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Three-dimensional Anderson model of localization with binary random potential
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We study the three-dimensional two-band Anderson model of localization and compare our results to ex-
perimental results for amorphous metallic allgfdviA's ). Using the transfer-matrix method, we identify and
characterize the metal-insulator transitions as functions of Fermi level position, band broadening due to dis-
order and concentration of alloy composition. The appropriate phase diagrams of regions of extended and
localized electronic states are studied and qualitative agreement with AMA's such as Ti-Ni and Ti-Cu metallic
glasses is found. We estimate the critical expones vg and v, when either disorde¥V, energyE, or
concentratiorx is varied, respectively. All our results are compatible with the universal vedug.6 obtained
in the single-band Anderson model.
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[. INTRODUCTION Anderson in 1958, This phenomena is called the disorder-
driven metal-insulator transitiofMIT) (Refs. 3,7,8and it is

Amorphous metallic alloy$AMA's) offer the possibility  characteristic to noncrystalline solids. The mechanism under-
of continuously changing their composition while at thelying this MIT was attributed by Anderson not to a finite gap
same time avoiding structural phase transformations. Thum the energy spectrum which is responsible for an MIT in
they allow for systematic studies of their physical propertiesband gap or Mott insulatorsRather, he argued that the dis-
within a single phase as temperature and other external cowrder will lead to interference of the electronic wave function
trol parameters, e.g., pressure, are varied. Many such invegyr) with itself such that it is no longer extended over the
tigations(see, e.g., Ref.)lhave been devoted to the investi- whole solid but is instead confined to a small part of the
gation of the electrophysical propertieSn particular, solid. Thislocalizationeffect excludes the possibility of dif-
electrical resistivity of AMA's; these studies have revealed fusion atT=0 so that the system is an insulator. A highly
considerable differences in the behavior of the electrical resuccessful theoretical approach to this disorder-induced MIT
sistivity ¢ of AMA's in comparison with that of their crys- was put forward in 1979 by Abrahanes al° This “scaling
talline counterparts. hypothesis of localization” details the existence of an MIT

The transport properties of transition-metal-based AMAsfor noninteracting electrons in three-dimensional disordered
are of special interest because of unique physical anomaliesystems at zero magnetic field and in the absence of spin-
unexplained by conventional transport theory, that exist irorbit coupling.
these materials. Among them are the negative temperature These ideas have also been applied to the analysis of
coefficient of resistivity, the Mooij correlation of resistivity AMA' transport properties! They provide a background for
and thermoelectric power-the higher the resistivity the an explanation of the Mooij correlatiéhand were success-
lower is the temperature coefficient of the resistivity—theful in the description of the transport properties of amor-
resistivity saturation, the sign reversal of the Hall coefficient,phous semiconductofs.Many papers have since discussed
a negative magneto-resistance, and the breakdown of Mathe influence of localizatiofor quantum interference effegts
tiessen’s rule. For a review, we refer the reader to Ref. 3. Then the transport properties of AMA¥" |t was showr®
first attempt for a theoretical understanding of the electroni¢hat Anderson localization is responsible for regions of high
transport in noncrystalline materials was the Ziman theoryresistivity. The importance of quantum corrections in analyz-
and its extensionsHowever, the applicability of the Ziman ing the conductivity of so-called highly resistiveo (
diffraction model for strongly disordered and thus high->150 xQcm) metallic glasses was demonstratédhere
resistivity amorphous alloys is questionabfeln addition, are two sources of these corrections: the disorder-induced
the Ziman theory cannot explain, e.g., that the changes of th#ocalization effect” and the electronic “interaction effect.”
resistivity (0 jiquia— € solid)/ @ soiia @t the melting point are only  The former caused the observed higher temperature resistiv-
0.01 and 0.09 for Fe and Co, respectiveljhus it appears ity. Furthermore, it has been argd®d! that for amorphous
that the resistivity of these two elements depends onlymetals localization effects are valid even at room tempera-
weakly on their atomic structure fact&Kk). ture.

At low temperatureT, an even more significant difference  In a recent studi the influence of disorder on the trans-
between the behavior of crystals on the one hand and disoport properties of Ti-Ni and Ti-Cu metallic glasses was ana-
dered solids on the other hand is seen: sufficiently strondyzed within the Anderson model of localization. The results
disorder can give rise to a transition of the transport properelucidated qualitatively the correlation between the observed
ties from conducting behavior with resistarRe-0 to insu-  details of the electronic structure and the behavior of resis-
lating behavior withR=«~ asT—0 as was pointed out by tivity vs temperature for this binary AMA. It was shown that
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the temperature coefficient of resistivity depends on the pomatrix method(TMM) (Refs. 8,25,26for the investigation
sition of the Fermi leveEg and on thgassumegposition of  of model(1). The localization length\ describes the expo-
the mobility edgeE.. The latter separates extend@mbn-  nential decay of the wave function and we compute it using
ducting states from localize@insulating state$?2Unfortu-  TMM for quasi-1D bars of cross sectidl X M and length
nately, the value oE. had to be inferred from the hypothesis L>M. As is customary in the TMM approach, the stationary
that the two subbands of the valence band of the binary allogchralinger equatiotH¥ =EW is rewritten in the recursive
have tails with localized electronic states similar to the tailsform

of the usual one-band Anderson mo8i&vidently, a calcu-

lation of the position of the mobility edgé. should be car- (‘I’i+1) 1 ( Vi ) @
ried out for the case of two subbands. This is what we intend W, T v,

to do in the present manuscript. In particular, we will inves- . . ) )
tigate whether localized electronic states exist in the centrali» Hi» @ndT; are wave function, Hamiltonian matrix, and
region between the two subbands as assumed in Ref. oansfer matrix of thath slice of the bar, respectively. Unit

Furthermore, we show how the concentration parameter, afind zero matrices are denoted byand0. Given an initial

E1-H; —1)( v,
1 0/\w,

sent in the usual single-band Anderson model, influences theondition (, ') Eq. (2) allows a recursive construction of the
position of the mobility edges. wave function in the bar geometry by adding more and more
slices.\(M,w) is then obtained from the smallest Lyapunov
Il. NUMERICAL APPROACH exponent of the productT T, _,---T,T; of transfer

matrices’’ where the length_ of the bar is increased until

the desired accuracy af is achieved. With increasing cross
According to the photo-emission data and theoreticakection of the bar the reduced localization lengtfy(w)

estimates?**the valence band of a binary, transition-metal- =\ (M,w)/M decreases for localized states and increases for

based amorphous alloy can be assumed to be a superpositiggtended states. Thus it is possible to determine the critical

the Anderson model, we use the standard Andersofaried parametew—e.g.,E, ea5, Xa, Wa, OF Wg—from
Hamiltoniarf plots of A, versusM.

A. The binary Anderson model of localization

H=20 &ifi)(il+ 2 tili)il (1) C. Finite-size scaling
I . The MIT in the Anderson model of localization is ex-

with orthonormal statesi) corresponding to electrons 10- pected to be a second-order phase transitidhit is charac-
cated at sites= (X,y,Z) of a regular cubic lattice with peri- terized by a divergent correlation |engt5m(w):C|W
odic boundary conditions. The hopping integrgjsare non-  —w | ~*, where is the critical exponent is a constant,w
zero only for nearest neighbors and we set the energy scajg any of the external control parameters given abovevand
by choosingtjj=t=1. The two-subband structure observedis its critical value at which the MIT occurs. To construct the
in the experiments is incorporated into the potential energiegorrelation length of thénfinite system¢., from finite-size
ei. The randomness is modeled &) independent random gata A, ,8252628the one-parameter scaling hypoth&sis
variations 8i(A)e[8A_WA/218A+WA/2] and Si(B)E[SB emp|oyed,
—Wg/2,e5+Wg/2] and (2) random spatial distribution of
potential energies 5 and eg within the cubic lattice. The Ay=1(M/E). 3

mean_valu?si:hA atndsB ?)rbe c:oseTr;] accordmgvéo thed Ssntral All values of A (w) are expected to collapse onto a single
energies of the two subbands. The paramelggsand W scaling curve, when the system size is scaled §iy(w). In

specify the disorder strength in each energy band and th system with MIT such a scaling curve consists of two

random variation .OA andB sites models the compos@onal branches corresponding to the localized and the extended
disorder of the binary alloy. Note that Wlt_h this _ch_0|ce of phase. One might determinefrom fitting £, by a finite-size
parameters, the band edges of the subbaid the limit of scaling (FSS proceduré’ But a higher accuracy can be

large system size are given by,—6—W,/2, g,+6 ; o : .
> : achieved by fitting directly the raw dafd.We use fit
+W,/2 and similarly for the other subband wig- B. functions® which include two kinds of corrections to scal-

In summary, the model is described by the following Ioa'ing: (i) nonlinearities of thew dependence of the scaling

rameters(l) epag=cg— €4, the distance between the centers o : . : ;
. variable andii) an irrelevant scaling variable with exponent
of the two bandgwe choosesg> ¢4 S0 that theA band is the —vy. Specifically, we fit

lower one, (2) x,, the concentration oA sites (of course,

thenxg=1—x, is the concentration of thB siteg, and(3) AM:?O(X MY7)+ M 7y7l(X M 7 (4)
W, andWjg, the widths of the box distributions of the po- ' ' '
tential energy. n m;

?n:_z aniXirMi/Vv Xr(w):aH'E bnwn (5
B. Transfer-matrix method =0 n=2

Since we are interested in the position of the mobilitywith o =|w.—w|/w, and expansion coefficients,; andb, .
edges and thus the localization lengths, we use the transfeGhoosing the ordens, andm, of the expansions larger than
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FIG. 1. Dependence of the reduced localization lenggth on
energy E for different system sized1=6,8,10, and 12 atap FIG. 2. FSS plot of the reduced localization lendtfy near the
=17, x,=0.5, andW,=Wg=5. The two shaded regions indicate mobility edgeE.~2 of Fig. 1. The solid lines are fits of the data
extended states, the dashed lines the position of the four mobilitaccording to Egs(4) and (5) with n,=1 andm,=1. The inset
edges, and the vertical solid lines the band centers of the subbandsows the scaling function corresponding to the fit andAkedata
No error bars are shown because the accuracy of\thevalues is  with symbolsO, B, A, <, V, >, +, X, *, @, OO denoting
better than the size of the symbols. energies 1.9, 1.92, 1.94,. ., 2.08, 2.10, respectively.

_— ) _ ) reversal in the systematic size dependence of the reduced
one, terms with higher order than linearun than with the |ocajization lengths. Therefore these indicate the mobility
previously used linear f|tt|n§1._The linear region is usually eqges and we observe localized electronic states at the band
very small. The second term in E@) describes the system- edges and in the central region between ghand B sub-

atic shift of the crossing point of tha,(w) curves’®! bands. We remark that they,(E) curves demonstrate a pe-

In the present case of the two-band Anderson model, weuliar feature: the positions of the maximum valuesAgf
can in principle have an MIT as a function @) energyE  do not coincide with the central energieg and eg of the
for fixed W, , Wg, €55, andx,, (2) disorder strengthgv, , two subbands. Thus although the density of states between
W for fixed E, epg, @andx,, (3) concentratiorx, for fixed  the two bands is appreciable, we observe the surprising fact
E, eag and W,, Wp. Due to universality, we expect the that the region of extended states in each band has shrunk.
corresponding critical exponents , YRR and v, to be In Fig. 2 we show high precision data at the upper mobil-
the same. Additionally for each control parameter we tesity edge of theA subband aE ~2. Again the accuracy of
whether the fitted values af, and v are compatible when the data is so high that error bars would be smaller than the
using different expansions of the fit function, i.e., different Symbols. Data and FSS analysis of similar quality will be
ordersn, andm, .% used when estimating critical exponents in the following.

A. Energy-disorder phase diagram

Il RESULTS AND DISCUSSION Let us now investigate how the positions of the mobility

For the determination of the mobility edgdwe have €dges change wheW, and Wg are changed. We setxp
determined the localization lengths from TMM with an error =17 @nd xa=xg=0.5. For convenience we choos¥/,
equal to or less than 1% for cross sections uMte 12. For = Ws. This leads to a symmetry for the energy dependences
the computation of the critical exponents, we have used the8f Au(E) between lower and upper subband as shown in
available 1% data and generated additional data with 0.05%19- 1. Consequently, the phase diagram is symmetric with
error up to at most 0.1% at selected points in the phasEESPect toea+e,p/2. We find extended electronic states in
diagrams for high-precision estimates. the vicinity of e, and forW,<W,.~6.5 (instead of 16.5 as

In Fig. 1, we show a typical dependence of the reducedor the usual Anderson modeds presented in _Fig. 3. For
localization lengthA,, on energy for different system sizes largerWy or larger|E—e,|, the states are localized.

M. The two peaks correspond roughly to the positions of the Next, we keepN,=4 fixed and varyVg from 0 to 8. We
two subbands at, andeg, respectively. This is in accor- find for e,g=17 that the position of mobility edges in the
dance with the theoretical and experimental reéiftsmen- ~ subbandA is only slightly modified. The same behavior is
tioned in the Introduction as motivation of our studies. Noteobserved fole ,g=8, when the overlap of the two subbands
that for the chosen parameters, the density-of-states limif large.

given in Sec. Il A for the highest energy state in the lower )

subband coincides with the smallest possible energy state in B. Energy-e,g phase diagram

the upper subband aty+ 6+ W,/2=eg—6—Wg/2. At the Keeping x,=0.5 and fixed disordei,=Wg=4, we
positions indicated by the dashed lines in Fig. 1, we see aow vary the subband spacinrg,g. From an experimental
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FIG. 3. The energy-disorder phase diagram é@g=17 and o )
x,=0.5. The shaded region indicates extended states and the hori- FIG- 5. The energy dependence/of; for a majority ofA sites
zontal line denotes the value of . Here and in the following phase (Concentrationx,=0.55). System sizes ar#l=6,8,10, and 12,
diagrams[J andO indicate lower and upper mobility edges for the £as=8, andW,=Wg=4. The two shaded regions indicate ex-
A band, and, if included, upper and lower mobility edges forBhe tendegl states. The solid and (_jgshed vertical Ilnes_ _denote the band
band. energies, andeg and the position of the four mobility edgé&s,
respectively.

point of view, this is the difference between the atomic Con'presented in Fig. 6. For,<0.32 (xs>0.68), all electronic

stituents of the alloy or, more precisely, between their '%Nstates of subband (B) are localized. Figures 5 and 6 cor-
ization energies. For a variety ef,g values we have ob-

; ) AL o . respond to the case of overlapping bands such that the center
tainedA y, curves which are qualitatively very similar to Fig. o : :

. . : of subbandA coincides with the edge of subbaBdand vice
1. However, fore ,.g=<6, no localized electronic states in the

central region can be found. In Fig. 4, we show the mobilityversa'
edges for different 5. We note that the mobility edge for ) _
the usual Anderson model equals approximatel.2 at dis- D. Concentration-g,g phase diagram
order W=4 833 This agrees with the result fara,g=0 in The concentratiom-,z phase diagram is presented in Fig.
Fig. 4. 7 for E=e,=0 andW,=Wg=4. We see that the critical
concentration is larger than the classical percolation thresh-
C. Energy-concentration phase diagram old xA=0.3116_for IargeeA_B. We interpret this as being due
to the localization effect in this quantum situation: a larger
Obviously, the values for\y and the mobility edges cluster of connected sites is needed to support extended
should strongly depend on the concentration. This is indeedtates on sites of the sublatti¢e (or B). For very large

the case as we show in Fig. 5. Already a 10% difference in;, .= 100 and 18 (not shown the critical concentration de-
atomic composition leads to a pronounced asymmetry of the

Ay curves (compare, e.g., with Fig. )1 The energy- 16 NP
concentration phase diagram fofg=8, andW,=Wg=4 is ! oy
12
FeBGBM
] o g
15 localized m
] e o § 4 Ti1_XCU
10 _— " ° qc) q Ti1-xNix
M. o ® extended ® o
= o & extended
2 54 localized )
) 4]
QCJ o O o 3
o] i localized b
1 extended 4+
1 0 0.2 0.4 0.6 0.8 1
b o oo = concentration (x
$] g0 localized ()

5 E 4 & k& 48 i 15 FIG. 6. The energy-concentration phase diagram at band sepa-
separation energy (&,g) ration e ,g=8 and disordersN,=Wg=4. The shaded regions de-
note extended states. The upper region of extended states has been
FIG. 4. The energy,g phase diagram foWW,=Wg=4 and  constructed from point symmetry with respect 4gg/2 and X,
Xa=0.5. The shaded region indicates extended states. The (R)per =0.5. The thick solid lines and the triangle indicate the inferred
and lower(A) bands are symmetric with respectdgg/2 and theB concentration dependencies of four different AMAs as discussed
band has been constructed using this symmetry. further in Sec. IV.
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FIG. 7. The concentrationag phase diagram &=¢,=0 and FIG. 8. The disorder-concentration phase diagram g

WA:WB.=4. The shaded region. denotes. extended. states. The 17, Wy=4, andE=¢,=0. The shaded region denotes extended
dashed line represents the classical 3D site-percolation threshokiates. The arrow refers to the discussion in the text as well as to the
valuex,=0.3116. data presented in Fig. 9. The denotes the single-band result.

creases to 0.416 and 0.384, respectively, but remains larger b qf . it the id
than in the classical case. For large subband spacing sitSiAteS are observed f@z<0.35 in agreement with the idea

with onsite potentiaks can be viewed as potential barriers that for small concentratio_n the electronic states of these at-
to electrons from subbanél and vice versa. Thus electrons ©Ms form the usual localized donor subband of separated
with energy~ e, have a low probability to hop ontB sites ~ Mpurities. o _
and we are effectively studying the case of percolation. But For the concentration interval from 0.35 to 0.40 we obtain
even thoughe ,g Might be large, there will always remain a an additional transition as a function of disorder at srg|
finite but small probability for tunneling thus distinguishing in addition to the usual Anderson MIT. For example, as
our model fromclassical percolation. And since we are shown in Fig. 9 forx,=0.38 we observe localized behavior
studying the wave equatiofil), localization effects not of Ay (M) for small disorders. Increasing the disorder be-
present in classical percolation are important and lead to inyond W,>0.7, we see extended states. Wi,~3.2, the
sulating behavior even when the concentration of sites supeharacter of the states changes back to localized. This behav-
ports a classically percolating cluster. Therefore, we find thajor can be understood as follows: fag~0.38 as indicated
the threSh0|d for transpo(EXten(_ied Statésin the quantum . by the arrow in F|g 8, the system WAZO represents a
case is higher than for the classical one. We note that similasinary alloy with large energy separatiepg=17. All states
effects have been observed previously in studies of quantuige |ocalized, i.e., nonquantum percolating, on an already
percolatiort’ B classically percolating set of sitgg(A)} in the A band.

_ On the other hand, for smaf,g, the critical concentra- - g4 additional potential disorder will lead to an increase of
tion becomes less than.the.percolatlt.)n fchreshold since t“r?:'ertainsi(A) as well as a decrease in certaifg, . A small
neling betweerA andB sites is more significant. The phase ¢nange of the scattering conditions in these sites can then

diagram in Fig. 7 does not exactly show the mobility edges,ickly allow enhanced transport across a now quantum-
at which all extended states disappear for a giwgp, be-

cause it is determined &=0. But as shown in Figs. 1 and

6, theA band is not symmetric with respect4g(=0). As a
consequence, more extended states occur for energies just
belowe . This means that the phase boundary in Fig. 7 will
be shifted slightly downwards, E is varied too.

We note that an analogous phase diagram has been ob-
tained recentl§? for the case of a two-dimensional binary
alloy. The shape of the curve separating localized and ex-
tended electronic states is quite similar to our result shown in
Fig. 7.

reduced localization length (A,,)

E. Disorder-concentration phase diagram
L L |

The concentration dependence of the critical disorder— 9 L disorderz(W ) s
) ; . A
the disorder at which all states for a given energy become
localized—is presented in Fig. 8 for enerfy-e,. One can FIG. 9. The disorder dependence &f, for system sizesv

see that the critical disorder strongly depends on the concen=6,8, and 10 atep,g=17, Wg=4, E=0, and x,=0.38. The

tration. Forx,=1, we recover the resullV,=16.5(Ref. 8  shaded region indicates extended states and the two vertical lines
of the single-band Anderson model. No extended electronidenote approximate estimates of critical disordéfs
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2 - | - | - | - TABLE |. Temperature coefficient of resistivitggg at 300 K
for Ti;_,_yCuA, and Ti_,_yNi,A, amorphous alloysRef. 22.
__ 18| .
2/3 § 1 AMA’S a3£0 AMA’S agfo
= 107%/K -
§ 6L % § §%§ 1 107%/K
g I % % ] Tig,ClsaPs —-0.70 Ti;oNi2sSis -2.21
RPN | Ti47CuysNisSis -1.11 TisoNizsP,Si, -2.72
g O 31 Ti48CU45Ni5P2 —-1.05 TisoNi45P5 —2.37
b 1oL @ :133 | Ti46CU45Ni58i2P2 _303 Ti45Ni50P5 _328
o 32
dz oz 0!6_ — o8 as the positive temperature coefficient of resistivity for Fe-
concentration (x,) based AMA’s result fromEg being located in the center of
FIG. 10. Concentration dependence of the critical expomgnt ;Tgtz-electronlc band and hence, in the region of extended

obtained when varying the disorder across the mobility edge of Fig:
8, i.e., forE=¢,=0, e,g=17, andWg=4. The different symbols

represent various orders andm, (indicated in the legendof the A. Transport properties of Ni;_,P,
expansion(4) used for the fitting. The error bars denote one stan-

dard deviation as obtained from the nonlinear fitting procedure. The ionization energy of P is higher than that of Ni, so our

A band corresponds to P atoms and Biband to Ni atoms

percolating backbone. But upon further increasing the disorVith e6>24 8, €.g., shown in Fig. 6. According to the the-

der, the localization in each band will quickly lead to local- oretical and ex_perlm_ental results of Ref. B, of the amor-
ization again. phous alloy Nj_,P, is located near the upper edge of the

Ni-3d band(the B band in our study When the P concen-
tration Xp increases from 0.15 to 0.27 the temperature coef-
ficient of resistivity(TCR) decreases from positive to nega-
The critical exponent for the present model can be estitive values®® The MIT is observed neat,=0.25. In Fig. 6,
mated by crossing the mobility edges as function of eithemwe indicated the corresponding region in the phase diagram.
disorder, energy or concentration, giving rise to the threerhe two-band, binary random potential Anderson model can
exponentsny,, vg, andw,, respectively. Due to universality, indeed qualitatively capture the observed experimental re-
their values should coincide with the critical exponent sults. Even a quantitative comparison might be possible if a
~1.6 of the single-band Anderson model since the univerfeliable way of obtaining values fer, , eg, andW, andWg
sality class remains unchanged by the introduction of thddecomes known. Note, however, that in the experiments, it is
binary disordef® the hopping betweeA andB atoms at their respective ran-
We have estimated the critical exponenfor almost all dom positions that leads to the broadening of ghand B
points in the phase diagrams 3, 4, 6, 7, and 8 as described bands and we have modeled this only qualitatively in the
Sec. Il C. For example, we computg, along the mobility — present work by the onsite disordafg, andWg.
edge of the disorder-concentration phase diagram of Fig. 8.
In Fig. 10 we show the resulting estimates when using dif- g 1121
ferent ordersn, andm, for the fit function(4). As usual, the . ] s
spread in values is somewhat larger than the least-square- A previous experimental study of the electronic structure

error bars seem to suggdtSummarizing the results, we ©f Tii-x—yCUA, and Ti_,Ni,A, amorphous alloys (the
find vy=1.56+0.06, ve=1.64+0.05, andv,=1.60+0.07, SYmbolA, represents additional admixtujdsas shown that

compatible withy~1.63 the valence band has two main peaks. The lower peak is
formed predominantly by thed3states of Cu or Ni whereas
the upper peak is due to thel 3tates of Ti. The Fermi level

is located in the central region between the peaks and is
hardly shifted upon changing the concentrations.

Let us now compare the above results of the binary Within the present two-band model, this experimental
Anderson model with experimental measurements of transsituation may be modeled as shown in Fig. 6. The line for the
port properties of AMAS238 Such a comparison will of Ti;x—yNi,A, alloys is situated somewhat below the one for
course be purely qualitative. Nevertheless, it already suffice$i, . ,Cu,A, because Ni has one electron less than Cu. We
to understand much of the transport properties of suclbelieve that it is this difference that leads to the smaller value
AMA’s. For example, as mentioned in Sec. |, it is the posi-of the negative TCR for Ti,_,Ni,A, when compared to
tion of the mobility edge relative to the value of the Fermi Ti;_,_,CuA, . In both casesEg lies in a region of local-
energy that determines the properties of transition-metalized states in agreement with the negative TCR. In Table I,
based AMAS. In this spirit, the Mooji correlatidris due to  we show the values obtained for TCR.

Er being situated in a region of localized states, whereas the Let us now analyze the concentration dependence of the
weak changes in resistivity at melting for Fe and Co as wellfTCR. When the Ti concentration decreases, the TCR also

F. Value of the critical exponent

port properties of Ti;_,_,Cu,A, and Ti;_,_Ni,A,

IV. DISCUSSION AND COMPARISON WITH
EXPERIMENTS
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decreases as shown in Table |. This behavior can be ex-

X . ; - i localized
plained from the concentration-energy phase diagram of Fig. 12 ocalize
6 by the increase of the mobility ed@g . This in turn leads 1

to an increasing distance betweEp and the region of un- 8.

A

. extended M
4 —|

i M 2
0 4

€

occupied extended electronic states. The states clogg to
become more localized, leading to a more negative TCR.
Therefore, at least at a qualitative level, the present two-
band Anderson model explains not only the negative TCR of
Ti; - yCuA, and Ty, (Ni,A, glasses but also the

energy (E)

A

changes in TCR due to changes in compositiGa or Ni 41 .
) - . localized
and concentration. Furthermore, metallic glasses with a ] y
“metal-like” conductivity can be also treated within this -8 PSS
model. For example, the Fermi level off8,, alloy is situ- “ concentration (x,)
ated in the region of extended states as indicated in Fig. 6 in
agreement with its positive TC&. FIG. 11. The energy-concentration phase diagram at band sepa-
ration eog=6 and disordersN,=Wg=4. The shaded region de-
C. Overlapping the two bands notes extended states. The horizontal lines indiegtee 5g/2, and

. . eg from top to bottom, respectively. The upper mobility edge has
Thus far, motivated by the experimental results, we coNpeen constructed from point symmetry with respect ig/2 and
centrated on the case of separated bands, i.e., fajgeTo  y —q5.

make the two regions of extended states in Fig. 6 overlap, we

can in priqciple(i) Keepe g fixed and change th_e disorder or transition-metal-based amorphous alloys but also how these
(i) keep fixed disorder and decreasg; as in Fig. 4. From change as the chemical composition changes. Even for a

Fig. 3, we know that the position of mobility edges does not . :
change a lot when decreasiNg,. On the other hand, in- comparatively large overlap of the two subbands, a region of

4 . . localized electronic states exists in the central part between
creasing/V, will lead to a narrower region of extended statesy o o subbands. This confirms the assumption made in
in Fig. 6 and no overlap. Therefore, we choose to reduyge :

: q dv what h hen th band | Ref. 22 for the experimental results in AMAS. Even a quan-
In order to study what happens when the two bands overlag; e analysis, using suitably extracted parameters from
in the energy-concentration diagram.

; density-of-states measurements appears possible. Of course
In Fig. 11, we show such an overlap fegg=6 andWa iy this case ternary and quaternary AMA's will have to be
=Wp=4. This situation corresponds to large overlap of theigsinguished by additional onsite potentials similar etg
two subbands. We see that the shape of the regions of e)é'ndsB for the binary model.
tended states remains nearly unchanged. This leads to non- In addition to the usefulness of the two-band Anderson

monotonicity in the behavior of the upper and lower mobility e for 4 qualitative comparison with experiments, there is

edges. We remark that in order.to resolve t_his. _behavior, th‘also the interesting fact that the model allows to study the
accuracy of the TMM had to be increased significantly up to

I f % for the localization | n concentration dependence and the associated MIT. This con-
very small errors of 0.05% for the localization lengths. We e niration dependence is clearly a prominent feature present
emphasize that a similar accuracy was needed to resolve the st gisordered materials. We find that, as expected from
nonmonotonicity in the disorder-concentration diagram in

universality, the universality class of this additional transition
Fig. 8. When further decreasingg to 5, the behavior of the y Y

o X ‘ remains unchanged with respect to a single-band Anderson
mobility edges becomes regular again and their values evenindel.

tually reduce to the values of the well-known phase diagram
of the single-band Anderson modél.
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