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Nuclear spin-lattice relaxation and spin diffusion in an inhomogeneous field
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The theory of spin diffusion is extended to the case of spin-lattice relaxation and spin diffusion in an
inhomogeneous magnetic field. Two coupled equations describing the mutual relaxation and the spin diffusion
of nuclear magnetization and dipolar energy were obtained using the method of the nonequilibrium state
operator. The equations were solved for short- and long-time approximations corresponding to the direct and
diffusion relaxation regimes. It is shown that at the beginning of the relaxation process in the mixed state of the
conventual superconductor the direct relaxation regime is dominant. The nuclear magnetization decays with a
stretched exponentiak{=0.5) while the dipolar energy decreases exponentially. Then the relaxation regime
changes both for nuclear magnetization and dipolar energy, to the diffusion one described by the exponential
time dependence which agrees with the experiment. The radii of the diffusion barrier and the spin-diffusion
coefficient were estimated.
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[. INTRODUCTION nuclear DDI’s stimulate the relaxation processes which bring
a nuclear-spin system into a thermal equilibrium state.

Studies of the NMR of nuclei have demonstrated that spin  As was stressed by Genack and Redflelthe spin-
diffusion plays an important role in the relaxation of nuclei diffusion processes no longer exactly conserve Zeeman en-
in the presence of paramagnetic impuritied.However, €rgy in an inhomogeneous field because the Zeeman interac-
most of them deal with the process of spin diffusion in ho-tion energy with applied field is not identical for neighboring
mogeneous magnetic fiel&S. The spin-diffusion processes nuclear spins. In order for the spin-diffusion process to ma-
result from dipole-dipole interactiofDDI) between nuclear terialize the Zeeman energy difference must be taken up by
spins| and between nuclear spih@nd paramagnetic impu- the dipole-dipole energy reservoir. A situation very similar to
rity (PI) spinsS*® The DDI between nuclear spinsand Pl  this was considered by Provotorbv:® Using an intuitive
spinsSleads to a direct spin-lattice relaxation of the nuclear-approach, coupled equations were proposed for magnetiza-
spin system. Due to the inverse sixth power dependence diPn and dipolar energy, describing anomalous rapid relax-
the distance between nuclei and the PI, the local nucleation in mixed-state superconducting vanaditim.
magnetization reaches its equilibrium value at a faster rate Recently a theory for spin-lattice relaxation and spin dif-
near the PI'§:° Therefore the nuclear magnetization will be a fusion of nuclear dipolar order via PlI's has been
function of the position. This induces the spatial diffusion of developed®!” Nuclear dipolar order is characterized by a
the nuclear Zeeman energy in homogeneous magnetic fielgate with nuclear spins oriented along an internal local field
by flip-flop transitions due to the DDI's between neighboringgenerated by DDI and it is characterized by a dipolar

nuclear spins. The diffusion coefficieBt has values of the temperaturé”—° The Zeeman order is characterized by a
order of 10 '?+10 ' cm?/sec for inorganic solids and State with nuclear spins oriented along an external magnetic

10+ 10716 cn?/sec for organic solids. field. Usually, the degree of Zeeman order is described by a

The role of the DDI between Pl spins in the nuclear-spinmagnetization of the sample or by a spin temperatiiktere
diffusion and in the dynamics polarization of nuclei has beerve consider the phenomena of spin-lattice relaxation and
considered in detaft® It was shown that the relaxation pro- SPin diffusion both of Zeeman and dipolar orders of the
cess is described by sum of two exponentials. For the pDpuclear spins due to their DDI in solids containing PI's in an
between nuclear spins, most theories consider only the tran§lhomogeneous magnetic field. As an example of the appli-
fer function of the Zeeman enerdy’ Only a few papers cation of the theory that was developed in this paper we
tried to take into account other functions of the spin-spinconsider spin-lattice relaxation and spin diffusion in type-lI
interactions’*° For example, the theory was extended toconventional superconductors.
include a diffusion of the spin-spin energy in an inhomoge-
neous magnetic fiellan exchange energy in F& and the Il. THEORY
transport of spin-spin energy was calculated numerically for A. Diffusion equations
classical gyromagnets, coupled by truncated dipole-dipole . . -
and nearest-neighbor exchange interactfons. Let us consider a spin system consisting of nucLea[and Pl

However, as is well kno#*~#the DDI between nuclear Spins, localized in an inhomogeneous magnetic figyr),
spins plays an important role in spin thermodynamics in solat positionsfﬂ and Fj , respectively. Here the Greek indices
ids. On the one hand, the secular part of the nuclear DDI'sndicate the nuclei and the Latin the impurities.
form an independent energy reservbif*°with its own The dynamics of the system and its relaxation can be
spin temperature, which can be different from the spin temdescribed by the solution of the equation for the density ma-
perature of the Zeeman reservoir, and, on the other hand, thex o(t)(A=1),
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do(t) the Zeeman order spin diffusibhand dipolar orde¥ spin
P —¢ ~[H.o] (1) diffusion. We assume that the density matrix can be written
as

with the Hamiltonian

H="Hz+Hygt Hist+Hs, () a=z-1exp{—f drl B-(r 1) Ho(r) + By(r ) Hag(r)]
whereH; is the Hamiltonian of the Zeeman interaction, )
—BsH +f0 dtect de(ﬂ (Ft)‘mzm
Ho=2 whlZ, 3 R 2 a
M
R , ) ) . dHy(r) IHs
g =y Ho(r,), andy, is the gyromagnetic ratio of the nu- + Bq(r,t) p + Bs ik (12

clei. Hyq is a specific part of the nuclear DDI Hamiltonian
1 where Z=Trexp{ ...} and the transition to the limit

_ _ zyz_ Tt -t ; ;

Hdd—;n HM—;” Gyl 115 4(IMI 2 L) —+0 should be made after the calculation of the integral.

4) BZ(F,t) andﬁd(F,t) are the local inverse temperatures of the
Zeeman and nuclear dipole reservoirs. In Ed) all opera-
where tors are taken in the Heisenberg representation to be

Guy=7iTuy(1-30086,,), ®) Q(t)=€'"Qe M
gndrM” and 6, are the spherical coordinates of the vectorWith
r., connecting theuth and »th nuclei. In the impurity-

mn

nuclear DDI Hamiltonian,H,5, we retain only the term _ - -

which gives the dominate contribution to the relaxation Q=Hz(r), Mao(r), Hs (12
process;

and they are time dependent. Taking into account that the

heat capacity of PI, despite the fact that the concentr&ion

His~ 2 Si(f 0 +1510), (6) is small, Ps=—8/3B8«Hs), is large in comparison with

# nuclear-spin heat capacity, both the Zeen®gnand dipolar

wheref ;= — 5 v, ysr ,’sir?6,;e %4, ysis the gyromagnetic  Pa, (Ps/Pq<Ps/Pz~ ¥4 v~ 10°), and the spin-lattice re-

ratio of the PI, and ,; is the distance between nuclear and Pilaxation  time of the PI, T,s, are very short

spins.Hg describes the impurity spin system. (T1s/T1q,T1s/T1z~107°) (Ref. 5, a case which is justified
Introducing a nuclear-spin density operator experimentally, it is reasonable to consider only the relax-
ation process with constant inverse spin temperature of PlI,

. . .- Bs, equal to that of the latticeBs= B, . Therefore, the PI

[(N=2 8(r=r)l,, (") reservoir is in thermal equilibrium with the lattice agid is
. independent of the position and time.

the density of the Zeeman and dipole-dipole Hamiltonians Using the commutation rules between the components of

can be written in the fOIIOWing form: the Spin_density Operator (7) [|X(F),|y(F')]:|5(F
—1")I,(r), we can obtain the following equations in the
Ho(r)=2, 8(r— Fﬂ)wéqz = wo(NIXT), (8  form of localized laws of conservation of the spin energy
m : densities:
Hdd(F)zde’G(F—F') |Z(F)|Z(F')—}[H(F)r(r*') TH(1) . R
4 ot +wo(r)divjz(r)=Kzgr), 13
Hwﬂﬁﬁﬂ% ©) . ;
’?Hd(r) P Pl (9w0(r) -
P +divjg(r)+jz(r) —=Kqdr), (19
or
H.S(F):f dr S(r)[f(r—r)IH N+ (r—r)—(n)].
(10) oM L oHA(r)  aHg(r
| . - o . —f=—fdr Al) | all)) (15
To obtain the equation describing the spin diffusion and spin- ot ot ot

lattice relaxation of both the Zeeman and dipolar orders we o )
use the method of the nonequilibrium state operdtorhich ~ The last equation is the result of the energy-conservation law.
has been applied to obtain the diffusion equation in cases df Eq. (13) j,(r) is the operator of the flux of nuclear spin,
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F e i Zres 2 ) g = 0 = > > > g
Jz(r)=ZJ dr'(r—=r")G(r—r")[1.(r)l _(r") B(t+i)\)=e‘”““f_wdte’3tf dr|w0(r)jz(r,t)Vﬁz(r,t)
—1(N14(r)] (16 L w1

Tiz(r,O)[Bz(r,t) = By(r,t)] o
and in Eq.(14) j4(r) is the operator of the flux of nuclear
dipolar energy, +a(FOVB(F ) +[B2(r,H) — BLIK (T 1)
I - I I N CHy c AA
jd(r):Zf drlf dr//(r_rrr)G(r_r/)G(r_rn) +[ﬂd(r,t) BL]de(r,t)]e . (22)
- S -, -, By using Egs.(11) and (13)—(15), and taking into account
XTI = (L (), ()] that for a single-crystal sample of cubic symmetry, the diffu-
+[I+(F’)I (F)—I (YL (D), (FH)] sion coefficients, both for Zeeman and dipole-dipole reser-
- —_ 11z

voirs, which in the general case of noncubic symmetry is a
FLO () =1_(r)1.(r"]}, (@7 ~ symmetrical tensor of second rankeduce to a scalar quan-
tity. In this case, the diffusion equations can be obtained to

where[A,B], =AB+BA is an anticommutaton(ZS(F) in
Eqg. (13) is the change of the nuclear Zeeman energy density 9B4(F 1) 1
due to the interaction with the P, 2

— V(DN {wo(NV B(r,1)+[Br,1)

Jt wo(T)
KZS(F):_in(F)f dF/SZ(F/)[f(F_F/)I+(F) _Bd(F!t)]VwO(F)})_WZ(F)[BZ(th)_EL]v
(23)
—f5(r=r"_(n)], (19 D DaFIVeul)
dBqy(r, r r . - .
. . , B(igt == M =0 {wo(r)VBz(r,t) +[B(r.t)
andKyg(r) in Eq. (14) is the change of the nuclear dipolar 2

energy density due to the interaction with the PI, _,Bd(F t)]VwO(F)}+V[Dd(F)Vﬁd(F 1]

—Wy(N[B4(r,H)—BL], (24)

where M,=[dr'G?(r—r")(13). The boundary conditions
PP > -, > > -, can be introduced by defining a sphere with radiwout

P =1 (O] + [ =r)l () each PI, called the spin-diffusion barrier radius. Inside this
—f*(F”—F’)I,(F’)]IZ(F)}. (19) sphere the sﬁpm—dn‘fuspn pr(?cess of Zeeman inverse tem-
perature,Bz(r,t) and dipolar inverse temperaturgy(r,t),

- 3i - - . - - - -
de(r)=—?J dr’Jdr”SZ(r”)G(r—r’){[f(r”—r)l+(r)

Note that in the case with a homogenous magnetic fieldgOes to zero:

dwo(r)/dr=0, from the s_yste.m of Eqg13) and (14), we Vﬂz(F,t)||F\:|=0, Vﬂd(F,t)|\F|:|=0- (25)

have two separate equations: Equat{@B) leads to the lo-

calized law of conservation of the Zeeman energy den&ities The diffusion barrier radids”*** can be found by solving

and Eq.(14) leads to a conservation law of the dipolar the equation

energy’ In the high-temperature approximatiog we can .

write the density matrix11) in the following form? 3 r
e et

—& (26)

|F\=I |FO|3,
1

cr={1—f AN[B(t+iN)—(B(t+iN))] 1 oeq, (200 wherer, is distance between neighboring nuclei. Here it is
0 worthwhile to mention that in a homogenous magnetic field,

_ dHo(r)/ar=0, Eq.(26) leads to result obtained eariy:?°2*
where the thermodynamic average. .) corresponds to an  The first term in the curly brackets of the right side of Eq.

average with the quasiequilibrium operatoloeq (23 describes the time dependence of the inverse Zeeman

—aA -A -
e “/re™”, and spin temperature3z(r,t) as a result of the spin diffusion
with a diffusion coefficient of

_dHo()
r =
ar

A= f dr[ Bz(r ) Hz(r) + By(r,t) Hag(r) ]+ BsHs,

@ DZ(F):%I dr/(r—r")2G3(r—r"). 27
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The second term gives the variation/@j(r,t) as a result of E0s.(31) and(32) we get that the dissipation of the density
interaction with the dipolar reservoir in the inhomogeneousf the Zeeman and dipolar energies are driven(pythe
field. The last term in the right side of EqR3) gives the —exchange between them, tfig) spin-diffusion process, and
relaxation of,BZ(F,t) toward the inverse lattice temperature (iii) direct relaxation to the PI.

with density of the transition probability per unit time,

W,(r), which for a cubic crystal is given by B. Direct relaxation regime

Exact solutions of Eq9.31) and(32) are extremely diffi-
Wz(F):4f dr'|f(r—r")|3(S,(r')S,(r")).  (28)  cult problems even for simple model situations. That is why
we consider evolution of the spin system in time by using the
The first term in the curly brackets of the right side of Eq.next considerations. Immediately after a disturbance of the
(24 descri_bes_the time varia_tion.of the dip(_)lar energy due tmuclear-spin system, the gradients gﬁ,t) and g(F,t) are
the spin diffusion with the diffusion coefficient, sufficiently small and diffusion cannot be of importance at
2 the start of the relaxatigzn proce&sthis is the so-called dif-
- 1Tz -, 2o 2y TP S fusion vanishing regimé&: To describe the relaxation at that
Dy(r)= 3M, f dr fdr (K =r)G(r=r)GHr—r") time interval we can use Eq$31) and (32) putting all in-
5 verse temperature gradient terms equal to z§r‘§1,ﬁt)=0
(F—F’)G(F’—F”)JrZ(F’—F”)G(F—F’) . and V{(r,t)=0. We also accept the approximation that at
distances larger than the radius of the diffusion barrier the
(290  diffusion coefficient is independent of. Under these ap-
proximations Egs(31) and(32) arrive at

X

The second term gives the variation[ﬁ)j(ﬁt) as a result of
the interaction with the Zeeman reservoir in an inhomoge-

neous field. The last term in the right side of E&4) gives IE(rY)  DyAwy(r) - _ .
the relaxation with the density of the transition probability o (ﬁ) [&(r,t)—Z(r,t)]—W,(r)&(r,t),
[O5) r

per unit time,Wd(F), which for a cubic crystal, is given by

T [ e =) -
14— fdr”’lf(r’—r”)|2}
M

(34)

wd(F)=3f dr'[f(r—r")|?

dL(r,t) Dy Veo(N? - . o
TSAT {E;; )22 ,\(;,)O(r)] [£(r, )= 2(r,)]=Wy(r){(r.1).
X(S,(r")S,(r")). (30) 2 o5

In Eq. (30) the first term describes direct interaction of a
given nuclear spin with the PI and the second term correThe coupled Eqs34) and (35 describe the relaxation pro-
sponds to indirect interaction via neighboring nuclear spinscesses of the Zeeman and dipolar reservoirs as a result of the
It should be noted that the second term in E20) has no  exchange between theffirst terms in Eqs(34) and (35)]
diffusional character. and direct relaxation to the Flast terms in Egs(34) and

By introduction the quantitieBGZ(F,t)—ﬂL]=§(F,t) and (35)]. Equations(34) and(35) are similar to the Provotorov

L . . equitations® In a homogeneous magnetic field, E484)
[Ba(r,t) —BL]={(r,t) the equations can be rewritten as (35) give the results obtained earliet The evolutions

JEFD) 1 i o i of &(r,t) and £(r,t) toward their steady-state values is a
&t’ = —V(D2(r){wo(r)VE(r,t)+[&(r,t) linear combination of two exponentsAt very low tempera-
wo(r) tures, where the rates of the direct relaxathfi(r) and

— (1) V(N —W5(NE(T 1), (31  Wq(r) as aresult of the Pl are very slow, the relaxation rates

as a result of the Pl are
d¢(r.t) _ Da(r)Vao(r)

{wo(N)VE(T,U+[ET 1)

ot M, =D Awg(r)  [Vao(N)]?
N N N N + — vz R
— L )]V oo(1)}+ V[Dg(N VL] wo(r) Mz
~Wa(NZ(r,0) (32 - Awo(r) Wi ()
-
with the boundary conditions Awg(F)— [Vwo(r) ] @o(r)
M
Vélir=1=0, V{|j7=1=0. (33 -
L - [Vwo(r)] -
In the case of a homogeneous magnetic figldyo(r)=0, VIV Wy(r), (36)
Egs.(23) and(24) give the results obtain earlier for the spin 28 wo(r) _[Vwo(;)]z
diffusion of the Zeemahand of the dipolar energy. From wo
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- N
)= LV o(r)] Wa(F) am(r't)=DZV[Vm(F,t)—lg(F,t)vwo(F)}
MzAwo(r) - o gt M2
= [Vag(1)] L
0 —W,(rym(r,t), (40
Aoo(r) W,(r). (37) Je(Ft) 1 DyVag()

- = —Wy(r). e(r, 0% 1) R y R -

Awo(F)—[VwO(:\jl]sz(r) ‘ I VI [Vm(r,t)—M—lzs(r-t)Vwo(r)}
’ +DgAe(r,t)—Wy(r)e(r,t). (41)

These relaxation times+(F) and 7_(F) are the functions of Without the terms describing the spin-lattice relaxation, Egs.
the positionr. In order to obtain the observed magnetization,(40) and (41) are similar to the two coug)led equations ob-
the solutions of Eq(34) and(35) must be averaged over the tained earller.usmg an mtumve. approacttquations(40)
sample. For this averaging procedure one needs to know tr1d(41) describe the time behavior of the local nuclear mag-
field distribution. We consider below an example of the in-netizationm(r,t) and the local dipolar energy(r,t). How-
ternal distribution of the field in the case of a conventionalever, they cannot be observed directly.
superconductor. The experimentally observed values, the total nuclear
As a result of the diffusion v:imishing relaxation regime magnetizationM (t)= fdrm(r,t) and total dipolar energy
the local inverse temperatureé(r,t) and {(r,t), become E4(t)=/dre(r,t), can be obtain from Eq$40) and(41) by
spatially distributed over the sample with a distribution integrating in limits froml to R both equations. Taking into
which is not the equilibrium one. In this case we have to takeaccount the boundary conditions and neglecting surface ef-
into account also the gradient teriV&(r,t) andV{(r,t), in  fects atr=I andR, we have
Egs.(31) and(32). In the next section we consider the influ-

IM(t) Dy (R . . - RL L .
ence of the spin-diffusion process. at( =— yll/l Zf drs(r,t)Awo(r)—f drw(rym(r,t),
2 Ji |
42
C. Diffusion relaxation regime (42)
Here we obtain the time dependence of experimentally JBa(t) 7Dz RdFm(F B Awg()
observable values—the nuclear magnetization and the dipo- at M, Ji a0
lar energy. We consider a spin system with a sufficiently low
concentratiorCp of the PI. R g -
For this the sample may be divided into regions, each L drrg(Ne(r,t). (43
including only one PI. These regions are assumed to be
spherically centered on the Pl with radiBsequal to the It follows from Egs.(42) and (43) that for a short time
average separation of the P(Ref. 22 R=(3/47Cp) 3. after the excitation of the spin system, the relaxation of the

In order to compare the theoretical results with experi-total nuclear magnetization and the dissipation of the total
mentally observed quantities of the nuclear magnetizatiowlipolar energy are governed by the direct relaxation to the Pl
and the dipolar energy we use E¢31) and(32) for inverse  and by the flow in a inhomogeneous magnetic field. To ob-
temperatures, the equations describing time behavior of thiin the relaxation times, both in case of the magnetization
local nuclear magnetization and local dipolar energy. Theand in the case of the dipolar energy, we need to know the

first equation is multiplied byy, wo(r) Tr(13) and the second internal distribution function of the fieldyo(r), in a sample.
by M2Tr(I§) which leads to the following equations: Below we consider an example of the internal distribution of
the field in the case of the conventional superconductor va-
nadium compound&
amz(F 1)

> Y\ > >,
e DZV[VmZ(r,t)— M—st(r,t)Vwo(r)}

IIl. SPIN-LATTICE RELAXATION AND SPIN DIFFUSION
) A IN THE MIXED STATE OF CONVENTIONAL
— W, (N[ mz(r,t)—m,], (38) TYPE-Il SUPERCONDUCTORS

As an example of an application of the theory, we con-

de4(Fit) 1DV wo(r) ) ” ) . sider type-Il superconductors |r1 a magngtlc jlelq. In the
o v Vmg(r,t)— M—sd(r,t)Vwo(r) type-1l superconductors, an applied magnetic flald in the
2 2 range between the lower and upper critical fidh,;<H,

+ DA eg(F ) —Wy(F)[eq(T) =& ]. (39) <H,,, penetrates into the bulk sample in the form of fila-

ments(vorticeg, each with a quantum flux ob,=c#/2e,
R R which form a two-dimensional structure in the plane perpen-
By introducing the quantitiegmg(r,t)—m]=m(r,t) and  dicular toH,.?* An internal magnetic fieldfi(r) is generated
[eq4(r,t)—e ]1=¢(r,t) Egs.(38) and(39) can be rewritten as by vortices, which are spatially distributed over the sarftple
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with the vortex lattice constart~(®,/Hy)Y2 The thermal gs(f.t) D
motion of the vortices in this mixed state gives rise to a ﬁt' :M—Z
time-varying magnetic field:I(F,t). The component of this 2
time-varying field perpendicular to the applied magnetic field
H, may induce relaxation of the Zeenfdf®?®and dipolar ~ The solutions for Eqs(46) and (47) are
energies of the nuclear-spin system. Because of the spatial .

dependence of the transition probability, the local nuclear m(r,t) F{ t

magnetizationn(F,t) and the local dipolar energy reach their m(r,0) - X le(r*)
equilibrium value at a faster rate in the vicinity of the core of ’
vortex. Therefore, the nuclear magnetization and the dipolar
energy are functions of the distance, and their spatial diffu- = _
sion may be induced. This process is important only when e(r,0)  &(r,0) Tl_zl(r)
the difference of the internal local magnetic fig¢id units of 1+ - 1(?)
a frequencyat sites occupied by neighboring nuclei is of the 1d
order(or lower than of the NMR linewidth in order to fulfill ;{ t
—exd —

Y1$o
2m\%p

2
) [m(r,t)—e(r,t)]—Wgy(r)e(r,t).
(47

, (48)

e,y mr0 1 jexp'_ t
l le(F)_

t

T14(1) |

the energy-conservation laWiVe consider a spin system in a
sufficiently low external magnetic field, i.e., a concentration
C,~By/®, of small vortices, and the sample may be di- - -
vided into regions with radiuR, equal to the average sepa- thre m(0) E’Tdf(o) a[el Ehe initial values _ofn(r,t) and
ration of the vortex coreR,=(wC,) Y?>~a. For Hg g(r,t), andry, (r) and7,4 (r) are the relaxation rates of the
~2000 G, the order iRR,~500 A. Each region includes local nuclear magnetization and local dipolar energy, respec-

. (49

—|{ +expg —
T14(1) }

only one vortex. tively,
In type-Il conventional superconductor the distribution of e - .
the magnetic field witf? Ty, (M) =7_7(r)=Wg(r), (50
2
1,2 1,2 Y1¢o -
bo P Tig (N =71 =Dz ————| +Wqy(r). (50
H(p)ZZW;ZInX for r<, (44) 1 + 2\ 2m\2pM, d

At very low temperatures, where the rates of the direct re-

where\ is the London penetration length apdis the dis- laxationWy(r) to the Pl are very slow, the second term can
tance from the core of the vortex in the cylindrical coordi- b€ ignored relative to the first one:
nate,r?=p?+z2. In the ideal situation the vortex fields do
not have the transversal components, which can cause relax- 1, Yo
ation. In this case the thermal motion of the vortices in this 71 (M= DZ(M
. . . . . pWi2
mixed state is not the reason for the rapid relaxation in
type-ll conventional superconductors. Another relaxationMoreover, the experiments of the measurement of dipolar
mechanism must be proposed, such as spin-lattice relaxati@nergy relaxation starting with converting the Zeeman order
as a result of the PI or if there are pinning centers, a result afo a dipolar one by adiabatic demagnetization in the rotating
the thermal fluctuations of the vortex section between thdramé result in initial conditions at whicim(r,0)=0. Then
pinning center$® We consider only the relaxation produced the time variation of the local dipolar energy can be de-
by the PI. The thermal fluctuations of vortices will be de- scribed by the following equation:
scribed in a future paper.

(52

At the first step of the relaxation, immediately after exci- g(F,t) Y o 2
tation, £(r,t) and Z(r,t) will relax according to Eqs(34) e(r,0) oH Pz 2mN2pM t. (53
and (35). From Eqgs.(31) and (32) for inverse temperatures 2
we take into account that In order to obtain the observed value of the total magnetiza-

tion M(t) and the total dipolar enerdyy(t), the solution of
s Egs. (48) and (53) must be averaged over the sample. To

Vao(p)=— Y 20 . Awg(p)=0. (45) qbtaln the tlme»dependence bf(t) and Edgt), the quanti-

27\°p ties Gz(t)=m(r,t)/m(r,0) and Gy(t)=¢e(r,t)/e(r,0) are
the normalized relaxation functions of the total magnetiza-
We then obtain the time behavior of the local nuclear mag!ion, @nd the total dipolar energy must be averaged. Taking
netization and dipolar energy to be into account the spherical symmetry of the problem, let us
neglect the detailed angular dependence of the transition

probabilitsz(F), whose dependence on the distance from

the PI can be presented*as/,(r)=A/r®. In the limit of the
number of PI's and of vorticed\p—<, a volume of the

am(r,t)

= =—W,(r)m(r,t), (46)
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sample V|, —o, andNp/V =Cp, the Pl concentration, and R R . .
as a result of the averaging procedure of Efl), we 8(f-t)=f dr' > exp(—p2Dat) (DY), (6D)
obtairf®3° "
wherek,, and(bn(F) are the eigenvalue and eigenfunction of
t |\ the operator
<Gz(t)>v:exl{_( dir) ] (54)
TlZ

DA —Wy(r) (62
with the relaxation times for the direct relaxation proces

S >, . . .
written as andp, and ¥ ,(r) are the eigenvalue and eigenfunction of

the operator

9 2

YV arg(1)
16m°AC3

M5

dir _

17= (59 DyA—D; (63)

and a=1/2. A similar averaging procedure of E(:3) can  Taking into account the spherical symmetry of E8@) and

be performed: in the limit |mv%j’Ava(NU/Av):(;U ,and the C?rcular symmetry of Eq63), just the_terms WiFm =_O
for a short-time interval after an excitation of the nuclear-.ContrIbUte to th‘? solution8) and(59). This approximation
spin system. we obtain is well known in the quantum theory of scatterfhgand

gives the following equations:

t
<Gd>v=ex;{ - W) : (56) M) M(F) 64)
v A
where with the relaxation time
: 27 A2M,)\2 R . .
T = = ( " ¢02) . (57) fl drm(r,t)
U .
D,C,In+" T (65
fRdﬁ m(r,t)
r =
Consequently, we obtain that for a short time after excitation [ T1,(1)
i . . . 1z
of the spin system, the decay of the total magnetization is ,
described by the stretched exponentia#) with «=0.5, &nd the total dipolar energy
while the dipolar energy decrease is completely exponential
(56). JE4(t) _ Eq(t) (66)
This direct relaxation process of the Zeeman and dipolar at Ta
reservoirs should be valid for a short time after a disturbance . ) )
of the nuclear-spin system. Then it is expected that th&ith the relaxation time
nuclear magnetization and the dipolar order relaxation pro- R
cesses are determined by spin diffusion, described by Egs. f dFs(F,t)
(42) and(43). Taking into account thak wq(r)=0 (45), the Tdif _ 67
observed values of the total nuclear magnetizakitit) and g e(r,t)
the dipolar energye4(t) are given by f r =
I 7g(r)
M) R m(r.t) g  For the calculation of the relaxation times in this relaxation
a ), 9 ) | (58 regime, Tdif andTJ!, we note that the relaxation processes

both for total nuclear magnetizatidvi(t) and the total dipo-
lar energyE4(t) are not sensitive to the detailed distribution

. (59)  of the local quantitiesn(r,t) ande(r,t) and reflect just an
714(1) ] integral character of the shape of them. Whiier) ande(r)
with () and 7,4(F) given by Eqs(50) and (52), respec- 90 not look likem(r, t) ande(r,t) in detail these differences

tively. The solution of Eqs(58) and(59) can be obtained by cannot produce major errors in the calculationsT@Er and

using the expansion ah(f.t) and &(F.t) in the following T, Using this fact and the spherical symmetry of the mag-
forms’ netization problem and the circular symmetry of the dipolar

energy problem we use the approximatiothat bothm(F,t)
ands(F,t) can be substituted by the time-independent solu-
tionsm(r) ande(r) of the stationary diffusion equations

e(r,0)]

JE4(1) R
. ——fl dr

m(r*,t)zf dr' >, exp(— k2D )P, (r)DX(r') (60)
and D A, m(r)—Wy,(r)m(r)=0, (68)
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2

YVao(p) &(p)=0,

DdAps(p)_DZ M2

(69

10 4
where A, and A, are the Laplacian in the Cartesian and
cylindrical coordinate frames, respectively. Substituting the
solution of Eq.(68), which was obtained earliérinto Eq.
(65 leads to the relaxation time for the total nuclear
magnetizatior, T 14tk
H =007T

T ,=(4.5£0.3) sec
¢ =0.52+0.03

(70

Equation(69) can be solved using two boundary conditions.
For the first boundary condition we adopt an assumption that
the local dipolar energy gi=R, has the fixed value(R,)

#0 whose actual value is unimportant, because it is be can-
celed in the expression for the relaxation tiffif (67). The
second one can be found by integrating E&9) from | to R,

and taking into account th&ty=0 for p<<I, which results in
ds(p)/dp|p=|=0. Taking into account these boundary con-
ditions the solution of Eq(69) can be presented as

RT_U>X£2 S @
el 146

R
1+(
wherey=(Dz/D )Yy, ¢o/27mA*M,). Performing the inte-

T =(8.5C,DI'AV4 "1,

T ,=(28.410.6) sec

Magetization (arbitrary units)

e(p)=e(R,)

—l

gration in Eq.(67) with the obtained solution of E¢(71)
yields the relaxation tim&dy of the total dipolar energy,

2
v

—2_\yX_y X
Ty +2)’ y'=y
Da (x*-4)

x(y¥=y=%)
wherey=R,/l. In the limit y>1 (Dz/Dy4>1) from Eg.
(72) we obtain

(AZMZ)z
o\ N0/

In the other limit y<1 (D;/Dy<<1) the relaxation time
T e

dif _
d —

. (72

air_ AT
1d DZC

(73

t (sec)

FIG. 1. Relaxation of the total nuclear magnetization in the su-
perconducting state dt=1.41 K. The open circles are experimen-
tal data(Ref. 23. The solid line is a least-squares fit to expressions

(54) and(74).

However, such an exponential time dependence for the
nuclear magnetization is not valid for shorter times following
an excitation of the spin system. The relaxation of the total

t

aif
Tig

Eq(t)

E(0) : (79

In this case the term describing the relaxation tonuclear magnetization is described by the stretched exponen-

P|, Wd(r)NB/rG, must be taken into account, which leads t0t|a| (54) A |ea3t'squares flttlng:IgS 1 and 2t0 the sum of

a result similar to that of Eg. (70: T
=(8.5C,D3"BY . In this case the relaxation times for the
total magnetization and for the total dipolar energy are at th

same orderTaf ~TdIf

IV. RESULTS AND DISCUSSION

a stretched exponentifEq. (54)] and an exponential74)
yields results very close taw=0.5 for the relaxation of

éhe total nuclear magnetization, in agreement with the

conclusion of the above-described theory. Comparing the
relaxation times of the direct and the diffusion regimes
and assumingCp~ 10 cm™ 3, we conclude thaD,~5.3

X 10~ 13 crré/sec, which is very closed to the result obtained

We compare the results obtained here with the relaxatiof Ref. 7.

processes of nuclear magnetizatiband dipolar enerdyin

The relaxation of the total dipolar energy remains expo-

mixed-state superconducting vanadium. First, as is clearlential (56) also for the diffusion regime, but with the dif-
seen from Fig. 2 of Ref. 23 and from Fig. 1 of Ref. 7 at longferent relaxation timel'4 (57), which is shorter(note that

times the nuclear magnetizatfdnand dipolar enerdyde-

crease to equilibrium exponentially. This is the spin-diffusion

regime described by the solutions of E¢84) and (66):
M(t) t

M(0) (79

R,/I>1) than theTd! :

: R, .
Tdf =2 In—=T19Ir

I (76)

A least-squares fittingFig. 3 to the sum of two exponents
[Egs.(56) and (75)] yields the result

064402-8



NUCLEAR SPIN-LATTICE RELAXATION AND SPIN . .. PHYSICAL REVIEW B68, 064402 (2003

45 - 16 -
0]
4049 O 14 -
35 12
—_ - T -217K
2 T =085K pe H, =0.1875G
% 30 :—'dir =Z‘270T2 % T =(14.50.6) msec
= + .
g ) ‘1347;0'_0)43“ % 10 1 T =(97.342.1) msec
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£ 25+ £
s 3 8
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FIG. 2. Relaxation of the total nuclear magnetization in the su- FIG. 3. Relaxation of dipolar energy after adiabatic demagneti-
perconducting state 8t=0.65 K. The open circles are experimen- zation in the superconducting stateTat 2.17 K. The open circles
tal data(Ref. 23. The solid line is a least-squares fit to expressionsare experimental datéRef. 7). The solid line is a least-squares fit

(54) and(74). expressiong56) and (75).
dif with Eq. (26) for the radius of diffusion barrier we obtain
1z
iy ~6.80. (77)
1d ~13
22 % | 0710 7 em (79)
In order to estimate the radius of the diffusion bartiewe Ys/td  12m\2ys ' ’

calculate the quantitR,= (7C,) 2 by using the value of

the magnetic field used in the experiment, 1875 G. As a ,. . . . :
result we haveR,~5.90x 106 cm, which is larger than the which is in very good agreement with the result obtained

) ; ; from experimental datd78). Note that in a homogeneous
estimated® penetration length for pure vanadium (4.5 magnetic field, for the radius of the diffusion barrier we have
X108 cm). Using experimental dat#&ig. 3), Eq.(77) and 9 '

, e ; . 1=3.6x10"" cm.
5)” t,)ethe radius of the diffusion barridy can be estimated As follows from above-presented theory the relaxation

mechanisms of the total magnetization and the dipolar en-
ergy are different, both for the direct and diffusion relaxation
_ - regimes. For a short time after the excitation of the spin
Tdif =1.96<10 " cm. (78) system the relaxation of the nuclear magnetization is driven
exp< 12 ) by a direct relaxation to the PI with the relaxation tifig)
(55), and the relaxation process is described by the stretched
exponential low, while the dissipation of the dipolar energy
For theoretical estimation of the radius of the diffusion bar-is determined by its flow into an inhomogeneous magnetic
rier | Eq. (26) can be used. Taking into account field with a relaxation timeTSy (57), and it is completely
that r[dHo(r)/ar]lif=i=—(¢o/2m\?), the gyromag- exponential. Note that the direct relaxation to the Pl is not an
netic ratio for vanadium nuclei isy,/27=1119.3 Hz/G, effective mechanism at a very low temperature. This conclu-
the distance between neighboring vanadium nugjei2.63  sion is confirmed by experimental data. The relaxation of the
%1078 ¢cm,>® and we assume that for Pl it is of the order nuclear magnetization is nonexponential with the relaxation
yg2m~3x10° Hz/G® As a result of the calculation times T9Y=4.5sec atT=1.41 K andT¢;=8.3 sec atT
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=0.65 K, but the dipolar energy decreases exponentially by V. CONCLUSIONS

the anomalously shoftis compared to both the nuclear mag-  In conclusion, we obtained two coupled equations de-
netization time T{y , and the dipolar energy relaxation time scribing mutual relaxation and spin diffusion of the nuclear
in the normal stateT;4=120 msec) relaxation timeT‘ljg magnetization and dipolar energy using the method of the
=14.5 msec af=2.17 K. At long times the relaxation of nonequilibrium state operat?ﬁ.The equations were solved
the nuclear magnetization is determined mostly by the spift Short- and long-time approximations corresponding to the
diffusion since it flows in an homogeneous magnetic fielddirect and diffusion relaxation regimes. We showed that in
and it is exponential. The inhomogeneity of the local mag-N€ Mixed state of the conventional high-superconductor,
netic field does not influence the relaxation of nuclear magf"t. the be.gmn!ng of _the relaxation process, th_e d!rect relax-
netization due to the specific vortex field distribution in theatlon regime is realized. The nuclear magnetization relaxes

] ] . with a nonexponential time dependence witk 0.5 and di-
conventional superconductor which leadst@o(r)=0. In  5|5r energy decreases exponentially. Then the relaxation re-

other type-Il superconductors, for example, those of highyime changes both for nuclear magnetization and the dipolar
temperature, with a different vortex field distribution, the in- energy, to the diffusion one described by the exponential
fluence of the inhomogeneity cannot be ignored. The dipolaime dependence, which coincides with the experindént.
energy is determined by the spin diffusion in an inhomoge-The radii of the diffusion barrier and the spin-diffusion co-
neous magnetic field. The inhomogeneity of the local magefficient were estimated and are in good agreement with ex-
netic field plays an important role in the relaxation of theperimental data. The obtained analytic expressions can be
dipolar energy. The character of the relaxation remains expaiseful for extracting important information about the vortex
nential, but with a different relaxation time compared with dynamics and structure as well as on the internal magnetic-
that of the direct relaxation regime. Experimental results ardield distribution.

in a good agreement with this conclusion. Both the nuclear

magnetization and the dipolar energy relax exponentially, but ACKNOWLEDGMENT

with sufficiently different relaxation time&{} = 28.4 sec at The authors are grateful to Professor V.A. AtsarHisti-
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