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Migdal’s theorem and the pseudogap
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We study a model of quasiparticles on a two-dimensional square lattice coupled to Gaussian-distributed
dynamical molecular fields. We consider two types of such fields, a vector molecular field that couples to the
quasiparticle spin density and a scalar field coupled to the quasiparticle number density. The model describes
quasiparticles coupled to spin or charge fluctuations, and is solved by a Monte Carlo sampling of the
molecular-field distributions. When the molecular-field correlations are sufficiently weak, the corrections to the
self-consistent Eliashberg theory do not bring about qualitative changes in the quasiparticle spectrum. But for
a range of model parameters near the magnetic boundary, we find that Migdal’s theorem does not apply and the
quasiparticle spectrum is qualitatively different from its Eliashberg approximation. In the range of model
parameters studied, we find that the transverse spin-fluctuation modes play a key role. While a pseudogap
opens when quasiparticles are coupled to antiferromagnetic fluctuations, such a pseudogap is not observed in
the corresponding charge-fluctuation case for the range of parameters studied, where vertex corrections are
found to effectively reduce the strength of the interaction. This suggests that one has to be closer to the border
of long-range order to observe pseudogap effects in the charge-fluctuation case than for a spin-fluctuation-
induced interaction under otherwise similar conditions. An important feature of the magnetic pseudogap found
in the present calculations is that it is strongly anisotropic. It vanishes along the diagonal of the Brillouin zone
and is large near the zone boundary. In the case of ferromagnetic fluctuations, we also find a range of model
parameters with qualitative changes in the quasiparticle spectral function not captured by the one-loop approxi-
mation, that is, the quasiparticle peak splits into two. We find that one needs to be closer to the magnetic
boundary to observe the pseudogap effects in the nearly ferromagnetic case relative to the nearly antiferro-
magnetic one, under otherwise similar conditions. We provide intuitive arguments to explain the physical
origin of the breakdown of Migdal’s theorem.
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I. INTRODUCTION

The polarizer-analyzer analogy provides an intuitive d
scription of the effective interaction between quasipartic
in a quantum many-body system. The first quasiparticle
larizes the medium in which it travels and the second qu
particle, the analyzer, feels the disturbance induced by
first one. In a strongly correlated system one can expect
induced polarization of the medium to be very complex, a
in practice simplifying assumptions are made. A commo
used approximation is the description of the polarization
fects by the appropriate linear-response function of the
terial. Furthermore, one typically only considers the inter
tion channel for which the linear response of the system
the largest. On the border of long-range magnetic order,
instance, the spin-spin correlation function is the most
hanced and it is plausible that the dominant interaction ch
nel is of magnetic origin and depends on the relative s
orientations of the interacting quasiparticles.

It has been shown that such a magnetic interaction, tre
in the self-consistent Eliashberg approximation, can prod
anomalous normal-state properties and superconducting
stabilities to anisotropic pairing states. It correctly predic
the symmetry of the Cooper state in the copper ox
superconductors1 and is consistent with spin-tripletp-wave
pairing in superfluid3He ~for a recent review see, e.g., Re
2!. One also gets the correct order of magnitude of the
perconducting and superfluid transition temperatureTc when
the model parameters are inferred from experiments in
0163-1829/2003/68~6!/064408~17!/$20.00 68 0644
-
s
-
i-
e
is
d
y
f-
a-
-
is
r
-

n-
n

ed
e

in-
d
e

u-

e

normal state of the above systems. For the case of a ne
half-filled single band, the calculations showed that t
Eliashberg superconducting transition temperatureTc is
higher for the tetragonal quasi-two-dimensional than for
cubic three-dimensional lattice.3–6 Particularly striking is the
comparison between the cubic antiferromagnetic metal Ce3
and the closely related compound CeCoIn5.7 Superconduc-
tivity is found to extend over a much wider range in bo
temperature and pressure in CeCoIn5 than in CeIn3. These
findings, and the growing evidence that the pairing symme
in CeCoIn5 is d-wave in character, were correctly anticipate
by the magnetic interaction model.

While there have been a number of examples of superc
ductivity on the border of antiferromagnetism, the corr
sponding phenomenon on the edge of metallic ferrom
netism has only been found recently. This result is n
surprising within the framework of the magnetic interacti
model. For otherwise equivalent conditions, the superc
ducting transition temperature is typically much higher
the border of antiferromagnetism than on the border
ferromagnetism.5,6,8 An intuitive understanding of this find
ing pointed to candidate systems in which superconducti
on the border of ferromagnetism would more likely be o
served. In particular, one ought to look for systems w
strong spin anisotropy, i.e, with strong spin-orbit coupli
and/or in a weakly spin-polarized state. This suggeste
more detailed investigation of UGe2 at high pressure, which
satisfied the above conditions and which could be prepa
in a high-purity form. This material proved to be the fir
©2003 The American Physical Society08-1
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example for the coexistence of superconductivity a
itinerant-electron ferromagnetism.9

The self-consistent Eliashberg treatment of the magn
interaction model can produce strongly damped quasip
cles, but the electronic spectral function one obtains alw
shows a quasiparticle peak as one approaches the F
level. This is in qualitative disagreement with photoemiss
experiments on underdoped cuprate superconductors w
show a near absence of a quasiparticle peak near the (p,0)
point in the Brillouin zone.10 This depletion of quasiparticle
states, or pseudogap, is also seen in thermodyna
measurements.11 The phenomenon may not be specific to t
underdoped cuprates. For instance, the possible existen
a pseudogap in the heavy fermion compound CeCoIn5 has
recently been reported.12

Is the disagreement between theory and experiment
manifestation of a fundamental flaw in the approach or d
it simply reflect the inadequacy of the approximations us
in the solution of the model? Questions regarding the valid
of the Eliashberg treatment of the magnetic interaction mo
have been raised.13 The one-loop approximation effectivel
assumes that quasiparticles behave as test particles. T
must therefore be corrections to the simple theory, referre
as vertex corrections, coming from the fact that real and
particles behave differently. One can expect these vertex
rections to produce quantitative changes to the s
consistent Eliashberg theory as one approaches the bord
long-range magnetic order. In Ref. 14 it was shown that
optimally doped cuprates, vertex corrections did not br
about significant changes to the single spin-fluctuation
proximation, producing an enhancement of the sp
fluctuation interaction of the order of 20%. The sign of th
correction14 is opposite to that expected for the case o
phonon-mediated interaction15 and the spin-density-wav
phase.13 This enhancement of the fermion spin-fluctuati
vertex in the paramagnetic state is due to the transverse
fluctuation modes.

It has been argued, in particular, by Schrieffer,13 that as
the antiferromagnetic correlations get stronger, the sys
should display characteristics akin to the antiferromagn
insulating state and that the behavior of the quasiparti
should become qualitatively different from that of a simp
metal. The results presented here show that this physica
sight is correct in that Midgal’s theorem can qualitative
break down when the antiferromagnetic correlations beco
strong enough and a different state emerges.

The validity of Baym-Kadanoff many-body theories, su
as the fluctuation exchange approximation,16 which is in
many ways similar to the Eliashberg theory of the magne
interaction model, has been extensively studied by Tremb
and collaborators in the context of the Hubbard model.17–19

They find that close to the magnetic boundary, Migda
theorem qualitatively breaks down, that is, a critic
fluctuation-induced pseudogap~or precursor pseudogap! is
observed in quantum Monte Carlo simulations but is
found in the fluctuation exchange approximation. Similar
sults on the role of vertex corrections were reported in
case of the attractive Hubbard model,20–24where in this case
06440
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the precursor pseudogap is caused by critical pairing fluc
tions.

In this paper, we examine corrections to the single sp
fluctuation exchange approximation in two dimensions us
a nonperturbative formulation of the magnetic interacti
model amenable to computer simulation.25 We find that as
the antiferromagnetic correlations become strong enough
vertex corrections to produce a qualitative change relative
the one-loop approximation, a pseudogap opens in the q
siparticle spectrum. In this respect, our results are simila
those obtained for the Hubbard model.17–19 The pseudogap
we find is strongly anisotropic in that it vanishes along t
diagonal of the Brillouin zone and is large near the zo
boundary. We demonstrate that, in the range of model par
eters studied here, the transverse spin-fluctuation modes
key to the appearance of the pseudogap by considering
case of commensurate charge fluctuations with a spect
identical to that of the paramagnons. While a pseudo
opens when quasiparticles are coupled to magnetic fluc
tions, such a pseudogap is not observed in the correspon
charge-fluctuation case for the range of parameters stud
where vertex corrections are found to effectively reduce
strength of the interaction. This suggests that one has to
closer to the border of long-range order to obse
pseudogap effects in the charge-fluctuation case than f
spin-fluctuation-induced interaction under otherwise sim
conditions. In the case of nearly ferromagnetic systems
magnetic correlations get stronger, we also find qualitat
changes in the quasiparticle spectral function not captured
the one-loop approximation. The quasiparticle peak sp
into two distinct peaks with a lowering of the tunneling de
sity of states at the Fermi level. For the range of parame
studied, this suppression of the tunneling density of state
the Fermi level is weaker than that for nearly antiferroma
netic systems with otherwise similar magnetic and electro
spectrum parameters.

The paper is organized as follows. In the next section
describe the model and the class of vertex corrections c
sidered. Section III contains the results of the numeri
simulations. In Sec. IV, we give intuitive arguments for th
physical origin of the pseudogap. Finally we give a summ
and outlook. Most of the technical details are included in
Appendix.

II. MODEL

There are essentially two different ways to describe qu
tum many-body systems. In the Newtonian or Hamiltoni
approach, one considers particles interacting with each o
via pairwise interaction potentials. This is the point of vie
commonly adopted in the perturbation-theoretic approach
the nonrelativistic many-electron problem. In the relativis
version of the theory, however, one adopts a Maxwell
point of view in which the interactions between electrons
mediated by a field, the quantized electromagnetic field. T
Maxwellian approach is also widely used to carry out n
merical simulations of interacting systems based on
Feynman path integral. In such functional integrals, boso
fields are represented byc numbers. But fermion fields mus
8-2
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be represented by anticommuting, or Grassmann, num
that are not easily handled by digital computers. Whe
dynamical molecular~or Hubbard-Stratonovich! field is in-
troduced to mediate the interactions between the fermio
the problem is reduced to that of noninteracting particles
fluctuating field. The integrals over the anticommuting va
ables can then be evaluated exactly, at least formally,
eliminating the troublesome Grassmann numbers from
problem. In the following, we adopt the Maxwellian point
view and use dynamical molecular fields to mediate the
teractions between quasiparticles.

In general, the distribution of Hubbard-Stratonovich fiel
is very complex and usually leads to intractable proble
due to the infamous ‘‘fermion sign problem.’’ In a many
body system, the presence of other particles produ
changes in the effective interaction between two partic
through screening effects and induces arbitrarily comp
self-interactions of the dynamical molecular fields.

In this paper, we assume that the renormalization of
effective two-body interaction can be accounted for by a
definition of the parameters entering the bare interact
And we ignore all the self-interactions of the Hubbar
Stratonovich fields. The model was introduced in Ref. 25 a
bears some resemblance to the ‘‘quenched approximation
lattice gauge theories introduced by Marinariet al., who, in-
cidentally, chose the name by analogy to condensed-m
physics.26 A recent application of the quenched approxim
tion to the pseudogap problem for static Hubba
Stratonovich fields and a clear exposition of the formalism
given by Posazhennikova and Coleman.27 But in the present
work, however, we use dynamical rather than sta
Hubbard-Stratonovich fields and a nonseparable form of
molecular-field correlation function.

Very close to the boundary of magnetic or charge lon
range order, the self-interactions of the dynamical molecu
field ignored in the present work are known to be import
for low-dimensional systems.28 The approximations mad
here may not be appropriate in a number of other cases.
virtue of the present approach is that it gives insight in
quantum many-body problems that are essentially nonpe
bative. More importantly, the results presented in this pa
demonstrate that the simplest model already yields inter
ing physics. Some of the simplifications made here can
principle, be relaxed and the theory extended accordingl

To be more specific, we consider particles on a tw
dimensional square lattice whose Hamiltonian in the abse
of interactions is

ĥ0~t!52 (
i , j ,a

t i j c ia
† ~t!c j a~t!2m(

ia
c ia

† ~t!c ia~t!,

~2.1!

wheret i j is the tight-binding hopping matrix,m the chemical
potential, andc ia

† and c ia , respectively, create and annih
late a fermion of spin orientationa at sitei. We taket i j 5t if
sitesi and j are nearest neighbors andt i j 5t8 if sites i and j
are next-nearest neighbors.

To introduce interactions between the particles, we cou
them to a dynamical molecular~or Hubbard-Stratonovich!
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field. It is instructive to consider two different types of mo
lecular fields. In the first instance, we consider a vec
Hubbard-Stratonovich field that couples locally to the fe
mion spin density. This is the case considered in Ref. 25
describes quasiparticles coupled to magnetic fluctuations
illustrate the role played by transverse spin fluctuations
also consider the case of a scalar field that couples locall
the fermion number density. This case corresponds to a c
pling to charge fluctuations or, within the approximation w
are using here, ‘‘Ising’’-like magnetic fluctuations whe
only longitudinal modes are present. The Hamiltonians
imaginary timet for particles coupled to the fluctuating ex
change or scalar dynamical field are then

ĥ~t!5ĥ0~t!2
g

A3
(
iag

M i~t!•c ia
† ~t!sagc ig~t!,

~2.2!

ĥ~t!5ĥ0~t!2g(
ia

F i~t!c ia
† ~t!c ia~t!, ~2.3!

whereM i(t)5@Mi
x(t),Mi

y(t),Mi
z(t)#T, F i(t) are the real

vector exchange and scalar Hubbard-Stratonovich fields
spectively, andg the coupling constant. The reason for th
choice of an extra factor 1/A3 in Eq. ~2.2! becomes clear
later.

Since we ignore the self-interactions of the molecu
fields, their distribution is Gaussian and given by25

P@M #5
1

Z
expF2(

q,nn

M ~q,inn!•M ~2q,2 inn!

2a~q,inn! G ,
~2.4!

Z5E DM expF2(
q,nn

M ~q,inn!•M ~2q,2 inn!

2a~q,inn! G
~2.5!

in the case of a vector exchange molecular field and

P@F#5
1

Z
expF2(

q,nn

F~q,inn!F~2q,2 inn!

2a~q,inn! G , ~2.6!

Z5E DF expF2(
q,nn

F~q,inn!F~2q,2 inn!

2a~q,inn! G ~2.7!

in the case of a scalar Hubbard-Stratonovich field. In b
casesnn52pnT since the dynamical molecular fields a
periodic functions in the interval@0,b51/T#. The Fourier
transforms of the molecular fields are defined as

MR~t!5(
q,nn

M ~q,inn!exp~2 i @q•R2nnt#!, ~2.8!

FR~t!5(
q,nn

F~q,inn!exp~2 i @q•R2nnt#!. ~2.9!

We consider the case where there is no long-range m
netic or charge order. The average of the dynamical mole
lar fields must then vanish and the fields Gaussian distr
8-3
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P. MONTHOUX PHYSICAL REVIEW B68, 064408 ~2003!
tions, Eqs.~2.4! and ~2.6!, are completely determined b
their variancea(q,inn), which we take to be

a~q,inn!55
1

2

T

N
x~q,inn! if M ~q,inn! or F~q,inn!

is complex,

T

N
x~q,inn! if M ~q,inn! or F~q,inn!

is real,
~2.10!

whereN is the number of allowed wave vectors in the Br
louin zone. Then

^Mi~q,inn!M j~k,iVn!&5
T

N
x~q,inn!dq,2kdnn ,2Vn

d i , j ,

~2.11!

^F~q,inn!F~k,iVn!&5
T

N
x~q,inn!dq,2kdnn ,2Vn

,

~2.12!

where^ . . . & denotes an average over the probability dis
butions, Eq.~2.4! and Eq.~2.6!, for the vector and scala
cases, respectively. In order to compare the scalar and ve
molecular fields, we take the same form for their correlat
function x(q,inn) and parametrize it as in Refs. 5 and 8.
what follows, we set the lattice spacinga to unity. For real
frequencies, we have

x~q,v!5
x0k0

2

k21q̂22 i
v

h~ q̂!

, ~2.13!

wherek andk0 are the correlation wave vectors or inver
correlation lengths in units of the lattice spacing, with a
without strong correlations, respectively. Let

q̂6
2 5462@cos~qx!1cos~qy!#. ~2.14!

We consider commensate charge fluctuations and ant
romagnetic spin fluctuations, in which case the parame
q̂2 andh(q̂) in Eq. ~2.13! are defined as

q̂25q̂1
2 , ~2.15!

h~ q̂!5T0q̂2 , ~2.16!

whereT0 is a characteristic temperature.
We also consider the case of ferromagnetic spin fluct

tions, where the parametersq̂2 and h(q̂) in Eq. ~2.13! are
given by

q̂25q̂2
2 , ~2.17!

h~ q̂!5T0q̂2 . ~2.18!
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x(q,inn) is related to the imaginary part of the respon
function Imx(q,v), Eq. ~2.13!, via the spectral representa
tion

x~q,inn!52E
2`

1`dv

p

Im x~q,v!

inn2v
. ~2.19!

To getx(q,inn) to decay as 1/nn
2 asnn→`, as it should, we

introduce a cutoffv0 and take Imx(q,v)50 for v>v0. A
natural choice for the cutoff isv05h(q̂)k0

2.
In the approximation we consider, the single-partic

Green’s function is the average over the probability distrib
tions P@M # @Eq. ~2.4!# or P@F# @Eq. ~2.6!# of the fermion
Green’s function in a dynamical vector or scalar field,

G~ ist; j s8t8!5E DMP@M #G~ ist; j s8t8u@M # !,

~2.20!

G~ ist; j s8t8!5E DFP@F#G~ ist; j s8t8u@F#!,

~2.21!

where

G~ ist; j s8t8u@M # or @F#!52^Tt$c is~t!c j s8
†

~t8!%&
~2.22!

is the single-particle Green’s function in a dynamical m
lecular field and is discussed in the Appendix. In evaluat
Eqs. ~2.20! and ~2.21! one is summing over all Feynma
diagrams corresponding to spin- or charge-fluctuat
exchanges.25,27 The diagrammatic expansion of the Green
function in a dynamical field, Eq.~2.22!, and its average, Eq
~2.20!, are shown pictorially in Fig. 1. Since in the quench
approximation no virtual fermion loops are present, t
model we consider here does not have a fermion s
problem.25 A nonperturbative study of quasiparticles coupl
to static magnetic fluctuations using a diagram summa
technique was reported in Ref. 29. In this paper we do
resort to a diagrammatic expansion but rather evaluate
averages in Eqs.~2.20! and ~2.21! over the dynamical mo-
lecular fields by Monte Carlo sampling.

It is very instructive to compare the results of the Mon
Carlo simulations with the self-consistent Eliashberg cal
lations for the same model. If one only considers single s
or charge-fluctuation exchange processes, the single-par
Green’s function is given by

S~p,ivn!5g2
T

N (
Vn

(
k

x~p2k,ivn2 iVn!G~k,iVn!,

~2.23!

G~p,ivn!5
1

ivn2~ep2m!2S~p,ivn!
, ~2.24!

where S(p,ivn) is the quasiparticle self-energy, an
G(p,ivn) the one-particle Green’s function.ep is the tight-
binding dispersion relation obtained from Fourier transfor
ing the hopping matrixt i j in Eq. ~2.1! and m the chemical
8-4
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MIGDAL’S THEOREM AND THE PSEUDOGAP PHYSICAL REVIEW B68, 064408 ~2003!
potential. The choice of the factor 1/A3 in Eq. ~2.2! means
one obtains the same one-loop equations in the case o
exchange molecular fieldM and that of the scalar fieldF,
thereby simplifying the comparison between the two cas

III. RESULTS

The quasiparticle dispersion relation for the tw
dimensional square lattice is obtained from Eq.~2.1!. We
measure all energies and temperatures in units of the nea
neighbor hopping parametert. We set the next-neares
neighbor hopping parametert8520.45t. The chemical po-
tential is adjusted so that the electronic band filling isn
50.9. The dimensionless parameters describing
molecular-field correlations areg2x0 /t, T0 /t, k0, andk. A
complete exploration of the parameter space of the mod
beyond the scope of this preliminary study. We chose a r
resentative value fork0

2512, and setT050.67t as in our
earlier work.5,8 For an electronic bandwidth of 1 eV,T0
'1000° K. We only consider one value of the coupling co
stant g2x0 /t52. In the random-phase approximation, t
magnetic instability would be obtained for a value ofg2x0 /t
of the order of ten. We consider what happens to the qu
particle spectrum at a fixed temperatureT50.25t as the in-
verse correlation lengthk changes.

The calculations were done on a 16 by 16 lattice, with
imaginary time slices, or equivalently, 41 Matsuba
frequencies for the molecular fields,M (q,inn) and
F(q,inn) (nn52pnT, with n50,61, . . . ,620). By ana-
lytic continuation of the single-particle Green’s functio

FIG. 1. Diagrammatic expansion for the single-particle Gree
function. The dashed line connected at one end only to the solid
represents the interaction of the fermions with the dynamical m
lecular field and the brackets the average over the Gaussian d
bution of these fields. The averaging over the distribution of m
lecular fields is carried out by pairing the dashed lines in
possible ways, each pairing giving a factor proportional to the tw
point correlation function of the molecular field, the dynamical s
ceptibility x(q,inn) according to Eqs.~2.11! and~2.12!. The lower
part of the figure shows the pairings one obtains up to two spin
charge-fluctuation exchanges.
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G(k,t) or G(k,ivn) one can obtain the quasiparticle spect
functionA(k,v)521/p Im GR(k,v) and the tunneling den
sity of statesN(v)51/N(kA(k,v), whereGR(k,v) is the
retarded single-particle Green’s function. In the case of
one-loop approximation,G(k,ivn) is analytically continued
from imaginary to real frequencies by means of Pa´
approximants.30 The imaginary time Monte Carlo~MC! data
is analytically continued with the maximum entrop
method.31 We have used 2000 MC samples binned in grou
of 20 to make 100 measurements and three different vers
of the maximum entropy method: The classicMAXENT and
two versions of averageMAXENT, which is the method rec-
ommended in Ref. 31, where the probability for thea pa-
rameter is either a constant or proportional to 1/a.31 In all
cases we chose a flat default model. The results for the t
different versions of the maximum entropy method tri
were nearly identical in the case of the vector molecu
field. There were slight differences between the classic
averageMAXENT solutions for the spectral function in th
scalar molecular-field case, while the two versions of
averageMAXENT gave nearly identical results. The choice
the ;1/a probability distribution in the averageMAXENT

method gave a slightly better fit to the MC data and all t
results shown here are those obtained with this choice
probability distribution for thea parameter.

Figure 2 shows the tunneling density of statesN(v) and
the spectral functionA(k,v)521/p Im GR(k,v) for the
one-loop Eliashberg approximation to the Green’s functi
Eqs. ~2.23! and ~2.24!, in the case of commensurate char
fluctuations and antiferromagnetic spin fluctuations. Figu
2~b! and 2~c! show a strong anisotropy of the spectral fun
tion. A(k,v) is sharper whenk is along the diagonal com
pared to the case wherek is near a hot spot@which is a point
on the Fermi surface accessible from another via a mom
tum transfer ofQ5(p,p)]. Also note the monotonic broad
ening ofA(k,v) as the parameterk2 is reduced.

In Fig. 3 we show the tunneling density of states a
quasiparticle spectral function one obtains from the Mo
Carlo calculation with a coupling to the scalar dynamic
molecular field F. By comparison to the one-loop sel
consistent results of Fig. 2, the vertex corrections give rise
a sharpening of the quasiparticle spectral function, excep
k254 and k5(3p/8,3p/8). For the range of values o
model parameters considered here, the multiple cha
fluctuation exchanges do not lead to a breakdown of
quasiparticle picture. Note that contrary to the Eliashb
result, ask2 is reduced from 4, the spectral function initiall
sharpens before broadening again at the lower values ok2

considered here. Fork254 and 2, the spectral function i
sharper near the hot spot than along the diagonal, agai
contrast to the one-loop self-consistent result. It is appro
mately isotropic atk251 and becomes sharper along t
diagonal than near the hot spot at the lower values ofk2

50.50 and 0.25. Quite generally Fig. 3 shows that wh
vertex corrections are included, the spectral function is l
anisotropic than the Eliashberg result for the values ofk2

considered.
The Monte Carlo results for quasiparticles coupled to
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tiferromagnetic spin fluctuations are shown in Fig. 4. F
k2<1, a pseudogap appears at the pointk5(p,p/8) but not
along the diagonal, in qualitative agreement with expe
ments on underdoped cuprates.10 The pseudogap also show
up in the tunneling density of statesN(v) which is sup-
pressed at the Fermi level fork2<1. By comparing the spec

FIG. 2. The one-loop approximation for the quasiparticle pro
erties for both commensurate charge fluctuations and antiferrom
netic spin fluctuations. The tunneling density of statesN(v) is
shown in~a! while ~b! and~c! show the quasiparticle spectral fun
tion A(k,v) for momenta just below the Fermi level.~b! shows
A(k,v) for a wave vector close to the Van Hove singularity and~c!
showsA(k,v) for a wave vector along the diagonal of the Brillou
zone.
06440
r

i-

tral function of Figs. 4~b! and 4~c! to the one-loop self-
consistent result, we see that for the values ofk2 where there
isn’t a pseudogap, vertex corrections lead to a broadenin
the spectral function and a reduction of the momentum
isotropy of the spectral function. The contrast between
nonperturbative calculations for charge and spin fluctuati
and the comparison with the Eliashberg result is shown
Fig. 5 for k252. In this case it is clear that the effect o

-
g-

FIG. 3. Quasiparticle properties for a coupling to a scalar
namical molecular fieldF. The tunneling density of statesN(v) is
shown in~a! while ~b! and~c! show the quasiparticle spectral func
tion A(k,v) for momenta just below the Fermi level.~b! shows
A(k,v) for a wave vector close to the Van Hove singularity and~c!
showsA(k,v) for a wave vector along the diagonal of the Brillou
zone.
8-6
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MIGDAL’S THEOREM AND THE PSEUDOGAP PHYSICAL REVIEW B68, 064408 ~2003!
vertex corrections is to make the spectral function shar
than its Eliashberg approximation in the charge-fluctuat
case and broader when the quasiparticles are coupled to
netic fluctuations. For these model parameters, correction
the Eliashberg approximation reduce the effective char
mediated interaction and enhance the coupling to magn
fluctuations.

In Fig. 6 the results of the one-loop calculations in t

FIG. 4. Quasiparticle properties for a coupling to an excha
vector dynamical molecular fieldM with antiferromagnetic corre-
lations. The tunneling density of statesN(v) is shown in~a! while
~b! and ~c! show the quasiparticle spectral functionA(k,v) for
momenta just below the Fermi level.~b! showsA(k,v) for a wave
vector close to the Van Hove singularity and~c! showsA(k,v) for
a wave vector along the diagonal of the Brillouin zone.
06440
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n
ag-
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case of ferromagnetic spin-fluctuation exchange are sho
As could be expected, the spectral function for quasipartic
near the Fermi level does not depend strongly on whether
momentum is near the hot spot, Fig. 6~b!, or along the diag-
onal in the Brillouin zone, Fig. 6~c!, in contrast to the nearly
antiferromagnetic case. At the Eliashberg level, the spec
function broadens monotonically as the correlation wa
vector k is reduced and is broader than the correspond
nearly antiferromagnetic case, Figs. 2~b! and 2~c!.

The Monte Carlo results for quasiparticles coupled to f
romagnetic spin fluctuations are shown in Fig. 7. The tunn
ing density of states at the Fermi levelN(v50) begins to
drop as the parameterk2<0.50. Fork250.25, the quasipar-
ticle peak has effectively split into two peaks, and a prec
sor of this effect can be seen atk250.50. This phenomenon
is qualitatively different from what one can obtain at th
one-loop level, Fig. 6, similar to the pseudogap seen in F
4, when the quasiparticle interactions are mediated by
antiferromagnetically correlated exchange field. For
larger value ofk2 where the splitting of the quasiparticl
peak is not observed, a comparison of the Monte Carlo
sults with the one-loop self-consistent calculations shown
Fig. 6 shows that vertex corrections bring about a broaden
of the quasiparticle spectral function. Therefore, just as in
antiferromagnetic case, vertex corrections enhance the m

e

FIG. 5. Comparison of the one-loop self-consistent versus
nonperturbative calculation of charge- and spin-fluctuation
changes.~a! shows the spectral functionA(k,v) for a wave vector
close to the Van Hove singularity and~b! showsA(k,v) for a wave
vector along the diagonal of the Brillouin zone.
8-7
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P. MONTHOUX PHYSICAL REVIEW B68, 064408 ~2003!
netically mediated interaction, albeit to a lesser degree,
close look at Figs. 2 and 4 and 6 and 7 indicates. This co
explain why qualitative changes from the Eliashberg solut
are seen for smaller values ofk2 for coupling to ferromag-
netic fluctuations than for antiferromagnetic fluctuations.

FIG. 6. The one-loop approximation for the quasiparticle pro
erties for ferromagnetic spin fluctuations. The tunneling density
statesN(v) is shown in~a! while ~b! and~c! show the quasiparticle
spectral functionA(k,v) for momenta just below the Fermi leve
~b! showsA(k,v) for a wave vector close to the Van Hove sing
larity and~c! showsA(k,v) for a wave vector along the diagonal o
the Brillouin zone.
06440
a
ld
n

IV. DISCUSSION

For the model considered here, at the one-loop level
exchange of commensurate charge fluctuations and antife
magnetic spin fluctuations yields the same quasipart
properties. Once vertex corrections are included, the dif
ences between the two cases are evident. In all but one c
k5(3p/8,3p/8) andk254, corrections to the one-loop ap

-
f

FIG. 7. Quasiparticle properties for a coupling to an exchan
vector dynamical molecular fieldM with ferromagnetic correla-
tions. The tunneling density of statesN(v) is shown in~a! while ~b!
and ~c! show the quasiparticle spectral functionA(k,v) for mo-
menta just below the Fermi level.~b! showsA(k,v) for a wave
vector close to the Van Hove singularity and~c! showsA(k,v) for
a wave vector along the diagonal of the Brillouin zone.
8-8
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MIGDAL’S THEOREM AND THE PSEUDOGAP PHYSICAL REVIEW B68, 064408 ~2003!
proximation make the quasiparticle peak sharper than
Eliashberg result for charge fluctuations. In the case of a
ferromagnetic spin fluctuations, the quasiparticle peak g
broader as vertex corrections are included and a pseud
appears for the lower values ofk2 studied. The difference
between the scalar and vector molecular fields appears a
leading vertex correction to the one-loop approximatio14

shown in Fig. 8. The frequency and momentum integrals
the same in both cases since we assume the commens
charge fluctuations and antiferromagnetic spin fluctuati
have the same spectrum. However, the spin sums in the
cases are not identical. In the case of a coupling of the
lecular field to the quasiparticle spin density, one gets a
tor coming from the Pauli matrices at each vertex in
diagram. For the diagram shown in Fig. 8, this factor
( i , js

is js is j . One can split the sum into thei 5 j and iÞ j
terms, and use the fact thats is i51 ands is j52s js i if i
Þ j . Then ( i , js

is js is j5( is
is is is i2( iÞ js

is is js j53
26523. Note that the longitudinal spin fluctuations co
tribute a termszszszsz51 and thus the change in sign
caused by the presence of transverse magnetic modes
corresponding factor in the case of charge fluctuations i
just as in the case without transverse magnetic modes. C
pling the quasiparticles to the spin density instead of
number density produces a leading vertex correction with
opposite sign. The process depicted in Fig. 8 enhances
magnetic interaction14 while this same diagram leads to
suppression of the effective interaction in the case of cha
fluctuations. For the range of parameters studied, the Mo
Carlo simulations show that this qualitative difference b
tween coupling to magnetic or charge fluctuations persist
all orders, save one case,k5(3p/8,3p/8) andk254, where
vertex corrections enhance the charge-mediated interact

As noted above, for large values ofk2, vertex corrections
do not produce qualitative changes, but merely quantita
ones. One might therefore ask whether one can obtain
nonperturbative results with a one-loop calculation provid
the parameters of the theory are renormalized. To illust
the point, let us focus on the case of antiferromagnetic p
magnons withk252. One essentially has two paramete
one can renormalize, the dimensionless coupling cons
g2x0 /t and the inverse correlation lengthk. Since vertex

FIG. 8. First-order vertex correction to the one-loop self-ener
The way in which spin is carried through the diagram depends
the kind of molecular field. A Pauli matrix is associated with ea
vertex in the case of coupling of quasiparticles to magnetic fluc
tions. In the case of exchange of charge fluctuations, each ve
simply carries a unit matrix, that is, the spin orientation is u
changed at each vertex of the diagram.
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corrections make the spectral function broader and the q
siparticle residue smaller, one could attempt to fit the n
perturbative calculations with a one-loop theory with a larg
coupling constantg2x0 /t or smallerk2, or a combination of
both. If the corrections to the one-loop theory are pur
local, it is possible to absorb them in a redefinition of t
coupling constantg2x0 /t. It turns out that increasing the
coupling constant does make the quasiparticle resi
smaller but the one-loop spectral function remains too sh
relative to the nonperturbative calculation. By the tim
g2x0 /t is large enough for the quasiparticle lifetime to b
approximately that obtained with the Monte Carlo simu
tion, the one-loop quasiparticle residue is then too small. O
has more success with makingk2 smaller and Fig. 9 com-
pares the spectral function of the one-loop calculation w
k250.25 with theA(k,v) obtained from the Monte Carlo
simulations atk252. One can get a rough fit near the h
spot atk5(p,p/8) but the one-loop spectral function is a
ways more anisotropic in momentum than the nonpertur
tive A(k,v) for this value ofk2.

.
n

-
ex
-

FIG. 9. Comparison of the single antiferromagnetic sp
fluctuation exchange approximation for the quasiparticle spec
function with a renormalized correlation wave vectorke f f

2 50.25
and the nonperturbative result withk252. In both cases the dimen
sionless coupling constantg2x0 /t52. ~a! and ~b! show the quasi-
particle spectral functionA(k,v) for momenta just below the Ferm
level. ~a! showsA(k,v) for a wave vector close to the Van Hov
singularity and~b! showsA(k,v) for a wave vector along the di
agonal of the Brillouin zone.
8-9
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P. MONTHOUX PHYSICAL REVIEW B68, 064408 ~2003!
The most important feature of the calculations presen
here is the qualitative change in the quasiparticle spec
function that occurs as the magnetic interaction gets stron
either on the border of long-range antiferromagnetic or f
romagnetic order. The appearance of a pseudogap in the
siparticle spectrum near a second-order phase transitio
the temperature approaches the critical transition tempera
from above was demonstrated for the half-filled Hubba
model,17–19 for a superconducting instability18,20–23,33,34and
for a Peierls-charge-density-wave~CDW! transition.32 By
contrast, in the model studied in this paper, the quadr
actions of the dynamical molecular fields do not exhibi
phase transition at all~with k2.0). It may therefore be
somewhat surprising that a pseudogap is observed in
present calculations since the correlation wave vectork be-
comes of order one in the nearly antiferromagnetic case
of order one-half for nearly ferromagnetic systems.

The physical origin of the pseudogap was explained
Refs. 17–19 and later in Ref. 32. Quasiparticles only rem
coherent for a finite amount of time. When the distance th
can travel during that time becomes shorter than the corr
tion length of the molecular field, quasiparticles effective
see long-range order. In the presence of long-range ant
romagnetic order, the spin-density-wave quasiparticle sp
tral function consists of two peaks. In the case of long-ran
ferromagnetic order the spin-up quasiparticles have an
ergy shifted downwards, say, relative to the paramagn
quasiparticle energy, while the energy of a spin-down qu
particle is shifted upwards relative to its energy in the a
sence of long-range ferromagnetic order. The shifts in ene
give rise to corresponding shifts in the quasiparticle peak
the spectral function. Upon averaging over the two spin o
entations, the quasiparticle spectral function would then a
consist of two peaks, the up-spin and down-spin quasipa
cle peaks. In our calculations, when the quasiparticles rem
coherent for such a short time that they effectively see lo
range order, the spectral functions have characteristics
to that of the ordered state. For instance, in Fig. 4~b! for a
coupling of quasiparticles to antiferromagnetic spin fluctu
tions, the spectral functionA(k,v) for k250.25 looks like
that of a broadened spin-density wave. And in the case
ferromagnetically correlated molecular field, in Figs. 7~b!
and 7~c!, A(k,v) is ‘‘spin split’’ as k2 is reduced, a feature
which can be understood if, during their short lifetime, t
quasiparticles effectively see ferromagnetic order, where
moment is equally likely to point up or down, since we a
still in the paramagnetic phase.

Quasiparticles only remain coherent for a finite time d
to thermal and quantum fluctuations. The question is wha
that time scale, or the associated characteristic length sca
be compared against the magnetic correlation length. In
half-filled Hubbard model studied in Refs. 17–19, the ren
malized classical regime for the spin fluctuations always p
cedes the zero-temperature phase transition, and in tha
gime thermal fluctuations dominate and the relev
characteristic length scale is the thermal quasiparticle
Broglie wavelengthj th5vF /T.17–19Thermal fluctuations are
dominant near the Peierls-CDW transition in two dimensio
and the relevant quasiparticle length scale for the onset o
06440
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pseudogap also turns out to bej th .32 For the model consid-
ered in this paper, however, thermal fluctuations do not
pear to dominate. Indeed, the onset of the pseudogap
coupling of quasiparticles to antiferromagnetic fluctuatio
and the qualitative change seen in the spectral function
coupling to ferromagnetic fluctuations occur forj thk.1.
The departure from the criterionj thk'1 for the breakdown
of the Midgal approximation is larger in the ferromagne
case. The above suggests that another, shorter, length sc
relevant in the present case. A possible candidate length s
is the quasiparticle mean free path.

One can attempt to make this more quantitative by
tracting quasiparticle lifetimes and mean free paths from
numerical results. In order to do this we fit the quasiparti
peak of the spectral function with a LorentzianAL(k,v)
5(1/p)$zkGk /@(v2Ek)

21Gk
2#% which corresponds to a

quasiparticle approximation for the retarded Green’s funct
GR(k,v)5zk /(v2Ek1 iGk) describing the propagation o
quasiparticles of energyEk . Gk is related to the quasiparticl
lifetime tk throughGk51/2tk . If one ignores the momen
tum dependence of the self-energy, the quasiparticle res
zk is related to the ratio of the band to the effective ma
zk'm/m* . We define the bare velocity vk

(0)

5A(]ek /]kx)
21(]ek /]ky)

2 whereek is the band dispersion
relation and the renormalized velocityvk5zkvk

(0) . The qua-
siparticle mean free path is then approximatelyl k5vktk .
The values ofl k one obtains for charge fluctuations as w
as for antiferromagnetic and ferromagnetic spin fluctuatio
are shown in Fig. 10. In the case of coupling of quasipa
cles to charge fluctuations, Fig. 10~a!, l k@1/k for all the
values ofk considered. In this case, the quasiparticles tra
far enough during their lifetime to see there is no long-ran
charge order. In the case of antiferromagnetic spin fluct
tions, Fig. 10~b!, one sees that atk5(p,p/8), l k;1/k at
k251, and that is where the pseudogap begins to appea
the spectral function, Fig. 4~b!. At momentum k
5(3p/8,3p/8), the mean free pathl k.1/k at k251 and
one wouldn’t expect a pseudogap.l k becomes less than th
correlation length at the lowest value ofk2 and one can see
hints of a developing pseudogap in the spectral function, F
4~c!. In the ferromagnetic case, Fig. 10~c!, the appearance o
the two peaks in the spectral function is broadly consist
with the conditionl k,1/k. Note that we are using a simpl
criterion, in an attempt to capture the essential aspects o
problem, to understand the emergence of a pseudogap in
calculations. The crossover to the new state is likely to
pend on other details not taken into account by our criter
and is therefore not expected to occur exactly atl k51/k.
Moreover, the tails in most of the spectral functions are
Lorentzians and thus our definition of the quasiparticle li
time is clearly approximate.

We have also extracted mean free paths for the one-l
approximation using the same methodology~results not
shown!. For low enough values ofk2, one can get in the
regime wherel k<1/k, but no pseudogap in the spectr
function is observed. What is the one-loop approximat
missing? A potential explanation, based on an analogy, is
following. When treating the potential scattering of a partic
8-10
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MIGDAL’S THEOREM AND THE PSEUDOGAP PHYSICAL REVIEW B68, 064408 ~2003!
in a momentum space basis, to lowest order of perturba
theory ~Born approximation!, one assumes that the wav
function is unchanged, i.e., it remains a plane wave. In or
to study bound states, in which the wave function of t
particle is qualitatively different since it is localized, on
must treat the scattering events to all orders. By analogy,
Eliashberg approximation does not seem to allow for
change in the quasiparticle wave functions, which essenti

FIG. 10. Approximate quasiparticle mean free pathsl k for k
5(p,p/8) and k5(3p/8,3p/8) obtained from Lorentzian fits to
the numerical results for the spectral function.~a! shows l k for
coupling to charge fluctuations,~b! to antiferromagnetic spin fluc
tuations, and~c! to ferromagnetic spin fluctuations.
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remain plane waves. In the pseudogap state, the quasipa
wave functions must be qualitatively different and one m
allow the quasiparticles to scatter multiple times against
locally ordered molecular field to produce the requir
changes in their wave functions. It seems one would nee
sum an infinite set of spin-fluctuation exchanges.

The ‘‘quenched approximation’’ formulation of the mag
netic interaction model actually goes beyond a diagramm
perturbation expansion. The Green’s function, Eq.~2.20!, de-
pends on the position, spin, and imaginary time, but also
the parameters of the theory,l[g2x0 /t, k2, etc., G
5G( ist; j s8t8ul,k2, . . . ). @To make the dependence onl
5g2x0 /t explicit, one simply needs to introduce scaled m
lecular fieldsm5gM . The variance of the new variables
theng2a(q,inn)}g2x(q,inn).# It is clear from Eqs.~2.20!,
~2.4!, and ~2.5! that the theory does not make sense forl
,0, since the Gaussian distributions of the molecular fie
would have a negative variance. This observation means
it is not possible to analytically continueG to negative values
of l, implying an essential singularity atl50. The pertur-
bation expansion in powers ofl is then an asymptotic rathe
than convergent series.35 This opens the possibility for phe
nomena that lie outside diagrammatic perturbation theo
Whether the pseudogap state found in the numerical sim
tions reported on in this paper is precisely one such phen
enon is not presently known to the author.

The results presented here do not imply one couldn’t g
pseudogap state when coupling to charge fluctuations. On
basis of the arguments presented above, if one were to
crease the strength of the charge correlations or the coup
of quasiparticles to the molecular fieldF, one would get in
the regimel k!1/k and the spectral function would resemb
that of a broadened charge-density-wave state. Our calc
tions simply show that one would have to be closer to
ordered state in the case of charge fluctuations than for m
netic fluctuations, under otherwise similar conditions.

V. OUTLOOK

We studied a nonperturbative formulation of the magne
interaction model, in which quasiparticles are coupled to
Gaussian-distributed dynamical molecular exchange fi
Far from the magnetic boundary, the type of vertex corr
tions considered here do not bring about qualitative chan
to the quasiparticle spectrum. But as one gets closer to
border of long-range magnetic order, we find, for a range
model parameters, that Migdal’s theorem does not apply
the quasiparticle spectrum is qualitatively different from
Eliashberg approximation. The physical origin of the ph
nomenon is that if the distance quasiparticles can travel d
ing their lifetime becomes shorter than the molecular-fi
correlation length, these quasiparticles effectively see lo
range order. When the molecular-field correlations are a
ferromagnetic, the quasiparticle spectral function has
two-peak structure of a spin-density-wave state, even tho
there is no spontaneous symmetry breaking. We find that
associated pseudogap is strongly anisotropic in that it v
ishes along the diagonal of the Brillouin zone and is lar
near the zone boundary, in qualitative agreement with p
8-11
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P. MONTHOUX PHYSICAL REVIEW B68, 064408 ~2003!
toemission experiments on underdoped cuprates.10 The an-
isotropy of the pseudogap found in our calculations sim
reflects the anisotropy of the quasiparticle mean free p
For coupling to ferromagnetic fluctuations, we also find
range of parameters where the quasiparticle spectral func
becomes qualitatively different from its one-loop se
consistent approximation. The local ferromagnetic order a
leads to a splitting of the quasiparticle peak into two. The
pseudogap effects are found to be weaker for nearly fe
magnetic systems than for their nearly antiferromagn
counterparts, under otherwise similar conditions.

In the standard theory of quantum critical phenomena,28 if
d1z,4 whered is the spatial dimensionality andz the dy-
namical exponent, the mode-mode coupling parameter
verges upon renormalization as one approaches the inst
ity and the critical exponents are different from their mea
field values. Therefore, ifd1z,4, one would certainly
expect Migdal’s theorem to qualitatively break down clo
enough to the quantum critical point. However, whend1z
.4, the critical exponents take their mean-field values, a
a one-loop calculation. In that case, one could therefore
pect, as it is often assumed, that the Eliashberg approx
tion is at least qualitatively correct. For the magnetic sp
trum considered here, Eq.~2.13!, z52 for antiferromagnetic
fluctuations andz53 for ferromagnetic fluctuations. Henc
d1z54, the marginal dimension in the case of antiferr
magnetic spin fluctuations, but crucially,d1z55 in the case
of ferromagnetic spin fluctuations. One could thus have
pected that in the latter case, the one-loop self-consis
calculations should be at least qualitatively correct sincd
1z.4. This is at variance with our results, which sho
qualitative differences between the nonperturbative calc
tions and the Eliashberg predictions. Note that the qualita
breakdown of Migdal’s theorem occurs for smaller values
k2 in the ferromagnetic case than for antiferromagnetic s
fluctuations. In that sense the effect of vertex correction
weaker whend1z55 compared to the cased1z54, which
is what is expected.

To summarize, an often assumed criterion for the qual
tive applicability of the Eliashberg theory near an instabili
namely, d1z.4, is clearly a necessary condition but th
calculations presented here show that it is not a suffic
one. This result may point to certain limitations of the sta
dard theory of quantum critical phenomena,28 which was re-
cently criticized by Anderson.36

The crucial role of dimensionality for pseudogap pheno
ena has been emphasized by Tremblay a
collaborators17,18,21and by Preostiet al.37 Since critical fluc-
tuations responsible for the precursor pseudogap are m
stronger in two dimensions than in three-dimensional s
tems, pseudogap phenomena are found to be much weak
three dimensions. One would expect similar results for
magnetic interaction model studied in the present paper.
role of lattice anisotropy is already important at the Elias
berg level,3–6 because of the increased phase space of
magnetic fluctuations in lower-dimensional systems. T
phase-space argument leads one to expect weaker vertex
rections to the Eliashberg theory of the magnetic interac
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model, and hence weaker pseudogap effects in isotro
three-dimensional systems.

The results presented here raise a number of obv
questions, which we hope to answer in the future. For
stance, what are the corrections to the Eliashberg theory
the superconducting transition temperature to thedx22y2

pairing state? We have studied corrections to quasipar
spectral properties, and found that vertex corrections
produce a pseudogap in the quasiparticle spectrum. When
magnetic correlations are weak enough vertex correction
not bring about qualitative changes but nevertheless red
the quasiparticle lifetime. The above effects are expecte
suppress magnetic pairing. But one must also include in
calculation of the superconducting transition temperature
corresponding corrections to the pairing interaction. To le
ing order, it was shown14 that vertex corrections lead to
stronger pairing interaction in thed-wave channel. There
may therefore be some cancellation of errors, at least in s
range of model parameters. At this stage, however, one
only speculate about the effect of vertex corrections on
Eliashberg theory of the superconducting transition tempe
ture.

We gave intuitive arguments for the physical origin of t
pseudogap, namely, that when the quasiparticle mean
path becomes of the order of the molecular-field correlat
length, quasiparticles effectively see an ordered state.
one ought to seek deeper insight into the breakdown of
Fermi-liquid state, especially since the results obtained h
suggest the possibility of zero-temperature non-Fermi-liq
paramagnets in the weak- to intermediate-coupling regim

Transport and thermodynamic properties in the quenc
approximation would also be of great interest. The calcu
tions in Ref. 32 showed that the pseudogap in the sing
particle density of states also appeared in the two-part
Green’s functions such as the optical conductivity and
uniform Pauli susceptibility. I therefore expect the pseudog
observed in the quasiparticle spectral function to appea
the thermodynamic and transport properties of the mo
studied here. The extent to which the model is able to exp
the normal-state experimental data on the underdoped
prates is an open question.

Our simplifying assumptions, which were born out of th
necessity to carry out the calculations in a reasonable am
of time, should be relaxed. The dynamical molecular-fie
correlation function which enters their distribution was tak
to be of the same functional form for all the calculations.
Nature, however, the distribution function of the molecu
field experienced by one quasiparticle is determined s
consistently by all of the other quasiparticles in the system
is therefore expected to change as the nature of the quas
ticle spectrum changes. One should also study the effec
mode-mode coupling terms which were ignored in t
present study. Monien has recently carried out such a st
for a model of the one-dimensional Peierls CDW.38

There is no doubt that the extension of the theory to d
with effects ignored here will bring about quantitativ
changes to our results. It will be of great interest to figure
whether and for what model parameters our results are m
fied qualitatively. I would like to think that the physical or
8-12
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gin of the emergence of a pseudogap in the quasipar
spectrum will turn out to be independent of the details of
model.
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APPENDIX: GREEN’S FUNCTIONS

In this Appendix we derive the mathematical formulas
the single-particle Green’s functions in a fluctuating e
change or scalar field. We also give the algorithm for
numerically stable and efficient calculation of such Gree
functions. We make use of fermion coherent states and
rive the path integral for an antinormal ordered39 Hamil-
tonian quadratic in the fermion field operators.

We first need an identity for expressing the exponentia
the quadratic form,

Q̂A5(
i , j

c iAi , jc j
† , ~A1!

in terms of fermion coherent states. In the above express
A5A† is a Hermitian matrix of dimensionN and $c%,$c†%
are fermion operators. One has

expS (
i , j

c iAi , jc j
†D 5E F)

i 51

N

dj i* dj i G uj&

3expF(
i , j

j i~eA! i , jj j* G^ju, ~A2!

where $j* %,$j% are Grassmann numbers. This identity
proved by going into a basis in which the matrixA is diag-
onal. LetU be the unitary transformation that diagonalizesA,

U†AU5L[diag~l1 , . . . ,lN!. ~A3!

In terms of the new fermion fields$F%,$F†%,

c i5(
j

Ui , j* F j , ~A4!

c i
†5(

j
Ui , jF j

† , ~A5!

F i5(
j

U j ,ic j , ~A6!

F i
†5(

j
U j ,i* c j

† , ~A7!

the quadratic form Eq.~A1! becomesQ̂A5( il iF iF i
† . Since

(F iF i
†)n5F iF i

† for n51,2, . . . ,̀ , and the terms with dif-
ferent indicesi commute with one another, one has
06440
le
e

-
ort

r
-
e
s
e-

f

n,

exp~Q̂A!5)
i

exp~l iF iF i
†!

5)
i

$11@exp~l i !21#F iF i
†%. ~A8!

Expanding the product into sums yields

exp~Q̂A!511(
i 1

@exp~l i 1
!21#F i 1

F i 1
†

1 (
i 1, i 2

@exp~l i 1
!21#@exp~l i 2

!21#

3F i 1
F i 1

† F i 2
F i 2

† 1 (
i 1, i 2, i 3

@exp~l i 1
!21#

3@exp~l i 2
!21#@exp~l i 3

!21#

3F i 1
F i 1

† F i 2
F i 2

† F i 3
F i 3

† 1 . . .

1 (
i 1, . . . , i N

@exp~l i 1
!21# . . . @exp~l i N

!21#

3F i 1
F i 1

† . . . F i N
F i N

† . ~A9!

Since in the various sums one hasi 1Þ i 2Þ i 3 . . . Þ i N , one
can straightforwardly antinormal order the terms to be

F i 1
F i 1

† F i 2
F i 2

† 5F i 2
F i 1

F i 1
† F i 2

† , ~A10!

F i 1
F i 1

† F i 2
F i 2

† F i 3
F i 3

† 5F i 3
F i 2

F i 1
F i 1

† F i 2
† F i 3

† , ~A11!

F i 1
F i 1

† F i 2
F i 2

† . . . F i N
F i N

†

5F i N
F i N21

. . . F i 1
F i 1

† F i 2
† . . . F i N

† . ~A12!

We can now insert a resolution of the identity between
annihilation and creation operators. For instance,

F i 3
F i 2

F i 1
F i 1

† F i 2
† F i 3

† 5F i 3
F i 2

F i 1E F)
i 51

N

dj i* dj i G uj&

3expS 2(
i

j i* j i D ^juF i 1
† F i 2

† F i 3
†

5E )
i 51

N

dj i* dj ij i 3
j i 2

j i 1
uj&

3expS 2(
i

j i* j i D ^juj i 1
* j i 2

* j i 3
*

5E F)
i 51

N

dj i* dj i Gj i 1
j i 1
* j i 2

j i 2
* j i 3

j i 3
*

3expS 2(
i

j i* j i D uj&^ju.
8-13
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Applying the above operation to every term in the sum
Eq. ~A9! one obtains

exp~Q̂A!5E F)
i 51

N

dj i* dj i G uj&expS 2(
i

j i* j i D
3)

i 51

N

@11~el i21!j ij i* #^ju

5E F)
i 51

N

dj i* dj i G uj&expS 2(
i

j i* j i D
3expS (

i
~el i21!j ij i* D ^ju

5E F)
i 51

N

dj i* dj i G uj&expS (
i

el ij ij i* D ^ju.

~A13!

Going back to the original representation in which the ma
A is not diagonal yields Eq.~A2!. If we have another qua
dratic form

Q̂B5(
i j

c iBi , jc j
† , ~A14!

whereB5B† is a Hermitian matrix of dimensionN, it is a
simple exercise in Grassmann integration to show that

exp~Q̂A!exp~Q̂B!5E F)
i 51

N

dj i* dj i G uj&

3expF(
i j

j i~eAeB! i , jj j* G^ju.

~A15!

To prove the above identity one uses the coherent-state
resentation Eq.~A2! for exp(Q̂‘A) and exp(Q̂B),

exp~Q̂A!5E F)
i 51

N

dj i* dj i G uj&expF(
i j

j i~eA! i , jj j* G^ju,

~A16!

exp~Q̂B!5E F)
i 51

N

dh i* dh i G uh&expF(
i j

h i~eB! i , jh j* G^hu.

~A17!

Integrating over the Grassmann variables$j i* % and $h i%
yields Eq.~A15!.

The imaginary time single-particle Green’s function in
time-dependent field is given by the usual expression
06440
x

p-

G~ ist; j s8t8!

52^Tt$c is~t!c j s8
†

~t8!%&

52
1

Z TrXTtH expF2E
0

b

ĥ~s!dsGc is~t!c j s8
†

~t8!J C,
~A18!

Z5TrH Tt expF2E
0

b

ĥ~s!dsG J , ~A19!

where the time-dependent Hamiltonianĥ(t) is given by Eq.
~2.2! and Eq.~2.3! for coupling to a fluctuating exchange o
scalar field, respectively. The trace is over the fermion fiel
For ease of notation, we have dropped the explicit dep
dence ofG( ist; j s8t8) on the molecular field. Because o
the time-ordering operator, one must distinguish the t
casest.t8 andt<t8:

G~ ist; j s8t8!52
1

Z TrXH Tt expF2E
t

b

ĥ~s!dsG J c is~t!

3H Tt expF2E
t8

t

ĥ~s!dsG J c j s8
†

~t8!

3H Tt expF2E
0

t8
ĥ~s!dsG J C t.t8,

~A20!

G~ ist; j s8t8!52
1

Z TrXH Tt expF2E
t8

b

ĥ~s!dsG J c j s8
†

~t8!

3H Tt expF2E
t

t8
ĥ~s!dsG J c is~t!

3H Tt expF2E
0

t

ĥ~s!dsG J C t<t8.

~A21!

The imaginary timest and t8 are discretized such thatt
5Dtm, m50,1, . . . ,Lt , t85Dtm8, m850,1, . . . ,Lt ,
where Dt5b/Lt . One then uses the Trotter break-u
for the Hamiltonian in an exchange, Eq.~2.2!, or
scalar field, Eq. ~2.3!, and hence exp@2Dtĥ(mDt)#
'exp@2Dtĥ1(mDt)#exp@2Dtĥ0(mDt)#. Up to an unimpor-
tant constant, the antinormal ordered hopping Hamilton
ĥ0, Eq. ~2.1! is written as

ĥ05 (
i ,s; j s8

c isTis, j s8c j s8
† , ~A22!

Tis, j s85~ t i j 1md i , j !ds,s8 . ~A23!

Similarly, up to constant terms that drop out of the expr
sion for the single-particle Green’s function, the Hamiltoni
for the coupling to the fluctuating field is written as
8-14
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ĥ1~mDt!5 (
is j s8

c isAis, j s8~m!c j s8
† , ~A24!

Ais, j s8~m!5
g

A3
d i , j$Mi

z~mDt!ds,↑ds8,↑

2Mi
z~mDt!ds,↓ds8,↓

1@Mi
x~mDt!1 iM i

y~mDt!#ds,↑ds8,↓

1@Mi
x~mDt!2 iM i

y~mDt!#ds,↓ds8,↑%,

~A25!

Ais, j s8~m!5gd i , jds,s8F i~mDt!, ~A26!

where Eq.~A25! and Eq. ~A26! are for a fluctuating ex-
change and scalar field, respectively. Making use of E
~A2! and ~A15!, one has

exp@2Dtĥ~mDt!#

'exp@2Dtĥ1~mDt!#exp@2Dtĥ0~mDt!#

5E dm~j!uj&expS (
is j s8

j is@Bm# is, j s8j j s8
* D ^ju,

~A27!

Bm5exp@2DtA~m!#exp~2DtT!, ~A28!

where from now on we usedm(j) to denote the Grassman
integration measure

dm~j![F)
is

dj is* dj isG . ~A29!

In the case of coupling to a scalar field,

$exp@2DtA~m!#% is, j s85d i , jdss8exp@2gDtF i~mDt!#.
~A30!

The case of the exchange field is slightly more complicat

$exp@2DtA~m!#% is, j s85d i , j$exp@2Dtai~m!#%s,s8 ,
~A31!

exp@2Dtai~m!#5Fc2sM i
z~mDt! 2sM i

1~mDt!

2sM i
2~mDt! c1sM i

z~mDt!
G ,

~A32!

c5cosh@gDtuM i~mDt!u/A3#, ~A33!

s5sinh@gDtuM i~mDt#u/A3!, ~A34!
06440
s.

:

M i
z~mDt!5

Mi
z~mDt!

uM i~mDt!u
, ~A35!

M i
6~mDt!5

Mi
x~mDt!6 iM i

y~mDt!

uM i~mDt!u
, ~A36!

uM i~mDt!u

5A@Mi
x~mDt!#21@Mi

y~mDt!#21@Mi
z~mDt!#2.

~A37!

Matrix multiplication by exp@2DtA(m)# is most easily done
in real space. We have implemented the matrix multiplicat
by exp(2DtT) by means of the fast Fourier transform inste
of the usual checkerboard decomposition. In the discreti
imaginary time version,

Tt expF2E
0

b

ĥ~s!dsG
'exp@2Dtĥ~DtLt!# . . . exp@2Dtĥ~Dt!#

5E dm~j!uj&

3expS (
is j s8

j is@BLt
BLt21 . . . B1# is, j s8j j s8

* D ^ju.

~A38!

Note that we choose to approximate the imaginary ti
integral of a function in an interval of lengthDt by Dt times
the value of the function at the upper limit of the interva
The calculation of the normalization factorZ, Eq. ~A19!,
then becomes a simple exercise in Grassmann integratio

Z5E dm~h!dm~j!^2huj&expS 2(
is

h is* h is

1 (
is j s8

j is@BLt
BLt21 . . . B1# is, j s8j j s8

* D ^juh&

5Det@11B1
TB2

T . . . BLt

T #5Det@11B0
TB1

T . . . BLt21
T #,

~A39!

whereBm
T is the transpose of the matrixBm and in the last

line we have used the periodicity of the exchange and sc
fields which implies,BLt

5B0, and multiplied the expression

by 15Det@B0
TB0

T21#.
The remainder of the calculation of the Green’s functi

proceeds along similar lines. Consider the casem.m8. One
has
8-15
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Tt expF2E
t

b

ĥ~s!dsG'exp@2Dtĥ~DtLt!# . . . exp$2Dtĥ@Dt~m11!#%

5E dm~j!uj&expS (
is j s8

j is@BLt
BLt21 . . . Bm11# is, j s8j j s8

* D ^ju ~A40!

with similar expressions forTtexp@2*t8
t ĥ(s)ds# and Ttexp@2*0

t8ĥ(s)ds#. After straightforward algebraic manipulations, on
arrives at

G~ ism, j s8m8!52
1

ZE dm~j!dm~h!dm~r!dm~f!expS 2(
is

j is* j isDexpS 2(
is

j is* h isD
3expS (

is
h is* r isDexpS (

is
r is* f isD r isr j s8

* expS 2 (
is, j ,s8

h isMis, j s8
h h j s8

* D
3expS 2 (

is j s8
r isMis, j s8

r r j s8
* D expS 2 (

is j s8
f isMis, j s8

f f j s8
* D , ~A41!

Mh5BLt
BLt21 . . . Bm11 , ~A42!

M r5BmBm21 . . . Bm811 , ~A43!

Mf5Bm8Bm821 . . . B1 . ~A44!

The integral over the quadratic form is easily computed. The calculation in the casem<m8 proceeds along similar lines an
we just quote the final answer. The single-particle Green’s function is given by the following matrix expressions:

G~m,m8!5H 2Bm11
T . . . BLt

T B1
T . . . Bm8

T
@11Bm811

T . . . BLt

T B1
T . . . Bm8

T
#21 if m.m8,

Bm11
T Bm12

T . . . Bm8
T

@11Bm811
T . . . BLt

T B1
T . . . Bm8

T
#21 if m<m8.

~A45!
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Note that these expressions differ from those of Ref.
since these authors used the standard formulation of the
integral with normal ordered operators, instead of the a
normal ordering used here. The numerical calculation of
single-particle Green’s function, Eq.~A45!, is complicated
by the fact that the matrix products entering the above
pressions are seriously ill-conditioned.41 I have found that
the Gram-Schmidt matrix factorization algorithm of Ref. 4
can be unstable at sufficiently low temperatures and
strongly fluctuating molecular fields. I therefore use an al
native way to compute the Green’s function which I ha
found to be particularly stable. It is based on the mat
identities

~11A1A2!215T2@12T12T212T1T2#21T1 ,
~A46!
06440
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e
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A2~11A1A2!215@12T2#@12T12T212T1T2#21T1 ,

~A47!

Ti5~11Ai !
21. ~A48!

In practice we calculateG(m,0) andG(0,m8). The above
matrix identities can be used recursively to calculate th
Green’s functions in a stable manner. The matricesA1 and
A2 are taken as products ofBT matrices. The number ofBT

matrices in a ‘‘block’’ is chosen to be the maximum numb
such that (11A1) and (11A2) can be inverted without sig
nificant loss of precision. One can then obtain the Gree
functionsG(m,0) andG(0,m8) at a subset of valuesm and
m8. The Green’s function for the other values ofm andm8
can be obtained by propagating forward or backward in tim
For example,G(m11,0)5@Bm11

T #21G(m,0). We leave it to
the reader to fill in details.
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