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Kinetic energy control in action-derived molecular dynamics simulations
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We present a computational approach to obtain classical atomic trajectories for given initial and final atomic
configurations. By introducing an additional penalty function to the action of Passerone and Parrinello@Phys.
Rev. Lett.87, 108302~2001!# the quality of atomic trajectories is greatly improved in terms of the Onsager-
Machlup action. We demonstrate that this variant of the action is useful for improving path quality and
consequently for atomic trajectory annealing. We utilize the one-way multigrid method as an efficient relax-
ation method for the construction of trajectories. The implementation of the proposed approach to a general
system is quite straightforward as in the case of ordinary molecular dynamics simulations, i.e., the only
requirement is to evaluate the potential energy and the atomic forces.
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I. INTRODUCTION

The process of concerted atomic rearrangement, des
its physical importance, is not fully understood in ma
cases. Molecular dynamics~MD! simulation technique is
quite useful for the study of the time evolution of atom
systems.1 However, conventional MD simulation approac
fails to observe rare events where astronomically long sim
lations are required due to large activation ene
barriers.2–10The time scales associated with rare events, s
as configurational transitions of complex molecular syste
are many orders of magnitude longer than those of individ
atomic vibration. To observe a rare event which takes pl
on the time scale of a second, it is necessary to simu
;1015 MD steps since typical integration time in MD is i
the range of a femtosecond. For this reason, the ordinary
simulation approach is not a suitable method for the stud
rare events in general.3–5

Significant progresses such as developments of activa
relaxation technique,8 hyperdynamics,9 parallel replica
dynamics,11 and dimer method12 have been made for simu
lations of long-time events. In the activation-relaxation tec
nique, the system is driven from one potential-energy ba
to another by inverting the components of the force acting
the system. The new potential-energy basin is either acce
or rejected via Monte Carlo criteria. By introducing vario
structural changes in a condensed-matter system, it is
sible to follow the reaction path as the configuration mov
frequently from one basin to another. In the hyperdynam
simulation, the potential is modified by adding a bias pot
tial term to raise the energy in the regions around
potential-energy basins. Correct equilibrium and dynam
properties are recovered by employing the time increm
procedure based on the technique of importance samp
Voter has developed the parallel replica dynamics11 where
many trajectories are simulated in parallel while waiting
structural transformations to occur. This method extends
time scale of a simulation in terms of its high parallel ef
ciency. Henkelman and Jo´nsson12 have developed the dime
method which efficiently finds many saddle points. T
0163-1829/2003/68~6!/064303~8!/$20.00 68 0643
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dimer method can be used for long time-scale simulati
along with the kinetic Monte Carlo~MC! method, where the
transition rate is approximated by the harmonic transitio
state theory. For example, long time simulations of alum
num clusters on surface are carried out successfully u
this approach.13 It should be noted that, in these methods, t
system is not guaranteed to reach the desired final confi
ration in the study of rare events.

When studying rare events, it is more appropriate to
corporate the given initial and final atomic configuratio
explicitly in the simulation, i.e., one formulates the proble
into an action minimization problem with fixed bounda
conditions: For given initial and final atomic configuration
one has to find the most probable path between the two s
by optimizing a specially designed object function.2,3,14,15

This approach is in contrast to the ordinary MD simulatio
where one has to wait indefinitely until the system w
given initial configuration reaches the desired final state.
search the most probable path of the configurational cha
one has to find the lowest saddle point connecting the
potential-energy basins corresponding to the initial and fi
states.

The nudged elastic band method, developed by Jo´nssonet
al.6 is a heuristic method to search for this saddle po
providing the activation barrier energy and the atomic co
figuration of the transition state. A similar method, strin
method, is also designed for the study of rare events.7 How-
ever, these strategies do not take into account of dynam
conditions such as the total-energy conservation and the
action principle.

Recently, Passerone and Parrinello5 proposed a powerfu
action-derived molecular dynamics~ADMD ! method that
explicitly determines the dynamical trajectory of an atom
system for given initial,$R(0)% and final, $R(t)% atomic
configurations, and a chosen simulation time intervalt.5

This method was shown to be quite useful for the study
rare events. In ADMD simulations, one starts with an init
guess of the time trajectory connecting the given initial a
final configurations. The final atomic trajectory is obtain
by minimizing an appropriate action starting from the initi
©2003 The American Physical Society03-1
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guess. However, in practical application of the origin
ADMD method to a system, we observe that the final res
of the atomic trajectories strongly depend on the initial gu
of them.16 In this paper, as a solution to this problem, w
introduce an additional penalty function term to the origin
action. We show that, based on the measurement of
Onsager-Machlup action, the proposed action provides p
of significantly better quality compared to those from t
original action. We also show that the ADMD method
superior to the nudged elastic band method in correctly e
mating the activation energy barrier of a complex system

The organization of the paper is as follows. In Sec. II,
summarize the original ADMD method by Passerone a
Parrinello. In Sec. III, we present the extended action c
taining the control of kinetic energy. We also present
one-way multigrid approach as an efficient action minimiz
tion method. The summary and conclusion is provided in
final section.

II. ORIGINAL ADMD METHOD AND THE QUALITY
OF A TRAJECTORY

We are interested in a computational approach to fi
classical atomic trajectories to connect given initial and fi
atomic configurations. Atomic units (\5me5e51) are
used throughout this paper. We look for classical atomic
jectories,$Rj% of an N-atom conservative system with give
potential energy,V($R%). The trajectories start at the poin
$Rj 50%(5$R(0)%) at time t50 and finish at the poin
$Rj 5P%(5$R(t)%) at time t5t. An arbitrary atomic trajec-
tory satisfying the boundary conditions can be represen
by a straight line between the two points plus a series of s
functions as shown below:5,15

Rj5R~0!1
j D

t
@R~t!2R~0!#1 (

k51

P21

ak sinS kp j D

t D ,

~1!

where D(5t/P) is the discretized time interval andj
(50,1,2, . . . ,P) is the time index. The sine expansion coe
ficient ak is composed of numbers bounded by a fixed a
plitude Amax. It is straightforward to obtain Fourier compo
nents of an atomic path represented by Eq.~1!. It should be
noted that, in the process of path relaxation~see Sec. III B!,
low-frequency components of a path relax more slowly th
high-frequency ones. Therefore when performing path re
ation, it is convenient to start with low-frequency comp
nents of a path and move on by gradually adding hi
frequency ones to accelerate the convergence.5

Passerone and Parrinello proposed an action,Q($Rj%,E)
to generate an atomic trajectory for given sets of initi
$R(0)%, and final,$R(t)%, configurations.5 The dynamical
trajectory$Rj% can be obtained by minimizing the followin
discretized action, mimicking the least action principle in t
classical mechanics,
06430
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Q~$Rj%,E!5 (
j 50

P21

DH (
I 51

N
MI

2D2
~Rj

I2Rj 11
I !22V~$Rj%!J

1m (
j 50

P21

~Ej2E!2. ~2!

Here the first term stands for a discretized classical actioS
of an N-atom system interacting by a given potent
V($R%). The number of intermediate configurations betwe
the two end points is set toP21, andMI is the atomic mass
of atomI. The instantaneous total energyEj at time stepj is
defined by5 Ej5 ( I 51

N (MI /2D2)(Rj
I2Rj 11

I )21V($Rj%).
The initial and final configurations are fixed during the min
mization of the actionQ. The second part of the actionQ is
a penalty term, and the role of the parameterm is to control
the value of the total energy of the system close to the ta
energyE along the path.5

Now, the problem is to find a solution$Rj% which mini-
mizes the discretized actionQ($Rj%,E) for givenE. In prin-
ciple, rigorous application of a global optimization metho
such as the simulated annealing17 should solve the problem
However, generally speaking, many global optimizati
problems are nontrivial, and we focus on a local minimiz
tion procedure in the present study.

In the ADMD simulation, it is important to check th
quality of the resulting trajectory based on the fact that
trajectory satisfies the Newton’s equation of motion, i.e.
follows closely the Verlet trajectory.2,3,5The key quantity for
this measurement is the discretized Onsager-Mach
action,3,5

O5 (
I 51

N

(
j 51

P21 S 2Rj
I2Rj 21

I 2Rj 11
I 2

D2

MI

]V~$Rj%!

]Rj
I D 2

.

~3!

The trajectory ofO50, i.e., all the arguments in the pare
theses become zero, is known as the Verlet trajectory.18 The
smaller the value ofO is, the more closely the correspondin
trajectory follows the Verlet trajectory. Therefore the qual
of a trajectory is often measured3 by the value of the
Onsager-Machlup actionO and we will adopt this in this
work.

III. RESULTS AND DISCUSSION

A. Improved path quality

When performing the original ADMD simulation we of
ten encounter a situation where the final converged trajec
depends strongly on the initial assignment of the expans
coefficients$ak%.

16 Here we illustrate this problem in a spe
cific example, where we perform several ADMD simul
tions, using various sets of initial trajectories, of a Ston
Wales~SW! defect formation19 in a C60 molecule.20,21A SW
defect in a C60 is illustrated in Fig. 1, where the major con
figurational change is the 90° rotation of the two shad
carbons rearranging their neighboring bonds only. In this
ample, the problem is to find the most probable transit
path connecting the initial configuration of the perfe
3-2
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FIG. 1. An atomic trajectory associated with one out of two Stone-Wales defect atoms in the Stone-Wales transformation is sh
initial and final configurations are shown at the right-hand side of the figure. Solid lines represent the potential energy and the atomi
along the path obtained by the current method, while symbols represent those by the Passerone and Parrinello’s original method. H
m5108 a.u., n51010 a.u., target variableT5500 K, t52.473104 a.u., andP5100. The mass of a carbon atom is 2.20543104 a.u.
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fullerene to the final configuration containing a SW defe
Tersoff’s empirical interatomic potential22 is used. We have
generated four different initial trajectories by assigning ra
dom sets of$ak% with a separately chosen maximum amp
tude ofAmax. Using these initial trajectories, the Passero
and Parrinello’s actionQ is minimized. We find that, al-
though the total energies are well conserved for all cases
final converged trajectories are quite sensitive to the ini
assignment of$ak%, and they are significantly different from
each other. Consequently, the kinetic energy, the poten
and kinetic-energy fluctuations, and the value of t
Onsager-Machlup actionO are quite different from trajectory
to trajectory. The results are summarized in Table I. T
kinetic energy of each atom along the final converged tra
tory is averaged. We find that the time-averaged kinetic
ergy fluctuates quite significantly from atom to atom. The
fluctuations are also shown in Table I. This large kine
energy fluctuation is intuitively undesirable and it would
quite useful if one can introduce a procedure which assi
an appropriate value of kinetic energy to all atoms in
system so that the kinetic-energy fluctuates significantly
than compared to the cases of the four trajectories above~see
06430
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Table I!. In this work, by introducing such a procedure
kinetic-energy control, we demonstrate that the quality of
resulting trajectories is significantly improved compared
the original ADMD results.

In order to control the kinetic energy of each atom, w
introduce an additional penalty term to the Passerone
Parrinello’s action and the extended actionQ̃ becomes

Q̃~$Rj%,E;T!5Q~$Rj%,E!1n (
I 51

N S ^KI&2
3kBT

2 D 2

,

~4!

where KI5MI(Rj
I2Rj 11

I )2/(2D2) is the instantaneous ki
netic energy of the atomI at time stepj , ^KI& is its time-
average value over the entire trajectory (P steps!, T is the
target temperature of the system which we set, andkB is the
Boltzmann’s constant. The parametern controls the strength
of the kinetic energy enforcement to the value correspond
to the target temperature.
3-3
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IN-HO LEE, JOOYOUNG LEE, AND SANGSAN LEE PHYSICAL REVIEW B68, 064303 ~2003!
With the proposed actionQ̃ to be minimized, we repeate
the ADMD simulations using the same initial assignment
$ak% as above. We have used the target temperatureT5500
K and n51010 a.u., and the results are summarized in
lower panel of Table I. The total-energy conservation is
well established as in the original ADMD simulations. Com
pared to the original ADMD simulation results of the fo
separate cases above, the final converged trajectories
relatively similar to each other representing insensitivity
the initial assignment of$ak% in the case of the propose
approach. When we measure the Onsager-Machlup actioO,
we find that the quality of the paths from the proposed
tended action is significantly improved~see Table I!. Apart
from the fact that the time-averaged kinetic energy has li
fluctuation ~due to the newly introduced penalty term!, we
observe that the fluctuation ofO, from the variation of the
random initial trajectories, is also reduced.

In Fig. 2, we plot the distribution of the components
the vector $2Rj

I2Rj 21
I 2Rj 11

I 2(D2/MI)@]V($Rj%)/]Rj
I #%

collected from the final converged trajectories from both
present and the original ADMD simulations. We find that t
data fit well to Gaussian distributions for both ADMD re
sults. Apparently, the width of the distribution from th
present method is smaller than that from the original met
representing that the present method provides atomic tra
tories of better-quality.

To demonstrate the details of the difference between
results of the original and the proposed ADMD simulatio
we show in Fig. 1 two final converged paths obtained fro
the two simulations on the SW-defect formation in C60. We
first focus on the path of one of the two carbon atoms
rectly involved in the SW defect. The path from the pres
method fluctuates less in space than that from the orig
Passerone and Parrinello’s method. In Fig. 1, the SW de
is created approximately during the time interval of 40, j
,60, where overall repositioning of the atom occurs. T
definition of this time interval is less clear in the case of t
original ADMD simulation. When we plot the potential en

TABLE I. Fictitious temperaturesT8 defined by ( I 51
N ^KI&

53NkBT8/2, the atomic fluctuation ofT8 (DT8), and O ~dis-
cretized Onsager-Machlup action! are evaluated for four differen
ADMD simulations starting from random sets of sine expans
coefficients with maximum amplitudeAmax. Here we usem
5108 a.u., n51010 a.u., E5214.6 a.u., target variable T
5500 K, t52.473104 a.u., andP5100. The mass of a carbo
atom is 2.20543104 a.u.

Amax ~a.u.! T8 ~K! DT8 ~K! O ~a.u.!

Original 0.3 114.3 69.3 113.5
ADMD results 0.1 64.9 49.6 180.0

with Q($Rj%,E) 0.01 52.8 72.3 217.8
0.001 55.2 114.9 208.6

Proposed 0.3 499.5 0.0 21.6
ADMD results 0.1 499.7 0.0 23.7

with Q̃($Rj%,E;T) 0.01 499.7 0.0 17.5

0.001 499.5 0.0 39.2
06430
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ergy versus the time step, the value of the potential energ
the system is much lower before and after the formation
the SW defect in the present method. On the other hand
the case of the original ADMD simulation, the potentia
energy fluctuates around a high value throughout the en
path. This clearly demonstrates the qualitative difference
tween the two trajectories. In the original ADMD simulatio
the system wanders through many high potential-ene
states~i.e., at least one of the chemical bonds connected
the two SW-defect atoms is broken in the early stages of
simulation and remains in a broken-bond state almost u
the end!. In the present method, the SW-defect atom rema
near the given initial position with relatively low potentia
energy and it relocates its overall position during the tim
interval of 40, j ,60 gently crossing over the activation e
ergy barrier. It is interesting to observe that, in the simu
tions from the proposed method, collective kinetic-ene
transfer occurs between the two SW-defect atoms and
rest of the 58 atoms near the beginning and the end of
defect formation.

In the present method, the positions of the two SW-def
carbons fluctuate much less compared to the original ADM
results. In addition, due to the constraint of the tim
averaged kinetic energy of the SW-defect atoms, the con
bution of the kinetic energy from the outside of the the S
defect forming interval is relatively small compared to t
contribution from the SW-defect forming interval, where th
mandatory motion of the defect formation occurs. On t
other hand, the motion of the other 58 atoms is more~less!

n

FIG. 2. A typical distribution of the scalar error variables
shown. Calculated distribution of the scalar error variables from
vectors $2Rj

I2Rj 21
I 2Rj 11

I 2(D2/MI)@]V($Rj%)/]Rj
I #%, obtained

from the present ADMD method is shown in dotted bars. It fits w
with a Gaussian distribution function as shown by a solid lin
Dot-dashed bars represent the distribution of the scalar error v
ables obtained from the Passerone and Parrinello’s original AD
method. In the limit where the width of the Gaussian distribution
infinitesimal, we expect an exact Verlet trajectory that would ha
been generated by the Verlet algorithm solving Newton’s equati
of motion.
3-4
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KINETIC ENERGY CONTROL IN ACTION-DERIVED . . . PHYSICAL REVIEW B68, 064303 ~2003!
active outside~inside! the SW-defect forming interval. This
is in marked contrast to the case of the original ADMD r
sults where the kinetic energy of most 60 atoms fluctu
wildly for the entire trajectory. In Fig. 3, we plot the kineti
energy of a SW-defect atom along the paths of the orig
ADMD simulation and the proposed ADMD results.

It should be noted that, when a path is converged,
contribution of the kinetic-energy control term to the obje
functionQ̃($Rj%,E;T) is negligible~typically ;0.1%). This
means that the path obtained from the proposed appro
also serves as a solution to the original Passerone and
rinello’s ADMD method only with much improved pat
quality measured by the smaller value of Onsager-Mach
actionO.

In principle, one can employ two stages of computati
In the first stage, one uses the proposed extended a
Q̃($Rj%,E;T) for ADMD simulations. In the second stag
one switches to the original Passerone and Parrinello’s ac
Q($Rj%;E), where the final converged result of$ak% ob-
tained from the first stage is used as an input. We have
perimented this two stage procedure in several cases, an
find that the difference between the final trajectories from
first stage and the second stage is minimal.

One technical aspect of the proposed approach is to
termine the appropriate values of the target temperaturT
and the parametern. In the original ADMD method, the
values of the total energyE and the parameterm can be set to
an appropriate value.5 Once the values ofE and m are set,

FIG. 3. The kinetic energy of one of the two SW-defect atoms
shown along the paths of the original ADMD simulation and t
proposed ADMD results. The SW-defect is formed around the s
index 40< j <60 for both cases. We observe that, for the case of
current approach, the kinetic energy of an SW-defect atom is m
edly higher in the SW-defect forming interval while it is lowe
outside the interval. The distribution of kinetic energy of the oth
58 atoms acts in a opposite fashion, i.e., high kinetic energy out
and low kinetic energy inside~data not shown!. On the other hand
the kinetic energy distribution from the original ADMD simulatio
does not show such time step index dependency or atomic
dependency.
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and the values of potential energy are evaluated at the g
initial and final configurations of a system, several values
T can be tried. Typically, the kinetic energy is bounded
the energy difference between the total energyE and the
potential-energy value of either the initial or the final co
figuration. Regarding to the parametern, we have tried sev-
eral values in the range between 108 and 1011 a.u. We find
that the results are insensitive to the particular choice ofn. It
should be noted that the target temperatureT is only a pa-
rameter to control the time-averaged kinetic energy
ADMD simulations, and we do not intend to interpret it as
physical quantity.

B. One-way multigrid method

Direct application of the conjugate gradient method23 to a
trajectory containing high-frequency components of the s
expansion coefficients is not an efficient approach for act
minimization since slowly varying low-frequency compo
nents of the trial trajectory do not converge well. Therefo
when performing path relaxation, it is convenient to st
with a path containing low-frequency components only a
move on by gradually adding higher frequency compone
to the path to accelerate the convergence.5

It should be noted that very high-frequency compone
of the sine expansion of the final converged trajectory
typically quite small, whereas the amplitudes of low
frequency components are large. For example, we cons
the fusion process of two C60 molecules into a C120 carbon
capsule molecule as shown in Fig. 4. We choose the chira
of the capsule as that of the~5,5! carbon nanotube. In the
simulation, we place two C60 molecules separated by 9.9
~center to center! as shown in the figure. Before applying th
ADMD simulation, the potential energies of initial and fin
configurations are separately minimized by conjugate gra
ent minimization method,23 so that each of them correspond
to the most stable structure of its potential-energy basin.

The ADMD simulation of the C120 fusion process is quite
a nontrivial example of complicated kinetic configuration
rearrangement, since it involves many Stone-Wales-typ19

bond rotations. In Fig. 4, we show a typical Fourier comp
nents of the final path. We find that the low-frequency co
ponents of$ak% fluctuate much from atom to atom, while th
amplitudes of high-frequency components are all quite sm
This indicates that the multigrid method is efficient for o
taining good final converged trajectories.23,24

The object function minimization is carried out on seve
levels of accuracy defined by the ever-increasing numbe
the sine expansion coefficients$ak% as typically performed in
the one-way multigrid electronic structure calculations.24 We
have used seven~arbitrary number! levels of accuracy and
applied the conjugate gradient minimization method23 at
each level. The output of a lower level calculation is iter
tively used as the input for the next-level calculation~after
the addition of higher frequency components of$ak%) follow-
ing the one-way multigrid schedule. During the multigr
calculation, the number of configurations,P is fixed.

A typical convergence plot of the value of the object fun
tion Q̃ during the one-way multigrid minimization procedu
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FIG. 4. The scalar components ofak are
shown for the final converged path obtained
the current ADMD simulation. The system unde
investigation is the fusion process of two C60

molecules into a carbon capsule C120. The impor-
tance of the slowly varying components in th
atomic path construction is illustrated. We ob
serve large variation of sine expansion coef
cients at the low-frequency regime.
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is shown in Fig. 5. The three components of the action,
discretized classical action and the two penalty funct
terms are shown in the figure. In addition, we have evalua
the discretized Onsager-Machlup actionO. We observe that
the values of the total energy and the time-averaged kin
energy rapidly approach to their pre-assigned values in
early stages of simulations, indicating the numerical stabi
of the proposed ADMD method. When a path is converg
by the minimization procedure the contribution of the seco
penalty term~kinetic-energy control term! to the value of the
total object function is minimal. This demonstrates that
proposed ADMD approach can identify a satisfactory~in
terms of the small value ofO) trajectory from many possible
trajectories which one would have obtained following t
original version of ADMD simulation by Passerone and P
rinello, and the path relaxation procedure utilizing the p
posed extended action can be thought as a trajectory an
ing.

In a practical calculation of an atomic trajectory, o
needs a procedure to assign the path of each atom o
system under consideration, from the initial to the final co
figuration. Especially, when dealing with identical particl
~as in the C60 and C120 systems!, there is a set of free param
eters associated with the relative translational and rotatio
degrees of freedom between the initial and final configu
tions. We have used the least-square superposition of
atomic coordinate sets via quaternion method.25 The first co-
ordinate set is fixed while the second one is translated
rotated to provide the best fit. In complex cases, we in
duce an atomic index exchange procedure prior to
ADMD simulation to best superpose the initial atomic po
tions to the final ones. For this purpose, we used a simul
annealing method.17

C. Action-derived molecular dynamics and nudged elastic
band method

Here we compare the results of the proposed ADM
simulations and the nudged elastic band method6 for the
structural rearrangement of two C60 molecules into a carbon
capsule C120, as discussed above.26 Figure 6 shows the val
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ues of the potential energy along the trajectories obtai
from the two methods. When we examine the trajector
obtained from the nudged elastic band method, we find
several Stone-Wales-type bond rotations occur simu
neously. Consequently, the configuration of the high
potential-energy state~near step index 70! contains many
carbons with coordination number less than three~i.e., these
carbons have broken chemical bonds!, and the estimated ac
tivation energy is about 40.8 eV. In the practical applicati
of the nudged elastic band method to a complex system, s
as the carbon capsule C120 formation from two C60 mol-

FIG. 5. Convergence characteristics of various quantities du

a typical minimization process of the extended actionQ̃ is shown.
Atomic units are used for the vertical axis. The object functi
consists of three terms, a discretized actionSand two penalty func-
tion terms for total and kinetic energy controls. The contributi
of the second penalty term to the object function is minimal~less
than 0.1%! when the trajectories are converged. We usem
5108 a.u., n51010 a.u., E5214.6 a.u.,T5500 K, t52.47
3104 a.u.,P5100, andAmax50.1 a.u. The mass of a carbon ato
is 2.20543104 a.u.
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FIG. 6. The results of the ADMD method an
the nudged elastic band method are compared
the fusion reaction of two C60 molecules into a
C120 molecule. Potential-energy fluctuation
along the two trajectories are shown. It should
noted that in the ADMD simulation, the value o
the total energy is controlled to the value ind
cated by the horizontal line in the figure. Fo
ADMD simulation, we use m5108 a.u., n
51010 a.u., E5229.44 a.u., T5200 K, t
53.713104 a.u., andP5150. For nudged elas
tic band simulation, we uset53.713104 a.u.,
and P5150. The mass of a carbon atom
2.20543104 a.u. The same initial guess of th
trajectories is used for the two simulations. Th
initial and final atomic configurations are show
at the left and right corners, respectively. Te
soff’s empirical interatomic potential is used.
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ecules, one has to repeatedly obtain many trajectories w
varying the initial assignment of$ak%.

6 In Fig. 6, we show
the best nudged elastic band results from our ten indepen
calculations~i.e., the one with the least value of activatio
energy barrier!.

On the other hand, in the application of ADMD simul
tions, one can avoid high potential-energy configurations
assigning an appropriate value of target total energy. Co
quently, the trajectory from the present ADMD simulatio
involves a series of Stone-Wales-type bond rotations one
ter another, keeping the number of under-coordinated
bons at a minimal value. The activation energy barrier e
mated from the present ADMD method is about 6.2 e
Since the major aim of the study of rare events is to find
most probable transitions state~i.e., the lowest energy saddl
point connecting the given initial and final states!, this
clearly demonstrates that the ADMD method is more e
cient than the nudged elastic band method in correctly e
mating the activation energy barrier. We find that, in sim
cases, the nudged elastic band method works as well a
ADMD. For complicated systems, the nudged elastic ba
method typically overestimates the activation energy barr

D. Parallel computational aspect of ADMD

One of the advantage of the ADMD method is that
calculation can be easily and efficiently parallelized. At ea
path relaxation step in the object function minimization p
cedure, on has to evaluate the potential-energy function
the atomic forces forP21 independent configurations. Sinc
theseP21 calculations are the most time consuming part
the ADMD simulation, and since they are completely ind
pendent of each other, one can easily take advantage of
allel computation with high parallel efficiency. The CP
time associated with the relaxation of the path is minim
compared to that of potential energy and atomic for
evaluation. This is due to the characteristic parall
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computation-friendly coordinate discretization of the ADM
simulation in contrast to the opposite case in ordinary m
lecular dynamics.

IV. CONCLUSIONS

The ADMD simulation is a powerful method for the stud
of rare events for given initial and final configurations, wh
ordinary molecular dynamic approaches would take as
nomical amounts of computational resources to overco
large activation energy barrier between them. We have p
posed an extended action for the ADMD simulation that co
sists of three terms, a discretized classical action and
penalty function terms to control both the total energy a
the time-averaged kinetic energy of each atom.

The quality of atomic trajectories obtained by the pr
posed ADMD method is significantly improved in terms
the smaller value of Onsager-Machlup action compared
that from the original ADMD method. The proposed action
useful for improving path quality and can be used as
atomic trajectory annealing method. This feature was de
onstrated by the fact that the path from the proposed ADM
method is also a solution of the original method by Pas
rone and Parrinello, the difference being only the sma
value of the Onsager-Machlup action. We found that ADM
is superior to the nudged elastic band in finding low activ
tion energy barrier between two given states of a comp
system.

The ADMD calculation can be easily and efficiently pr
cessed by parallel computation indicating that the metho
useful for studying pathways of complex systems. T
implementation of the proposed approach to a general
tem is quite straightforward as in the case of ordinary m
lecular dynamics simulations, since the only requiremen
to evaluate the potential energy and the atomic forces.
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