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Nuclear spin-lattice relaxation and spin diffusion in an inhomogeneous field

Gregory B. Furman and Shaul D. Goren
Department of Physics, Ben-Gurion University, Be’er-Sheva, Israel

~Received 20 February 2003; published 1 August 2003!

The theory of spin diffusion is extended to the case of spin-lattice relaxation and spin diffusion in an
inhomogeneous magnetic field. Two coupled equations describing the mutual relaxation and the spin diffusion
of nuclear magnetization and dipolar energy were obtained using the method of the nonequilibrium state
operator. The equations were solved for short- and long-time approximations corresponding to the direct and
diffusion relaxation regimes. It is shown that at the beginning of the relaxation process in the mixed state of the
conventual superconductor the direct relaxation regime is dominant. The nuclear magnetization decays with a
stretched exponential (a50.5) while the dipolar energy decreases exponentially. Then the relaxation regime
changes both for nuclear magnetization and dipolar energy, to the diffusion one described by the exponential
time dependence which agrees with the experiment. The radii of the diffusion barrier and the spin-diffusion
coefficient were estimated.
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I. INTRODUCTION

Studies of the NMR of nuclei have demonstrated that s
diffusion plays an important role in the relaxation of nuc
in the presence of paramagnetic impurities.1–3 However,
most of them deal with the process of spin diffusion in h
mogeneous magnetic fields.4,5 The spin-diffusion processe
result from dipole-dipole interaction~DDI! between nuclear
spinsI and between nuclear spinsI and paramagnetic impu
rity ~PI! spinsS.4,5 The DDI between nuclear spinsI and PI
spinsS leads to a direct spin-lattice relaxation of the nucle
spin system. Due to the inverse sixth power dependenc
the distance between nuclei and the PI, the local nuc
magnetization reaches its equilibrium value at a faster
near the PI’s.4,5 Therefore the nuclear magnetization will be
function of the position. This induces the spatial diffusion
the nuclear Zeeman energy in homogeneous magnetic fi
by flip-flop transitions due to the DDI’s between neighbori
nuclear spins. The diffusion coefficientD has values of the
order of 10212410213 cm2/sec for inorganic solids and
10214410216 cm2/sec for organic solids.5

The role of the DDI between PI spins in the nuclear-s
diffusion and in the dynamics polarization of nuclei has be
considered in detail.5,6 It was shown that the relaxation pro
cess is described by sum of two exponentials. For the D
between nuclear spins, most theories consider only the tr
fer function of the Zeeman energy.1–3 Only a few papers
tried to take into account other functions of the spin-s
interactions.7–10 For example, the theory was extended
include a diffusion of the spin-spin energy in an inhomog
neous magnetic field,7 an exchange energy in He3,8 and the
transport of spin-spin energy was calculated numerically
classical gyromagnets, coupled by truncated dipole-dip
and nearest-neighbor exchange interactions.9

However, as is well know,11–14 the DDI between nuclea
spins plays an important role in spin thermodynamics in s
ids. On the one hand, the secular part of the nuclear DD
form an independent energy reservoir11,13–15 with its own
spin temperature, which can be different from the spin te
perature of the Zeeman reservoir, and, on the other hand
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nuclear DDI’s stimulate the relaxation processes which br
a nuclear-spin system into a thermal equilibrium state.13

As was stressed by Genack and Redfield,7 the spin-
diffusion processes no longer exactly conserve Zeeman
ergy in an inhomogeneous field because the Zeeman inte
tion energy with applied field is not identical for neighborin
nuclear spins. In order for the spin-diffusion process to m
terialize the Zeeman energy difference must be taken up
the dipole-dipole energy reservoir. A situation very similar
this was considered by Provotorov.11,13 Using an intuitive
approach, coupled equations were proposed for magne
tion and dipolar energy, describing anomalous rapid rel
ation in mixed-state superconducting vanadium.7

Recently a theory for spin-lattice relaxation and spin d
fusion of nuclear dipolar order via PI’s has bee
developed.16,17 Nuclear dipolar order is characterized by
state with nuclear spins oriented along an internal local fi
generated by DDI and it is characterized by a dipo
temperature.12–15 The Zeeman order is characterized by
state with nuclear spins oriented along an external magn
field. Usually, the degree of Zeeman order is described b
magnetization of the sample or by a spin temperature.13 Here
we consider the phenomena of spin-lattice relaxation
spin diffusion both of Zeeman and dipolar orders of t
nuclear spins due to their DDI in solids containing PI’s in
inhomogeneous magnetic field. As an example of the ap
cation of the theory that was developed in this paper
consider spin-lattice relaxation and spin diffusion in type
conventional superconductors.

II. THEORY

A. Diffusion equations

Let us consider a spin system consisting of nuclear and
spins, localized in an inhomogeneous magnetic fieldHW 0(rW),
at positionsrWm and rW j , respectively. Here the Greek indice
indicate the nuclei and the Latin the impurities.

The dynamics of the system and its relaxation can
described by the solution of the equation for the density m
trix s(t)(\51),
©2003 The American Physical Society02-1
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i
ds~ t !

dt
5@H,s~ t !# ~1!

with the Hamiltonian

H5HZ1Hdd1HIS1HS , ~2!

whereHZ is the Hamiltonian of the Zeeman interaction,

HZ5(
m

v0
mI m

z , ~3!

v0
m5g IH0(rWm), andg I is the gyromagnetic ratio of the nu

clei. Hdd is a specific part of the nuclear DDI Hamiltonian

Hdd5 (
mÞh

Hmh5 (
mÞh

GmhF I m
z I h

z 2
1

4
~ I m

1I h
21I m

2I h
1!G ,

~4!

where

Gmh5g I
2r mh

23~123 cos2umh!, ~5!

and r mh andumh are the spherical coordinates of the vec
rWmh connecting themth and hth nuclei. In the impurity-
nuclear DDI Hamiltonian,HIS , we retain only the term
which gives the dominate contribution to the relaxati
process,5,13

HIS;(
m j

Sj
z~ f m j I m

11 f m j* I m
2!, ~6!

wheref m j52 3
4 g IgSr m j

23sin2umje
2iwmj, gS is the gyromagnetic

ratio of the PI, andr m j is the distance between nuclear and
spins.HS describes the impurity spin system.

Introducing a nuclear-spin density operator

IW~rW !5(
m

d~rW2rWm! IWm , ~7!

the density of the Zeeman and dipole-dipole Hamiltonia
can be written in the following form:

HZ~rW !5(
m

d~rW2rWm!v0
mI m

z 5v0~rW !I z~rW !, ~8!

Hdd~rW !5E drW8G~rW2rW8!H I z~rW !I z~rW8!2
1

4
@ I 1~rW !I 2~rW8!

1I 2~rW !I 1~rW8!#J , ~9!

HIS~rW !5E drW8Sz~rW8!@ f ~rW2rW8!I 1~rW !1 f * ~rW2rW8!I 2~rW !#.

~10!

To obtain the equation describing the spin diffusion and sp
lattice relaxation of both the Zeeman and dipolar orders
use the method of the nonequilibrium state operator,18 which
has been applied to obtain the diffusion equation in case
06440
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the Zeeman order spin diffusion19 and dipolar order17 spin
diffusion. We assume that the density matrix can be writ
as

s5Z21expH 2E drW@bZ~rW,t !HZ~rW !1bd~rW,t !Hdd~rW !#

2bSHS1E
2`

0

dteetF E drWS bZ~rW,t !
]HZ~rW !

]t

1bd~rW,t !
]Hd~rW !

]t
D 1bS

]HS

]t
G J , ~11!

where Z5Tr exp$ . . . % and the transition to the limite
→10 should be made after the calculation of the integr
bZ(rW,t) andbd(rW,t) are the local inverse temperatures of t
Zeeman and nuclear dipole reservoirs. In Eq.~11! all opera-
tors are taken in the Heisenberg representation to be

Q~ t !5eiHtQe2 iHt

with

Q5HZ~rW !, Hdd~rW !, HS ~12!

and they are time dependent. Taking into account that
heat capacity of PI, despite the fact that the concentrationCP
is small, PS52d/dbS^HS&, is large in comparison with
nuclear-spin heat capacity, both the ZeemanPZ and dipolar
Pd , (PS /Pd!PS /PZ;gS

2/g I
2;106), and the spin-lattice re-

laxation time of the PI, T1S , are very short
(T1S /T1d ,T1S /T1Z;1023) ~Ref. 5!, a case which is justified
experimentally, it is reasonable to consider only the rel
ation process with constant inverse spin temperature of
bS , equal to that of the lattice:bS5bL . Therefore, the PI
reservoir is in thermal equilibrium with the lattice andbS is
independent of the position and time.

Using the commutation rules between the component
the spin-density operator ~7! @ I x(rW),I y(rW8)#5 id(rW

2rW8)I z(rW), we can obtain the following equations in th
form of localized laws of conservation of the spin ener
densities:

]HZ~rW !

]t
1v0~rW !div jWZ~rW !5KZS~rW !, ~13!

]Hd~rW !

]t
1div jWd~rW !1 jWZ~rW !

]v0~rW !

]rW
5KdS~rW !, ~14!

]HS

]t
52E drWF ]HZ~rW !

]t
1

]Hd~rW !

]t
G . ~15!

The last equation is the result of the energy-conservation
In Eq. ~13! jWZ(rW) is the operator of the flux of nuclear spin
2-2
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jWZ~rW !5
i

4E drW8~rW2rW8!G~rW2rW8!@ I 1~rW !I 2~rW8!

2I 2~rW !I 1~rW8!# ~16!

and in Eq.~14! jWd(rW) is the operator of the flux of nuclea
dipolar energy,

jWd~rW !5
i

4E drW8E drW9~rW2rW9!G~rW2rW8!G~rW2rW9!

3$@ I 1~rW !I 2~rW8!2I 2~rW !I 1~rW8!,I z~rW8!#

1@ I 1~rW8!I 2~rW !2I 2~rW8!I 1~rW !,I z~rW9!#

1I z~rW !@ I 1~rW8!I 2~rW9!2I 2~rW8!I 1~rW9!#%, ~17!

where @A,B#15AB1BA is an anticommutator.KZS(rW) in
Eq. ~13! is the change of the nuclear Zeeman energy den
due to the interaction with the PI,

KZS~rW !52 iv0~rW !E drW8Sz~rW8!@ f ~rW2rW8!I 1~rW !

2 f * ~rW2rW8!I 2~rW !#, ~18!

andKdS(rW) in Eq. ~14! is the change of the nuclear dipola
energy density due to the interaction with the PI,

KdS~rW !52
3i

2 E drW8E drW9Sz~rW9!G~rW2rW8!$@ f ~rW92rW !I 1~rW !

2 f * ~rW92rW !I 2~rW !#I z~rW8!1@ f ~rW92rW8!I 1~rW8!

2 f * ~rW92rW8!I 2~rW8!#I z~rW !%. ~19!

Note that in the case with a homogenous magnetic fi
]v0(rW)/]rW50, from the system of Eqs.~13! and ~14!, we
have two separate equations: Equation~13! leads to the lo-
calized law of conservation of the Zeeman energy densiti19

and Eq. ~14! leads to a conservation law of the dipol
energy.17 In the high-temperature approximation we c
write the density matrix~11! in the following form:18

s5H 12E
0

1

dl@B~ t1 il!2^B~ t1 il!&#J seq , ~20!

where the thermodynamic average^ . . . & corresponds to an
average with the quasiequilibrium operatorseq
5e2A/Tr e2A, and

A5E drW@bZ~rW,t !HZ~rW !1bd~rW,t !Hdd~rW !#1bSHS ,

~21!
06440
ty

d,

B~ t1 il!5e2lAE
2`

0

dte«tE drWH v0~rW ! jWZ~rW,t !¹bZ~rW,t !

1 jWZ~rW,t !@bZ~rW,t !2bd~rW,t !#
]v0~rW !

]rW

1 jWd~rW,t !¹bd~rW,t !1@bZ~rW,t !2bL#KZS~rW,t !

1@bd~rW,t !2bL#KdS~rW,t !J elA. ~22!

By using Eqs.~11! and ~13!–~15!, and taking into accoun
that for a single-crystal sample of cubic symmetry, the dif
sion coefficients, both for Zeeman and dipole-dipole res
voirs, which in the general case of noncubic symmetry i
symmetrical tensor of second rank,5 reduce to a scalar quan
tity. In this case, the diffusion equations can be obtained
be

]bZ~rW,t !

]t
5

1

v0~rW !
¹~DZ~rW !$v0~rW !¹bZ~rW,t !1@bZ~rW,t !

2bd~rW,t !#¹v0~rW !%!2WZ~rW !@bZ~rW,t !2bL#,

~23!

]bd~rW,t !

]t
5

DZ~rW !¹v0~rW !

M2
$v0~rW !¹bZ~rW,t !1@bZ~rW,t !

2bd~rW,t !#¹v0~rW !%1¹@Dd~rW !¹bd~rW,t !#

2Wd~rW !@bd~rW,t !2bL#, ~24!

where M25*drW8G2(rW2rW8)^I Z
2&. The boundary conditions

can be introduced by defining a sphere with radiusl about
each PI, called the spin-diffusion barrier radius. Inside t
sphere the spin-diffusion process of Zeeman inverse t
perature,bZ(rW,t) and dipolar inverse temperature,bd(rW,t),
goes to zero:

¹bZ~rW,t !u urWu5 l50, ¹bd~rW,t !u urWu5 l50. ~25!

The diffusion barrier radius1,2,20,21can be found by solving
the equation

3gS

l 3
^Sz&F16S 12

urW0u
l

D G1rW
]H0~rW !

]rW
U

urWu5 l

5
6g I

urW0u3
, ~26!

wherer 0 is distance between neighboring nuclei. Here it
worthwhile to mention that in a homogenous magnetic fie
]H0(rW)/]rW50, Eq.~26! leads to result obtained early.1,2,20,21

The first term in the curly brackets of the right side of E
~23! describes the time dependence of the inverse Zee
spin temperaturebZ(rW,t) as a result of the spin diffusion
with a diffusion coefficient of

DZ~rW !5
1

2E drW8~rW2rW8!2G2~rW2rW8!. ~27!
2-3
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The second term gives the variation ofbZ(rW,t) as a result of
interaction with the dipolar reservoir in the inhomogeneo
field. The last term in the right side of Eq.~23! gives the
relaxation ofbZ(rW,t) toward the inverse lattice temperatu
with density of the transition probability per unit time
WZ(rW), which for a cubic crystal is given by

WZ~rW !54E drW8u f ~rW2rW8!u2^Sz~rW8!Sz~rW8!&. ~28!

The first term in the curly brackets of the right side of E
~24! describes the time variation of the dipolar energy due
the spin diffusion with the diffusion coefficient,

Dd~rW !5
Tr~ I Z

2!

3M2
E drW8E drW9~rW82rW9!G~rW2rW8!G2~rW2rW9!

3F ~rW2rW8!G~rW82rW9!1
5

4
~rW82rW9!G~rW2rW8!G .

~29!

The second term gives the variation ofbd(rW,t) as a result of
the interaction with the Zeeman reservoir in an inhomo
neous field. The last term in the right side of Eq.~24! gives
the relaxation with the density of the transition probabil
per unit time,Wd(rW), which for a cubic crystal, is given by

Wd~rW !53E drW8u f ~rW2rW8!u2H 11
Tr~ I Z

2!

M2
E drW-u f ~rW82rW9!u2J

3^Sz~rW8!Sz~rW8!&. ~30!

In Eq. ~30! the first term describes direct interaction of
given nuclear spin with the PI and the second term co
sponds to indirect interaction via neighboring nuclear sp
It should be noted that the second term in Eq.~30! has no
diffusional character.

By introduction the quantities@bZ(rW,t)2bL#5j(rW,t) and

@bd(rW,t)2bL#5z(rW,t) the equations can be rewritten as

]j~rW,t !

]t
5

1

v0~rW !
¹~DZ„rW !$v0~rW !¹j~rW,t !1@j~rW,t !

2z~rW,t !#¹v0~rW !%…2WZ~rW !j~rW,t !, ~31!

]z~rW,t !

]t
5

DZ~rW !¹v0~rW !

M2
$v0~rW !¹j~rW,t !1@j~rW,t !

2z~rW,t !#¹v0~rW !%1¹@Dd~rW !¹z~rW,t !#

2Wd~rW !z~rW,t ! ~32!

with the boundary conditions

¹ju urWu5 l50, ¹zu urWu5 l50. ~33!

In the case of a homogeneous magnetic field,¹v0(rW)50,
Eqs.~23! and~24! give the results obtain earlier for the sp
diffusion of the Zeeman5 and of the dipolar energy.17 From
06440
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Eqs.~31! and ~32! we get that the dissipation of the densi
of the Zeeman and dipolar energies are driven by~i! the
exchange between them, the~ii ! spin-diffusion process, and
~iii ! direct relaxation to the PI.

B. Direct relaxation regime

Exact solutions of Eqs.~31! and ~32! are extremely diffi-
cult problems even for simple model situations. That is w
we consider evolution of the spin system in time by using
next considerations. Immediately after a disturbance of
nuclear-spin system, the gradients ofj(rW,t) and z(rW,t) are
sufficiently small and diffusion cannot be of importance
the start of the relaxation process;20 this is the so-called dif-
fusion vanishing regime.22 To describe the relaxation at tha
time interval we can use Eqs.~31! and ~32! putting all in-
verse temperature gradient terms equal to zero,¹j(rW,t)50
and ¹z(rW,t)50. We also accept the approximation that
distances larger than the radius of the diffusion barrier
diffusion coefficient is independent ofrW4. Under these ap-
proximations Eqs.~31! and ~32! arrive at

]j~rW,t !

]t
5

DZDv0~rW !

v0~rW !
@j~rW,t !2z~rW,t !#2WZ~rW !j~rW,t !,

~34!

]z~rW,t !

]t
5

DZ@¹v0~rW !#2

M2
@j~rW,t !2z~rW,t !#2Wd~rW !z~rW,t !.

~35!

The coupled Eqs.~34! and ~35! describe the relaxation pro
cesses of the Zeeman and dipolar reservoirs as a result o
exchange between them@first terms in Eqs.~34! and ~35!#
and direct relaxation to the PI@last terms in Eqs.~34! and
~35!#. Equations~34! and ~35! are similar to the Provotorov
equitations.13 In a homogeneous magnetic field, Eqs.~34!
and ~35! give the results obtained earlier.4,17 The evolutions
of j(rW,t) and z(rW,t) toward their steady-state values is
linear combination of two exponents.11 At very low tempera-
tures, where the rates of the direct relaxationWZ(rW) and
Wd(rW) as a result of the PI are very slow, the relaxation ra
as a result of the PI are

t1
21~rW !5DZH Dv0~rW !

v0~rW !
2

@¹v0~rW !#2

M2
J

2
Dv0~rW !

Dv0~rW !2
@¹v0~rW !#2v0~rW !

M2

WZ~rW !

2
@¹v0~rW !#2

M2Dv0~rW !

v0
2@¹v0~rW !#2

Wd~rW !, ~36!
2-4
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t2
21~rW !52

@¹v0~rW !#2

M2Dv0~rW !

v0
2@¹v0~rW !#2

WZ~rW !

2
Dv0~rW !

Dv0~rW !2
@¹v0~rW !#2v0~rW !

M2

Wd~rW !. ~37!

These relaxation timest1(rW) andt2(rW) are the functions of
the positionrW. In order to obtain the observed magnetizatio
the solutions of Eq.~34! and~35! must be averaged over th
sample. For this averaging procedure one needs to know
field distribution. We consider below an example of the
ternal distribution of the field in the case of a convention
superconductor.

As a result of the diffusion vanishing relaxation regim
the local inverse temperatures,j(rW,t) and z(rW,t), become
spatially distributed over the sample with a distributi
which is not the equilibrium one. In this case we have to ta
into account also the gradient terms,¹j(rW,t) and¹z(rW,t), in
Eqs.~31! and~32!. In the next section we consider the influ
ence of the spin-diffusion process.

C. Diffusion relaxation regime

Here we obtain the time dependence of experiment
observable values—the nuclear magnetization and the d
lar energy. We consider a spin system with a sufficiently l
concentrationCP of the PI.

For this the sample may be divided into regions, ea
including only one PI. These regions are assumed to
spherically centered on the PI with radiusR equal to the
average separation of the PI’s~Ref. 22! R5(3/4pCP)21/3.

In order to compare the theoretical results with expe
mentally observed quantities of the nuclear magnetiza
and the dipolar energy we use Eqs.~31! and~32! for inverse
temperatures, the equations describing time behavior of
local nuclear magnetization and local dipolar energy. T
first equation is multiplied byg Iv0(rW)Tr(I Z

2) and the second
by M2Tr(I Z

2) which leads to the following equations:

]mZ~rW,t !

]t
5DZ¹F¹mZ~rW,t !2

g I

M2
«d~rW,t !¹v0~rW !G

2WZ~rW !@mZ~rW,t !2mL#, ~38!

]«d~rW,t !

]t
5

g IDZ¹v0~rW !

M2
F¹mZ~rW,t !2

g I

M2
«d~rW,t !¹v0~rW !G

1DdD«d~rW,t !2Wd~rW !@«d~rW,t !2«L#. ~39!

By introducing the quantities@mZ(rW,t)2mL#5m(rW,t) and

@«d(rW,t)2«L#5«(rW,t) Eqs.~38! and~39! can be rewritten as
06440
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]m~rW,t !

]t
5DZ¹F¹m~rW,t !2

g I

M2
«~rW,t !¹v0~rW !G

2WZ~rW !m~rW,t !, ~40!

]«~rW,t !

]t
5

g IDZ¹v0~rW !

M2
F¹m~rW,t !2

g I

M2
«~rW,t !¹v0~rW !G

1DdD«~rW,t !2Wd~rW !«~rW,t !. ~41!

Without the terms describing the spin-lattice relaxation, E
~40! and ~41! are similar to the two coupled equations o
tained earlier using an intuitive approach.7 Equations~40!
and~41! describe the time behavior of the local nuclear ma
netizationm(rW,t) and the local dipolar energy«(rW,t). How-
ever, they cannot be observed directly.

The experimentally observed values, the total nucl
magnetizationM (t)5*drWm(rW,t) and total dipolar energy
Ed(t)5*drW«(rW,t), can be obtain from Eqs.~40! and~41! by
integrating in limits froml to R both equations. Taking into
account the boundary conditions and neglecting surface
fects atr 5 l andR, we have

]M ~ t !

]t
52

g IDZ

M2
E

l

R

drW«~rW,t !Dv0~rW !2E
l

R

drWWZ~rW !m~rW,t !,

~42!

]Ed~ t !

]t
52

g IDZ

M2
E

l

R

drWm~rW,t !Dv0~rW !

2E
l

R

drWt1d
21~rW !«~rW,t !. ~43!

It follows from Eqs.~42! and ~43! that for a short time
after the excitation of the spin system, the relaxation of
total nuclear magnetization and the dissipation of the to
dipolar energy are governed by the direct relaxation to the
and by the flow in a inhomogeneous magnetic field. To o
tain the relaxation times, both in case of the magnetizat
and in the case of the dipolar energy, we need to know
internal distribution function of the field,v0(rW), in a sample.
Below we consider an example of the internal distribution
the field in the case of the conventional superconductor
nadium compounds.23

III. SPIN-LATTICE RELAXATION AND SPIN DIFFUSION
IN THE MIXED STATE OF CONVENTIONAL

TYPE-II SUPERCONDUCTORS

As an example of an application of the theory, we co
sider type-II superconductors in a magnetic field. In t
type-II superconductors, an applied magnetic fieldHW 0, in the
range between the lower and upper critical field,Hc1,H0
,Hc2, penetrates into the bulk sample in the form of fil
ments~vortices!, each with a quantum flux ofF05c\/2e,
which form a two-dimensional structure in the plane perp
dicular toHW 0.24 An internal magnetic fieldHW (rW) is generated
by vortices, which are spatially distributed over the sampl25
2-5
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with the vortex lattice constanta'(F0 /H0)1/2. The thermal
motion of the vortices in this mixed state gives rise to
time-varying magnetic fieldHW (rW,t). The component of this
time-varying field perpendicular to the applied magnetic fi
HW 0 may induce relaxation of the Zeeman23,26–28and dipolar
energies of the nuclear-spin system. Because of the sp
dependence of the transition probability, the local nucl
magnetizationm(rW,t) and the local dipolar energy reach the
equilibrium value at a faster rate in the vicinity of the core
vortex. Therefore, the nuclear magnetization and the dip
energy are functions of the distance, and their spatial di
sion may be induced. This process is important only wh
the difference of the internal local magnetic field~in units of
a frequency! at sites occupied by neighboring nuclei is of t
order~or lower than! of the NMR linewidth in order to fulfill
the energy-conservation law.7 We consider a spin system in
sufficiently low external magnetic field, i.e., a concentrati
Cv'B0 /F0 of small vortices, and the sample may be d
vided into regions with radiusRv equal to the average sep
ration of the vortex coreRv5(pCv)21/2;a. For H0
;2000 G, the order isRv;500 Å. Each region includes
only one vortex.

In type-II conventional superconductor the distribution
the magnetic field with29

H~r!5
f0

2pl2
ln

r

l
for r ,l, ~44!

wherel is the London penetration length andr is the dis-
tance from the core of the vortex in the cylindrical coord
nate,r 25r21z2. In the ideal situation the vortex fields d
not have the transversal components, which can cause r
ation. In this case the thermal motion of the vortices in t
mixed state is not the reason for the rapid relaxation
type-II conventional superconductors. Another relaxat
mechanism must be proposed, such as spin-lattice relaxa
as a result of the PI or if there are pinning centers, a resu
the thermal fluctuations of the vortex section between
pinning centers.26 We consider only the relaxation produce
by the PI. The thermal fluctuations of vortices will be d
scribed in a future paper.

At the first step of the relaxation, immediately after ex
tation, j(rW,t) and z(rW,t) will relax according to Eqs.~34!
and ~35!. From Eqs.~31! and ~32! for inverse temperature
we take into account that

¹v0~r!52
g If0

2pl2r
, Dv0~r!50. ~45!

We then obtain the time behavior of the local nuclear m
netization and dipolar energy to be

]m~rW,t !

]t
52WZ~rW !m~rW,t !, ~46!
06440
tial
r

f
ar
-
n

f

ax-
s
n
n
ion
of
e

-

]«~rW,t !

]t
5

DZ

M2
S g If0

2pl2r
D 2

@m~rW,t !2«~rW,t !#2Wd~rW !«~rW,t !.

~47!

The solutions for Eqs.~46! and ~47! are

m~rW,t !

m~r ,0!
5expF2

t

t1z~rW !
G , ~48!

«~rW,t !

«~r ,0!
5

m~r ,0!

«~r ,0!

1

11
t1z

21~rW !

t1d
21~rW !

H expF2
t

t1z~rW !
G

2expF2
t

t1d~rW !
G J 1expF2

t

t1d~rW !
G , ~49!

wherem(0) and«(0) are the initial values ofm(rW,t) and
«(rW,t), andt1z

21(rW) andt1d
21(rW) are the relaxation rates of th

local nuclear magnetization and local dipolar energy, resp
tively,

t1z
21~rW !5t2

21~rW !5WZ~rW !, ~50!

t1d
21~rW !5t1

21~rW !5DZS g If0

2pl2rM2
D 2

1Wd~rW !. ~51!

At very low temperatures, where the rates of the direct
laxationWd(rW) to the PI are very slow, the second term c
be ignored relative to the first one:

t1d
21~rW !5DZS g If0

2pl2rM2
D 2

. ~52!

Moreover, the experiments of the measurement of dipo
energy relaxation starting with converting the Zeeman or
to a dipolar one by adiabatic demagnetization in the rotat
frame7 result in initial conditions at whichm(r ,0)50. Then
the time variation of the local dipolar energy can be d
scribed by the following equation:

«~rW,t !

«~r ,0!
5expF2DZS g If0

2pl2rM2
D 2

tG . ~53!

In order to obtain the observed value of the total magnet
tion M (t) and the total dipolar energyEd(t), the solution of
Eqs. ~48! and ~53! must be averaged over the sample.
obtain the time dependence ofM (t) and Ed(t), the quanti-
ties GZ(t)5m(rW,t)/m(r ,0) and Gd(t)5«(rW,t)/«(r ,0) are
the normalized relaxation functions of the total magneti
tion, and the total dipolar energy must be averaged. Tak
into account the spherical symmetry of the problem, let
neglect the detailed angular dependence of the trans
probability WZ(rW), whose dependence on the distance fro
the PI can be presented as4 WZ(rW)5A/r 6. In the limit of the
number of PI’s and of vortices,NP→`, a volume of the
2-6
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sample,VL→`, andNP /VL5CP , the PI concentration, an
as a result of the averaging procedure of Eq.~51!, we
obtain20,30

^GZ~ t !&V5expF2S t

T1Z
dir D aG ~54!

with the relaxation times for the direct relaxation proce
written as

T1Z
dir5

9

16p3ACP
2

~55!

and a51/2. A similar averaging procedure of Eq.~53! can
be performed: in the limit limNv→`,Av→`(Nv /Av)5Cv , and
for a short-time interval after an excitation of the nucle
spin system, we obtain

^Gd&V5expS 2
t

T1d
dir D , ~56!

where

T1d
dir5

2p

DZCvln
Rv

l

S l2M2

g If0
D 2

. ~57!

Consequently, we obtain that for a short time after excitat
of the spin system, the decay of the total magnetization
described by the stretched exponential~54! with a50.5,
while the dipolar energy decrease is completely exponen
~56!.

This direct relaxation process of the Zeeman and dipo
reservoirs should be valid for a short time after a disturba
of the nuclear-spin system. Then it is expected that
nuclear magnetization and the dipolar order relaxation p
cesses are determined by spin diffusion, described by
~42! and~43!. Taking into account thatDv0(r )50 ~45!, the
observed values of the total nuclear magnetizationM (t) and
the dipolar energyEd(t) are given by

]M ~ t !

]t
52E

l

R

drWFm~rW,t !

t1z~rW !
G , ~58!

]Ed~ t !

]t
52E

l

R

drWF «~rW,t !

t1d~rW !
G , ~59!

with t1z(rW) andt1d(rW) given by Eqs.~50! and ~52!, respec-
tively. The solution of Eqs.~58! and~59! can be obtained by
using the expansion ofm(rW,t) and «(rW,t) in the following
forms:17

m~rW,t !5E drW8(
n

exp~2kn
2DZt !Fn~rW !Fn* ~rW8! ~60!

and
06440
s

-

n
is

al

r
e
e
-
s.

«~rW,t !5E drW8(
n

exp~2pn
2Ddt !Cn~rW !Cn* ~rW8!, ~61!

wherekn andFn(rW) are the eigenvalue and eigenfunction
the operator

DZD2WZ~rW ! ~62!

and pn and Cn(rW) are the eigenvalue and eigenfunction
the operator

DdD2DZFg¹v0~rW !

M2
G2

. ~63!

Taking into account the spherical symmetry of Eq.~62! and
the circular symmetry of Eq.~63!, just the terms withn50
contribute to the solutions~58! and~59!. This approximation
is well known in the quantum theory of scattering31 and
gives the following equations:

]M ~ t !

]t
52

M ~ t !

T1Z
di f

~64!

with the relaxation time

T1Z
di f5

E
l

R

drWm~rW,t !

E
l

R

drW
m~rW,t !

t1z~rW !

~65!

and the total dipolar energy

]Ed~ t !

]t
52

Ed~ t !

T1d
di f

~66!

with the relaxation time

T1d
di f5

E
l

R

drW«~rW,t !

E
l

R

drW
«~rW,t !

t1d~rW !

. ~67!

For the calculation of the relaxation times in this relaxati
regime,T1Z

di f andT1d
di f , we note that the relaxation process

both for total nuclear magnetizationM (t) and the total dipo-
lar energyEd(t) are not sensitive to the detailed distributio
of the local quantitiesm(rW,t) and«(rW,t) and reflect just an
integral character of the shape of them. Whilem(rW) and«(rW)
do not look likem(rW,t) and«(rW,t) in detail these differences
cannot produce major errors in the calculations ofT1Z

di f and
T1d

di f . Using this fact and the spherical symmetry of the ma
netization problem and the circular symmetry of the dipo
energy problem we use the approximation22 that bothm(rW,t)
and«(rW,t) can be substituted by the time-independent so
tions m(rW) and«(rW) of the stationary diffusion equations

DZD rm~r !2WZ~r !m~r !50, ~68!
2-7
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DdDr«~r!2DZFg¹v0~r!

M2
G2

«~r!50, ~69!

where D r and Dr are the Laplacian in the Cartesian a
cylindrical coordinate frames, respectively. Substituting
solution of Eq.~68!, which was obtained earlier,4 into Eq.
~65! leads to the relaxation time for the total nucle
magnetization,4

T1Z
di f5~8.5CpDZ

3/4A1/4!21. ~70!

Equation~69! can be solved using two boundary condition
For the first boundary condition we adopt an assumption
the local dipolar energy atr5Rv has the fixed value«(Rv)
Þ0 whose actual value is unimportant, because it is be c
celed in the expression for the relaxation timeT1d

di f ~67!. The
second one can be found by integrating Eq.~69! from l to Rv
and taking into account thatDd50 for r, l , which results in
d«(r)/drur5 l50. Taking into account these boundary co
ditions the solution of Eq.~69! can be presented as

«~r!5«~Rv!

S Rv

l D x

11S Rv

l D 2x F S r

l D
x

1S r

l D
2xG , ~71!

wherex5(DZ /Dd)1/2(g If0/2pl2M2). Performing the inte-
gration in Eq.~67! with the obtained solution of Eq.~71!
yields the relaxation timeT1d

di f of the total dipolar energy,

T1d
di f5

Rv
2

Dd

1

~x224!
F112

y222yx2y2x

x~yx2y2x!
G , ~72!

where y5Rv / l . In the limit x@1 (DZ /Dd@1) from Eq.
~72! we obtain

T1d
di f5

4p

DZCv
S l2M2

g If0
D 2

. ~73!

In the other limit x!1 (DZ /Dd!1) the relaxation time
T1d

di f→`. In this case the term describing the relaxation
PI, Wd(r );B/r 6, must be taken into account, which leads
a result similar to that of Eq. ~70!: T1d

di f

5(8.5CpDd
3/4B1/4)21. In this case the relaxation times for th

total magnetization and for the total dipolar energy are at
same order:T1Z

di f'T1d
di f .

IV. RESULTS AND DISCUSSION

We compare the results obtained here with the relaxa
processes of nuclear magnetization23 and dipolar energy7 in
mixed-state superconducting vanadium. First, as is cle
seen from Fig. 2 of Ref. 23 and from Fig. 1 of Ref. 7 at lo
times the nuclear magnetization23 and dipolar energy7 de-
crease to equilibrium exponentially. This is the spin-diffusi
regime described by the solutions of Eqs.~64! and ~66!:

M ~ t !

M ~0!
5expS 2

t

T1Z
di f D , ~74!
06440
e

.
at

n-

-

e

n

ly

Ed~ t !

Ed~0!
5expS 2

t

T1d
di f D . ~75!

However, such an exponential time dependence for
nuclear magnetization is not valid for shorter times followi
an excitation of the spin system. The relaxation of the to
nuclear magnetization is described by the stretched expo
tial ~54!. A least-squares fitting~Figs. 1 and 2! to the sum of
a stretched exponential@Eq. ~54!# and an exponential~74!
yields results very close toa50.5 for the relaxation of
the total nuclear magnetization, in agreement with
conclusion of the above-described theory. Comparing
relaxation times of the direct and the diffusion regim
and assumingCP;1016 cm23, we conclude thatDZ;5.3
310213 cm2/sec, which is very closed to the result obtain
in Ref. 7.

The relaxation of the total dipolar energy remains exp
nential ~56! also for the diffusion regime, but with the dif
ferent relaxation timeT1d

dir ~57!, which is shorter~note that
Rv / l .1) than theT1d

di f :

T1Z
di f52 ln

Rv

l
T1d

dir . ~76!

A least-squares fitting~Fig. 3! to the sum of two exponent
@Eqs.~56! and ~75!# yields the result

FIG. 1. Relaxation of the total nuclear magnetization in the
perconducting state atT51.41 K. The open circles are experime
tal data~Ref. 23!. The solid line is a least-squares fit to expressio
~54! and ~74!.
2-8
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T1Z
di f

T1d
dir

'6.80. ~77!

In order to estimate the radius of the diffusion barrierl, we
calculate the quantityRv5(pCv)21/2 by using the value of
the magnetic field used in the experiment, 1875 G. A
result we haveRv.5.9031026 cm, which is larger than the
estimated32 penetration length for pure vanadium (4
31026 cm). Using experimental data~Fig. 3!, Eq. ~77! and
Rv , the radius of the diffusion barrierl, can be estimated
to be

l 5
Rv

expS T1Z
di f

2T1d
dir D 51.9631027 cm. ~78!

For theoretical estimation of the radius of the diffusion b
rier l Eq. ~26! can be used. Taking into accou
that rW@]H0(rW)/]rW#u urWu5 l52(f0/2pl2), the gyromag-
netic ratio for vanadium nuclei isg I /2p51119.3 Hz/G,
the distance between neighboring vanadium nucleir 052.63
31028 cm,23 and we assume that for PI it is of the ord
gS/2p;33106 Hz/G.5 As a result of the calculation

FIG. 2. Relaxation of the total nuclear magnetization in the
perconducting state atT50.65 K. The open circles are experime
tal data~Ref. 23!. The solid line is a least-squares fit to expressio
~54! and ~74!.
06440
a

-

with Eq. ~26! for the radius of diffusion barrierl we obtain

l 5F S g I

gS
D 1

r 0
3

1
f0

12pl2gS
G21/3

52.0731027 cm, ~79!

which is in very good agreement with the result obtain
from experimental data~78!. Note that in a homogeneou
magnetic field, for the radius of the diffusion barrier we ha
l 53.631027 cm.

As follows from above-presented theory the relaxati
mechanisms of the total magnetization and the dipolar
ergy are different, both for the direct and diffusion relaxati
regimes. For a short time after the excitation of the s
system the relaxation of the nuclear magnetization is dri
by a direct relaxation to the PI with the relaxation timeT1Z

dir

~55!, and the relaxation process is described by the stretc
exponential low, while the dissipation of the dipolar ener
is determined by its flow into an inhomogeneous magne
field with a relaxation timeT1Z

dir ~57!, and it is completely
exponential. Note that the direct relaxation to the PI is not
effective mechanism at a very low temperature. This conc
sion is confirmed by experimental data. The relaxation of
nuclear magnetization is nonexponential with the relaxat
times T1Z

dir54.5 sec atT51.41 K and T1Z
dir58.3 sec atT

-

s

FIG. 3. Relaxation of dipolar energy after adiabatic demagn
zation in the superconducting state atT52.17 K. The open circles
are experimental data~Ref. 7!. The solid line is a least-squares fi
expressions~56! and ~75!.
2-9
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50.65 K, but the dipolar energy decreases exponentially
the anomalously short~as compared to both the nuclear ma
netization time,T1Z

dir , and the dipolar energy relaxation tim
in the normal state,T1d5120 msec) relaxation time,T1d

dir

514.5 msec atT52.17 K. At long times the relaxation o
the nuclear magnetization is determined mostly by the s
diffusion since it flows in an homogeneous magnetic fi
and it is exponential. The inhomogeneity of the local ma
netic field does not influence the relaxation of nuclear m
netization due to the specific vortex field distribution in t

conventional superconductor which leads toDv0(rW)50. In
other type-II superconductors, for example, those of h
temperature, with a different vortex field distribution, the i
fluence of the inhomogeneity cannot be ignored. The dipo
energy is determined by the spin diffusion in an inhomo
neous magnetic field. The inhomogeneity of the local m
netic field plays an important role in the relaxation of t
dipolar energy. The character of the relaxation remains ex
nential, but with a different relaxation time compared w
that of the direct relaxation regime. Experimental results
in a good agreement with this conclusion. Both the nucl
magnetization and the dipolar energy relax exponentially,
with sufficiently different relaxation times:T1Z

di f528.4 sec at
T51.41 K andT1Z

di f543.3 sec atT50.65 K for the nuclear
magnetization andT1d

di f597.3 msec for the dipolar energy.
lid

.

06440
y
-

in

-
-

h

r
-
-

o-

e
r

ut

V. CONCLUSIONS

In conclusion, we obtained two coupled equations d
scribing mutual relaxation and spin diffusion of the nucle
magnetization and dipolar energy using the method of
nonequilibrium state operator.18 The equations were solve
at short- and long-time approximations corresponding to
direct and diffusion relaxation regimes. We showed that
the mixed state of the conventional high-Tc superconductor,
at the beginning of the relaxation process, the direct rel
ation regime is realized. The nuclear magnetization rela
with a nonexponential time dependence witha50.5 and di-
polar energy decreases exponentially. Then the relaxation
gime changes both for nuclear magnetization and the dip
energy, to the diffusion one described by the exponen
time dependence, which coincides with the experimen23

The radii of the diffusion barrier and the spin-diffusion c
efficient were estimated and are in good agreement with
perimental data. The obtained analytic expressions can
useful for extracting important information about the vort
dynamics and structure as well as on the internal magne
field distribution.
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