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Theory of the †111‡ magnetization plateau in spin ice
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The application of a magnetic field along the@111# direction in the spin ice compounds leads to two
magnetization plateaux, in the first of which the ground-state entropy is reduced but still remains extensive. We
observe that under reasonable assumptions, the remaining degrees of freedom in the low field plateau live on
decoupledkagomeplanes, and can be mapped to hard core dimers on a honeycomb lattice. The resulting
two-dimensional state is critical, and we have obtained its residual entropy—in good agreement with recent
experiments—the equal time spin correlations as well as a theory for the dynamical spin correlations. Small
tilts of the field are predicted to lead a vanishing of the entropy and the termination of the critical phase by a
Kasteleyn transition characterized by highly anisotropic scaling. We discuss the thermally excited defects that
terminate the plateau at either end, among them an exotic string defect which restores three dimensionality.
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I. INTRODUCTION

The discovery of the spin ice compounds Ho2Ti2O7 ~Ref.
1! and Dy2Ti2O7 ~Ref. 2! is one of the more remarkabl
events in the study of frustrated magnetism in the last
cade. The name spin ice advertises their statistical mecha
at low temperature, which can—approximately—be mapp
onto that of an Ising antiferromagnet on the pyrochlore
tice, which in turn is equivalent to cubic ice.3 The initial
discovery stemmed from the observation that the large s
JHo58 in Ho2Ti2O7 failed to order at any temperature d
spite a ferromagnetic Curie constant.1 This was understood
to result from the interplay of strong easy-axis single-i
anisotropy and the geometry of the pyrochlore lattice, wh
together effectively turn the ferromagnetic interaction into
antiferromagnetic exchange between Ising pseudospin
which describe whether the moment on a given site is
ented inwards or outwards along the local easy axis pas
through the site and the neighboring tetrahedra~see Figs. 1
and 2!.4 Later, it was pointed out that the effective neare
neighbor ferromagnetic exchange was in large part due to
effect of dipolar interactions projected onto the manifold
Ising states.5,6

The antiferromagnetic interaction between the Ising ps
dospins generates an ‘‘ice rule’’—a minimum energy co
figuration must involve two up and two down pseudosp
on each tetrahedron. This ice rule does not, exactly as
cousin the Bernal-Fowler ice rule does not in the case
crystalline water, determine a unique ground state. Rat
there remains a residual extensive zero point entropy, wh
has been experimentally observed in the case of the Dys
sium (JDy515/2 withgmBJDy'10mB) spin ice compound in
good agreement with calculations and measurements o
entropy of ice.2 Spin ice therefore offers a laboratory fo
studying the properties of water ice by proxy, but its prop
ties are, of course, worth studying in their own right. Fo
review of this burgeoning field, see Ref. 7.

It was realized early on that a magnetic field provide
versatile probe of spin ice, as an external field couples to
actual spin magnetic moments and thus acts on the I
pseudospins in nontrivial ways.8,9 The phenomena predicte
0163-1829/2003/68~6!/064411~12!/$20.00 68 0644
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here include plateaux in the magnetization10,5 and a liquid-
gas transition for fields of different strengths an
orientations.10

Experimentally, the usefulness of magnetic fields was
tially limited by the absence of single crystals, so that t
behavior in a magnetic field had to be interpreted in terms
an average over all possible relative angles of fields and c
tallites. With the advent of single crystals, this shortcomi
is being removed.11–15 In recent experiments on Dy2Ti2O7
~Refs. 15, 16! it was demonstrated that applying a field in
@111# direction does indeed lead to the predicted pair of m
netization plateaux—a low field plateau which retains an
tensive zero temperature entropy albeit one reduced from
zero field value, and a second plateau at higher fields wh
the entropy vanishes and the magnetization is saturated u
violation of the ice rule.5,10

In this paper we mostly provide a theory of the propert
of the low field @111# plateau in theT→0 limit with some
additional considerations on finite temperature correcti

FIG. 1. ~Color online! A single tetrahedron inscribed in a cub
In the pyrochlore lattice, the spins reside on the corners of
tetrahedra. In spin ice, they are constrained to point along the b

diagonalsd̂k indicated by the short-dashed lines. The body diag
nals define thê 111& directions, the cube edges the^100& direc-
tions, and the bonds thê110& directions.
©2003 The American Physical Society11-1
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and the crossovers out of the plateau at low and high fie
We do so within the nearest-neighbor antiferromagne
model of spin ice wherein the low-temperature limit serv
to enforce the ice rule upon the allowed states. Further,
presence of the magnetic field effects a dimensional red
tion in the same limit—the fluctuating degrees of freedo
are forced to live on decoupled planar subsets of the pa
three dimensional pyrochlore lattice which have the conn
tivity of the kagomelattice. Via a mapping derived previ
ously by us in a study of frustrated Ising models in magne
fields,17,18 the remaining planar problem maps onto a ha
core dimer model on the hexagonal lattice. This allows
calculation of the equal time correlations19—which are two
dimensionallycritical—and of the~reduced! entropy of this
region which agrees well with the experiment. We next co
sider tilting the field weakly away from the@111# direction,
and find that the system remains in an extended critical ph
with a continuously drifting wave vector,19 until it finally
undergoes a continuous phase transition, known as
Kasteleyn transition in the dimer literature,20 where the en-
tropy vanishes. This transition has a number of interes
features, including the absence of any symmetry breakin
mixed first/second order nature and anisotropic critical ex
nents. The dimer model has a height representation, an
discussed by Henley,21 this leads to a natural Langevin dy
namics for the coarse grained heights. We use this to w
down expressions for the dynamic spin correlations in
plateau, which exhibit a dynamical exponentzd52, although
testing them is likely to be complicated by equilibratio
problems that do not affect the thermodynamics and sta
Finally, we identify the excitations out of the ground sta
manifold, which are a planar zero-dimensional object wh
condensation leads to the high field saturated plateau an
unusual infinite string defect, which restores three dim
sionality at low fields and analyze their impact on the ph
ics at low temperatures.

In the balance of the paper we will provide details
these assertions. We begin in Sec. II by recapitulating
justification for using the nearest-neighbor model and the
rule and how they give rise to the plateaux of interest up
addition of a field in the@111# direction. We turn next to the

FIG. 2. The pyrochlore lattice. The cube’s axes are the sam
those in Fig. 1.
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thermodynamics and statics~Sec. III! and dynamics~Sec.
IV ! of the plateau. We then discuss the complications p
duced by the freezing that takes place at low temperature
particular with respect to entropy measurements~Sec. V!,
and then to the impact of thermally excited defects and
longer ranged dipolar physics in Sec. VI. We conclude wit
summary.

II. THE MODEL

It is not immediately apparent that the spin ice co
pounds will exhibit a macroscopic low temperature entro
in zero field, let alone in a field. Indeed, a sufficiently gene
microscopic model for the spin ice compounds involves
change couplings, dipolar interactions and a strong easy
anisotropy. These can be encapsulated in the classical Ha
tonian for unit-length spinsSi :5,6

H5(
( i j )

Ji j Si•Sj1D(
( i j )

Si•Sj23~Si• r̂ i j !~Sj• r̂ i j !

ur i j u3

1E(
i

~ d̂k( i )•Si !
22gmBJ(

i
B•Si . ~2.1!

Here Ji j are the exchange constants and while the sum
( i j ) runs over all pairs of sites, only a few are expected to
significant. The second term is the dipolar interaction
strengthD, where r i j is the vector separation of two spin
measured in units of the nearest-neighbor distance, andr̂ i j
5r i j /ur i j u. The third term is the easy axis anisotropy
strengthE,0, whose large magnitude is crucial in the
compounds and will be taken to infinity for the purposes
this paper, thus constraining the spins to point along th
respective easy axes which we have specified by the
vectorsd̂k( i ) at site i. The unit cell of the pyrochlore lattice
has four sites, which can be taken to belong to a tetrahed
of one of two orientations, and hencek runs from 0 to 3 for
the four easy axes that point from the center of the tetra
dron to the corner on which the site is located~see Fig. 1!.
These are the alsô111& directions of the underlying fcc
lattice. In the final term, we have allowed for a magne
field of strengthB andgmBJ is the magnetic dipole momen
of the spins. In the following, we consider fields along~or
close to! the @111# direction. This is a threefold symmetr
axis of the pyrochlore lattice: a field along the@111# direction
singles out the spin (k50) with an easy@111# axis but
leaves intact the symmetry between the other spins~labeled
k51,2,3) with easy axes along the remaining^111& direc-
tions.

The main difficulty in fixing the parameters in Eq.~2.1! is
lack of knowledge of the superexchange, while the value
D can be essentially fixed via a crystal field calculation.
turns out that in the spin ice compounds, the effective nea
neighbor exchange is ferromagnetic by virtue of the dipo
interaction, with the weaker superexchange possibly be
antiferromagnetic and thereby canceling off part of the dip
lar interaction. Very little is known about further-neighbo
superexchange, although there again appears to be a ca
lation effect against the dipolar interactions.5,6

as
1-2
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Despite these uncertainties, both experiment and the
indicate that a remarkable simplification takes place at m
erate temperatures. If we define the pseudospinss i561 by
whether a spin points into or out of a tetrahedron on a gi
sublattice, i.e., we write the spins asSi5sd̂k( i ) then the ac-
cessible low energy states of Eq.~2.1! in zero field (B50)
are largely governed by the ice rule, which requires t
u(ksku50 for each tetrahedron. While Eq.~2.1! is believed
to lead to a unique~up to symmetries! ground state atT
50 in zero field,5,6 this state has in fact not been observ
experimentally. Provided Eq.~2.1! is an appropriate descrip
tion, it thus appears that this state is dynamically inaccess
and irrelevant to the observed physics.22

The net result then is that the accessible behavior is c
tured by the greatly simplified nearest-neighbor Ising ps
dospin Hamiltonian

H5Jeff(̂
i j &

s is j2gmBJ(
i

B•d̂k( i )s i , ~2.2!

with an antiferromagneticJeff .
The ground states of this Hamiltonian forB50 are, of

course, those configurations in which(ksk50 ~i.e., two
spins point in and two out! for each tetrahedron separate
The number of these states is not known exactly but an
timate due to Pauling givesSp /kB5(1/2)ln(3/2) for the
ground state entropy per spin which, as mentioned in
Introduction, agrees well with the experimental determin
tion of the residual entropy thus providing support for t
simplification.

A. Effect of magnetic field

The effect of switching on a field is strongly dependent
the direction ofB, as first discussed in Ref. 10 and is cle
from Eq. ~2.2!. For instance, at zero temperature, an infi
tesimal field along the@100# direction completely lifts the
degeneracy of the ensemble of spin ice ground states w
one in the@110# direction leaves a nonextensive degenera

A field in the @111# direction, which is our subject in this
paper, orders one sublattice immediately but still leave
macroscopically degenerate set of ground states for a fi
range of its values, thus producing a magnetization plat
with a residual zero temperature entropy within the ice r
manifold. At a still higher field (gJmBB56Jeff) the system
abandons the ice rule and chooses the unique configura
that saturates the magnetic moment in the@111# direction and
thus exhibits a second magnetization plateau but now w
no residual entropy.

To see how this comes about, first note that the projec
of the total spin of a tetrahedron onto the magnetic field
maximized in the case ofs[21 for k50 ands[1 for the
others. Hence at sufficiently large fields the system w
choose the unique configuration in which this arrangem
holds for all tetrahedra. This leads, however, tou(ksku52
on all tetrahedra and is thus in conflict with the ice constra
u(ksku50, so that the low field solution must be differen
Instead in that limit one choosessk[1 for all the spins on
sublatticek50 as their projection onto the external field
06441
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maximal but as the other spins have an equal projection o
the field, one can choose any one of these to be the se
spin with s521 needed to respect the ice rule. The tran
tion between these two regimes can be located by compu
the energies of the two arrangements.

The pyrochlore lattice can be thought of an altern
stacking ofkagomeand triangular planes, with the triangula
planes containing all the spins of one of the four sp
sublattices—in this case, the triangular planes of thek50
sublattice are fully polarized and inert. Consequently, the
maining degrees of freedom live on the decoupledkagome
planes. Each triangle of a givenkagomeplane has two spins
with a positive projection (s51) and one with a negative
projection (s521) onto the external field. Such configura
tions are equivalent to the ground states of an antiferrom
netic Ising model (s561) with an exchange in excess o
the external field (s5$21,1,1% favored over s5$21,
21,1% in each triangle!23 and as we show in the next sectio
by explicit enumeration, they are macroscopic in number

While we have deduced the low field plateau~henceforth
simply plateau when no confusion is engendered! and its
termination by the saturated state from the nearest-neigh
model, its existence in experiments is further strong evide
for the applicability of the model and can be used to ded
the energy scale for the ice rule.24

In the next two sections we will analyze the statics, th
modynamics and dynamics of the plateau at low tempe
tures within the manifold ofkagomeconfigurations identified
above. In Sec. VI, we will discuss semiquantitatively t
consequences of the inclusion of thermally excited defe
that either violate the ice rule or are not confined to t
kagomeplanes. We also comment briefly there on wh
might be missed in passing from Eq.~2.1! to ~2.2! in our
problem. Even with our simplifications we are left with
nontrivial statistical and dynamical problem that needs to
solved in order to compute the physical properties of
plateau and we now turn to this task.

III. PLATEAU: THERMODYNAMICS AND STATICS

In the last section we noted that the allowed spin confi
rations in a singlekagomelayer in the plateau are equivalen
to the ground states of the Ising antiferromagnet on
kagomelattice. We have previously considered this proble
and shown that the ground states are in correspondence
the configurations of the exactly soluble problem of t
dimer model on the honeycomb lattice,17 a mapping redis-
covered by Udagawaet al.18 The triangles of thekagome
lattice form a dual hexagonal~honeycomb! lattice, whose
bonds are the sites of thekagomelattice. For each spin with
positive projection onto the field, color in the correspondi
link of the hexagonal lattice. As each triangle has exactly o
such spin, each site of the hexagonal lattice has exactly
colored link emanating from it. By calling the colored link
dimer, one thus establishes an exact one-to-one corres
dence between the configurations of a hardcore dimer m
on the hexagonal lattice and the spin ice states in a w
@111# field.
1-3
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FIG. 3. Short distance correlations 1053c1k/4 of the ~pseudo!spin in the bottom left hand corner, marked by a solid dimer. Posi
correlations are indicated by dashed dimers. This plot uses the same normalization conventions as that of Table I in Ref. 19, hence
of 1/4; in the convention of the dimer model, the correlation at the origin is21/9→211111. Recall that the dimers occupy the links of t
hexagonal lattice, the midpoints of which are thekagomelattice sites.
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A. Entropy

The entropy of the dimer model on the hexagonal latt
is well known, having been first computed as the entropy
the equivalent triangular lattice Ising antiferromagnet atT
50. The latter has an entropy ofSn50.32306kB per site.
This corresponds to an entropy ofShexagon5Sn/2 per site of
the dimer model. Each triangle corresponds to a tetrahed
and hence two sites, of the pyrochlore lattice, so that
entropy per spin equals

S'0.08077kB , ~3.1!

which is, of course, also the value obtained in Ref. 18.
In Ref. 15, the value obtained was 0.09660.012kB per

dysprosium atom. While this work was in progress, anot
measurement has appeared, with a value of 0.078kB .16 Our
value is just outside the error bars of the former. The fact t
the former is too high suggests that some configurati
breaking the ice rule play a role. Had it been too high,
implication would have been that a certain degree of~possi-
bly short-range! order, presumably due to long range inte
actions, had already set in. If the latter, however, should t
out to be the correct value in the end, this would be
agreement almost too good to have been hoped for.

By comparison, the zero field result of Ref. 2 isS0
'0.20kB . This compares to the Pauling estimate ofSp /kB
5(1/2)ln(3/2)'0.202733 or the exact value for two
dimensional spin ice~for which the Pauling estimate is th
same! of SLieb /kB5(3/4)ln(4/3)'0.215762, so that the de
crease due to the applied field is by a factor of 2.5–2.7.
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B. Correlations

The dimer model describing the plateau has a range
further interesting features in addition to its nonvanishi
zero point entropy. Most strikingly, its correlations are cri
cal, decaying as 1/r 2 at large distances,r.

In detail, consider the connected pseudospin correla
function

ckl~r !5^sl~r !sk~0!&2^sl&^sk&, ~3.2!

wherer labels the location of the tetrahedron and the Gre
letters the location of a pseudospin in the tetrahedron. Th
simply related to the correlation functions of the real sp
Ckl(r )5^Sl(r )Sk(0)&2^Sl&^Sk&. For instance, for the
components ofS along the@111# direction

Ckl
[111]5~S/3!2~23!dk,01dl,0ckl , ~3.3!

where the factors of 3 are due to the different projections
the inequivalent easy axes onto the@111# direction. Similarly,
the full spin-spin correlation function is given by

Ckl52~S/A3!2~23!dk,lckl . ~3.4!

In the plateau region,s05^s0&521 everywhere, so tha
c0,l[0. The nontrivial correlations involve onlyk.0, that
is to say spins in the samekagomeplanes. These correlation
can be calculated following Ref. 19. We have tabulated
short distance correlations in Fig. 3.

The correlations decay algebraically at long distanc
The two independent correlators are
1-4
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THEORY OF THE@111# MAGNETIZATION PLATEAU . . . PHYSICAL REVIEW B 68, 064411 ~2003!
c11~r !;
1

2p2r 2
@cos~4px/3!2cos~2u!#,

c12~r !;
1

2p2r 2
@cos~4px/314p/3!2cos~2u14p/3!#.

~3.5!

Here,r is a Euclidean coordinate vector for thekagomelat-
tice, with r 5ur u being the distance between two triangles
the kagome lattice, and tanu5y/x, see Fig. 4. This
asymptotic behavior, involving a sum of oscillations at wa
vectorqx54p/3 and a dipolar piece, can be readily obtain
by means of the height representation formulas listed in
next section as well.

As a consequence of the first term in brackets in Eq.~3.6!,
one would therefore expect a peak in the Fourier transfo
of the structure factor at wave vector6(4p/3,0). Here we
have used the lattice constant, twice the pyrochlore nea
neighbor-distance, as the unit of length~see Fig. 4!.

The corresponding peaks at the four symmetry related
cations are obtained by the appropriate addition of recipro
lattice vectors 2p(1,21/A3) and 2p(0,2/A3). Note in par-
ticular that 2p(2,0) is the reciprocal lattice vector relatin
the peaks at2(4p/3)x̂ and (8p/3)x̂. However, in Fig. 5, the
peak at the latter location is absent. This happens becaus
‘‘form factor’’ of the unit cell has a zero at (8p/3)x̂, as can
be verified directly from Eq.~4.4!. In Fig. 6, this effect is
reversed in that the peak at (8p/3)x̂ is the stronger one; the
peak at (4p/3)x̂, although present, is not visible on the co
tour plot for the system size considered as it is almost
order of magnitude weaker.

These are not true Bragg peaks, as there is no long ra
order. Indeed, as the power law decay of the pseudo
correlations is rather rapidr 22 their intensity grows only
logarithmically with the planar system size. Similarly, th
intensity decreases logarithmically as one moves away f
the center of the peak. The second term, although of e
amplitude, does not lead to a feature with macroscopic in

FIG. 4. ~Color online! Mapping of pseudospinss561 on the
kagomelattice onto hardcore dimers on the~dashed! hexagonal lat-
tice. Shown is the configuration favored by a field tilted sligh
away from the @111# direction. The basis vectors used for th
kagomelattice are also shown.
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sity, as no finite fraction of its weight is concentrated on a
one wave vector. In Fig. 5 we plot the absolute value of
Fourier transform of the full pseudospin correlation functio
which exhibits these features and is detectable by polar
neutron scattering. In Fig. 6 we plot the cross section
unpolarized neutrons; the difference in the two figures
flects the nontrivial relation between the spins and the ps
dospins. Both figures omit the magnetic Bragg peaks t
will arise from the static magnetization produced by the a
plied field, and are obtained for zero out-of-plane wave v
tor transfer.

FIG. 5. The Fourier transform of the pseudospin correlationc
in thekagomeplanes, obtained from a finite system containing 96
sites.qx ,qy range from24p to 4p. In addition, there is a peak a
q50 and the reciprocal lattice vectors due to the finite aver
moment induced by the field. Note the logarithmic peak at (4p/3,0)
and the symmetry related positions. Together, they should desc
the differential cross section found in polarized neutron scatte
with the neutron spin pointing along the@111# direction. Light re-
gions denote strong scattering.

FIG. 6. The Fourier transform of the correlation of the spi
components perpendicular to the in-plane wave vector. Details a
the previous figure. The quantity plotted here is also the differen
neutron scattering cross section for unpolarized neutrons.
1-5
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C. Kasteleyn transition in a tilted field

A broader view of the critical correlations in the hone
comb dimer model is obtained by generalizing it to allow f
unequal fugacities for dimers of different orientations.
shown by Kasteleyn,20 the equal fugacity point sits in a criti
cal phase which borders a ‘‘frozen’’ phase with vanishi
entropy that is reached by an unusual transition that bear
name. Ifz1 , z2, andz3 are the fugacities of the three sets
dimers, the transition takes place when the fugacity of o
set equals the sum of the other two, sayz15z21z3. For z1
.z21z3 a unique configuration survives~shown in Fig. 4!.
It is interesting to ask whether this phase transition can
realized in the spin ice problem. It turns out that this can
done rather simply by tilting the field.

To see this consider tilting the applied field away from t
@111# direction so that it acquires an enhanced componen
the @-1-11# direction, which is the easy axis of sublatticek
51: B5B(cosf@111#/A31sinf@-1-12#/A6), so that the
angle the field makes with the@111# direction is given byf.
This keeps the other two of the threekagomespin sublattices
(k52,3) equivalent and singles out thek51 sublattice. To
leading order in the tilt angle, spins on sublatticek50 do
not experience a change in energy, whereas spins on
other sublattices do:

E0
B5gmBBJs0cosf,

E1
B52~gmBBJ/3!s1@cosf22A2 sinf#,

E2,3
B 52~gmBBJ/3!s2,3@cosf1A2 sinf#. ~3.6!

As the dimer fugacities arezk5exp@2Ek
B/(kBT)#, it follows

that the effect of the tilted field is to make them unequa
specifically, to privilege the occupation of vertical dime
over the other two orientations in Fig. 4. At zero temperat
z1 is infinitely bigger thanz2 or z3 at any tilt angle and the
system is deep in the frozen phase, which is to say the en
gain is all there is and we obtain just the so-called stagge
configuration shown in Fig. 4.

At nonzero temperatures, or finite fugacities, however,
gain in energy must compete with the loss of entropy, b
extensive, to effect a gain in free energy and we obtai
finite range of stability for the critical phase terminated
the Kasteleyn transition. From the criterionz15z21z3 we
can deduce a critical tilt anglefc , set by kBT
5(2A2/ln 2)gmBBJsinf, at which the transition occurs
Note that the transition temperature is proportional to
in-plane field strengthBsinf, so that the experiment can, i
principle, be done atT!B and when the tilt angle is suffi
ciently small to justify our neglect ofO(f2) terms. In the
following, we express the dependence on the various par
eters viaz5z2 /z1.

Various predictions follow from this analysis.
~a! The Kasteleyn transition involves a critical vanishin

of the entropy

S;~fc2f!1/2 ~3.7!
06441
is

e

e
e

in

he

e

gy
d

e
h
a

e

m-

that can be detected via standard thermodynamic meas
ments. In equilibrium this implies a significant signature
the tilt specific heatC in the form of a divergence

C;
]S
]f

;~fc2f!21/2 ~3.8!

but freezing is likely to complicate such a direct measu
ment as we discuss in Sec. V.

~b! The expectation values of the Ising spins forz.1/2 is
given by

^s1&5211
4

p
arcsinFA12

1

4z2G ,

^s2&5^s3&5~12^s1&!/2. ~3.9!

The magnetization in the@-1-12# direction,m' , being pro-
portional to ^s1&, it follows that it deviates in the critica
region from its saturation valuem'

sat as

m'2m'
sat;~fc2f!1/2. ~3.10!

This expression holds to the left of the critical pointz
>1/2, see Fig. 7!. To the right, there are no fluctuations, an
^s2&5^s3&52^s1&51.

The correlations remain critical but change continuou
asB is tilted. For example, the equation for the same sub
tice connected correlations, Eq.~3.5!, is generalized to19,25

c11~r 8!5
1

2p2r 82
@cos~2x/jx!2cos~2u8!#. ~3.11!

Here r 825x21(jx /jy)
2y2, with

1/jx52 arcsinA121/4z2, ~3.12!

FIG. 7. ~Color online! Magnetization of the spins in thekagome
planes in the@-1-12# direction ~thin line! and inverse correlation
lengths~thick lines! in thex direction andy direction~in black!. The
former is normalized with respect to the saturation magnetiza
for B.Bc , msat5(4A2/3)gmBJ. Saturation forB→2` is half this
value~and negative!. The inverse correlation lengths are normaliz
to their zero field value of 2p/3. Note that they vanish with differ-
ent powers at the transition. Thex coordinate is given by
(2A2/ln 2)gmBBJsinf/(kBT), so that the critical point is located a
1.
1-6
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1/jy5~4z/A3!A121/4z2arcsinA121/4z2,

with z5z2 /z15exp@2(E2
B2E1

B)/(kBT)# and tanu8
5(x/jx)/(y/jy). From this we observe the following.

~c! The location of the peak in the structure factor, whi
remains logarithmic, is given by6(2/jx,0), so that it drifts
continuously from (4p/3)x̂ to the center of the Brillouin
zone, which it reaches at the phase transition. Observatio
this drift with field tilt should be a good flag of the unusu
critical phase.

~d! The scattering pattern is reduced in symmetry—
applied field reduces the sixfold rotational symmetry of t
lattice to a twofold one. In particular, this leads to anisotro
scaling at the Kasteleyn transition in which there are t
diverging correlations lengths along@jx;(f2cf)21/2# and
transverse@jy;(fc2f)21# to the in-plane field, whose ra
tio jy /jx also diverges as one approaches the transitioz
→1/21.

~e! Finally we note that the transition is asymmetric. O
the sidez→1/22, no fluctuations are present, so that t
transition has an asymmetric first/second order appeara
However, the latter property is strictly dependent on
hardcore condition on the dimers and tetrahedra violating
ice rule will allow some fluctuations even beyond the tran
tion, see Sec. VI.

IV. PLATEAU: DYNAMICS

We now turn to the dynamical correlations in the plate
continuing to assume that the system explores only
ground state manifold; we will return to the validity of th
approximation in Sec. V.Prima facie, finding the time de-
pendent correlations seems a difficult task since the confi
rations are characterized by a local constraint, which we h
compactly represented by the hard core dimer mapping. N
ertheless, this can be done at long wavelengths and low
quencies, following the ideas of Henley on the dynami
correlations of critical dimer models,21 which we apply to the
honeycomb lattice in the following. Henley’s basic insight
that the dimer configurations on bipartite lattices have
height representation whose fluctuations areunconstrainedat
long wavelengths. For the statics this has been known s
the work of Ref. 26~see also Refs. 21 and 27 for a conci
introduction! and the extension to dynamics leads natura
to a Langevin dynamics for the heights. The resulting the
is Gaussian and exhibits dynamic scaling with the dyna
exponentzd52. We now give brief details of this analysis

First, we provide a description of the relevant heig
model. Microscopically, this involves a map between dim
configurations and the configurations of a surface speci
by giving its local height above the dimer plane. The mic
scopic heights are a set of integers, defined on the sites o
triangular lattice dual to the hexagonal lattice the dimers
side on. The height changes by12 (22) if one crosses a
dimer when going from one site to its nearest clockw
neighbor on an up~down! triangle. If no dimer is crossed, th
change is21 ~11!. This provides a mapping of dimers on
heights. The dimer densitynd is thus given bynd5(¹ lath
11)/3, where¹ lat denotes the lattice derivative correspon
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ing to the rules defined in this paragraph.
In the coarse grained, continuum theory, this microsco

expression indicates the identification

nd5
1

3
~ ê•¹!h1

1

3
, ~4.1!

where ê is a unit vector perpendicular to the orientation
the dimer. This is, however, not the full expression, even
leading order. Upon coarse graining, a second nontrivial te
appears in the expression fornd , which reflects the impor-
tant fluctuations near the characteristic wave vector of
flat states—this is the analog of the staggered ‘‘2kf ’’ piece
that appears in the bosonization of one-dimensional quan
fermion systems. This piece can be identified by noting t
the mapping of dimers onto heights is one-to-many: a shif
the height by 3 units returns the same dimer configurati
and thus the operator must be invariant under t
operation.26 One thus obtains for the dimer densitiesnk :

n12
1

3
5

1

3
]xh1z@exp~2p ih/3!

3exp~4p ix/3!1c.c.#,

n22
1

3
5

1

3 S 2
1

2
]x1

A3

2
]yD h1z@exp~2p ih/3!

3exp~4p ix/314p i /3!1c.c.#,

n32
1

3
5

1

3 S 2
1

2
]x2

A3

2
]yD h1z@exp~2p ih/3!

3exp~4p ix/324p i /3!1c.c.#, ~4.2!

where the normalizationz51/(2pa) involves a short dis-
tance cutoffa. There are, of course, corrections from le
relevant operators which we have not considered here.

To calculate the static dimer correlators, one uses the
that the heights fluctuate in a Gaussian manner in equ
rium

H5E d2r
K

2
u¹hu2 ~4.3!

(K5p/9 for the honeycomb lattice!, whence the height cor
relator is given aŝh(r )h(0)&52 ln(r/a)/(2pK). From these
we find the asymptotic correlations

ci j ~r !5
1

2p2r 2
$cos@4px/314p~ j 2 i !/3#

2cos@2u14p~ i 1 j 22!/3#%, ~4.4!

in agreement with Eqs.~3.6!. One sees that the two pieces
the dimer correlators arise from the ‘‘uniform’’ and ‘‘stag
gered’’ pieces of the representations given above. It is a
straightforward to check that the structure factor, at this le
of approximation, gets no contribution from the unifor
pieces and consists entirely of the logarithmic peaks
1-7
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64p/3x̂ and related points. In addition, the extinction of t
peaks at68p/3x̂ in Fig. 5 also follows from Eq.~4.4!.

To obtain the dynamical correlations, we note that
long wavelength, low frequency dynamics for a generic lo
dimer dynamics will be governed by Henley’s Langev
equation21

dh~r !

dt
52G

dH

dh~r !
1z~r ,t !, ~4.5!

whereG is a kinetic coefficient set by microscopics and t
noisez(r ,t) obeys

^z~r ,t !z~r 8,t8!&52Gd~r2r 8!d~ t2t8!. ~4.6!

As this is again a Gaussian theory, it follows that the o
non-trivial correlator of the heights is the two-point functio

^h̃q~ t !h̃2q~0!&5
1

Kq2
exp@2l~q!t#, ~4.7!

where h̃q(t) is the height configuration at wave vectorq
5(qx ,qy) and timet. The relaxation rate for the modes wit
wave vectors of magnitudeq is given by l(q)5GKq2,
which implies a critical dynamics withzd52.

The dynamic correlations can now be obtained from t
expression in the same manner as the static one. For
ample, the uniform piece of the same sublattice correla
equals

^ñ1q
~ t !ñ12q

~0!&u5
qx

2

Kq2
exp@2l~q!t#, ~4.8!

which yields the further Fourier transform

^ñ1q,v
ñ12q,2v

&u5
qx

2

Kq2

q2

q41w2
. ~4.9!

As in the case of static correlations, the structure factor g
no contribution from such uniform pieces.

The nonzero contribution then comes from the stagge
piece which is first calculated in real space as the ve
operator correlator

^n1~r ,t !n1~0,0!&s5z2$e4p ix/3^e2p ih(r )/3e22p ih(0)/3&1c.c.%

52z2cosS 4px

3 DexpS 2
4p2

9
C~r ,t ! D ,

where

C~r ,t !5^@h~r ,t !2h~0,0!#2&/2

5E E d2q

~2p!2

1

Kq2
@12exp~2GKq2t !cos~q•r !#.

~4.10!

In the scaling limit (r ,t)→` with r 2/t fixed this can be
written in the scaling form
06441
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^n1~r ,t !n1~0,0!&s5
1

2p2r 2cosS 4px

3 DgS r 2

GKt D , ~4.11!

where the scaling function is given in terms of the inco
plete Gamma function as

g~x!5e2G(0,x/4) ~4.12!

and exhibits the asymptotics

g~x!;H egx/4, x!1,

4exp~2x/4!/x, x@1.
~4.13!

The former encodes the autocorrelation

^n1~0,t !n1~0,0!&s5
eg

8p2

1

GKt
, ~4.14!

whereg50.5772••• is the Euler-Mascheroni constant.
The remaining task is to obtain the Fourier transform

Eq. ~4.11! which does not appear possible in closed form a
will therefore probably have to be accomplished numerica
if desired. However, the essential features can be deduce
follows.

First, the Fourier transform will still be peaked abo
6(4p/3)x̂ and symmetry related points. Second, if we me
sure momenta from each of these values, the result exh
the scaling form

^ñ1q,v
ñ12q,2v

&s5
1

uvu
g̃S GKq2

uvu D . ~4.15!

Third, one can show that

g̃~x!;H 1/2, x!1,

c/x, x@1
~4.16!

with some constantc and that the corrections about eith
limit are analytic. Together, the last two features imply th
fixed frequency cuts will exhibit peaks of height (2uvu)21,
finite with divergent system size, whose widths will exhib
the characteristiczd52 scalingDq;Av/GK. The comple-
mentary fixedq cuts will exhibit a diffusive peak atv50 of
heightc/(GKq2) and widthDv;GKq2.

It is worth noting that in taking the scaling limit we hav
kept all information relevant to long wavelengths and lo
frequencies but if we attempt to reconstruct the equal ti
correlator we will find a spurious ultraviolet singularity
Likewise the large frequency behavior at a fixedq will be
softer than the 1/uvu dependence implied by the scalin
form.

V. FREEZING

This is a good place to note an important subtlety in m
ing contact between our analysis, and indeed all theoret
work on ice and spin ice, and the experimental systems. T
is the feature that both ice and spin ice exhibit divergi
relaxation times~set by the temperature dependentG in our
formalism! at low temperatures which overtake the timesc
of experiments so ergodicity is lost. For spin ice the eviden
1-8
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for this comes from the experiments of Refs. 28 and
which report a strong slowdown of the dynamics setting
around 1–2 K, a signature of which is the appearance
hysteresis in magnetization measurements. Consequentl
need to examine whether the equilibrium computations
the this paper represent measurable quantities.

The good news is that the thermodynamic and static qu
tities are indeed still measurable. For the magnetization
the static structure factor this is a consequence of s
averaging in the sample—with probability one these qua
ties are the same for a configuration picked at random as
are for the entire ensemble of ground states. This in t
comes from two sources. First, even in a frozen three dim
sional configuration, the differentkagomeplanes effectively
give different members of the equilibrium two dimension
ensemble. Second, even in a given plane we get s
averaging. For example, the spin-spin correlation function
a fixed separation, averaged over the location of the spin
a configuration picked at random, converges to its ensem
averaged value in the limit of infinite system size; the alg
braic correlations in our problem lead to at best a (lnN)1/2

correction to the 1/AN dependence expected for the fluctu
tions in a system withN sites. As the structure factor in
volves exactly this average, all is well on that front. T
same holds for the magnetization, measured as the mom
frozen into a field cooled sample.

The story with the entropy is different. Indeed it is wor
emphasizing the remarkable fact that experiments mea
an entropy associated with a macroscopic degenerac
ground states even as the system settles into just one of
~or a submacroscopic number since local fluctuations p
sumably do survive even as large scale rearrangement
frozen out!. The contradiction with the statistical mechanic
view of entropy as the logarithmic volume of phase spa
explored is resolved when one notes that the experime
determination consists of starting with the known entropy
the paramagnetic high temperature state and integra
down with the measured heat capacity. At issue then
whether the freezing substantially affects the ratio of h
capacity to temperature over the temperature range whe
is significant. For the ice problems, the spectrum involve
finite gap to making a defect above the ground state m
fold. Consequently, at temperatures below this gap, whic
also where freezing takes place, the heat capacity is e
nentially small in the temperature, whence the freez
hardly affects the entropy determination.30 In our problem
this implies that field cooled measurements of the heat
pacity will allow determination of the thermodynamic e
tropy inclusive of tilted field values.

VI. THERMAL AND ANALYTIC DEFECTS

Thus far our analysis has assumed that the only acces
configurations belong to the ground state manifold of
pseudospin Hamiltonian. To make contact with experime
we need to examine the effects of relaxing this restriction
this section we do this, thereby obtaining some insight i
the low and high field boundaries of the plateau and a
06441
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comment on a couple of other salient limitations of o
analysis.

As noted earlier, atT50 simple energetics shows that th
plateau extends over 0,gmBJB,6Jeff , giving way at zero
field to the full spin ice ground state manifold and to t
right to the fully saturated state. At finite temperatures
plateau state is no longer field independent but will inste
evolve, especially near the transitions. At low temperatu
we can gain insight into this evolution by examining th
thermally excited defects that will dress the critical dim
state that we have discussed in this paper.

A. Monomer defects

The first defect to consider increases the local magnet
tion and it is the condensation of such defects which ter
nates the plateau at its high field end. The local minim
energy process to consider is one in which a down ps
dospin in akagomeplane is converted to an up pseudosp
so that all spins of the two triangles that share it are n
aligned with the field. Such a process violates the ice rule
there are now two tetrahedra with(kskÞ0, and takes us ou
of the ground state manifold. A single flipped spin in fa
corresponds to apair of defects, which is most easily seen
the dimer representation where it corresponds to two mo
mers on adjacent sites of the hexagonal lattice. The two p
ners of the pair can be separated by moving one of the
fects, on an ‘‘up’’ triangle, say, to a neighboring up triang
This is done by flipping two spins on an adjacent ‘‘down
triangle, namely, thes521 spin and the spin it shares wit
the up triangle. This puts the original up triangle back in
the spin ice ground state at the expense of violating the c
straint on the up triangle sharing the spin with the do
triangle. It follows then that the energy cost of flipping th
spin is the creation energy 2Em54Jeff22gmBJB/3 of two
defects. This energy vanishes exactly at critical fie
gmbJBc56Jeff which separates the two plateaux atT50.5,10

At finite but low temperatures, the system contains a fin
but small density of these defects whose separation will s
correlation length and cutoff the critical singularities of th
parent dimer state. Naively, we might anticipatej2;1/nm
;exp(Em /kBT) but there is a pseudo-Coulomb~logarithmic!
entropic interaction between them that modifies this dep
dence. The exact dependence can be computed by an en
entropy balance argument that is equivalent to a tree le
renormalization group computation.31 Consider a system o
areaA and letZ(r 1 ,r 2) be the number of configurations o
the dimers~spin background! in the presence of the two
monomers~defects! held fixed at positionsr 1 andr 2 while Z
is the number of configurations of the dimers with no mon
mers present. Then the free energy cost of introducing
defects is

DF52Em2T ln E d2r 1E d2r 2Z~r 1,r2!/Z. ~6.1!

The ratioZ(r 1 ,r 2)/Z can be computed by height represen
tion theory by noting that monomers on the two sublattic
correspond to a height mismatch of63 when encircled. The
operator identification described in Ref. 26 then implies
1-9
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Z~r 1 ,r 2!/Z;1/Aur 12r 2u, ~6.2!

which is the same decay first described in Ref. 32 for
closely related square lattice dimer problem. With this
hand, it is easy to see thatDF,0 when the system sizej,
which we now identify with the correlation length is give
by

j2;1/nm;expS 8Em

7kBTD . ~6.3!

B. Termination of the plateau by monomers

At a fixed location in the plateau the above formula w
describe the asymptotic low-temperature approach to
purely dimer manifold. At a fixed temperature though th
analysis will break down nearBc where a treatment of the
statistical mechanics of large numbers of defects needs t
devised. We expect to address this problem in more de
elsewhere and here we will content ourselves with th
remarks.

First, matters simplify in a scaling limitT→0 and B
→Bc with (B2Bc)/T fixed. In this limit we can ignore all
spin configurations save those consisting of dimer confi
rations ‘‘doped’’ with some number of monomers. The r
maining problem is the noninteracting monomer-dimer pr
lem and hence the interpolation between the two plateau
a function ofB is a crossover and not a phase transition33

Second, at the transition field, this leads to an equal we
sum over all monomer-dimer configurations. The entropy
this point is then higher than it is in the low field platea
before it turns around and then heads for zero deep into
high field plateau. Third, the transition point exhibits a te
perature independent ensemble in this treatment wh
should lead to a crossing point for the magnetization i
therms. Above a critical temperature, the data16 indeed ex-
hibit a maximum in the entropy and a crossing point for t
magnetization isotherms. Below this temperature the cro
over appears to turn into a first order transition at wh
point the entropy plummets with temperature and the m
netization develops a discontinuity.16Prima faciethis appears
to be a puzzle for the nearest-neighbor model considere
this paper, although it is possible that a purely mean fi
treatment of the longer ranged pieces of the dipole inte
tion omitted here renormalizeB sufficiently to turn the sharp
low-temperature crossover into a transition.

C. String defects

The second type of defect to consider is responsible
decreasing the magnetization towards the low field end of
plateau. As in this limit we must preserve the ice rule, d
creasing the magnetization requires that we flip a spin
the triangular sublatticek50 while satisfying the ice rule
by choosing a second spin in thekagomeplane to have
s521. Interestingly, this is not enough since thek50 spin
is shared by another tetrahedron and so on. Indeed, one
see quite generally that it must be infinite in length. Th
follows from the observation that the local ice rule leads
the global property that all@111# triangular planes have th
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same magnetization, which is equal and opposite to tha
all kagome@111# planes.34 As the magnetization of the trian
gular @111# layers is saturated, reducing it by flipping one
its spins in one layer requires flipping one spin in all of t
other layers at the same time. The energy of such a defeEs
is thence most conveniently quoted per~kagomeand trian-
gular bi-! layer. As it involves antialigning a spin in the tri
angular and one in thekagomelayer with the field, we have
Es58gmBJB/3. Remarkably, despite the energy cost prop
tional to the linear system sizeL it is still entropically fa-
vored in a large system. To see this, note that such a de
corresponds to inserting a surplus dimer, violating the h
core condition, into eachkagomeplane, which connects a
~say! up triangle above which a spin on sublatticek50 is
flipped with a down triangle below which the next flippe
k50 spin is located. As in the case of the pair of monom
defects, the pair of triangles can again be separated into
distinct defects—in dimer language into two sites with tw
dimers each. If the separation of these sites were to cos
~in plane! entropy, one would be free to choose which of t
A spins in the triangular layer to flip, thereby endowing t
defect with an entropy ofS25 ln A per layer. For a suffi-
ciently large system, it would therefore always be free en
getically favorable to generate such a defect.

The actual density of such defects is lowered by the sa
in-~kagome!plane entropic mechanism discussed for mon
mer defects. Again we appeal to height representation the
to find that sites with two dimers carry charge63 so that the
entropic interaction between them is the same as for
monomers. This implies that per layer the entropic gain fr
being able to pick the separation of the defects grows
ln*AAr 21/2rdr;(3/4)lnA. From this we deduce that a cylin
der of cross sectional areaA first nucleates this string defec
when 3/4 lnA5(8/3)gmBJB whence we expect the area de
sity and hence transverse correlation length set by

j2;1/ns;exp@32gmBJB/9kBT# ~6.4!

at low temperatures. This exponential dependence will t
determine the approach of the magnetization to its plat
value at a fixed low field as temperature is lowered.

Again, the proliferation of such defects at low fields b
fixed temperature requires a different treatment, involvin
linear response calculation about the full spin ice manifo
which we will discuss elsewhere. In this regime all releva
energies are set by the field so that physical quantities wil
functions ofB/T alone. We expect then that the magnetiz
tion curves will collapse with a finite slope at the orig
when plotted as a function ofB/T.

We can draw one further inference from our computat
of the defect densities. By equating the activation energie
the two defects we can identify the field at which their de
sities cross at the lowest temperatures—this will also be
field at which the magnetization isotherm crosses the z
field value of the magnetization at low temperatures a
hence a second crossing point. This yields a fieldgmBJB
5(18/31)Jeff which is about a tenth of the critical field be
tween the plateaux.
1-10
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How does the presence of such defects alter the result
have described above? Fundamentally, their presence w
course make itself known as a deviation from the ‘‘exac
result; in particular, the smallest of the defect induced fin
correlation lengths will determine the cutoff at which, f
example, the logarithmic peaks in the neutron scattering s
growing.

As for the Kasteleyn transition, both types of defects w
inevitably smear out the fluctuation-free regime and the
fore the mixed first/second order nature of the transiti
Monomer defects can be exponentially suppressed by low
ing the temperature~compared toJ). As one lowers the tem
perature at small fieldsB/T!1, the angle sinf at which the
transition takes place decreases inversely withB/T, whereas
the density of string defects is exponentially suppressed.
achieving an improved angular resolution, the crosso
from Kasteleyn behavior to a more conventional second
der phase transition could thus be reduced.

D. Disorder and dipoles

Finally we turn to two significant limitations of our analy
sis in this paper. First, actual samples are likely to cont
structural defects due simply to chemical disorder such
vacancies or interstitials affecting site occupancy or
change paths. We are not aware of a determination of
density of such defects, although for Heisenberg spins on
related SCGO lattice, there have been both experimenta35,36

and theoretical37 attempts to determine the density of vaca
cies from thermodynamic35,37or NMR experiments.36 As the
chemical defect density in single crystals tends to be hig
than in powder samples, this might be a not insubstan
effect in this context.

The second important feature omitted from the near
neighbor spin ice model are the effects of the long-ran
dipolar interactions beyond the nearest-neighbor pie
which are sizeable due to the large spin of the dyspros
ion. We have already alluded to one possible effect in
discussion of the transition between the two platea
namely, that the polarization of the spins may require a s
consistent treatment of the fieldB that acts upon them. While
this is always necessary when a macroscopic magnetiza
is present, in our case the issue is somewhat more del
since the largest piece of the dipolar interactions has alre
been accounted for in the nearest-neighbor model.

On a fundamental level, however, the long-range dipo
interactions do not seem to lead to a significant interpl
ordering effect, as this would have reduced the entropy
termined in the experiment. This may, however, be a con
quence not of the precise thermodynamic behavior of
spin ice Hamiltonian in a field, but rather an indication of t
magnet’s inability to access its true ground state in the p
ence of energy barriers as discussed in Section II.

VII. SUMMARY

The application of a field in the@111# direction to the spin
ice compounds leads, by a reasonable set of approximat
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to an elegant dimensional reduction of the three-dimensio
problem onto a set of decoupled two-dimensional proble
Fortunately, the resulting two-dimensional problem is one
planar dimers and hence is exactly soluble, so that the sta
and thermodynamics can be determined exactly.

In particular, we have determined the entropy of the m
netization plateau, and calculated the spin correlations in
regime. These lead to the neutron scattering cross sec
depicted in Figs. 5,6, which display peaks the height
which in principle grows logarithmically with system size
However, their growth is cut off by different types of defec
inducing a finite correlation length, as discussed in Sec.

Upon tilting the field, we have shown that these pea
move towards the zone center. They reach the zone cent
the Kasteleyn transition, which has a mixed first/second
der character, exhibits anisotropic scaling, and displays a
vergence of the specific heat. From an analysis of the
namical properties of the plateau regime, we pred
dynamical scaling with an exponentzd52, and discuss the
expected shape and scaling of peaks measured in inel
neutron scattering.

While the computed entropy has already been measu
the predictions for the correlations can be tested by sca
ing. Also testable are thermodynamic and static predicti
for a Kasteleyn transition upon tilting the field in the@-1-12#
direction and for the dynamic correlation in the plateau.
nally we have sketched a theory of the finite temperat
modifications which we intend to flesh out in future work.38

From the viewpoint of spin ice physics, it is fortunate th
much existing technology turns out to be especially suited
this task. From the perspective of statistical mechanics
realization of the hexagonal dimer model as well as of
monomer-dimer problem in a three-dimensional system w
built in self-averaging and easy access via neutron scatte
in contrast to surface or interface realizations, is surely in
esting.

Sadly it does not appear possible to make one fi
link—to the quantum dimer model on the hexagona
lattice39–41as this would require a ‘‘resonance’’ quantum d
namics consisting of a simultaneous coherent tunneling
six pseudospins which is rather unlikely given the large s
J515/2 of the constituents. We leave the realization of t
physics as a challenge for future work.
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