
PHYSICAL REVIEW B 68, 064201 ~2003!
Three-dimensional Anderson model of localization with binary random potential
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We study the three-dimensional two-band Anderson model of localization and compare our results to ex-
perimental results for amorphous metallic alloys~AMA’s !. Using the transfer-matrix method, we identify and
characterize the metal-insulator transitions as functions of Fermi level position, band broadening due to dis-
order and concentration of alloy composition. The appropriate phase diagrams of regions of extended and
localized electronic states are studied and qualitative agreement with AMA’s such as Ti-Ni and Ti-Cu metallic
glasses is found. We estimate the critical exponentsnW , nE and nx when either disorderW, energyE, or
concentrationx is varied, respectively. All our results are compatible with the universal valuen'1.6 obtained
in the single-band Anderson model.
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I. INTRODUCTION

Amorphous metallic alloys~AMA’s ! offer the possibility
of continuously changing their composition while at t
same time avoiding structural phase transformations. T
they allow for systematic studies of their physical propert
within a single phase as temperature and other external
trol parameters, e.g., pressure, are varied. Many such in
tigations~see, e.g., Ref. 1! have been devoted to the inves
gation of the electrophysical properties~in particular,
electrical resistivity! of AMA’s; these studies have reveale
considerable differences in the behavior of the electrical
sistivity % of AMA’s in comparison with that of their crys-
talline counterparts.

The transport properties of transition-metal-based AM
are of special interest because of unique physical anoma
unexplained by conventional transport theory, that exist
these materials. Among them are the negative tempera
coefficient of resistivity, the Mooij correlation of resistivit
and thermoelectric power2—the higher the resistivity the
lower is the temperature coefficient of the resistivity—t
resistivity saturation, the sign reversal of the Hall coefficie
a negative magneto-resistance, and the breakdown of M
tiessen’s rule. For a review, we refer the reader to Ref. 3.
first attempt for a theoretical understanding of the electro
transport in noncrystalline materials was the Ziman the
and its extensions.1 However, the applicability of the Ziman
diffraction model for strongly disordered and thus hig
resistivity amorphous alloys is questionable.4,5 In addition,
the Ziman theory cannot explain, e.g., that the changes o
resistivity (% liquid2%solid)/%solid at the melting point are only
0.01 and 0.09 for Fe and Co, respectively.1 Thus it appears
that the resistivity of these two elements depends o
weakly on their atomic structure factorS(k).

At low temperatureT, an even more significant differenc
between the behavior of crystals on the one hand and d
dered solids on the other hand is seen: sufficiently str
disorder can give rise to a transition of the transport prop
ties from conducting behavior with resistanceR.0 to insu-
lating behavior withR5` as T→0 as was pointed out by
0163-1829/2003/68~6!/064201~8!/$20.00 68 0642
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Anderson in 1958,6 This phenomena is called the disorde
driven metal-insulator transition~MIT ! ~Refs. 3,7,8! and it is
characteristic to noncrystalline solids. The mechanism un
lying this MIT was attributed by Anderson not to a finite ga
in the energy spectrum which is responsible for an MIT
band gap or Mott insulators.9 Rather, he argued that the dis
order will lead to interference of the electronic wave functi
c(r ) with itself such that it is no longer extended over t
whole solid but is instead confined to a small part of t
solid. Thislocalizationeffect excludes the possibility of dif
fusion atT50 so that the system is an insulator. A high
successful theoretical approach to this disorder-induced M
was put forward in 1979 by Abrahamset al.10 This ‘‘scaling
hypothesis of localization’’ details the existence of an M
for noninteracting electrons in three-dimensional disorde
systems at zero magnetic field and in the absence of s
orbit coupling.

These ideas have also been applied to the analysi
AMA’s transport properties.11 They provide a background fo
an explanation of the Mooij correlation12 and were success
ful in the description of the transport properties of amo
phous semiconductors.13 Many papers have since discuss
the influence of localization~or quantum interference effects!
on the transport properties of AMA’s.14–17 It was shown18

that Anderson localization is responsible for regions of h
resistivity. The importance of quantum corrections in anal
ing the conductivity of so-called highly resistive (%
.150 mVcm) metallic glasses was demonstrated.19 There
are two sources of these corrections: the disorder-indu
‘‘localization effect’’ and the electronic ‘‘interaction effect.’
The former caused the observed higher temperature resi
ity. Furthermore, it has been argued20,21 that for amorphous
metals localization effects are valid even at room tempe
ture.

In a recent study22 the influence of disorder on the tran
port properties of Ti-Ni and Ti-Cu metallic glasses was an
lyzed within the Anderson model of localization. The resu
elucidated qualitatively the correlation between the obser
details of the electronic structure and the behavior of re
tivity vs temperature for this binary AMA. It was shown tha
©2003 The American Physical Society01-1
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the temperature coefficient of resistivity depends on the
sition of the Fermi levelEF and on the~assumed! position of
the mobility edgeEc . The latter separates extended~con-
ducting! states from localized~insulating! states.8,23 Unfortu-
nately, the value ofEc had to be inferred from the hypothes
that the two subbands of the valence band of the binary a
have tails with localized electronic states similar to the ta
of the usual one-band Anderson model.6 Evidently, a calcu-
lation of the position of the mobility edgeEc should be car-
ried out for the case of two subbands. This is what we inte
to do in the present manuscript. In particular, we will inve
tigate whether localized electronic states exist in the cen
region between the two subbands as assumed in Ref.
Furthermore, we show how the concentration parameter,
sent in the usual single-band Anderson model, influences
position of the mobility edges.

II. NUMERICAL APPROACH

A. The binary Anderson model of localization

According to the photo-emission data and theoreti
estimates,22,24 the valence band of a binary, transition-met
based amorphous alloy can be assumed to be a superpo
of two valence bandsA andB. In order to model this within
the Anderson model, we use the standard Ander
Hamiltonian6

H5(
i

« i u i &^ i u1(
iÞ j

t i j u i &^ j u ~1!

with orthonormal statesu i & corresponding to electrons lo
cated at sitesi 5(x,y,z) of a regular cubic lattice with peri
odic boundary conditions. The hopping integralst i j are non-
zero only for nearest neighbors and we set the energy s
by choosingt i j 5t51. The two-subband structure observ
in the experiments is incorporated into the potential energ
« i . The randomness is modeled by~1! independent random
variations « i (A)P@«A2WA/2,«A1WA/2# and « i (B)P@«B
2WB/2,«B1WB/2# and ~2! random spatial distribution o
potential energies«A and «B within the cubic lattice. The
mean values«A and «B are chosen according to the centr
energies of the two subbands. The parametersWA and WB
specify the disorder strength in each energy band and
random variation ofA andB sites models the compositiona
disorder of the binary alloy. Note that with this choice
parameters, the band edges of the subbandA in the limit of
large system size are given by«A262WA /2, «A16
1WA /2 and similarly for the other subband withA→B.

In summary, the model is described by the following p
rameters:~1! «AB5«B2«A , the distance between the cente
of the two bands~we choose«B.«A so that theA band is the
lower one!, ~2! xA , the concentration ofA sites~of course,
thenxB512xA is the concentration of theB sites!, and~3!
WA and WB , the widths of the box distributions of the po
tential energy.

B. Transfer-matrix method

Since we are interested in the position of the mobil
edges and thus the localization lengths, we use the tran
06420
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matrix method~TMM ! ~Refs. 8,25,26! for the investigation
of model ~1!. The localization lengthl describes the expo
nential decay of the wave function and we compute it us
TMM for quasi-1D bars of cross sectionM3M and length
L@M . As is customary in the TMM approach, the stationa
Schrödinger equationHC5EC is rewritten in the recursive
form

S C i 11

C i
D5S E12H i À1

1 0 D S C i

C i 21
D 5T i S C i

C i 21
D . ~2!

C i , H i , andT i are wave function, Hamiltonian matrix, an
transfer matrix of thei th slice of the bar, respectively. Un
and zero matrices are denoted by1 and 0. Given an initial
condition (C0

C1) Eq. ~2! allows a recursive construction of th

wave function in the bar geometry by adding more and m
slices.l(M ,w) is then obtained from the smallest Lyapuno
exponent of the productTLTL21•••T2T1 of transfer
matrices,27 where the lengthL of the bar is increased unti
the desired accuracy ofl is achieved. With increasing cros
section of the bar the reduced localization lengthLM(w)
5l(M ,w)/M decreases for localized states and increases
extended states. Thus it is possible to determine the crit
parameterwc at which LM is constant as a function of th
varied parameterw—e.g., E, «AB , xA , WA , or WB—from
plots of LM versusM.

C. Finite-size scaling

The MIT in the Anderson model of localization is ex
pected to be a second-order phase transition.7,10 It is charac-
terized by a divergent correlation lengthj`(w)5Cuw
2wcu2n, wheren is the critical exponent,C is a constant,8 w
is any of the external control parameters given above andwc
is its critical value at which the MIT occurs. To construct th
correlation length of theinfinite systemj` from finite-size
data LM ,8,25,26,28the one-parameter scaling hypothesis29 is
employed,

LM5 f ~M /j`!. ~3!

All values of LM(w) are expected to collapse onto a sing
scaling curvef, when the system size is scaled byj`(w). In
a system with MIT such a scaling curve consists of tw
branches corresponding to the localized and the exten
phase. One might determinen from fitting j` by a finite-size
scaling ~FSS! procedure.27 But a higher accuracy can b
achieved by fitting directly the raw data.27 We use fit
functions30 which include two kinds of corrections to sca
ing: ~i! nonlinearities of thew dependence of the scalin
variable and~ii ! an irrelevant scaling variable with expone
2y. Specifically, we fit

LM5 f̃ 0~x rM
1/n!1M 2y f̃ 1~x rM

1/n!, ~4!

f̃ n5(
i 50

nr

anix r
i M i /n, x r~v!5v1 (

n52

mr

bnvn ~5!

with v5uwc2wu/wc and expansion coefficientsani andbn .
Choosing the ordersnr andmr of the expansions larger tha
1-2
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THREE-DIMENSIONAL ANDERSON MODEL OF . . . PHYSICAL REVIEW B 68, 064201 ~2003!
one, terms with higher order than linear inwc than with the
previously used linear fitting.31 The linear region is usually
very small. The second term in Eq.~4! describes the system
atic shift of the crossing point of theLM(w) curves.30,31

In the present case of the two-band Anderson model,
can in principle have an MIT as a function of~1! energyE
for fixed WA , WB , «AB , andxA , ~2! disorder strengthsWA ,
WB for fixed E, «AB , andxA , ~3! concentrationxA for fixed
E, «AB and WA , WB . Due to universality, we expect th
corresponding critical exponentsnE , nWA

, nWB
andnx to be

the same. Additionally for each control parameter we t
whether the fitted values ofwc and n are compatible when
using different expansions of the fit function, i.e., differe
ordersnr andmr .32

III. RESULTS AND DISCUSSION

For the determination of the mobility edge,23 we have
determined the localization lengths from TMM with an err
equal to or less than 1% for cross sections up toM512. For
the computation of the critical exponents, we have used
available 1% data and generated additional data with 0.0
error up to at most 0.1% at selected points in the ph
diagrams for high-precision estimates.

In Fig. 1, we show a typical dependence of the redu
localization lengthLM on energy for different system size
M. The two peaks correspond roughly to the positions of
two subbands at«A and «B , respectively. This is in accor
dance with the theoretical and experimental results22,24 men-
tioned in the Introduction as motivation of our studies. No
that for the chosen parameters, the density-of-states l
given in Sec. II A for the highest energy state in the low
subband coincides with the smallest possible energy sta
the upper subband at«A161WA/25«B262WB/2. At the
positions indicated by the dashed lines in Fig. 1, we se

FIG. 1. Dependence of the reduced localization lengthLM on
energy E for different system sizesM56,8,10, and 12 at«AB

517, xA50.5, andWA5WB55. The two shaded regions indica
extended states, the dashed lines the position of the four mob
edges, and the vertical solid lines the band centers of the subb
No error bars are shown because the accuracy of theLM values is
better than the size of the symbols.
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reversal in the systematic size dependence of the redu
localization lengths. Therefore these indicate the mobi
edges and we observe localized electronic states at the
edges and in the central region between theA and B sub-
bands. We remark that theLM(E) curves demonstrate a pe
culiar feature: the positions of the maximum values ofLM
do not coincide with the central energies«A and «B of the
two subbands. Thus although the density of states betw
the two bands is appreciable, we observe the surprising
that the region of extended states in each band has shru

In Fig. 2 we show high precision data at the upper mob
ity edge of theA subband atEc'2. Again the accuracy of
the data is so high that error bars would be smaller than
symbols. Data and FSS analysis of similar quality will
used when estimating critical exponents in the following.

A. Energy-disorder phase diagram

Let us now investigate how the positions of the mobil
edges change whenWA and WB are changed. We set«AB
517 and xA5xB50.5. For convenience we chooseWA
[WB . This leads to a symmetry for the energy dependen
of LM(E) between lower and upper subband as shown
Fig. 1. Consequently, the phase diagram is symmetric w
respect to«A1«AB/2. We find extended electronic states
the vicinity of «A and forWA<Wc'6.5 ~instead of 16.5 as
for the usual Anderson model! as presented in Fig. 3. Fo
largerWA or largeruE2«Au, the states are localized.

Next, we keepWA54 fixed and varyWB from 0 to 8. We
find for «AB517 that the position of mobility edges in th
subbandA is only slightly modified. The same behavior
observed for«AB58, when the overlap of the two subband
is large.

B. Energy-«AB phase diagram

Keeping xA50.5 and fixed disorderWA5WB54, we
now vary the subband spacing«AB . From an experimenta

ty
ds.

FIG. 2. FSS plot of the reduced localization lengthLM near the
mobility edgeEc'2 of Fig. 1. The solid lines are fits of the dat
according to Eqs.~4! and ~5! with nr51 and mr51. The inset
shows the scaling function corresponding to the fit and theLM data
with symbolss, j, n, v, ¹, x, 1, 3, *, d, h denoting
energies 1.9, 1.92, 1.94,. . . , 2.08, 2.10, respectively.
1-3
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I. V. PLYUSHCHAY, R. A. RÖMER, AND M. SCHREIBER PHYSICAL REVIEW B68, 064201 ~2003!
point of view, this is the difference between the atomic co
stituents of the alloy or, more precisely, between their io
ization energies. For a variety of«AB values we have ob
tainedLM curves which are qualitatively very similar to Fig
1. However, for«AB<6, no localized electronic states in th
central region can be found. In Fig. 4, we show the mobi
edges for different«AB . We note that the mobility edge fo
the usual Anderson model equals approximately66.2 at dis-
order W54.8,33 This agrees with the result for«AB50 in
Fig. 4.

C. Energy-concentration phase diagram

Obviously, the values forLM and the mobility edges
should strongly depend on the concentration. This is ind
the case as we show in Fig. 5. Already a 10% difference
atomic composition leads to a pronounced asymmetry of
LM curves ~compare, e.g., with Fig. 1!. The energy-
concentration phase diagram for«AB58, andWA5WB54 is

FIG. 3. The energy-disorder phase diagram for«AB517 and
xA50.5. The shaded region indicates extended states and the
zontal line denotes the value of«A . Here and in the following phase
diagrams,h ands indicate lower and upper mobility edges for th
A band, and, if included, upper and lower mobility edges for theB
band.

FIG. 4. The energy-«AB phase diagram forWA5WB54 and
xA50.5. The shaded region indicates extended states. The uppe~B!
and lower~A! bands are symmetric with respect to«AB/2 and theB
band has been constructed using this symmetry.
06420
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presented in Fig. 6. ForxA,0.32 (xB.0.68), all electronic
states of subbandA (B) are localized. Figures 5 and 6 co
respond to the case of overlapping bands such that the ce
of subbandA coincides with the edge of subbandB and vice
versa.

D. Concentration-«AB phase diagram

The concentration-«AB phase diagram is presented in Fi
7 for E5«A50 andWA5WB54. We see that the critica
concentration is larger than the classical percolation thre
old xA50.3116 for large«AB . We interpret this as being du
to the localization effect in this quantum situation: a larg
cluster of connected sites is needed to support exten
states on sites of the sublatticeA ~or B). For very large
«AB5100 and 103 ~not shown! the critical concentration de

ri- FIG. 5. The energy dependence ofLM for a majority ofA sites
~concentrationxA50.55). System sizes areM56,8,10, and 12,
«AB58, and WA5WB54. The two shaded regions indicate e
tended states. The solid and dashed vertical lines denote the
energies«A and«B and the position of the four mobility edgesEc ,
respectively.

FIG. 6. The energy-concentration phase diagram at band s
ration «AB58 and disordersWA5WB54. The shaded regions de
note extended states. The upper region of extended states has
constructed from point symmetry with respect to«AB/2 and xA

50.5. The thick solid lines and the triangle indicate the inferr
concentration dependencies of four different AMA’s as discus
further in Sec. IV.
1-4
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THREE-DIMENSIONAL ANDERSON MODEL OF . . . PHYSICAL REVIEW B 68, 064201 ~2003!
creases to 0.416 and 0.384, respectively, but remains la
than in the classical case. For large subband spacing
with onsite potential«B can be viewed as potential barrie
to electrons from subbandA and vice versa. Thus electron
with energy'«A have a low probability to hop ontoB sites
and we are effectively studying the case of percolation.
even though«AB might be large, there will always remain
finite but small probability for tunneling thus distinguishin
our model from classical percolation. And since we ar
studying the wave equation~1!, localization effects not
present in classical percolation are important and lead to
sulating behavior even when the concentration of sites s
ports a classically percolating cluster. Therefore, we find t
the threshold for transport~extended states! in the quantum
case is higher than for the classical one. We note that sim
effects have been observed previously in studies of quan
percolation.34

On the other hand, for small«AB , the critical concentra-
tion becomes less than the percolation threshold since
neling betweenA andB sites is more significant. The phas
diagram in Fig. 7 does not exactly show the mobility edg
at which all extended states disappear for a given«AB , be-
cause it is determined atE50. But as shown in Figs. 1 an
6, theA band is not symmetric with respect to«A(50). As a
consequence, more extended states occur for energies
below«A . This means that the phase boundary in Fig. 7 w
be shifted slightly downwards, ifE is varied too.

We note that an analogous phase diagram has been
tained recently35 for the case of a two-dimensional bina
alloy. The shape of the curve separating localized and
tended electronic states is quite similar to our result show
Fig. 7.

E. Disorder-concentration phase diagram

The concentration dependence of the critical disorde
the disorder at which all states for a given energy beco
localized—is presented in Fig. 8 for energyE5«A . One can
see that the critical disorder strongly depends on the con
tration. ForxA51, we recover the resultWc516.5 ~Ref. 8!
of the single-band Anderson model. No extended electro

FIG. 7. The concentration-«AB phase diagram atE5«A50 and
WA5WB54. The shaded region denotes extended states.
dashed line represents the classical 3D site-percolation thres
valuexA50.3116.
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states are observed forxA,0.35 in agreement with the ide
that for small concentration the electronic states of these
oms form the usual localized donor subband of separa
impurities.

For the concentration interval from 0.35 to 0.40 we obta
an additional transition as a function of disorder at smallWA

in addition to the usual Anderson MIT. For example,
shown in Fig. 9 forxA50.38 we observe localized behavio
of LM(M ) for small disorders. Increasing the disorder b
yond WA.0.7, we see extended states. AtWA;3.2, the
character of the states changes back to localized. This be
ior can be understood as follows: forxA'0.38 as indicated
by the arrow in Fig. 8, the system atWA50 represents a
binary alloy with large energy separation«AB517. All states
are localized, i.e., nonquantum percolating, on an alre
classically percolating set of sites$ i (A)% in the A band.
Small additional potential disorder will lead to an increase
certain« i (A) as well as a decrease in certain« i (B) . A small
change of the scattering conditions in these sites can
quickly allow enhanced transport across a now quantu

he
old

FIG. 8. The disorder-concentration phase diagram for«AB

517, WB54, andE5«A50. The shaded region denotes extend
states. The arrow refers to the discussion in the text as well as to
data presented in Fig. 9. The3 denotes the single-band result.

FIG. 9. The disorder dependence ofLM for system sizesM
56,8, and 10 at«AB517, WB54, E50, and xA50.38. The
shaded region indicates extended states and the two vertical
denote approximate estimates of critical disordersWc .
1-5
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percolating backbone. But upon further increasing the dis
der, the localization in each band will quickly lead to loca
ization again.

F. Value of the critical exponent

The critical exponent for the present model can be e
mated by crossing the mobility edges as function of eit
disorder, energy or concentration, giving rise to the th
exponentsnW , nE , andnx , respectively. Due to universality
their values should coincide with the critical exponentn
'1.6 of the single-band Anderson model since the univ
sality class remains unchanged by the introduction of
binary disorder.36

We have estimated the critical exponentn for almost all
points in the phase diagrams 3, 4, 6, 7, and 8 as describe
Sec. II C. For example, we computenW along the mobility
edge of the disorder-concentration phase diagram of Fig
In Fig. 10 we show the resulting estimates when using
ferent ordersnr andmr for the fit function~4!. As usual, the
spread in values is somewhat larger than the least-squ
error bars seem to suggest.32 Summarizing the results, w
find nW51.5660.06, nE51.6460.05, andnx51.6060.07,
compatible withn'1.6.37

IV. DISCUSSION AND COMPARISON WITH
EXPERIMENTS

Let us now compare the above results of the bin
Anderson model with experimental measurements of tra
port properties of AMA’s.22,38 Such a comparison will of
course be purely qualitative. Nevertheless, it already suffi
to understand much of the transport properties of s
AMA’s. For example, as mentioned in Sec. I, it is the po
tion of the mobility edge relative to the value of the Fer
energy that determines the properties of transition-me
based AMA’s. In this spirit, the Mooji correlation2 is due to
EF being situated in a region of localized states, whereas
weak changes in resistivity at melting for Fe and Co as w

FIG. 10. Concentration dependence of the critical exponentnW

obtained when varying the disorder across the mobility edge of
8, i.e., forE5«A50, «AB517, andWB54. The different symbols
represent various ordersnr andmr ~indicated in the legend! of the
expansion~4! used for the fitting. The error bars denote one st
dard deviation as obtained from the nonlinear fitting procedure
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as the positive temperature coefficient of resistivity for F
based AMA’s result fromEF being located in the center o
the 3d-electronic band and hence, in the region of extend
states.

A. Transport properties of Ni 1ÀxPx

The ionization energy of P is higher than that of Ni, so o
A band corresponds to P atoms and theB band to Ni atoms
with «B.«A as, e.g., shown in Fig. 6. According to the th
oretical and experimental results of Ref. 39,EF of the amor-
phous alloy Ni12xPx is located near the upper edge of th
Ni-3d band~the B band in our study!. When the P concen
tration xP increases from 0.15 to 0.27 the temperature co
ficient of resistivity~TCR! decreases from positive to neg
tive values.38 The MIT is observed nearxP50.25. In Fig. 6,
we indicated the corresponding region in the phase diagr
The two-band, binary random potential Anderson model c
indeed qualitatively capture the observed experimental
sults. Even a quantitative comparison might be possible
reliable way of obtaining values for«A , «B , andWA andWB
becomes known. Note, however, that in the experiments,
the hopping betweenA andB atoms at their respective ran
dom positions that leads to the broadening of theA and B
bands and we have modeled this only qualitatively in
present work by the onsite disordersWA andWB .

B. Transport properties of Ti 1ÀxÀyCuxAy and Ti1ÀxÀyNixAy

A previous experimental study of the electronic structu
of Ti12x2yCuxAy and Ti12x2yNixAy amorphous alloys22 ~the
symbolAy represents additional admixtures! has shown that
the valence band has two main peaks. The lower pea
formed predominantly by the 3d states of Cu or Ni wherea
the upper peak is due to the 3d states of Ti. The Fermi leve
is located in the central region between the peaks an
hardly shifted upon changing the concentrations.

Within the present two-band model, this experimen
situation may be modeled as shown in Fig. 6. The line for
Ti12x2yNixAy alloys is situated somewhat below the one f
Ti12x2yCuxAy because Ni has one electron less than Cu.
believe that it is this difference that leads to the smaller va
of the negative TCR for Ti12x2yNixAy when compared to
Ti12x2yCuxAy . In both cases,EF lies in a region of local-
ized states in agreement with the negative TCR. In Tabl
we show the values obtained for TCR.

Let us now analyze the concentration dependence of
TCR. When the Ti concentration decreases, the TCR a

g.

-

TABLE I. Temperature coefficient of resistivitya300 at 300 K
for Ti12x2yCuxAy and Ti12x2yNixAy amorphous alloys~Ref. 22!.

AMA’s a300 AMA’s a300

1024/K 1024/K

Ti62Cu33P5 20.70 Ti70Ni25Si5 22.21
Ti47Cu45Ni5Si3 21.11 Ti60Ni36P2Si2 22.72
Ti48Cu45Ni5P2 21.05 Ti50Ni45P5 22.37
Ti46Cu45Ni5Si2P2 23.03 Ti45Ni50P5 23.28
1-6
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THREE-DIMENSIONAL ANDERSON MODEL OF . . . PHYSICAL REVIEW B 68, 064201 ~2003!
decreases as shown in Table I. This behavior can be
plained from the concentration-energy phase diagram of
6 by the increase of the mobility edgeEc . This in turn leads
to an increasing distance betweenEF and the region of un-
occupied extended electronic states. The states close tEF
become more localized, leading to a more negative TCR

Therefore, at least at a qualitative level, the present t
band Anderson model explains not only the negative TCR
Ti12x2yCuxAy and Ti12x2yNixAy glasses but also th
changes in TCR due to changes in composition~Cu or Ni!
and concentration. Furthermore, metallic glasses with
‘‘metal-like’’ conductivity can be also treated within thi
model. For example, the Fermi level of Fe86B14 alloy is situ-
ated in the region of extended states as indicated in Fig.
agreement with its positive TCR.22

C. Overlapping the two bands

Thus far, motivated by the experimental results, we c
centrated on the case of separated bands, i.e., large«AB . To
make the two regions of extended states in Fig. 6 overlap
can in principle~i! keep«AB fixed and change the disorder o
~ii ! keep fixed disorder and decrease«AB as in Fig. 4. From
Fig. 3, we know that the position of mobility edges does n
change a lot when decreasingWA . On the other hand, in
creasingWA will lead to a narrower region of extended stat
in Fig. 6 and no overlap. Therefore, we choose to reduce«AB
in order to study what happens when the two bands ove
in the energy-concentration diagram.

In Fig. 11, we show such an overlap for«AB56 andWA
5WB54. This situation corresponds to large overlap of t
two subbands. We see that the shape of the regions of
tended states remains nearly unchanged. This leads to
monotonicity in the behavior of the upper and lower mobil
edges. We remark that in order to resolve this behavior,
accuracy of the TMM had to be increased significantly up
very small errors of 0.05% for the localization lengths. W
emphasize that a similar accuracy was needed to resolve
nonmonotonicity in the disorder-concentration diagram
Fig. 8. When further decreasing«AB to 5, the behavior of the
mobility edges becomes regular again and their values e
tually reduce to the values of the well-known phase diagr
of the single-band Anderson model.40

V. CONCLUSIONS

We have shown that the three-dimensional Ander
model of localization with binary random potential disord
allows to explain not only various peculiarities of th
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