresponds to samples where branching was nec-
essary. Since in each branching step the number of subprob-
lems to be solved doubles, the number of linear programs
increases rapidly and the second peak is at significantly

largern,, .
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FIG. 16. (Color onling Averagen,, mediann,, and condi-
tional averages of, restricted to|q|<0.1 and to[q|=0.9, as a
FIG. 14. (Color onling Histogram of the number of linear pro- function of the number of bondd,. The data forn, are forL
grams solved by the branch-and-cut algorithm to find the unper=10 ande=0 (unperturbed ground stateand q is the overlap
between thee=0 ande/ 7=4 ground states.
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shows that the typical number of linear programs is close to A consequence of the broad distribution of the CPU time
an order of magnitude larger §&=0 than ifq=1. We ob-  and of its correlation with the physical observables of inter-
served a similar correlation for other valueseadis well, and  est is that a cutoff in the CPU time produces a systematic
also between the CPU time agdAgain, the distribution of error in these quantities. One has, therefore, to ensure that
N, is quite broad as shown by the data for the standard dghe cutoff is large enough so that the systematic error is
viation of log,gn,, in Fig. 15. smaller than the statistical error.

In order to quantify how the correlation betwegnandq It is interesting to try to extrapolate the running time
changes with the system size, we show in Fig. 16 the averageeeded to deal with larger sizes. The average CPU time in
and median oh, as a function oNy,, as well as the condi- Table IV varies approximately as exp(aNp) with « some-
tional averages of, restricted to samples with largeq( ~ where between 0.0024 and 0.003. Extrapolating-te14
|=0.9) and small [g|<0.1) overlaps. We take the number (N,=7644), this gives an average CPU time of around
of bonds,N,,, as a measure of the input size, since the maxi10°~! sec per sample, which is clearly very demanding. Fur-
mum cut problem is specified in terms of the edge variableghermore, memory limitations will set in before we can reach
in the graph. From Fig. 16 we see that, first, all measurethis size. Again, note that, increases much more slowly
show an approximately exponential increase with, with  with Ny, . The data fofq|<0.1 in Fig. 16, for example, vary
corrections for smalN,,, and second, the difference betweenapproximately as~exp(@N,) with a smaller « around
the conditional averages with small and largeseems to 0.0017, showing that the dominant limiting factor is the so-
increase with the system size, and is about one order of magution of the linear programs. Note that the program used for
nitude forL=10. L=12 is significantly faster than that used in this extrapola-

A qualitative difference between samples with small andtion. This long extrapolated running time gives us the further
large overlaps is that samples with a snig)lhave a rougher motivation to continue our research on the improvement of
“energy landscape,” namely, states with an energy close téhis algorithm.
the ground-state energy yet a spin configuration very differ-
ent from the ground state. It is then intuitively clear why one
would observe a correlation betwegrand the running time VI. CONCLUSIONS
for a stochastic algorithm employing local search heuristics,

such as simulated annealing, since when the algorithm en- Using anexact’branch-and-cut” optimization algorithm,
9, ) .we have studied the large-scale, low-energy excitations in the

counters one of these configurations with small overlap, 'Hsing spin glass in three dimensions witee boundary con-

must retrace its steps by a Iargt_a amount. ditions, and compared the results with those obtained earlier
For the branch-and-cut algorithm, the reason for the cor;

relation betweem, andq is less obvious, but some insight is oy PY for periodic boundary conditions.

provided by an analysis of “reduced cost fixing.” This is a hoIn the first part of the paper, we have discussed in detail

feature of the branch-and-cut algorithm gin th w the whole set of observables analyzed is fitted by a
: anch-and-cut algo speeding up Pgeneral scaling picture characterized by two exponehts
computations. In every iteration of the algorithm, reduced_d and ¢’ and how the values of these parameters pre-
S

cost fixing gives us a sufficient condition to decide which . . . . .
i . . dicted by the various physical pictures proposed for the spin-
variables(corresponding to the edges in the graphve al- lass pr?/ase fit our daFiaYOur fonclusio%s F;lave been surﬁma-

o, 1 a0 1 Iz at the end f Sec. 1 D
the subsequent iF:erations of the algorithm, resulting in les In the second part of the paper, we have analyzed the
q 9 ’ 9 erformance of the branch-and-cut algorithm, finding that

qverall computational effqrt. The_more v_arlables that can b he performance is worse when there is a low-energy excited
fixed, the faster the algorithm is in practice. : :
state close in energy to the ground state but far away in

S"mce the Sa”?p'es W'th S”.‘a” 0\_/erlap have. almost Optl'configuration space, and have given a quantitative analysis of
mal” solutions with spin configurations very different from éhis offect

the ground state, a smaller number of variables can be fixe
Here we do not have the “correct” edge values available
until the end. As an example, we checked thatlfer10 and
e=r, for 100 randomly chosen samples with small overlap
(la/=0.1), in average 40939 of the 2700 edge variables  We would like to thank A. J. Bray, G. Parisi, M. Mard,
could be fixed in the first sub problem, i.e., before branching®. S. Fisher, and M. A. Moore for helpful discussions and
takes place. In contrast, for 100 randomly chosen samplesorrespondence. A.P.Y. acknowledges support from the NSF
with big overlap (q|=0.9), 921+ 34 of the edge variables through Grant No. DMR 0086287. MP would like to thank
could be fixed in the first sub problem, about twice as manyA. J. Bray for a useful suggestion on the data analysis. We
Of course, the less variables that can be fixed in the first suthank the Regional Center of Computing of the University of
problem, the more overall branching is necessary, resultinggologne for the allocation of computer time. Over the years,
in more overall computational effort for samples with small Giovanni Rinaldi and Gerd Reinelt contributed much to the
overlap. algorithm.
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