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We study a model of quasiparticles on a two-dimensional square lattice coupled to Gaussian-distributed
dynamical molecular fields. We consider two types of such fields, a vector molecular field that couples to the
quasiparticle spin density and a scalar field coupled to the quasiparticle number density. The model describes
quasiparticles coupled to spin or charge fluctuations, and is solved by a Monte Carlo sampling of the
molecular-field distributions. When the molecular-field correlations are sufficiently weak, the corrections to the
self-consistent Eliashberg theory do not bring about qualitative changes in the quasiparticle spectrum. But for
a range of model parameters near the magnetic boundary, we find that Migdal's theorem does not apply and the
quasiparticle spectrum is qualitatively different from its Eliashberg approximation. In the range of model
parameters studied, we find that the transverse spin-fluctuation modes play a key role. While a pseudogap
opens when quasiparticles are coupled to antiferromagnetic fluctuations, such a pseudogap is not observed in
the corresponding charge-fluctuation case for the range of parameters studied, where vertex corrections are
found to effectively reduce the strength of the interaction. This suggests that one has to be closer to the border
of long-range order to observe pseudogap effects in the charge-fluctuation case than for a spin-fluctuation-
induced interaction under otherwise similar conditions. An important feature of the magnetic pseudogap found
in the present calculations is that it is strongly anisotropic. It vanishes along the diagonal of the Brillouin zone
and is large near the zone boundary. In the case of ferromagnetic fluctuations, we also find a range of model
parameters with qualitative changes in the quasiparticle spectral function not captured by the one-loop approxi-
mation, that is, the quasiparticle peak splits into two. We find that one needs to be closer to the magnetic
boundary to observe the pseudogap effects in the nearly ferromagnetic case relative to the nearly antiferro-
magnetic one, under otherwise similar conditions. We provide intuitive arguments to explain the physical
origin of the breakdown of Migdal’s theorem.
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I. INTRODUCTION normal state of the above systems. For the case of a nearly
half-filled single band, the calculations showed that the
The polarizer-analyzer analogy provides an intuitive de-Eliashberg superconducting transition temperatilie is
scription of the effective interaction between quasiparticleshigher for the tetragonal quasi-two-dimensional than for the
in a quantum many-body system. The first quasiparticle poeubic three-dimensional latti¢e® Particularly striking is the
larizes the medium in which it travels and the second quasieomparison between the cubic antiferromagnetic metalLeln
particle, the analyzer, feels the disturbance induced by thand the closely related compound CeGofrSuperconduc-
first one. In a strongly correlated system one can expect thisvity is found to extend over a much wider range in both
induced polarization of the medium to be very complex, andemperature and pressure in CeGothan in Celg. These
in practice simplifying assumptions are made. A commonlyfindings, and the growing evidence that the pairing symmetry
used approximation is the description of the polarization efin CeColn is d-wave in character, were correctly anticipated
fects by the appropriate linear-response function of the maby the magnetic interaction model.
terial. Furthermore, one typically only considers the interac- While there have been a number of examples of supercon-
tion channel for which the linear response of the system igluctivity on the border of antiferromagnetism, the corre-
the largest. On the border of long-range magnetic order, fosponding phenomenon on the edge of metallic ferromag-
instance, the spin-spin correlation function is the most ennetism has only been found recently. This result is not
hanced and it is plausible that the dominant interaction chansurprising within the framework of the magnetic interaction
nel is of magnetic origin and depends on the relative spirmmodel. For otherwise equivalent conditions, the supercon-
orientations of the interacting quasiparticles. ducting transition temperature is typically much higher on
It has been shown that such a magnetic interaction, treatetie border of antiferromagnetism than on the border of
in the self-consistent Eliashberg approximation, can producéerromagnetismi:®® An intuitive understanding of this find-
anomalous normal-state properties and superconducting ifng pointed to candidate systems in which superconductivity
stabilities to anisotropic pairing states. It correctly predictedon the border of ferromagnetism would more likely be ob-
the symmetry of the Cooper state in the copper oxideserved. In particular, one ought to look for systems with
superconductofsand is consistent with spin-triplgtwave  strong spin anisotropy, i.e, with strong spin-orbit coupling
pairing in superfluid®He (for a recent review see, e.g., Ref. and/or in a weakly spin-polarized state. This suggested a
2). One also gets the correct order of magnitude of the sumore detailed investigation of UGeat high pressure, which
perconducting and superfluid transition temperafiyavhen  satisfied the above conditions and which could be prepared
the model parameters are inferred from experiments in thé a high-purity form. This material proved to be the first
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example for the coexistence of superconductivity andhe precursor pseudogap is caused by critical pairing fluctua-
itinerant-electron ferromagnetisi. tions.

The self-consistent Eliashberg treatment of the magnetic In this paper, we examine corrections to the single spin-
interaction model can produce strongly damped quasipartfluctuation exchange approximation in two dimensions using
cles, but the electronic spectral function one obtains alway@ nonperturbative formulation of the magnetic interaction
shows a quasiparticle peak as one approaches the Ferfiodel amenable to computer simulatiorive find that as
level. This is in qualitative disagreement with photoemissiontn€ antiferromagnetic correlations become strong enough for
experiments on underdoped cuprate superconductors whiMgrtex corrections to_produce a qualitative change_relatlve to
show a near absence of a quasiparticle peak nearst@ (1€ One-loop approximation, a pseudogap opens in the qua-
point in the Brillouin zond® This depletion of quasiparticle siparticle spectrum. In this respect, our results are similar to

states, or pseudogap, is also seen in thermodynamf@ose obtained for the Hubbard mod&i!® The pseudogap

measurement&. The phenomenon may not be specific to the'Ve find is strongly anisotropic in that it vanishes along the

nderdoned rates. For instance. th ible existenced' gonal of the Brillouin zone and is large near the zone
unhderdoped cuprates. For instance, the poss 5 undary. We demonstrate that, in the range of model param-
a pseudogap in the heavy fermion compound Cegbhs

eters studied here, the transverse spin-fluctuation modes are
recently bgen reported. . key to the appearance of the pseudogap by considering the
Is the disagreement between theory and experiment theyse of commensurate charge fluctuations with a spectrum
manifestation of afu_ndamental flaw in the app_roac;h or doegjentical to that of the paramagnons. While a pseudogap
it simply reflect the inadequacy of the approximations usegpens when quasiparticles are coupled to magnetic fluctua-
in the solution of the model? Questions regarding the Validitﬁions, such a pseudogap is not observed in the Corresponding
of the Eliashberg treatment of the magnetic interaction modegharge-fluctuation case for the range of parameters studied,
have been raised. The one-loop approximation effectively where vertex corrections are found to effectively reduce the
assumes that quasiparticles behave as test particles. Thestgength of the interaction. This suggests that one has to be
must therefore be corrections to the simple theory, referred toloser to the border of long-range order to observe
as vertex corrections, coming from the fact that real and tegpseudogap effects in the charge-fluctuation case than for a
particles behave differently. One can expect these vertex cospin-fluctuation-induced interaction under otherwise similar
rections to produce quantitative changes to the selfconditions. In the case of nearly ferromagnetic systems, as
consistent Eliashberg theory as one approaches the border @gnetic correlations get stronger, we also find qualitative
long-range magnetic order. In Ref. 14 it was shown that foichanges in the quasiparticle spectral function not captured by
optimally doped cuprates, vertex corrections did not bringhe one-loop approximation. The quasiparticle peak splits

about significant changes to the single spin-fluctuation apnto two distinct peaks with a lowering of the tunneling den-

proximation, producing an enhancement of the spin-Sity of states at the Fermi level. For the range of parameters

fluctuation interaction of the order of 20%. The sign of this Studied, this suppression of the tunneling density of states at
correctiort* is opposite to that expected for the case of athe Fermi level is weaker than that for nearly antiferromag-
phonon-mediated interactibh and the spin-density-wave netic systems with otherwise similar magnetic and electronic

phase!® This enhancement of the fermion spin-fluctuation SPECrUm parameters. _
vertex in the paramagnetic state is due to the transverse spin- | '€ Paper is organized as follows. In the next section we
fluctuation modes. describe the model and the class of vertex corrections con-
It has been argued, in particular, by Schrieffethat as s!dered_. Section I contams_ thg re_s_,ults of the numerical
the antiferromagnetic correlations get stronger, the systefimulations. In Sec. IV, we give intuitive arguments for the
should display characteristics akin to the antiferromagneti®nysical origin of the pseudogap. Finally we give a summary
insulating state and that the behavior of the quasiparticleémd outlook. Most of the technical details are included in the

should become qualitatively different from that of a simpleAPPeNdix.
metal. The results presented here show that this physical in-
sight is correct in that Midgal's theorem can qualitatively
break down when the antiferromagnetic correlations become
strong enough and a different state emerges. There are essentially two different ways to describe quan-
The validity of Baym-Kadanoff many-body theories, suchtum many-body systems. In the Newtonian or Hamiltonian
as the fluctuation exchange approximattbrwhich is in  approach, one considers particles interacting with each other
many ways similar to the Eliashberg theory of the magnetiovia pairwise interaction potentials. This is the point of view
interaction model, has been extensively studied by Tremblagommonly adopted in the perturbation-theoretic approach to
and collaborators in the context of the Hubbard mdde!?  the nonrelativistic many-electron problem. In the relativistic
They find that close to the magnetic boundary, Migdal’'sversion of the theory, however, one adopts a Maxwellian
theorem qualitatively breaks down, that is, a critical- point of view in which the interactions between electrons are
fluctuation-induced pseudogdpr precursor pseudogpps  mediated by a field, the quantized electromagnetic field. The
observed in quantum Monte Carlo simulations but is notMaxwellian approach is also widely used to carry out nu-
found in the fluctuation exchange approximation. Similar re-merical simulations of interacting systems based on the
sults on the role of vertex corrections were reported in thd=eynman path integral. In such functional integrals, bosonic
case of the attractive Hubbard mod&i?*where in this case fields are represented lynumbers. But fermion fields must

1. MODEL
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be represented by anticommuting, or Grassmann, numbefwld. It is instructive to consider two different types of mo-
that are not easily handled by digital computers. When decular fields. In the first instance, we consider a vector
dynamical moleculafor Hubbard-Stratonovighfield is in-  Hubbard-Stratonovich field that couples locally to the fer-
troduced to mediate the interactions between the fermionsmion spin density. This is the case considered in Ref. 25 and
the problem is reduced to that of noninteracting particles in alescribes quasiparticles coupled to magnetic fluctuations. To
fluctuating field. The integrals over the anticommuting vari-illustrate the role played by transverse spin fluctuations we
ables can then be evaluated exactly, at least formally, thualso consider the case of a scalar field that couples locally to
eliminating the troublesome Grassmann numbers from théhe fermion number density. This case corresponds to a cou-
problem. In the following, we adopt the Maxwellian point of pling to charge fluctuations or, within the approximation we
view and use dynamical molecular fields to mediate the inare using here, “Ising”-like magnetic fluctuations where
teractions between quasiparticles. only longitudinal modes are present. The Hamiltonians at

In general, the distribution of Hubbard-Stratonovich fieldsimaginary timer for particles coupled to the fluctuating ex-
is very complex and usually leads to intractable problemshange or scalar dynamical field are then
due to the infamous “fermion sign problem.” In a many-
body system, the presence of other particles produces . A g T
changes in the effective interaction between two particles h(T)zhO(T)_ﬁ g Mi(7) - $io(T) Taythin(7),
through screening effects and induces arbitrarily complex 7 2.2)
self-interactions of the dynamical molecular fields.

In this paper, we assume that the renormalization of the . .
effective two-body interaction can be accounted for by a re- h(1)=ho(1) =9 @i(D) Y (D) hia(7), 2.9
definition of the parameters entering the bare interaction. e
And we ignore all the self-interactions of the Hubbard-whereM;(7)=[M}(7),MY(7),M¥(7)]", ®;(7) are the real
Stratonovich fields. The model was introduced in Ref. 25 andector exchange and scalar Hubbard-Stratonovich fields, re-
bears some resemblance to the “quenched approximation” afpectively, andy the coupling constant. The reason for the
lattice gauge theories introduced by Marinetrial, who, in-  choice of an extra factor {8 in Eq. (2.2 becomes clear
cidentally, chose the name by analogy to condensed-matt@iter,
physics®® A recent application of the quenched approxima-  since we ignore the self-interactions of the molecular

tion to the pseudogap problem for static Hubbard-fields, their distribution is Gaussian and giverfby
Stratonovich fields and a clear exposition of the formalism is

given by Posazhennikova and Colenfafut in the present 1 M(q,iv,) -M(—q,—iv,)
work, however, we use dynamical rather than statc ~ "IMI=zex _qzy 2a(q,ivy) ’
Hubbard-Stratonovich fields and a nonseparable form of the on (2.4)

molecular-field correlation function.

Very close to the boundary of magnetic or charge long- M(Q,iv,)-M(—0a,—iv,)
range order, the self-interactions of the dynamical molecular Z=J DM exr{ ->, 5 -
field ignored in the present work are known to be important 4 ¥n a(Q,ivn)
for low-dimensional systentd. The approximations made 29
here may not be appropriate in a number of other cases. The the case of a vector exchange molecular field and
virtue of the present approach is that it gives insight into

quantum many-body problems that are essentially nonpertur- Pl Eexp{ S ®(q,ivy)P(—q,—ivy) 2.6
bative. More importantly, the results presented in this paper z & 2a(q,ivy,) ' '
demonstrate that the simplest model already yields interest-

ing physics. Some of the simplifications made here can, in D(q,iv,)P(—q,—iv,)
principle, be relaxed and the theory extended accordingly. z:J Do exr{ —qEV: 2a(q,ivn) 2.7

To be more specific, we consider particles on a two-
dimensional square lattice whose Hamiltonian in the absenda the case of a scalar Hubbard-Stratonovich field. In both
of interactions is casesv,=2mnT since the dynamical molecular fields are
periodic functions in the intervdl0,8=1/T]. The Fourier
transforms of the molecular fields are defined as

ho(7)= —HZQ i (1) w,»am—ug U (P) il 7),
2.1 Mg(7)= > M(q,ivy)exp—i[g-R—v,7]), (2.9
q,vp

wheret;; is the tight-binding hopping matrixy the chemical
potential, andzpiTa and ¢, , respectively, create and annihi-
late a fermion of spin orientatioa at sitei. We taket;; =t if
sitesi andj are nearest neighbors ang=t’" if sitesi andj
are next-nearest neighbors. We consider the case where there is no long-range mag-
To introduce interactions between the particles, we coupl@etic or charge order. The average of the dynamical molecu-
them to a dynamical moleculdor Hubbard-Stratonovigh lar fields must then vanish and the fields Gaussian distribu-

Dr(n)=2, ®(q,ivy)exd—i[g-R—v,7]). (2.9

q,vp
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tions, Eqgs.(2.4) and (2.6), are completely determined by y(q,iv,) is related to the imaginary part of the response

their variancex(q,iv,), which we take to be function Imy(g,w), Eq. (2.13, via the spectral representa-
(17T tion
ENX(q,ivn) if M(q,iv,) or ®(q,iv,) . +2dw Im y(q,)
. X(Q,ivy)= —f —_— . (2.19
_ is complex, —e M VT
1I = M H
a(@ivo) T . Mai D(a.i To getx(q,ivy,) to decay as 42 asv,—, as it should, we
Nx(@ivn) (Q,1vp) or &(q,ivn) introduce a cutoffw, and take Imy(q,®)=0 for w=w,. A
is real natural choice for the cutoff i&y= n(a)Kg.
\ ’ (2.10 In the approximation we consider, the single-particle

Green'’s function is the average over the probability distribu-
whereN is the number of allowed wave vectors in the Bril- tions P[M] [Eq. (2.4)] or P[®] [Eq. (2.6)] of the fermion

louin zone. Then Green’s function in a dynamical vector or scalar field,
. . T . S, L,
(Mi(@,ivn)M;(K,iQn)= G X(Aivn) g, -k0y, 0,61, Gliorjo'r )=f DMPIM]G(ior;jo’7'|[M]),
(2.11 (2.20
T H H ! ! H . ! !
(P(Q.iv) P(K,iQn) = 5 X(Qi ) 3k, Gliorjo'r )=J DOPP]G(ioTjo'7'|[®]),
(2.12 (2.21)
where

where( .. .) denotes an average over the probability distri-
butions, Eq.(2.4) and Eq.(2.6), for the vector and scalar e, _ o,
cases, respectively. In order to compare the scalar and vector 1771 (M or [®D=—(TA¢io(7) ¢, (7)})
molecular fields, we take the same form for their correlation (2.22
function x(q,iv,) and parametrize it as in Refs. 5 and 8. Inis the single-particle Green’s function in a dynamical mo-
what follows, we set the lattice spacimgto unity. For real |ecular field and is discussed in the Appendix. In evaluating
frequencies, we have Egs. (2.20 and (2.21) one is summing over all Feynman
diagrams corresponding to spin- or charge-fluctuation
XoK3 exchange$®>?’ The diagrammatic expansion of the Green’s
x(qo)= ———, (213 function in a dynamical field, Eq2.22), and its average, Eq.
K2+ Q2 —i LA (2.20, are shown pictorially in Fig. 1. Since in the quenched
7(d) approximation no virtual fermion loops are present, the
) ) model we consider here does not have a fermion sign
where « and «, are the correlation wave vectors or inverse yrohjlem2 A nonperturbative study of quasiparticles coupled
correlation lengths in units of the lattice spacing, with and, static magnetic fluctuations using a diagram summation
without strong correlations, respectively. Let technique was reported in Ref. 29. In this paper we do not
~y resort to a diagrammatic expansion but rather evaluate the
qs=4*=2[coqq,) +cogdy)]. (2.14  averages in Eq92.20 and (2.21) over the dynamical mo-

) ) _lecular fields by Monte Carlo sampling.
We consider commensate charge fluctuations and antifer- |t is very instructive to compare the results of the Monte

romagnetic spin fluctuations, in which case the parametergario simulations with the self-consistent Eliashberg calcu-

g2 and 5(q) in Eq. (2.13 are defined as lations for the same model. If one only considers single spin
or charge-fluctuation exchange processes, the single-particle
6]2:(12; , (2.15 Green'’s function is given by
- N _ T . . .
2@ =Toq_, (2.16 S(pion) =075 20 2 x(P~kion=iQ)G(KiQp),
whereT, is a characteristic temperature. (2.23
We also consider the case of ferromagnetic spin fluctua-
; - o 1
tions, where the parametegg and 5(q) in Eq. (2.13 are i _ 29
given by d(p.on) o, —(ep—p)—2(pioy)’ (229
Ay Ao where X (p,iw,) is the quasiparticle self-energy, and
a =a-, (217 g(p,iw,) the one-particle Green’s functiow, is the tight-
A . binding dispersion relation obtained from Fourier transform-
7(q)=Toq_ . (2.18 ing the hopping matrix;; in Eq. (2.1) and u the chemical
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G(k,7) or Gg(k,iw,) one can obtain the quasiparticle spectral

——=Er >+ Ot function A(K,w) = — 1/ Im Ga(K, ) and the tunneling den-
o sity of statesN(w)=1/NZ,A(k,w), whereGgr(k,w) is the
. \ retarded single-particle Green’s function. In the case of the
St —""’—’"""—>+ one-loop approximationg(k,iw,) is analytically continued
- - from imaginary to real frequencies by means of Pade
NN N approximants? The imaginary time Monte CarléMC) data
N Ty is analytically continued with the maximum entropy
method®! We have used 2000 MC samples binned in groups
of 20 to make 100 measurements and three different versions
_ * * of the maximum entropy method: The classiaXxeNnT and
two versions of averag®AXENT, which is the method rec-
R ,5, Sy iy + ,fl ,"’—i e ommended in Ref. 31, where the probability for thepa-
rameter is either a constant or proportional te..$} In all
. . cases we chose a flat default model. The results for the three
s S . different versions of the maximum entropy method tried

. . . . . were nearly identical in the case of the vector molecular
FIG. 1. Diagrammatic expansion for the single-particle Green'siie|q. There were slight differences between the classic and

function. The dashed line connected at one end only to the solid "n'averageMAXENT solutions for the spectral function in the

represents the interaction of the fermions with the dynam!cal MOscalar molecular-field case, while the two versions of the
lecular field and the brackets the average over the Gaussian distri-

bution of these fields. The averaging over the distribution of mo-2VErageMAXENT gave nearly identical results. The choice of

lecular fields is carried out by pairing the dashed lines in allthe ~1/a probability distribution in the averageAXENT

possible ways, each pairing giving a factor proportional to the two-mEthOd gave a slightly better fit to the MC data and all the

point correlation function of the molecular field, the dynamical sus-"@Sults shown here are those obtained with this choice of

ceptibility x(q,iv,) according to Eqs(2.11) and(2.12. The lower ~ Probability distribution for then parameter.
part of the figure shows the pairings one obtains up to two spin- or Figure 2 shows the tunneling density of stalég») and
charge-fluctuation exchanges. the spectral functionA(k,w)=—1/7Im Ggr(k,w) for the
one-loop Eliashberg approximation to the Green'’s function,
potential. The choice of the factor\i3 in Eq.(2.2) means Egs.(2.23 and(2.24), in the case of commensurate charge
one obtains the same one-loop equations in the case of dlictuations and antiferromagnetic spin fluctuations. Figures
exchange molecular fielM and that of the scalar field,  2(b) and Zc) show a strong anisotropy of the spectral func-
thereby simplifying the comparison between the two casestion. A(k,w) is sharper wherk is along the diagonal com-
pared to the case whekeis near a hot spdtwhich is a point
lIl. RESULTS on the Fermi surface accessible from another via a momen-
tum transfer ofQ= (7, 7)]. Also note the monotonic broad-
The quasiparticle dispersion relation for the two-ening of A(k,w) as the parametet? is reduced.
dimensional square lattice is obtained from ER.1). We In Fig. 3 we show the tunneling density of states and
measure all energies and temperatures in units of the nearegjuasiparticle spectral function one obtains from the Monte
neighbor hopping parameter We set the next-nearest- Carlo calculation with a coupling to the scalar dynamical
neighbor hopping parametef= —0.45. The chemical po- molecular field®. By comparison to the one-loop self-
tential is adjusted so that the electronic band fillingnis consistent results of Fig. 2, the vertex corrections give rise to
=0.9. The dimensionless parameters describing tha sharpening of the quasiparticle spectral function, except for
molecular-field correlations amg?xo/t, To/t, ko, andx. A k’=4 and k=(37/8,37/8). For the range of values of
complete exploration of the parameter space of the model imodel parameters considered here, the multiple charge-
beyond the scope of this preliminary study. We chose a repfluctuation exchanges do not lead to a breakdown of the
resentative value fok3=12, and sefl,=0.6% as in our quasiparticle picture. Note that contrary to the Eliashberg
earlier work®>® For an electronic bandwidth of 1 eV, result, as«? is reduced from 4, the spectral function initially
~1000° K. We only consider one value of the coupling con-sharpens before broadening again at the lower values of
stantg2xo/t=2. In the random-phase approximation, the considered here. Fok?=4 and 2, the spectral function is
magnetic instability would be obtained for a valuegsfy, /t sharper near the hot spot than along the diagonal, again in
of the order of ten. We consider what happens to the quascontrast to the one-loop self-consistent result. It is approxi-
particle spectrum at a fixed temperatidfe 0.2% as the in-  mately isotropic atc?=1 and becomes sharper along the
verse correlation lengtk changes. diagonal than near the hot spot at the lower valuesof
The calculations were done on a 16 by 16 lattice, with 41=0.50 and 0.25. Quite generally Fig. 3 shows that when
imaginary time slices, or equivalently, 41 Matsubaravertex corrections are included, the spectral function is less
frequencies for the molecular fieldsM(q,iv,) and anisotropic than the Eliashberg result for the valuescof
®(q,iv,) (vp=2mnT, with n=0,£1,...,£20). By ana- considered.
lytic continuation of the single-particle Green's function  The Monte Carlo results for quasiparticles coupled to an-
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Eliashberg Charge-fluctuations

N(w)t

o/t
Eliashberg ; k = (n,1/8) Charge-fluctuations ; k = (n,n/8)
10 ; : - 20 2
(b) 2 _4.00 ® , =400
gl e 3¢ = 2.00 i :
i
= 67 Zz ]
3 S
3 =3
< 4l =
2 L
0
-1 1
Eliashberg ; k = (3n/8,31/8)
12 15 T 2
, c A K =4.00
(c) ‘= 4.00 © {\
10 | e % = 2,00 '

Ak, o)t
Ak, o)t

0.2

-1 -0.5 0 0.5 1

o/t
FIG. 3. Quasiparticle properties for a coupling to a scalar dy-

FIG. 2. The one-loop approximation for the quasiparticle prop-namical molecular fieldp. The tunneling density of staté( w) is
erties for both commensurate charge fluctuations and antiferromaghown in(a) while (b) and(c) show the quasiparticle spectral func-
netic spin fluctuations. The tunneling density of stalgw) is tion A(k,w) for momenta just below the Fermi leveb) shows
shown in(a) while (b) and(c) show the quasiparticle spectral func- A(k,w) for a wave vector close to the Van Hove singularity #od
tion A(k,w) for momenta just below the Fermi leveb) shows  showsA(k,w) for a wave vector along the diagonal of the Brillouin
A(k,w) for a wave vector close to the Van Hove singularity &d  zone.

showsA(k, ) for a wave vector along the diagonal of the Brillouin

zone. tral function of Figs. 4b) and 4c) to the one-loop self-

consistent result, we see that for the valuegoivhere there
tiferromagnetic spin fluctuations are shown in Fig. 4. Forisn’'t a pseudogap, vertex corrections lead to a broadening of
«k?’<1, a pseudogap appears at the p&ist(,7/8) but not  the spectral function and a reduction of the momentum an-
along the diagonal, in qualitative agreement with experi-isotropy of the spectral function. The contrast between the
ments on underdoped cuprat@&’he pseudogap also shows nonperturbative calculations for charge and spin fluctuations
up in the tunneling density of staté$(w) which is sup- and the comparison with the Eliashberg result is shown in
pressed at the Fermi level faf<1. By comparing the spec- Fig. 5 for k?=2. In this case it is clear that the effect of

064408-6



MIGDAL'S THEOREM AND THE PSEUDOGAP

PHYSICAL REVIEW B58, 064408 (2003

AF Spin-fluctuations k = (n,n/8)
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FIG. 5. Comparison of the one-loop self-consistent versus the
nonperturbative calculation of charge- and spin-fluctuation ex-

2.5 . . changes(a) shows the spectral functiofa(k,w) for a wave vector
(c) Z =4.00 close to the Van Hove singularity aril) showsA(k,) for a wave
o K = ?-88 vector along the diagonal of the Brillouin zone.
~~~~~~ K =1

sl - Kz=0.50 case of ferromagnetic spin-fluctuation exchange are shown.
g K =025 As could be expected, the spectral function for quasiparticles
1 1 near the Fermi level does not depend strongly on whether the

momentum is near the hot spot, Figbf or along the diag-

05 | onal in the Brillouin zone, Fig. @), in contrast to the nearly
' antiferromagnetic case. At the Eliashberg level, the spectral
0 e function broadens monotonically as the correlation wave
-3 -2 1 2 3 4 vector « is reduced and is broader than the corresponding

o/t

nearly antiferromagnetic case, FiggbRand Zc).
The Monte Carlo results for quasiparticles coupled to fer-

FIG. 4. Quasiparticle properties for a coupling to an exchangg, ., ynetic spin fluctuations are shown in Fig. 7. The tunnel-
vector dynamical molecular fiell with antiferromagnetic corre- . . . _ .
lations. The tunneling density of stat§w) is shown in(a) while ing densily of states at the Fermi levi{w=0) beg|n§ to
- : &’<0.50. Fork?=0.25, the quasipar-
(b) and (c) show the quasiparticle spectral functid(k,w) for d_rop as the paramet_ o ' q P
momenta just below the Fermi levéb) showsA(k,w) for a wave ticle pea_k has effectively split into two pegks, and a precur-
vector close to the Van Hove singularity af@] showsA(k,w) for _Sor of t,h'sleﬁeCt f:an be seen at=0.50. This phenqmenon
a wave vector along the diagonal of the Brillouin zone. is qualitatively different from what one can obtain at the
one-loop level, Fig. 6, similar to the pseudogap seen in Fig.
vertex corrections is to make the spectral function sharpe#, when the quasiparticle interactions are mediated by an
than its Eliashberg approximation in the charge-fluctuatiorantiferromagnetically correlated exchange field. For the
case and broader when the quasiparticles are coupled to magrger value ofx? where the splitting of the quasiparticle
netic fluctuations. For these model parameters, corrections feeak is not observed, a comparison of the Monte Carlo re-
the Eliashberg approximation reduce the effective chargesults with the one-loop self-consistent calculations shown in
mediated interaction and enhance the coupling to magneti€ig. 6 shows that vertex corrections bring about a broadening
fluctuations. of the quasiparticle spectral function. Therefore, just as in the
In Fig. 6 the results of the one-loop calculations in theantiferromagnetic case, vertex corrections enhance the mag-
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0
-2 -1 0 1 2 FIG. 7. Quasiparticle properties for a coupling to an exchange
oft vector dynamical molecular fiel#! with ferromagnetic correla-

FIG. 6. The one-loop approximation for the quasiparticle prop-tlons' The tunneling density of staté¢w) is shown in(@ while (b)

. . o . h i . fand (c) show the quasiparticle spectral functiék,w) for mo-
erties for fe_rromagne_tlc spln_fuctuatlons. The tunnemg_den_sny of lenta just below the Fermi levelb) showsA(k,®) for a wave
statesN(o) is §hown in(2) while (b) and_(c) show the quasmgrtlcle vector close to the Van Hove singularity at@l showsA(k,w) for
spectral functioPA(k,») for momenta just below the Fermi Ieyel. a wave vector along the diagonal of the Brillouin zone.

(b) showsA(k,w) for a wave vector close to the Van Hove singu-
larity and(c) showsA(k,w) for a wave vector along the diagonal of

the Brillouin zone. IV. DISCUSSION

For the model considered here, at the one-loop level the
netically mediated interaction, albeit to a lesser degree, as @xchange of commensurate charge fluctuations and antiferro-
close look at Figs. 2 and 4 and 6 and 7 indicates. This coulthagnetic spin fluctuations yields the same quasiparticle
explain why qualitative changes from the Eliashberg solutiorproperties. Once vertex corrections are included, the differ-
are seen for smaller values &f for coupling to ferromag- ences between the two cases are evident. In all but one case,
netic fluctuations than for antiferromagnetic fluctuations. k= (3#/8,37/8) andx?=4, corrections to the one-loop ap-

064408-8



MIGDAL'S THEOREM AND THE PSEUDOGAP PHYSICAL REVIEW B58, 064408 (2003

WHHLT k = (n,7/8
\\\\\\\\\\\\ iy, (m.18)

S %, 1.2 ——
§ /’4 a) —— Eliashberg 1K =025
S (a)
~ - 5
= = 1} ---- Monte Carlo ; ¥ = 2.00

=== 0—)—9—)-

! S

2 § 5

% S ;

% S <
W <

%,
n
K

FIG. 8. First-order vertex correction to the one-loop self-energy.
The way in which spin is carried through the diagram depends on
the kind of molecular field. A Pauli matrix is associated with each
vertex in the case of coupling of quasiparticles to magnetic fluctua-
tions. In the case of exchange of charge fluctuations, each vertex
simply carries a unit matrix, that is, the spin orientation is un- k = (3n/8,3n/8)
changed at each vertex of the diagram.

w/t

(b) —— Eliashberg ;x”=0.25

proximation make the quasiparticle peak sharper than the ——__ Mante Carlo : ¥ = 2.00

Eliashberg result for charge fluctuations. In the case of anti-
ferromagnetic spin fluctuations, the quasiparticle peak gets ot
broader as vertex corrections are included and a pseudogap
appears for the lower values &f studied. The difference
between the scalar and vector molecular fields appears at the /
leading vertex correction to the one-loop approximatfon I
shown in Fig. 8. The frequency and momentum integrals are F/ERN
the same in both cases since we assume the commensurate / \
charge fluctuations and antiferromagnetic spin fluctuations 0 z o~
have the same spectrum. However, the spin sums in the two -2 -1 0 1 2
cases are not identical. In the case of a coupling of the mo- o/t
lecular ﬁeld to the quasipa_rticle s_pin density, one gets_afac- FIG. 9. Comparison of the single antiferromagnetic spin-
t‘?r coming from the Pauli matrlce_s at_each ve_rtex n theﬂuctuation exchange approximation for the quasiparticle spectral
diagram. For the diagram shown in Fig. 8, this factor iSgynction with a renormalized correlation wave vecieg;=0.25
Zjjo'ala'al. One can split the sum into thie=j andi#]  and the nonperturbative result wigf=2. In both cases the dimen-
terms, and use the fact thato'=1 ando'a’=—o'o' if i sjonless coupling constagfy,/t=2. (a) and(b) show the quasi-
#j. Then Ei,jU'UIU'UI =3jo'd'g'o’ _Ei;er'U'U'UJ =3 particle spectral functioA(k,w) for momenta just below the Fermi
—6=—3. Note that the longitudinal spin fluctuations con- level. (a) showsA(k,w) for a wave vector close to the Van Hove
tribute a termo“o?c“c*=1 and thus the change in sign is singularity and(b) showsA(k,w) for a wave vector along the di-
caused by the presence of transverse magnetic modes. Thgonal of the Brillouin zone.
corresponding factor in the case of charge fluctuations is 1,
just as in the case without transverse magnetic modes. Cogorrections make the spectral function broader and the qua-
pling the quasiparticles to the spin density instead of thesiparticle residue smaller, one could attempt to fit the non-
number density produces a leading vertex correction with th@erturbative calculations with a one-loop theory with a larger
opposite sign. The process depicted in Fig. 8 enhances tteoupling constang)®xo/t or smallerx?, or a combination of
magnetic interactiolf while this same diagram leads to a both. If the corrections to the one-loop theory are purely
suppression of the effective interaction in the case of chargkcal, it is possible to absorb them in a redefinition of the
fluctuations. For the range of parameters studied, the Monteoupling constang?yo/t. It turns out that increasing the
Carlo simulations show that this qualitative difference be-coupling constant does make the quasiparticle residue
tween coupling to magnetic or charge fluctuations persists tsmaller but the one-loop spectral function remains too sharp
all orders, save one cades (37/8,37/8) and«?=4, where relative to the nonperturbative calculation. By the time
vertex corrections enhance the charge-mediated interactiorg®xo/t is large enough for the quasiparticle lifetime to be
As noted above, for large values ©f, vertex corrections approximately that obtained with the Monte Carlo simula-
do not produce qualitative changes, but merely quantitativéion, the one-loop quasiparticle residue is then too small. One
ones. One might therefore ask whether one can obtain theas more success with making smaller and Fig. 9 com-
nonperturbative results with a one-loop calculation providedpares the spectral function of the one-loop calculation with
the parameters of the theory are renormalized. To illustrate®=0.25 with theA(k,®») obtained from the Monte Carlo
the point, let us focus on the case of antiferromagnetic parssimulations atk?=2. One can get a rough fit near the hot
magnons withk?=2. One essentially has two parametersspot atk=(,7/8) but the one-loop spectral function is al-
one can renormalize, the dimensionless coupling constantays more anisotropic in momentum than the nonperturba-
g%xo/t and the inverse correlation length Since vertex tive A(k,®) for this value ofx?.

Ak, @)t
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The most important feature of the calculations presentegiseudogap also turns out to bg .32 For the model consid-
here is the qualitative change in the quasiparticle spectradred in this paper, however, thermal fluctuations do not ap-
function that occurs as the magnetic interaction gets strongepear to dominate. Indeed, the onset of the pseudogap for
either on the border of long-range antiferromagnetic or fercoupling of quasiparticles to antiferromagnetic fluctuations
romagnetic order. The appearance of a pseudogap in the quand the qualitative change seen in the spectral function for
siparticle spectrum near a second-order phase transition @supling to ferromagnetic fluctuations occur fég,x>1.
the temperature approaches the critical transition temperatuféhe departure from the criteriofy,x~ 1 for the breakdown
from above was demonstrated for the half-filled Hubbardof the Midgal approximation is larger in the ferromagnetic
model;’~**for a superconducting instabil§*******%and  case. The above suggests that another, shorter, length scale is
for a Peierls-charge-density-wa\€DW) transition®” By  relevant in the present case. A possible candidate length scale
contrast, in the model studied in this paper, the quadrati¢s the quasiparticle mean free path.
actions of the dynamical molecular fields do not exhibit a ope can attempt to make this more quantitative by ex-

phase transition at aliwith «“>0). It may therefore be {acting quasiparticle lifetimes and mean free paths from our
somewhat surprising that a pseudogap is observed in thgmerical results. In order to do this we fit the quasiparticle

present calculations since the correlation wave vegtbe- peak of the spectral function with a Lorentziay (k, )

comes of order one in the nearly antiferromagnetic case and N2, 2 .
of order one-half for nearly ferromagnetic systems. = (Um)izd'/[(w—E) "+ Ti]} which corresponds to a

The physical origin of the pseudogap was explained inquasiparticle approximation for the retarded Green’s function

Refs. 17—19 and later in Ref. 32. Quasiparticles only remaiyR(K: @) =2c/(@—E+il') describing the propagation of
coherent for a finite amount of time. When the distance theyluasiParticles of enerdg . I' is related to the quasiparticle
can travel during that time becomes shorter than the correl ffetime 7, throughI'y=1/27,. If one ignores Fhe momen-
tion length of the molecular field, quasiparticles eﬁectivelytum dependence of thg self-energy, the quasmartu;le residue
see long-range order. In the presence of long-range antifef 'S relfited to the ratio of the band to the eﬁgcuve(ol)*nass
romagnetic order, the spin-density-wave quasiparticle spec~Mm*. We define the bare velocity vi"
tral function consists of two peaks. In the case of long-range™ V(€ /dky)*+ (dec [ dky)* wheree is the band dispersion
ferromagnetic order the spin-up quasiparticles have an erfelation and the renormalized velocity =z (” . The qua-
ergy shifted downwards, say, relative to the paramagnetigiparticle mean free path is then approximatgly- v, 7 .
guasiparticle energy, while the energy of a spin-down quasiThe values ofl, one obtains for charge fluctuations as well
particle is shifted upwards relative to its energy in the ab-as for antiferromagnetic and ferromagnetic spin fluctuations
sence of long-range ferromagnetic order. The shifts in energgre shown in Fig. 10. In the case of coupling of quasiparti-
give rise to corresponding shifts in the quasiparticle peak ircles to charge fluctuations, Fig. (8 I, >1/k for all the
the spectral function. Upon averaging over the two spin orivalues ofx considered. In this case, the quasiparticles travel
entations, the quasiparticle spectral function would then alséar enough during their lifetime to see there is no long-range
consist of two peaks, the up-spin and down-spin quasiparticharge order. In the case of antiferromagnetic spin fluctua-
cle peaks. In our calculations, when the quasiparticles remaitions, Fig. 1Qb), one sees that dt=(m,n/8), |, ~1/«k at
coherent for such a short time that they effectively see long«®=1, and that is where the pseudogap begins to appear in
range order, the spectral functions have characteristics akiie spectral function, Fig. (). At momentum k
to that of the ordered state. For instance, in Fih)4or a  =(37/8,3w/8), the mean free path>1/k at x*=1 and
coupling of quasiparticles to antiferromagnetic spin fluctua-one wouldn't expect a pseudogdp.becomes less than the
tions, the spectral functioA(k,w) for k?=0.25 looks like  correlation length at the lowest value of and one can see
that of a broadened spin-density wave. And in the case of hints of a developing pseudogap in the spectral function, Fig.
ferromagnetically correlated molecular field, in Figgb)7  4(c). In the ferromagnetic case, Fig. (D the appearance of
and 7c), A(k,®) is “spin split” as «? is reduced, a feature the two peaks in the spectral function is broadly consistent
which can be understood if, during their short lifetime, thewith the conditionl (< 1/x. Note that we are using a simple
guasiparticles effectively see ferromagnetic order, where theriterion, in an attempt to capture the essential aspects of the
moment is equally likely to point up or down, since we areproblem, to understand the emergence of a pseudogap in our
still in the paramagnetic phase. calculations. The crossover to the new state is likely to de-
Quasiparticles only remain coherent for a finite time duepend on other details not taken into account by our criterion
to thermal and quantum fluctuations. The question is what isand is therefore not expected to occur exactlyl at 1/«.
that time scale, or the associated characteristic length scale kdoreover, the tails in most of the spectral functions are not
be compared against the magnetic correlation length. In theorentzians and thus our definition of the quasiparticle life-
half-filled Hubbard model studied in Refs. 17-19, the renortime is clearly approximate.
malized classical regime for the spin fluctuations always pre- We have also extracted mean free paths for the one-loop
cedes the zero-temperature phase transition, and in that rapproximation using the same methodologgsults not
gime thermal fluctuations dominate and the relevanshown. For low enough values ok?, one can get in the
characteristic length scale is the thermal quasiparticle deegime wherel,<1/k, but no pseudogap in the spectral
Broglie wavelengttt,,= v /T.1""°Thermal fluctuations are function is observed. What is the one-loop approximation
dominant near the Peierls-CDW transition in two dimensionanissing? A potential explanation, based on an analogy, is the
and the relevant quasiparticle length scale for the onset of thi@llowing. When treating the potential scattering of a particle
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remain plane waves. In the pseudogap state, the quasiparticle
wave functions must be qualitatively different and one must
allow the quasiparticles to scatter multiple times against the
locally ordered molecular field to produce the required
changes in their wave functions. It seems one would need to
sum an infinite set of spin-fluctuation exchanges.

The “quenched approximation” formulation of the mag-
netic interaction model actually goes beyond a diagrammatic
perturbation expansion. The Green'’s function, 320, de-
pends on the position, spin, and imaginary time, but also on
the parameters of the theorgw=g2%xo/t, 2 etc., G
=G(ioTjo' 7' |\,k%, ...).[To make the dependence an
=g2xo/t explicit, one simply needs to introduce scaled mo-
lecular fieldsm=gM. The variance of the new variables is
theng?a(q,iv,)*g%x(q,iv,).] It is clear from Eqs(2.20),

(2.4), and (2.5 that the theory does not make sense Xor
<0, since the Gaussian distributions of the molecular fields
would have a negative variance. This observation means that
it is not possible to analytically continggto negative values

of A, implying an essential singularity at=0. The pertur-
bation expansion in powers afis then an asymptotic rather
than convergent serié3 This opens the possibility for phe-
nomena that lie outside diagrammatic perturbation theory.
Whether the pseudogap state found in the numerical simula-
tions reported on in this paper is precisely one such phenom-
enon is not presently known to the author.

The results presented here do not imply one couldn’t get a
pseudogap state when coupling to charge fluctuations. On the
basis of the arguments presented above, if one were to in-
crease the strength of the charge correlations or the coupling
of quasipatrticles to the molecular fiefel, one would get in
the regimd < 1/k and the spectral function would resemble
that of a broadened charge-density-wave state. Our calcula-
tions simply show that one would have to be closer to the
ordered state in the case of charge fluctuations than for mag-
netic fluctuations, under otherwise similar conditions.

V. OUTLOOK

We studied a nonperturbative formulation of the magnetic
interaction model, in which quasiparticles are coupled to a
Gaussian-distributed dynamical molecular exchange field.
Far from the magnetic boundary, the type of vertex correc-
tions considered here do not bring about qualitative changes
to the quasiparticle spectrum. But as one gets closer to the

FIG. 10. Approximate quasiparticle mean free patphdor k  porder of long-range magnetic order, we find, for a range of
=(m,m/8) andk=(37/8,37/8) obtained from Lorentzian fits to model parameters, that Migdal’s theorem does not apply and
the numerical results for the spectral functida) showsly for  the quasiparticle spectrum is qualitatively different from its
coupling to charge fluctuations_b) to antiferromagnetic spin fluc- Eliashberg approximation. The physical origin of the phe-
tuations, andc) to ferromagnetic spin fluctuations. nomenon is that if the distance quasiparticles can travel dur-

ing their lifetime becomes shorter than the molecular-field
in a momentum space basis, to lowest order of perturbationorrelation length, these quasiparticles effectively see long-
theory (Born approximatiopy one assumes that the wave range order. When the molecular-field correlations are anti-
function is unchanged, i.e., it remains a plane wave. In ordeferromagnetic, the quasiparticle spectral function has the
to study bound states, in which the wave function of thetwo-peak structure of a spin-density-wave state, even though
particle is qualitatively different since it is localized, one there is no spontaneous symmetry breaking. We find that the
must treat the scattering events to all orders. By analogy, thassociated pseudogap is strongly anisotropic in that it van-
Eliashberg approximation does not seem to allow for ashes along the diagonal of the Brillouin zone and is large
change in the quasiparticle wave functions, which essentiallpear the zone boundary, in qualitative agreement with pho-
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toemission experiments on underdoped cuprit@he an- model, and hence weaker pseudogap effects in isotropic
isotropy of the pseudogap found in our calculations simplythree-dimensional systems.
reflects the anisotropy of the quasiparticle mean free path. The results presented here raise a number of obvious
For coupling to ferromagnetic fluctuations, we also find aquestions, which we hope to answer in the future. For in-
range of parameters where the quasiparticle spectral functicsstance, what are the corrections to the Eliashberg theory for
becomes qualitatively different from its one-loop self- the superconducting transition temperature to the 2
consistent approximation. The local ferromagnetic order als@airing state? We have studied corrections to quasiparticle
leads to a splitting of the quasiparticle peak into two. Thesespectral properties, and found that vertex corrections can
pseudogap effects are found to be weaker for nearly ferroproduce a pseudogap in the quasiparticle spectrum. When the
magnetic systems than for their nearly antiferromagnetienagnetic correlations are weak enough vertex corrections do
counterparts, under otherwise similar conditions. not bring about qualitative changes but nevertheless reduce
In the standard theory of quantum critical phenom&ify, the quasiparticle lifetime. The above effects are expected to
d+z<4 whered is the spatial dimensionality armithe dy- ~ SUppress magnetic pairing. But one must also include in the
namical exponent, the mode-mode coupling parameter dalculation of the superconducting transition temperature the
verges upon renormalization as one approaches the instabﬂprresponQ|ng corrections to the pairing interaction. To lead-
ity and the critical exponents are different from their mean-"9 order, it was 'showVi that vertex corrections lead to a
field values. Therefore, itl+z<4, one would certainly stronger pairing interaction in thd-wave channel. There

expect Migdal's theorem to qualitatively break down closeMaY therefore be some cancellatlo_n of errors, at least in some
o . range of model parameters. At this stage, however, one can
enough to the quantum critical point. However, whéhz

~4 the critical s take thei field val .only speculate about the effect of vertex corrections on the
» the critical exponents take their mean-neid values, as IrEliashberg theory of the superconducting transition tempera-

a one-loop calculation. In that case, one could therefore ex;, o

pect, as it is often assumed, that the Eliashberg approxima- \ye gave intuitive arguments for the physical origin of the
tion is at I_east qualitatively correct. For thg magnetic SPeCphseudogap, namely, that when the quasiparticle mean free
trum considered here, EQ.13, z=2 for antiferromagnetic  path becomes of the order of the molecular-field correlation
fluctuations andz=3 for ferromagnetic fluctuations. Hence |ength, quasipartic|es effec[ive|y see an ordered state. But
d+z=4, the marginal dimension in the case of antiferro-one ought to seek deeper insight into the breakdown of the
magnetic spin fluctuations, but crucialtys+z=5 in the case  Fermi-liquid state, especially since the results obtained here
of ferromagnetic spin fluctuations. One could thus have exsuggest the possibility of zero-temperature non-Fermi-liquid
pected that in the latter case, the one-loop self-consisteqfaramagnets in the weak- to intermediate-coupling regime.
calculations should be at least qualitatively correct sidce  Transport and thermodynamic properties in the quenched
+z>4. This is at variance with our results, which show approximation would also be of great interest. The calcula-
qualitative differences between the nonperturbative calculations in Ref. 32 showed that the pseudogap in the single-
tions and the Eliashberg predictions. Note that the qualitativ@article density of states also appeared in the two-particle
breakdown of Migdal's theorem occurs for smaller values ofGreen’s functions such as the optical conductivity and the
«? in the ferromagnetic case than for antiferromagnetic spiruniform Pauli susceptibility. | therefore expect the pseudogap
fluctuations. In that sense the effect of vertex corrections i®bserved in the quasiparticle spectral function to appear in
weaker wherd+z=5 compared to the casetz=4, which  the thermodynamic and transport properties of the model
is what is expected. studied here. The extent to which the model is able to explain
To summarize, an often assumed criterion for the qualitathe normal-state experimental data on the underdoped cu-
tive applicability of the Eliashberg theory near an instability, prates is an open question.
namely,d+z>4, is clearly a necessary condition but the Our simplifying assumptions, which were born out of the
calculations presented here show that it is not a sufficienhecessity to carry out the calculations in a reasonable amount
one. This result may point to certain limitations of the stan-of time, should be relaxed. The dynamical molecular-field
dard theory of quantum critical phenoméefiayhich was re-  correlation function which enters their distribution was taken
cently criticized by Andersorf to be of the same functional form for all the calculations. In
The crucial role of dimensionality for pseudogap phenom-Nature, however, the distribution function of the molecular
ena has been emphasized by Tremblay andield experienced by one quasiparticle is determined self-
collaborator§’*82*and by Preostet al3’ Since critical fluc-  consistently by all of the other quasiparticles in the system. It
tuations responsible for the precursor pseudogap are mudh therefore expected to change as the nature of the quasipar-
stronger in two dimensions than in three-dimensional systicle spectrum changes. One should also study the effect of
tems, pseudogap phenomena are found to be much weakerrimode-mode coupling terms which were ignored in the
three dimensions. One would expect similar results for thgresent study. Monien has recently carried out such a study
magnetic interaction model studied in the present paper. Thier a model of the one-dimensional Peierls CB%W.
role of lattice anisotropy is already important at the Eliash- There is no doubt that the extension of the theory to deal
berg leve?~® because of the increased phase space of softith effects ignored here will bring about quantitative
magnetic fluctuations in lower-dimensional systems. Thischanges to our results. It will be of great interest to figure out
phase-space argument leads one to expect weaker vertex cahether and for what model parameters our results are modi-
rections to the Eliashberg theory of the magnetic interactioriied qualitatively. | would like to think that the physical ori-
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gin of the emergence of a pseudogap in the quasiparticle .
spectrum will turn out to be independent of the details of theeXP(Qa) = H exp(\P;D)
model.
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APPENDIX: GREEN’'S FUNCTIONS
+ > [exp(h)—1][exp\; ) —1]

In this Appendix we derive the mathematical formulas for i1<ip
the single-particle Green’s functions in a fluctuating ex-
change or scalar field. We also give the algorithm for the Xd; I, &+ X [expn)—1]
numerically stable and efficient calculation of such Green’s 1 22 do<i, 1

functions. We make use of fermion coherent states and de- % N)—1 N ) —1
rive the path integral for an antinormal ordetedHamil- [exp(hi,) = 11[exp(Ai)) = 1]
tonian quadratic in the fermion field operators. ot d wtd &t
We first need an identity for expressing the exponential of xq)'1®i1(b'z®izq)'3q)is+ T
the quadratic form,
+ > [expn)—1].. . [expn; )—1]
~ + i1<...<in
Qa=2 Ay (A1) . .
I X P @y ... D P . (A9)
in terms of fermion coherent states. In the above expression,

A=At is a Hermitian matrix of dimensioN and{y},{y'} Since in the various sums one hgs#i,#is...#iy, one
are fermion operators. One has can straightforwardly antinormal order the terms to be

ex;{ IE] wiAi,jzﬂjT> =f

xexr{iZJ_ ‘:si(eA)i,jgr}@l, (A2)

O, /D, O =0, D, D D] (A10)
|§> 1 1171270 2 1T

N
i=Hl d&rdé

O, 0D, D, D =0, &, D, DD (A1)
[ E R Rl b Rl - Rl 3l n i Tl

®; of & @f .. 0 D]
where {¢£*},{&} are Grassmann numbers. This identity is - .
proved by going into a basis in which the matfixis diag- =0 @i, .. D DD Dy (AL2)
onal. LetU be the unitary transformation that diagonalizes
We can now insert a resolution of the identity between the
UTAU=A=diag\q, ... \y). (A3)  annihilation and creation operators. For instance,

In terms of the new fermion fieldgb},{® '}, N
(Di3(bi2®ilq);rl(b;r2q)r3:q)iaq)izq)ilj {.1;[1 dfi*dfib@

=2 Ul (A4)
xexp(—zi frfi)@l@?;b?z@?g
Wi=2 Ui, (A5) .
= f [T derdés 66,10

=2 Ui, (A6)

o xexp(—zi & a)@lfafrgi’;
o= Uy, (A7) N

. - f Il d&*da}algﬁazfgagg

the quadratic form EqA1) become®,=3\;®;®[. Since

Pdhr=p.¢' = i ifo
((I)ICDI)_ _<IJ,<_I>, forn 1,23 ... ¢, and the terms with dif X ex _2 e &6
ferent indices commute with one another, one has i
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Applying the above operation to every term in the sum in G(ior;jo’ ')
Eqg. (A9) one obtains ‘
= —~(TdWio( DY, (7)})

|§>e><p( —Ei & &) =— %Tr(n{ exp{ — foﬁﬁ(s)ds

N

exerA>=f [H d&fdg

=1

¢i0<r>w}g,<r'>]),

N (A18)
<[ [1+i-1)&& g
i=1 B.
N Z=Tr[TT ex;{—f h(s)ds } (A19)
0
=f iljldfi*dgi |§>exp(—2i a*gi)

where the time-dependent Hamiltoniﬁ(w) is given by Eq.
(2.2 and Eq.(2.3) for coupling to a fluctuating exchange or
X ex;{ E (eM—1)§¢& ) (€] scalar field, respectively. The trace is over the fermion fields.
! For ease of notation, we have dropped the explicit depen-

N dence ofG(io7;jo’ ') on the molecular field. Because of
:j H dérdé |§)ex;{2 ekigigi*><g|_ the time-ordering operator, one must distinguish the two
i=1 I casesr>7 andr<7':

(A13) ,
Gliorjo' )=~ —Tr([TT ex;{ - f h(s)ds ] o (T)
Going back to the original representation in which the matrix =t T
A is not diagonal yields Eq(A2). If we have another qua- .
dratic form X[TT ex;{— f ,ﬁ(s)ds }w}a,(r')
Qe=2 ¥iBijy], (A14) X[TT exp[—fT h(s)ds ]) >,
] 0
(A20)
whereB=B" is a Hermitian matrix of dimensio|, it is a
simple exercise in Grassmann integration to show that 1 8. +
Gliorjo't")=— ETr([TT exr{ - f ,h(s)ds ] 1,01.0,(7-’)
N T
exp( Q) exp Qp) = f [i[[l dgrda}la X[TT exp[_ f “h(s)ds ) (D)
Xexr{%: gi(eAeB)i,jf}*}@L X{TT ex;{— frﬁ(s)ds ]) <17
0
(A15) (A21)
To prove the above identity one uses the coherent-state reghe imaginary timesr and 7’ are discretized such that
resentation Eq(A2) for exp@ ) and expQg), =Amm, m=01,...L;, 7=Amm’, m'=01,... L,

where A7=p8/L;. One then uses the Trotter break-up
for the Hamiltonian in an exchange, Eq2.2), or
N scalar field, Eqg. (2.3, and hence exfp-Ar(mA7)]
|§)exp_§j) &i(eD); & }@l’ ~exf —Arhy(mA7)Jex —Arh(mA7)]. Up to an unimpor-
(Al16) tant constant, the antinormal ordered hopping Hamiltonian
ho, Eq. (2.1 is written as

N

exp(Qa) = J [H d&fdg

=1

N -
eXp(QB)=f {.Hl dyd7i||7)exp % m(eB)i,mf}(nl- ho= 2 ioTiojortjor (A22)
' (A17) hoe
. . Tigjor=(tij T 16 j) 05, - (A23)
Integrating over the Grassmann variablegg'} and {7}
yields Eq.(A15). Similarly, up to constant terms that drop out of the expres-
The imaginary time single-particle Green'’s function in asion for the single-particle Green’s function, the Hamiltonian
time-dependent field is given by the usual expression for the coupling to the fluctuating field is written as
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A _ A T , B M?#(mA 1)
Pu(MAT)= 20 dioAijor (M (A29 Mi(mAn)=pt (A35)
g 2 M} (mA7)=iMY(mA
Aig,ja’(m):ﬁ5i,j{Mi(mAT)5a,T5¢r’,T M (mAT)= (m|MT-)(mIA7-)Tm T), (A36)
_Miz(mAT)go',léo",L
+[MX(MAT)+iMY(MAT)]S, 8,0 IMi(mA7)|
+[M(MAT)—iMY(MAT)]S,, 8, 1}, =\V[MXmAT)P+[MY(mAT)]?+[MZ(mAT)]2.
(A25) (A37)
Ao (M=08 8y, Pi(MAT), (A26) Matrix multiplication by exp—A7A(m)] is most easily done

in real space. We have implemented the matrix multiplication
where Eq.(A25) and Eq.(A26) are for a fluctuating ex- py exp(~A+T) by means of the fast Fourier transform instead
change and scalar field, respectively. Making use of Eqsof the usual checkerboard decomposition. In the discretized
(A2) and(A15), one has imaginary time version,

exd —A7h(mA7)]

~ ~ B
~exd —A7hy(mA7)]exd —A7rhg(mAT)] T, EXF{ - Jo h(s)ds
=J du(§)|§>exp(_2, EiolBmlio,jo &}y | (€], ~exg —Arh(A7L)] ... exf—Arh(A7)]
icjo
(n27) - [ aucale
Bu=exg - ArA(M)lexp~A7T),  (A28) xexp(_z EuTBLBL 1. Byl € | (8]
where from now on we uséu(¢) to denote the Grassmann e
integration measure (A38)

Note that we choose to approximate the imaginary time
_ (A29)  integral of a function in an interval of lengthr by A7 times
the value of the function at the upper limit of the interval.
The calculation of the normalization factd#, Eq. (A19),
then becomes a simple exercise in Grassmann integration,

du(é)=

li_[ d g|*(rd gi o

In the case of coupling to a scalar field,

{ext] — ATAM) 1.0 = 81 ;8,0 €XH — gA 7D (MAT)].

(A30) z= J du(n)du(£)(— 77|§>6XP< -2 7y

The case of the exchange field is slightly more complicated:
+ iolBLBL_1...Biligio &,
{eX[[—ATA(m)]}i(,’J-(,,Z5i,j{eXF{—ATai(m)]}”’(,(,, ) io%" fm-[ LPL—1 1]“7-]0' gJo’ )<§| 7]>
A3l
=De{1+B{B;...B[ ]=Def{1+BgB]...B{ ],
c—SMAmA7) —sM; (mAT)

—sM; (mA7) c+sM{(mAr)
(A32)

(A39)
exg —Ara(m)]=

whereB] is the transpose of the matrB,, and in the last
line we have used the periodicity of the exchange and scalar
fields which impliesB, =By, and multiplied the expression
c=cosligA7|M;(mA7)|/3], (A33) by 1=De{B{Bj '].
The remainder of the calculation of the Green’s function
proceeds along similar lines. Consider the casem’. One
s=sinf{ gA7|M;(mA7]|//3), (A34)  has
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T, exr{ - fﬁﬁ(s)ds ~ex —A7h(A7L)]...exd—Arh[Ar(m+1)]}

:f du(d)|éexpg X §io[BLBL-1--- Bm+l]io',jo"§ru—’)<§| (A40)

iojo’

with similar expressions foll .exd —[ Z,ﬁ(s)ds] and T exd —f glﬁ(s)ds]. After straightforward algebraic manipulations, one
arrives at

1
G(iom,jo'm")=— gf dM(E)dM(n)dM(p)dM(sﬁ)eXD( —iE §i*g§ia)exp( —iE §i*(,ma)

xXex IE ﬂraPia)eXF(iz piko(ﬁi(r)pi(rprg/ex[{_ 2 niUM:]g'jg'nTg')
g T

io,j,o’

xexp( -2 pingg,jg,p;;,)exp( -2 ¢iUMfi,,,-(,,¢ro,), (A41)

iojo iogjo’

M n:BLtBLt*l PR Berl, (A42)
MP=B.Bm_1...Bmni1, (A43)
M?¢=B, B,/ _;...B;. (A44)

The integral over the quadratic form is easily computed. The calculation in thercase’ proceeds along similar lines and
we just quote the final answer. The single-particle Green’s function is given by the following matrix expressions:

~Bfi1---BBI...BL[1+B],,,...B[B]...B,]"" if m>m,
G(m,m’)= (A45)

T RT T T TRT T - ; '
Bms1Bmsz .- Bp[1+By, ;.. .B[B]...B] ] if m<m’.

Note that these expressions differ from those of Ref. 40 A, (1+AA,) 1=[1-T,|[1-T,—T,+2T,T,] 'T,,
since these authors used the standard formulation of the path (A47)
integral with normal ordered operators, instead of the anti-
normal ordering used here. The numerical calculation of the 1
single-particle Green’s function, E¢A45), is complicated Ti=(1+A) (A48)
by the fact that the matrix products entering the above ex- | practice we calculaté(m,0) andG(0,m’). The above
pressions are seriously ill-condition&d! have found that matrix identities can be used recursively to calculate these
the Gram-Schmidt matrix factorization algorithm of Ref. 41 Green’s functions in a stable manner. The matriA@sand
can be unstable at sufficiently low temperatures and fop, are taken as products &' matrices. The number &
strongly fluctuating molecular fields. | therefore use an altermatrices in a “block” is chosen to be the maximum number
native way to compute the Green’s function which | havesuch that (# A;) and (1+A,) can be inverted without sig-
found to be particularly stable. It is based on the matrixnificant loss of precision. One can then obtain the Green'’s
identities functionsG(m,0) andG(0,m’) at a subset of values and

m’. The Green’s function for the other valuesrmafand m’
can be obtained by propagating forward or backward in time.
(1+AA) 1=T[1-T,—T,+2T,T,] T, For exampleG(m+1,0)=[B, ,,]17*G(m,0). We leave it to
(A46)  the reader to fill in details.
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