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Theory of the [111] magnetization plateau in spin ice
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The application of a magnetic field along th&ll] direction in the spin ice compounds leads to two
magnetization plateaux, in the first of which the ground-state entropy is reduced but still remains extensive. We
observe that under reasonable assumptions, the remaining degrees of freedom in the low field plateau live on
decoupledkagomeplanes, and can be mapped to hard core dimers on a honeycomb lattice. The resulting
two-dimensional state is critical, and we have obtained its residual entropy—in good agreement with recent
experiments—the equal time spin correlations as well as a theory for the dynamical spin correlations. Small
tilts of the field are predicted to lead a vanishing of the entropy and the termination of the critical phase by a
Kasteleyn transition characterized by highly anisotropic scaling. We discuss the thermally excited defects that
terminate the plateau at either end, among them an exotic string defect which restores three dimensionality.
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. INTRODUCTION here include plateaux in the magnetizatfbhand a liquid-
gas transition for fields of different strengths and
The discovery of the spin ice compounds figO, (Ref.  orientations:®
1) and DyTi,O; (Ref. 2 is one of the more remarkable Experimentally, the usefulness of magnetic fields was ini-
events in the study of frustrated magnetism in the last detially limited by the absence of single crystals, so that the
cade. The name spin ice advertises their statistical mechani@&havior in a magnetic field had to be interpreted in terms of
at low temperature, which can—approximately—be mappedn average over all possible relative angles of fields and crys-
onto that of an |Sing antiferromagnet on the pyroch|0re |at.ta”ites. With the advent of Single CryStaIS, this Shortcoming
tice, which in turn is equivalent to cubic ideThe initial IS being removed:° In recent experiments on BYi,O;
discovery stemmed from the observation that the large spindXefs. 15, 1§it was demonstrated that applying a field in a
Jho=8 in Ho,Ti,O; failed to order at any temperature de- [111] direction does indeed lead to the predicted pair of mag-
spite a ferromagnetic Curie constdrithis was understood nNetization plateaux—a low field plateau which retains an ex-
to result from the interplay of strong easy-axis Sing|e_i0ntensive zero temperature entropy albeit one reduced from the
anisotropy and the geometry of the pyroch|0re |attice’ whichZ€ro field value, and a second plateau at hlgher fields where
together effectively turn the ferromagnetic interaction into anthe entropy vanishes and the magnetization is saturated upon
antiferromagnetic exchange between Ising pseudospins-iolation of the ice rule:*°
which describe whether the moment on a given site is ori- In this paper we mostly provide a theory of the properties
ented inwards or outwards along the local easy axis passirf the low field[111] plateau in theT—0 limit with some
through the site and the neighboring tetrahe@ee Figs. 1 additional considerations on finite temperature corrections
and 2.% Later, it was pointed out that the effective nearest-
neighbor ferromagnetic exchange was in large part due to the
effect of dipolar interactions projected onto the manifold of A
Ising states:® A
The antiferromagnetic interaction between the Ising pseu- L}
dospins generates an “ice rule”—a minimum energy con-
figuration must involve two up and two down pseudospins .
on each tetrahedron. This ice rule does not, exactly as its P
cousin the Bernal-Fowler ice rule does not in the case of :,'
crystalline water, determine a unique ground state. Rather, * & N\
there remains a residual extensive zero point entropy, which 14 99
has been experimentally observed in the case of the Dyspro- * o
sium (Jpy= 15/2 withgugJp,~10ug) spin ice compound in . s
good agreement with calculations and measurements of the
entropy of ice? Spin ice therefore offers a laboratory for
studying the properties of water ice by proxy, but its proper-
ties are, of course, worth studying in their own right. For a  FIG. 1. (Color onling A single tetrahedron inscribed in a cube.
review of this burgeoning field, see Ref. 7. In the pyrochlore lattice, the spins reside on the corners of the
It was realized early on that a magnetic field provides aetrahedra. In spin ice, they are constrained to point along the body
versatile probe of spin ice, as an external field couples to thgiagonalsd, indicated by the short-dashed lines. The body diago-
actual spin magnetic moments and thus acts on the Isingals define theg111) directions, the cube edges th&00) direc-
pseudospins in nontrivial ways. The phenomena predicted tions, and the bonds thel10) directions.
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thermodynamics and stati¢Sec. Ill) and dynamics(Sec.

IV) of the plateau. We then discuss the complications pro-
duced by the freezing that takes place at low temperatures, in
particular with respect to entropy measuremei8sc. Vj,

and then to the impact of thermally excited defects and the
longer ranged dipolar physics in Sec. VI. We conclude with a
summary.

Il. THE MODEL

It is not immediately apparent that the spin ice com-

pounds will exhibit a macroscopic low temperature entropy

in zero field, let alone in a field. Indeed, a sufficiently general

/ microscopic model for the spin ice compounds involves ex-
change couplings, dipolar interactions and a strong easy axis

anisotropy. These can be encapsulated in the classical Hamil-
FIG. 2. The pyrochlore lattice. The cube’s axes are the same agnian for unit-length spin§ :>®
those in Fig. 1.

S-S —=3(S 1S Ty)

and the crossovers out of the plateau at low and high fields. =" JiS S+ D,

We do so within the nearest-neighbor antiferromagnetic (i) (i) |rij|3

model of spin ice wherein the low-temperature limit serves

to enforce the ice rule upon the allowed states. Further, the +ED, (ax(i)'S)z_gMB‘]Z B-S. (2.2
i i

presence of the magnetic field effects a dimensional reduc-
tion in the same limit—the fluctuating degrees of freedom
are forced to live on decoupled planar subsets of the parer'e_f

t_hr_ee dimensional pyroghlore_lattlce Wh'.Ch have_ the Conr?ecéigniﬁcant. The second term is the dipolar interaction of
tivity of the kagomelattice. Via a mapping derived previ- t thD. wherer-: is the vector separation of two Spins
ously by us in a study of frustrated Ising models in magneticS rengine, . ol p . P
fields1"18 the remaining planar problem maps onto a harg-measured in umt; of the n'earest—ne|ghbor d|st§1nce,rgnd
core dimer model on the hexagonal lattice. This allows a="ij/|rij|- The third term is the easy axis anisotropy of
calculation of the equal time correlatidRs-which are two ~ StrengthE<0, whose large magnitude is crucial in these
dimensionallycritical—and of the(reduced entropy of this  c0mpounds and will be taken to infinity for the purposes of
region which agrees well with the experiment. We next conthiS paper, thus constraining the spins to point along their
sider tilting the field weakly away from thl11] direction, reSPective easy axes which we have specified by the unit
and find that the system remains in an extended critical phaséectorsd,;, at sitei. The unit cell of the pyrochlore lattice
with a continuously drifting wave vectd?, until it finally ~ has four sites, which can be taken to belong to a tetrahedron
undergoes a continuous phase transition, known as thef one of two orientations, and hengeruns from 0 to 3 for
Kasteleyn transition in the dimer literatui®where the en- the four easy axes that point from the center of the tetrahe-
tropy vanishes. This transition has a number of interestinglron to the corner on which the site is locatege Fig. 1
features, including the absence of any symmetry breaking, &hese are the als¢l11l) directions of the underlying fcc
mixed first/second order nature and anisotropic critical expolattice. In the final term, we have allowed for a magnetic
nents. The dimer model has a height representation, and &gld of strengthB andgugJ is the magnetic dipole moment
discussed by Henlé¥, this leads to a natural Langevin dy- of the spins. In the following, we consider fields alofw
namics for the coarse grained heights. We use this to writglose t9 the [111] direction. This is a threefold symmetry
down expressions for the dynamic spin correlations in theaxis of the pyrochlore lattice: a field along thL1] direction
plateau, which exhibit a dynamical exponegt 2, although  singles out the spin {=0) with an easy[111] axis but
testing them is likely to be complicated by equilibration leaves intact the symmetry between the other sfiaiseled
problems that do not affect the thermodynamics and staticsc=1,2,3) with easy axes along the remainifigll) direc-
Finally, we identify the excitations out of the ground statetions.
manifold, which are a planar zero-dimensional object whose The main difficulty in fixing the parameters in EQ.1) is
condensation leads to the high field saturated plateau and #&ck of knowledge of the superexchange, while the value of
unusual infinite string defect, which restores three dimenD can be essentially fixed via a crystal field calculation. It
sionality at low fields and analyze their impact on the phys-turns out that in the spin ice compounds, the effective nearest
ics at low temperatures. neighbor exchange is ferromagnetic by virtue of the dipolar
In the balance of the paper we will provide details of interaction, with the weaker superexchange possibly being
these assertions. We begin in Sec. Il by recapitulating th@ntiferromagnetic and thereby canceling off part of the dipo-
justification for using the nearest-neighbor model and the icdar interaction. Very little is known about further-neighbor
rule and how they give rise to the plateaux of interest uporsuperexchange, although there again appears to be a cancel-
addition of a field in thd111] direction. We turn next to the lation effect against the dipolar interactioh’.

ere J;; are the exchange constants and while the sum on
j) runs over all pairs of sites, only a few are expected to be
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Despite these uncertainties, both experiment and theormnaximal but as the other spins have an equal projection onto
indicate that a remarkable simplification takes place at modthe field, one can choose any one of these to be the second
erate temperatures. If we define the pseudospjrs=1 by  spin with o= —1 needed to respect the ice rule. The transi-
whether a spin points into or out of a tetrahedron on a givenion between these two regimes can be located by computing
sublattice, i.e., we write the spins Sptoak(i) then the ac- the energies of the two arrangements.
cessible low energy states of EQ.1 in zero field B=0) The pyrochlore lattice can be thought of an alternate
are largely governed by the ice rule, which requires thastacking ofkagomeand triangular planes, with the triangular
|=,0./=0 for each tetrahedron. While E€R.1) is believed planes containing all the spins of one of the four spin
to lead to a uniqueup to symmetriesground state al  sublattices—in this case, the triangular planes of &0
=0 in zero field>® this state has in fact not been observedsublattice are fully polarized and inert. Consequently, the re-
experimentally. Provided Eq2.1) is an appropriate descrip- maining degrees of freedom live on the decouptagome
tion, it thus appears that this state is dynamically inaccessiblganes_ Each triangle of a givédeagomeplane has two spins
and irrelevant to the observed physfés. with a positive projection ¢=1) and one with a negative

The net result then iS that the acceSSib|e behaVior iS Camrojection (0-: _1) onto the external field. Such Configura-
tured by the greatly simplified nearest-neighbor Ising pseutions are equivalent to the ground states of an antiferromag-
dospin Hamiltonian netic Ising model ¢=+1) with an exchange in excess of

the external field §={—1,1,1} favored overoc={-1,
22 = 1,1 in each triangl_b?3 and as we show in the next section
by explicit enumeration, they are macroscopic in number.
While we have deduced the low field plate@daenceforth
with an antiferromagnetid. simply plateau when no confusion is engendgredd its

The ground states of this Hamiltonian f8=0 are, of  termination by the saturated state from the nearest-neighbor
course, those configurations in whiéh,o,=0 (i.e., two  model, its existence in experiments is further strong evidence
spins point in and two outfor each tetrahedron separately. for the applicability of the model and can be used to deduce
The number of these states is not known exactly but an eshe energy scale for the ice rudé.
timate due to Pauling gives,/kg=(1/2)In(3/2) for the In the next two sections we will analyze the statics, ther-
ground state entropy per spin which, as mentioned in thenodynamics and dynamics of the plateau at low tempera-
Introduction, agrees well with the experimental determina-tures within the manifold okagomeconfigurations identified
tion of the residual entropy thus providing support for theabove. In Sec. VI, we will discuss semiquantitatively the
simplification. consequences of the inclusion of thermally excited defects

that either violate the ice rule or are not confined to the
A. Effect of magnetic field kqgomeplanes. We aIso. comment briefly there_ on what
o o might be missed in passing from E(.1) to (2.2) in our

The effect of switching on a field is strongly dependent onpohlem. Even with our simplifications we are left with a

the direction ofB, as first discussed in Ref. 10 and is clearontrivial statistical and dynamical problem that needs to be

from Eq. (2.2). For instance, at zero temperature, an infini-go|yved in order to compute the physical properties of the
tesimal field along th¢100] direction completely lifts the  pjateau and we now turn to this task.

degeneracy of the ensemble of spin ice ground states while
one in the[110] direction leaves a nonextensive degeneracy.

A field in the [111] direction, which is our subject in this
paper, orders one sublattice immediately but still leaves a
macroscopically degenerate set of ground states for a finite In the last section we noted that the allowed spin configu-
range of its values, thus producing a magnetization plateatations in a singl&kagomeayer in the plateau are equivalent
with a residual zero temperature entropy within the ice ruleto the ground states of the Ising antiferromagnet on the
manifold. At a still higher field §JugB=6J.¢) the system kagomelattice. We have previously considered this problem
abandons the ice rule and chooses the unique configuratiand shown that the ground states are in correspondence with
that saturates the magnetic moment in[thEl] direction and  the configurations of the exactly soluble problem of the
thus exhibits a second magnetization plateau but now withlimer model on the honeycomb lattitea mapping redis-
no residual entropy. covered by Udagawat al® The triangles of thekagome

To see how this comes about, first note that the projectiofhattice form a dual hexagondhoneycomb lattice, whose
of the total spin of a tetrahedron onto the magnetic field ishonds are the sites of thegomelattice. For each spin with
maximized in the case af=—1 for k=0 ando=1 for the  positive projection onto the field, color in the corresponding
others. Hence at sufficiently large fields the system willlink of the hexagonal lattice. As each triangle has exactly one
choose the unique configuration in which this arrangemensuch spin, each site of the hexagonal lattice has exactly one
holds for all tetrahedra. This leads, however| X0, |=2 colored link emanating from it. By calling the colored link a
on all tetrahedra and is thus in conflict with the ice constraindimer, one thus establishes an exact one-to-one correspon-
|=,0./=0, so that the low field solution must be different. dence between the configurations of a hardcore dimer model
Instead in that limit one chooses,=1 for all the spins on on the hexagonal lattice and the spin ice states in a weak
sublatticex=0 as their projection onto the external field is [111] field.

H=Jeﬁ<i2j> Uin—QMBJEi B-d.iyoi,

Ill. PLATEAU: THERMODYNAMICS AND STATICS
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FIG. 3. Short distance correlations®0c, /4 of the (pseudaspin in the bottom left hand corner, marked by a solid dimer. Positive
correlations are indicated by dashed dimers. This plot uses the same normalization conventions as that of Table | in Ref. 19, hence the factor
of 1/4; in the convention of the dimer model, the correlation at the origin189— —11111. Recall that the dimers occupy the links of the
hexagonal lattice, the midpoints of which are #sgomelattice sites.

A. Entropy B. Correlations

The entropy of the dimer model on the hexagonal lattice The dimer model describing the plateau has a range of
is well known, having been first computed as the entropy ofurther interesting features in addition to its nonvanishing
the equivalent triangular lattice Ising antiferromagnetTat zero point entropy. Most strikingly, its correlations are criti-
=0. The latter has an entropy &, =0.32306g per site. cal, decaying as i at large distances,

This corresponds to an entropy Sfeyagor= Sa/2 per site of In detail, consider the connected pseudospin correlation
the dimer model. Each triangle corresponds to a tetrahedrofiynction
and hence two sites, of the pyrochlore lattice, so that the

entropy per spin equals Can(n)=(o\(r)o(0))—{o\){aT,), (3.2

wherer labels the location of the tetrahedron and the Greek
5~0.0807Kg, 3.1 letters the location of a pseudospin in the tetrahedron. This is
simply related to the correlation functions of the real spins
which is, of course, also the value obtained in Ref. 18. Can(r)=(S\(r)S.(0))—(S\)(S,). For instance, for the
In Ref. 15, the value obtained was 0.096.01%g per = components o along the[111] direction
dysprosium atom. While this work was in progress, another
measurement has appeared, with a value of 0(,97‘8 Our C[}All]:(s/g)Z(_g)ﬁkm hoc,, , (3.3
value is just outside the error bars of the former. The fact that
the former is too high suggests that some configurationsvhere the factors of 3 are due to the different projections of
breaking the ice rule play a role. Had it been too high, thethe inequivalent easy axes onto {ié1] direction. Similarly,
implication would have been that a certain degre¢pafssi- the full spin-spin correlation function is given by
bly short-rangg order, presumably due to long range inter-

actions, had already set in. If the latter, however, should turn Co= _(s/\/§)2(_3)5k,xcm_ (3.4
out to be the correct value in the end, this would be an
agreement almost too good to have been hoped for. In the plateau regiongo=(oy)=—1 everywhere, so that

By comparison, the zero field result of Ref. 2 & ¢, =0. The nontrivial correlations involve only>0, that
~0.2(kg . This compares to the Pauling estimateQflkg is to say spins in the sankagomeplanes. These correlations
=(1/2)In(3/2=0.202733 or the exact value for two- can be calculated following Ref. 19. We have tabulated the
dimensional spin icéfor which the Pauling estimate is the short distance correlations in Fig. 3.
same of S, jep/kg=(3/4)In(4/3)=0.215762, so that the de- The correlations decay algebraically at long distances.
crease due to the applied field is by a factor of 2.5-2.7. The two independent correlators are
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FIG. 4. (Color onling Mapping of pseudosping==*=1 on the
kagomedattice onto hardcore dimers on tkgashegl hexagonal lat-
tice. Shown is the configuration favored by a field tilted slightly
away from the[111] direction. The basis vectors used for the
kagomelattice are also shown.

FIG. 5. The Fourier transform of the pseudospin correlations
in thekagomeplanes, obtained from a finite system containing 9604
sites.qy,qy range from—4 to 47r. In addition, there is a peak at
1 g=0 and the reciprocal lattice vectors due to the finite average
Cay(r)~ T[C05(47TX/3) —cog20)], moment induced by the field. Note the logarithmic peak at/®0)
27T and the symmetry related positions. Together, they should describe
the differential cross section found in polarized neutron scattering
with the neutron spin pointing along th&11] direction. Light re-

1
Ca(r)~ 2.72r2 [cod4mx/3+4m/3) =~ coq20+4m/3)]. gions denote strong scattering.

(3.9 sity, as no finite fraction of its weight is concentrated on any
Here,r is a Euclidean coordinate vector for tkagomelat-  one wave vector. In Fig. 5 we plot the absolute value of the
tice, withr =|r| being the distance between two triangles of Fourier transform of the full pseudospin correlation function,
the kagome lattice, and tam@=y/x, see Fig. 4. This which exhibits these features and is detectable by polarized
asymptotic behavior, involving a sum of oscillations at waveneutron scattering. In Fig. 6 we plot the cross section for
vectorg,=4/3 and a dipolar piece, can be readily obtainedunpolarized neutrons; the difference in the two figures re-
by means of the height representation formulas listed in th&€cts the nontrivial relation between the spins and the pseu-
next section as well. dospins. Both figures omit the magnetic Bragg peaks that

As a consequence of the first term in brackets in(B), will arise from the static magnetization produced by the ap-
one would therefore expect a peak in the Fourier transfornplied field, and are obtained for zero out-of-plane wave vec-
of the structure factor at wave vectar(4/3,0). Here we tor transfer.
have used the lattice constant, twice the pyrochlore nearest
neighbor-distance, as the unit of lendgee Fig. 4.

The corresponding peaks at the four symmetry related lo-
cations are obtained by the appropriate addition of reciprocal
lattice vectors z-(1,—1/\/3) and 27(0,24/3). Note in par-
ticular that 27(2,0) is the reciprocal lattice vector relating

the peaks at- (47r/3)§< and (81r/3)§<. However, in Fig. 5, the
peak at the latter location is absent. This happens because the

“form factor” of the unit cell has a zero at (8/3)x, as can
be verified directly from Eq(4.4). In Fig. 6, this effect is

reversed in that the peak at#&%)% is the stronger one; the

peak at (47/3)X, although present, is not visible on the con-
tour plot for the system size considered as it is almost an
order of magnitude weaker.

These are not true Bragg peaks, as there is no long range
order. Indeed, as the power law decay of the pseudospin
correlations is rather rapid~2 their intensity grows only
logarithmically with the planar system size. Similarly, the  FIG. 6. The Fourier transform of the correlation of the spins
intensity decreases logarithmically as one moves away frordomponents perpendicular to the in-plane wave vector. Details as in
the center of the peak. The second term, although of equalhe previous figure. The quantity plotted here is also the differential
amplitude, does not lead to a feature with macroscopic intenaeutron scattering cross section for unpolarized neutrons.
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C. Kasteleyn transition in a tilted field 1.5¢

A broader view of the critical correlations in the honey- o5l
comb dimer model is obtained by generalizing it to allow for
unequal fugacities for dimers of different orientations. As
shown by Kasteleyf’ the equal fugacity point sits in a criti-

cal phase which borders a “frozen” phase with vanishing 0.75

entropy that is reached by an unusual transition that bears his o s

name. Ifz;, z,, andzz are the fugacities of the three sets of

dimers, the transition takes place when the fugacity of one 0.25}

set equals the sum of the other two, sgay z,+z;. Forz;

>7,+ 23 a unique configuration survivgshown in Fig. 4. 05 C 025 05 0.7s 1
It is interesting to ask whether this phase transition can be 025l

realized in the spin ice problem. It turns out that this can be
done rather simply by tilting the field. FIG. 7. (Color onling Magnetization of the spins in tHeagome

To see this consider tilting the applied field away from theplanes in the[-1-12] direction (thin line) and inverse correlation
[111] direction so that it acquires an enhanced component itengths(thick lines in thex direction andy direction(in black). The
the [-1-11] direction, which is the easy axis of sublattige  former is normalized with respect to the saturation magnetization
=1: B=B(cos¢{111]/\3+sin¢g[-1-12]/\/6), so that the for B>Bg, my,=(4\2/3)gusl. Saturation foB— — is half this
angle the field makes with tja11] direction is given bye. value(and negative The inverse correlation lengths are normalized
This keeps the other two of the threagomespin sublattices 0 their zero field value of &/3 Note that they vanis_,h wi_th differ-
(x=2,3) equivalent and singles out the=1 sublattice. To €nt_powers at the transition. The coordinate is given by
leading order in the tilt angle, spins on sublattice:0 do (2\/211n 2)gugBJsin ¢/(ksT), so that the critical point is located at
not experience a change in energy, whereas spins on tHe

other sublattices do: . .

that can be detected via standard thermodynamic measure-
B ments. In equilibrium this implies a significant signature in
Eo=0ugBJooCcosd, the tilt specific heaC in the form of a divergence

ES=— (gusBJ/3)0y[cosp— 242 sind], -2 pm g2 3.8

d

E§'3= —(gupBJI/3)o, { cosp+ JV2sing]. (3.6  but freezing is likely to complicate such a direct measure-
ment as we discuss in Sec. V.
As the dimer fugacities areK=exp{2EE/(kB'D], it follows (b) The expectation values of the Ising spins for1/2 is
that the effect of the tilted field is to make them unequal—agiven by
specifically, to privilege the occupation of vertical dimers
over the other two orientations in Fig. 4. At zero temperature 4 _ 1
z; is infinitely bigger tharz, or z5 at any tilt angle and the (o)=—1+ ;arcsw{ \V1- 172
. : S z
system is deep in the frozen phase, which is to say the energy
gain is all there is and we obtain just the so-called staggered _ P
configuration shown in Fig. 4. {o2)=(oa)=(1=(o1)/2. 3.9
At nonzero temperatures, or finite fugacities, however, thefThe magnetization in thg1-12] direction,m, , being pro-
gain in energy must compete with the loss of entropy, bottportional to{o), it follows that it deviates in the critical
extensive, to effect a gain in free energy and we obtain aegion from its saturation value’® as
finite range of stability for the critical phase terminated by
the Kasteleyn transition. From the criteriap=z,+z; we m, —mi*~(pe— $) 2 (3.10
can deduce a critical tilt angle¢., set by kgT
=(2y2/In2)gugBJsing, at which the transition occurs.
Note that the transition temperature is proportional to th

€
- : | | T9a)=(og)=— (o) =1.
in-plane field strengtiBsin ¢, so that the experiment can, in { ) . - .
principle, be done aT<B and when the tilt angle is suffi The correlations remain critical but change continuously

. e B is tilted. For example, th ion for th m lat-
ciently small to justify our neglect 0O(¢?) terms. In the asBiis tilted. For example, the equation for the same sublat

/ : tice connected correlations, E®.5), is generalized t52°
following, we express the dependence on the various param- @9, is g

eters viaz=1z,/z;. 1
Various predictions follow from this analysis. Cuy(r')= ————[cog2x/ &) —cog26')]. (3.1D)
(a) The Kasteleyn transition involves a critical vanishing 2m?r’?

of the entropy

’

This expression holds to the left of the critical poirg (
=1/2, see Fig. ¥ To the right, there are no fluctuations, and

Herer'2=x%+(&/£,)%y?, with
S~(pe— )2 (3.7 1/¢,= 2 arcsiny1— 1/47%, (3.12
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1/¢,= (42//3)\1— 1/4z%arcsiny/1— 1/422, ing to the rules defined in this paragraph.
Y In the coarse grained, continuum theory, this microscopic
with  z=2z,/z;=exd2(E5-EY)/(ksT)] and  tar¥’  expression indicates the identification
=(x/&)1(yl ). From this we observe the following.

(c) The location of the peak in the structure factor, which
remains logarithmic, is given by (2/£,,0), so that it drifts
continuously from (47/3)?( to the center of the Brillouin “ ] ] ) )
zone, which it reaches at the phase transition. Observation §fheree is a unit vector perpendicular to the orientation of
this drift with field tilt should be a good flag of the unusual the dimer. This is, however, not the full expression, even at
critical phase. leading order. Upon coarse graining, a second nontrivial term

(d) The scattering pattern is reduced in symmetry—the2PPears in the expression fog, which reflects the impor-
applied field reduces the sixfold rotational symmetry of thetant fluctuations near the characteristic wave vector of the
lattice to a twofold one. In particular, this leads to anisotropicflat states—this is the analog of the staggered;“2iece
scaling at the Kasteleyn transition in which there are twothat appears in the bosonization of one-dimensional quantum
diverging correlations lengths alofig, ~ (¢—.#) Y2 and fermion systems. This piece can be identified by noting that
transversé &,~ (. — #) 1] to the in-plane field, whose ra- the ma_pping of dimgrs onto heights is one_—to—many:.a shift of
tio & /¢, also diverges as one approaches the transition the height by 3 units returns the same dimer configuration,
12 and thus the operator must be invariant under this

. . 6 . . . .

() Finally we note that the transition is asymmetric. On ©Peratior’® One thus obtains for the dimer densities:
the sidez—1/2", no fluctuations are present, so that the 11
transition has an asymmetric first/sgcond order appearance. Ny — = = = dh+ {[exp2mih/3)

However, the latter property is strictly dependent on the 3 3
hardcore condition on the dimers and tetrahedra violating the
ice rule will allow some fluctuations even beyond the transi-

1. 1
ng=z(e-V)h+3, 4.9

X exp(4mix/3)+c.cl,

tion, see Sec. VI.
1 1/ 1 J3 _
n,— §= 5( - Eax'i‘ 7(?), h+ {[exp(27ih/3)
IV. PLATEAU: DYNAMICS
We now turn to the dynamical correlations in the plateau X exp(4mix/3+4mi/3)+c.cl,

continuing to assume that the system explores only its
ground state manifold; we will return to the validity of this ) B _E& ha 2mih/3
approximation in Sec. WPrima facie finding the time de- 3= 3=3| ~ 2% 5 oyt dexp2min/3)
pendent correlations seems a difficult task since the configu- , i
rations are characterized by a local constraint, which we have X exp(4mix/3—4mi/3)+c.cl, (4.2)

compactly represented by the hard core dimer mapping. Ne\yhere the normalizatios=1/(27a) involves a short dis-
ertheless, this can be done at long wavelengths and low frgz e cytoffa, There are, of course, corrections from less
quencies, following the ideas of Henley on the dynamicalg|eyant operators which we have not considered here.
correlations of critical dimer modef$ which we apply to the To calculate the static dimer correlators, one uses the fact

honeycomb lattice in the following. Henley’s basic insight is 4t the heights fluctuate in a Gaussian manner in equilib-
that the dimer configurations on bipartite lattices have g

height representation whose fluctuationsameonstrainedht
long wavelengths. For the statics this has been known since K
the work of Ref. 26(see also Refs. 21 and 27 for a concise H =f d2r§|Vh|2 4.3
introduction and the extension to dynamics leads naturally
to a Langevin dynamics for the heights. The resulting theory K = /9 for the honeycomb lattioewhence the height cor-
is Gaussian and exhibits dynamic scaling with the dynamigelator is given agh(r)h(0))= —In(r/a)/(27K). From these
exponentzy=2. We now give brief details of this analysis. we find the asymptotic correlations

First, we provide a description of the relevant height

model. Microscopically, this involves a map between dimer 1

configurations and the configurations of a surface specified cij(r)= T{cos{4wx/3+ A7 (j—i)/3]

by giving its local height above the dimer plane. The micro- 2T

scopic heights are a set of integers, defined on the sites of the —co§ 20+ 4m(i+]—2)/3]}, (4.4)

triangular lattice dual to the hexagonal lattice the dimers re-

side on. The height changes By2 (—2) if one crosses a in agreement with Eq$3.6). One sees that the two pieces in
dimer when going from one site to its nearest clockwisethe dimer correlators arise from the “uniform” and “stag-
neighbor on an ugdown) triangle. If no dimer is crossed, the gered” pieces of the representations given above. It is also
change is—1 (+1). This provides a mapping of dimers onto straightforward to check that the structure factor, at this level
heights. The dimer densitgy is thus given byny=(V'3h of approximation, gets no contribution from the uniform
+1)/3, whereV'® denotes the lattice derivative correspond-pieces and consists entirely of the logarithmic peaks at
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+47/3x and related points. In addition, the extinction of the

1 Amx\ [ r?
peaks at+87/3x in Fig. 5 also follows from Eq(4.4). <n1(r’t)nl(O’O»S:ZerZCOS{ 3 )g(FKt)’ @13
To obtain the dynamical correlations, we note that the

long wavelength, low frequency dynamics for a generic IOCalvvhere the scaling function is given in terms of the incom-

dimer dynamics will be governed by Henley's Langevin plete Gamma function as

iRl
equatioft g(x)=e 1'0x4) (4.12
dh(r) S6H and exhibits the asymptotics
TR 5h(r)+Z(F.t), (4.5
e'x/4, x<1,
wherel is a kinetic coefficient set by microscopics and the 9(x)~ dexg —x/d)Ix, x>1. (4.13

noise{(r,t) obeys
The former encodes the autocorrelation

Cr(r’ t))y=2rs8(r—r")s(t—t’). (4.6

Y

As this is again a Gaussian theory, it follows that the only (n1(0,t)n1(0,0)>szﬁ TKt’ (4.14
non-trivial correlator of the heights is the two-point function
wherey=0.5772 - - is the Euler-Mascheroni constant.
- 1 The remaining task is to obtain the Fourier transform of
(hg(t)h_q(0))=—7exd —N(a)t], (4.7 Eq.(4.11) which does not appear possible in closed form and
Kq will therefore probably have to be accomplished numerically

whereﬁq(t) is the height configuration at wave vectgr if desired. However, the essential features can be deduced as

o . . .. follows.
v;as\%,(\q/ye)c?onrg tl(;?ertr.];;r:eitﬂ:x?gogr:vr:rt]e g?/r;r(]g)rz%dsgzwnh First, the Fourier transform will still be peaked about
which implies a critical dynamics witlay=2. ' *+(4m/3)x and symmetry related points. Second, if we mea-

The dynamic correlations can now be obtained from thisSure momenta from each of these values, the result exhibits

expression in the same manner as the static one. For efe scaling form
ample, the uniform piece of the same sublattice correlator

- - 1.(TKg?
equals n, n = (—) (4.19
( g, s |w|9 B
2
~ ~ q Third, one can show that
(M (0P (O)y=zexd —\@t], 48 " "
q . 12, x<1,
which yields the further Fourier transform 90~ x x>1 (4.1
o a: g2 with some constant and that the corrections about either
<n1q,w”17q,w>u: K_qz W- (4.9  limit are analytic. Together, the last two features imply that

fixed frequency cuts will exhibit peaks of height|¢d) 2,

As in the case of static correlations, the structure factor getdnite with divergent system size, whose widths will exhibit
no contribution from such uniform pieces. the characteristizy=2 scalingAq~ yw/T'K. The comple-
The nonzero contribution then comes from the staggerefnentary fixedq cuts will exhibit a diffusive peak ab=0 of

piece which is first calculated in real space as the vertekeightc/(I'Kg?) and widthAw~T'Kg?.
operator correlator It is worth noting that in taking the scaling limit we have

‘ _ . kept all information relevant to long wavelengths and low
(ny(r,t)ny(0,0)) = £2{e*™X/3(g2mn(N/3g=2mN(0)/3) 4 ¢ ¢} frequencies but if we attempt to reconstruct the equal time
) correlator we will find a spurious ultraviolet singularity.
_os2 4mx _ Ai Likewise the large frequency behavior at a fixgdvill be
=2{“co ex C(r,1) S .
3 9 softer than the 1é| dependence implied by the scaling

where form.
C(r,t)=([h(r,t)—h(0,01?)/2 V. FREEZING
42 1 This is a good place to note an important subtlety in mak-
:f f q ——[1—exp —T'Kg?)cogq-r)]. ing contact between our analysis, and indeed all theoretical
(27)? Kg? work on ice and spin ice, and the experimental systems. This

4.10 is the feature that both ice and spin ice exhibit diverging

relaxation timegset by the temperature depend&hin our
In the scaling limit ¢,t)—o with r%/t fixed this can be formalism at low temperatures which overtake the timescale
written in the scaling form of experiments so ergodicity is lost. For spin ice the evidence
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for this comes from the experiments of Refs. 28 and 29comment on a couple of other salient limitations of our
which report a strong slowdown of the dynamics setting inanalysis.
around 1-2 K, a signature of which is the appearance of As noted earlier, af =0 simple energetics shows that the
hysteresis in magnetization measurements. Consequently vdateau extends over<0gugJB<6J, giving way at zero
need to examine whether the equilibrium computations ofield to the full spin ice ground state manifold and to the
the this paper represent measurable quantities. right to the fully saturated state. At finite temperatures the
The good news is that the thermodynamic and static quarftlateau state is no longer field independent but will instead
tities are indeed still measurable. For the magnetization an8v0Ive, especially near the transitions. At low temperatures

the static structure factor this is a consequence of selfV€ €an gain insight into this evolution by examining the

averaging in the sample—uwith probability one these quanti_thermally excited defects that will dress the critical dimer

ties are the same for a configuration picked at random as the%late that we have discussed in this paper.
are for the entire ensemble of ground states. This in turn
comes from two sources. First, even in a frozen three dimen- A. Monomer defects
sional configuration, the differeftagomeplanes effectively The first defect to consider increases the local magnetiza-
give different members of the equilibrium two dimensionaltion and it is the condensation of such defects which termi-
ensemble. Second, even in a given plane we get selhates the plateau at its high field end. The local minimum
averaging. For example, the spin-spin correlation function aénergy process to consider is one in which a down pseu-
a fixed separation, averaged over the location of the spins iflospin in akagomeplane is converted to an up pseudospin
a configuration picked at random, converges to its ensemblgo that all spins of the two triangles that share it are now
averaged value in the limit of infinite system size; the alge-aligned with the field. Such a process violates the ice rule as
braic correlations in our problem lead to at best aNJH?  there are now two tetrahedra with,o,# 0, and takes us out
correction to the IyN dependence expected for the fluctua-of the ground state manifold. A single flipped spin in fact
tions in a system withN sites. As the structure factor in- corresponds to pair of defects, which is most easily seen in
volves exactly this average, all is well on that front. Thethe dimer representation where it corresponds to two mono-
same holds for the magnetization, measured as the momeniers on adjacent sites of the hexagonal lattice. The two part-
frozen into a field cooled sample. ners of the pair can be separated by moving one of the de-

The story with the entropy is different. Indeed it is worth fects, on an “up” triangle, say, to a neighboring up triangle.
emphasizing the remarkable fact that experiments measurkhis is done by flipping two spins on an adjacent “down”
an entropy associated with a macroscopic degeneracy afiangle, namely, ther= —1 spin and the spin it shares with
ground states even as the system settles into just one of thegine up triangle. This puts the original up triangle back into
(or a submacroscopic number since local fluctuations prethe spin ice ground state at the expense of violating the con-
sumably do survive even as large scale rearrangements aggraint on the up triangle sharing the spin with the down
frozen ouj. The contradiction with the statistical mechanical triangle. It follows then that the energy cost of flipping the
view of entropy as the logarithmic volume of phase spacepin is the creation energyf2=4Jq4—29ugJB/3 of two
explored is resolved when one notes that the experimentalefects. This energy vanishes exactly at critical field
determination consists of starting with the known entropy ofg,J B, = 6J.4 Which separates the two plateauxTat 0.51°
the paramagnetic high temperature state and integrating At finite but low temperatures, the system contains a finite
down with the measured heat capacity. At issue then isut small density of these defects whose separation will set a
whether the freezing substantially affects the ratio of heatorrelation length and cutoff the critical singularities of the
capacity to temperature over the temperature range where fiarent dimer state. Naively, we might anticipate~1/n,
is significant. For the ice problems, the spectrum involves a-exp(€,,/kgT) but there is a pseudo-Coulondlogarithmig
finite gap to making a defect above the ground state manientropic interaction between them that modifies this depen-
fold. Consequently, at temperatures below this gap, which iglence. The exact dependence can be computed by an energy-
also where freezing takes place, the heat capacity is exp@ntropy balance argument that is equivalent to a tree level
nentially small in the temperature, whence the freezingenormalization group computatidh.Consider a system of
hardly affects the entropy determinatithin our problem areaA and letZ(r,,r,) be the number of configurations of
this implies that field cooled measurements of the heat cahe dimers(spin backgroundin the presence of the two
pacity will allow determination of the thermodynamic en- monomergdefects held fixed at positions; andr, while Z
tropy inclusive of tilted field values. is the number of configurations of the dimers with no mono-

mers present. Then the free energy cost of introducing two
defects is
VI. THERMAL AND ANALYTIC DEFECTS

Thus far our analysis has assumed that the only accessible AF=2&,—TIn f dzrlf d’roZ(ry.r)/Z. (6.0
configurations belong to the ground state manifold of the
pseudospin Hamiltonian. To make contact with experimentd he ratioZ(r,,r,)/Z can be computed by height representa-
we need to examine the effects of relaxing this restriction. Irtion theory by noting that monomers on the two sublattices
this section we do this, thereby obtaining some insight intacorrespond to a height mismatch ©f3 when encircled. The
the low and high field boundaries of the plateau and als@mperator identification described in Ref. 26 then implies
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Z(ry,r)1Z~11|r—r15, (6.2 ~ same magnetization, which is equal and opposite to that of
o . - all kagome[111] planes®* As the magnetization of the trian-
which is the same decay first described in Ref. 32 for th%ular[lll] |ayers is Saturated, reducing it by f||pp|ng one of
C|Ose|y I’.e|ated Squal’e Iattice dimer problem. W|thth|s inits Spins in one |ayer requires f||pp|ng one Spin in a” Of the
hand, it is easy to see thAtF<0 when the system siz&  other layers at the same time. The energy of such a défect
which we now |dent|fy with the correlation |ength is given is thence most Convenient|y quoted F(kagomeand trian-
by gular biJ layer. As it involves antialigning a spin in the tri-
angular and one in thkagomelayer with the field, we have
§2~1/nm~exr< %) (6.3 §S= 8gugd B/3_. Remarkably, (_jespit.e thg energy .cost propor-
7kgT tional to the linear system size it is still entropically fa-
vored in a large system. To see this, note that such a defect
B. Termination of the plateau by monomers corresponds to inserting a surplus dimer, violating the hard
core condition, into eactkagomeplane, which connects a

At a fixed location in the plateau the above formula will say up triangle above which a spin on sublattice=0 is

desclribg_ the asyr_r;plt(;)tig Iovx;?ter(r;perature appr(r)]ach htohf[h ipped with a down triangle below which the next flipped
purely dimer manifold. At a Tixed temperature though this . _ spin is located. As in the case of the pair of monomers

ana]ysp will brealg down neaB; where a treatment of the defects, the pair of triangles can again be separated into two
statistical mechanics of large numbers of defects needs to tﬁ?stinct defects—in dimer language into two sites with two
d|eV|sehd. Wwe edxphect to addfﬁss tr]['s |toroblen? in m(?trﬁ ;jheta imers each. If the separation of these sites were to cost no
€ sewkere and here we will content ourseives wi re‘?in plane entropy, one would be free to choose which of the
rerr;z_ar S: implify i ling limif—0 and B A spins in the triangular layer to flip, thereby endowing the
B'rSt’. r:naéter; S/'_T'? 'fyd'nl ahs_cal_lng imif =1 an I defect with an entropy of5,=InA per layer. For a suffi-

—Be with ( . o)/T fixed. In this Imit we can ignore all ciently large system, it would therefore always be free ener-
spin configurations save those consisting of dimer Conf'g“getically favorable to generate such a defect

rations *doped” with some number of monomers. The re-=" 1o 3431 density of such defects is lowered by the same
maining problem is the noninteracting monomer-dimer probs,_(yagomgplane entropic mechanism discussed for mono-
lem and hence the interpolation between the two plateaux

f : B d h ) %er defects. Again we appeal to height representation theory
a function ofB Is a crossover and not a phase transition. 1, inq that sites with two dimers carry charge3 so that the
Second, at the transmon' field, th|§ Iead; to an equal Welgh(I_\ntropic interaction between them is the same as for two
sum over ‘."‘” monor_ner-dlmer c_or_1f|g_urat|ons. The entropy at,,nomers. This implies that per layer the entropic gain from
this point is then higher than it is in the low field plateau being able to pick the separation of the defects grows as
before it turns around and then heads for zero deep into thl%f\’xrfl’zrdr~(3/4)lnA From this we deduce that a cylin-
high field plateau. Third, the transition point exhibits a tem'Her of cross sectional argafirst nucleates this string defect

perature independent ensemble in this treatment WhicWhen 3/4 IPA=(8/3)gu5) B whence we expect the area den-
should lead to a crossing point for the magnetization iso- 9ks P

therms. Above a critical temperature, the datiadeed ex- sity and hence transverse correlation length set by
hibit a maximum in the entropy and a crossing point for the

magnetization isotherms. Below this temperature the cross- £2~1Ing~exd 32gugJB/KgT] (6.4)
over appears to turn into a first order transition at which

point the entropy plummets with temperature and the mag- . . .
netization develops a discontinuiPrima faciethis appears at low temperatures. This exponential dependence will then

to be a puzzle for the nearest-neighbor model considered iﬂetermine t.he approgch of the magnetizgtion o its plateau
this paper, although it is possible that a purely mean field""“’l‘ie e.‘t atI:xed lcl’.‘]f" f'?.ld asftemp;}e:jat;.ure;s I:)\llverefq.ld but
treatment of the longer ranged pieces of the dipole interacf— gain, the proliferation of such detects at low Tielas bu

tion omitted here renormalizZ® sufficiently to turn the sharp .iXEd temperature requir_es a different treatment, involv?ng a
low-temperature crossover into a transition linear response calculation about the full spin ice manifold,

which we will discuss elsewhere. In this regime all relevant
energies are set by the field so that physical quantities will be
functions of B/T alone. We expect then that the magnetiza-
The second type of defect to consider is responsible fotion curves will collapse with a finite slope at the origin
decreasing the magnetization towards the low field end of thevhen plotted as a function @&/T.
plateau. As in this limit we must preserve the ice rule, de- We can draw one further inference from our computation
creasing the magnetization requires that we flip a spin omf the defect densities. By equating the activation energies of
the triangular sublatticec=0 while satisfying the ice rule the two defects we can identify the field at which their den-
by choosing a second spin in tHegomeplane to have sities cross at the lowest temperatures—this will also be the
o= —1. Interestingly, this is not enough since the 0 spin  field at which the magnetization isotherm crosses the zero
is shared by another tetrahedron and so on. Indeed, one céiald value of the magnetization at low temperatures and
see quite generally that it must be infinite in length. Thishence a second crossing point. This yields a figlesJB
follows from the observation that the local ice rule leads to=(18/31)J. which is about a tenth of the critical field be-
the global property that afl111] triangular planes have the tween the plateaux.

C. String defects
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How does the presence of such defects alter the results we an elegant dimensional reduction of the three-dimensional
have described above? Fundamentally, their presence will giroblem onto a set of decoupled two-dimensional problems.
course make itself known as a deviation from the “exact” Fortunately, the resulting two-dimensional problem is one of
result; in particular, the smallest of the defect induced finiteplanar dimers and hence is exactly soluble, so that the statics
correlation lengths will determine the cutoff at which, for and thermodynamics can be determined exactly.
example, the logarithmic peaks in the neutron scattering stop In particular, we have determined the entropy of the mag-
growing. netization plateau, and calculated the spin correlations in this

As for the Kasteleyn transition, both types of defects will regime. These lead to the neutron scattering cross sections
inevitably smear out the fluctuation-free regime and theredepicted in Figs. 5,6, which display peaks the height of
fore the mixed first/second order nature of the transitionwhich in principle grows logarithmically with system size.
Monomer defects can be exponentially suppressed by loweHowever, their growth is cut off by different types of defects
ing the temperaturecompared ta)). As one lowers the tem- inducing a finite correlation length, as discussed in Sec. VI.
perature at small fieldB/T<1, the angle si at which the Upon tilting the field, we have shown that these peaks
transition takes place decreases inversely Bith, whereas move towards the zone center. They reach the zone center at
the density of string defects is exponentially suppressed. Bthe Kasteleyn transition, which has a mixed first/second or-
achieving an improved angular resolution, the crossovetler character, exhibits anisotropic scaling, and displays a di-
from Kasteleyn behavior to a more conventional second orvergence of the specific heat. From an analysis of the dy-
der phase transition could thus be reduced. namical properties of the plateau regime, we predict
dynamical scaling with an exponerj=2, and discuss the
expected shape and scaling of peaks measured in inelastic
neutron scattering.

While the computed entropy has already been measured,

Finally we turn to two significant limitations of our analy- the predictions for the correlations can be tested by scatter-
sis in this paper. First, actual samples are likely to contairing. Also testable are thermodynamic and static predictions
structural defects due simply to chemical disorder such afor a Kasteleyn transition upon tilting the field in thé.-12]
vacancies or interstitials affecting site occupancy or exdirection and for the dynamic correlation in the plateau. Fi-
change paths. We are not aware of a determination of theally we have sketched a theory of the finite temperature
density of such defects, although for Heisenberg spins on theodifications which we intend to flesh out in future wdfk.
related SCGO lattice, there have been both experimerifal From the viewpoint of spin ice physics, it is fortunate that
and theoreticdl attempts to determine the density of vacan-much existing technology turns out to be especially suited to
cies from thermodynamic®” or NMR experiments® As the  this task. From the perspective of statistical mechanics the
chemical defect density in single crystals tends to be higherealization of the hexagonal dimer model as well as of the
than in powder samples, this might be a not insubstantianonomer-dimer problem in a three-dimensional system with
effect in this context. built in self-averaging and easy access via heutron scattering,

The second important feature omitted from the nearestin contrast to surface or interface realizations, is surely inter-
neighbor spin ice model are the effects of the long-rangeesting.
dipolar interactions beyond the nearest-neighbor piece, Sadly it does not appear possible to make one final
which are sizeable due to the large spin of the dysprosiunink—to the quantum dimer model on the hexagonal
ion. We have already alluded to one possible effect in outattice®®*'as this would require a “resonance” quantum dy-
discussion of the transition between the two plateauxpamics consisting of a simultaneous coherent tunneling of
namely, that the polarization of the spins may require a selfsix pseudospins which is rather unlikely given the large spin
consistent treatment of the fieRlthat acts upon them. While J=15/2 of the constituents. We leave the realization of this
this is always necessary when a macroscopic magnetizatigrghysics as a challenge for future work.
is present, in our case the issue is somewhat more delicate
since the largest piece of the dipolar interactions has already
been accounted for in the nearest-neighbor model. ACKNOWLEDGMENTS
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D. Disorder and dipoles

VIl. SUMMARY
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