PHYSICAL REVIEW B 68, 064115 (2003)

Origin of the low compressibility in hard nitride spinels

P. Mori-Sánchez, ^{1,*} M. Marqués, ² A. Beltrán, ³ J. Z. Jiang, ⁴ L. Gerward, ⁴ and J. M. Recio^{2,†}

¹Department of Chemistry, Duke University, Durham, North Carolina 27708-0354, USA

²Departamento de Química Física y Analítica, Universidad de Oviedo, E-33006 Oviedo, Spain

³Departament de Ciències Experimentals, Universitat Jaume I, E-12080 Castelló, Spain

⁴Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark

(Received 1 April 2003; published 29 August 2003)

A microscopic investigation of first-principles electron densities of γ -A₃N₄ (A:C,Si,Ge) spinels reveals a clear relationship between the compressibility and the chemical bonding of these materials. Three striking findings emanate from this analysis: (i) the chemical graph is governed by a network of highly directional strong bonds with covalent character in γ -C₃N₄ and different degrees of ionic polarization in γ -Si₃N₄ and γ -Ge₃N₄, (ii) nitrogen is the lowest compressible atom controlling the trend in the bulk modulus of the solids, and (iii) the group-IV counterions show strong site dependent compressibilities enhancing the difficulty in the synthesis of the spinel phases of these nitrides.

DOI: 10.1103/PhysRevB.68.064115 PACS number(s): 61.50.Lt, 61.50.Ah, 62.50.+p, 64.30.+t

I. INTRODUCTION

A great effort is currently being invested in the synthesis and characterization of the so-called intrinsic superhard materials exhibiting simultaneously very low compressibilities, wide thermodynamic ranges of chemical stability, and high decomposition temperatures.1 The search for these compounds is mainly guided by the empirical trends found in the pressure (p) response of a variety of binary and ternary crystals. This systematic behavior has prompted the proposal of simple correlations involving coordination polyhedral volumes² or nearest-neighbor distances^{3,4} along with some bonding index as the key parameters to estimate bulk moduli (B) of solids. In tetrahedrally bonded compounds, the success of Cohen's equation³ has fueled the investigation of carbon nitride polymorphs^{5–8} since it predicts B values significantly larger than diamond. However, different energetic arguments rise reasonable doubts on the feasibility of the synthesis of low compressible hexagonal C₃N₄ since a preference for N-deficient or C-rich compositions has been recognized. 1,6,8

It is also well known that nitrides show a much more versatile response to hydrostatic pressure than oxides. For example, contrarily to the uniform behavior of general AB_2O_4 spinels with zero pressure bulk moduli (B_0) clustering around 200 GPa, nitride spinels are predicted to have B_0 values ranging from 200 to 400 GPa. Experimental and theoretical works have identified these cubic high-pressure polymorphs as a new class of potential superhard materials (see, for example, Refs. 4, 9-14, and references therein). The synthesis of these γ -A₃N₄ (A:C,Si,Ge) phases reveals that the lower the compressibility the higher the difficulty to obtain the material. It is clear that the presence in the spinel structure of sixfold coordination enhances the packing efficiency leading to an increase of the bulk modulus in these binary nitrides. But, simultaneously, it introduces high energetic costs to promote atoms A into a sp^3d^2 hybridlike configuration provided directional A-N bonds are formed in the crystal. This is a relevant question that deserves detailed examination. Up to date, only γ -Ge₃N₄ and γ -Si₃N₄ have been synthesized through careful experiments involving both high-pressure and high-temperature conditions, whereas γ -C₃N₄ has not been found in the cubic phase. The behavior under pressure of these spinel structures shows similarities with the rutile polymorphs in the analogous AO₂ family, where the presence of a sixfold coordinated C prevents again the high-pressure synthesis of a stishovitelike phase for CO₂.

It seems, therefore, very convenient to undertake fundamental investigations aimed to provide physical support to the well-established correlations while paying special attention to the predictions of low compressible compounds. The understanding of the observed relation between incompressibility and difficulty to attain pure crystalline samples can benefit from the basic research of the bonding features in these materials. In this line, an accurate microscopic analysis of the electron density of the cubic polymorphs of A₃N₄ crystals is proposed in this work to characterize the chemical bonding and to identify the atomic contributions to the macroscopic compressibility of these materials. Electron densities, unit cell geometries, and equations of state (EOS) are calculated up to 50 GPa at static conditions (zero temperature and zero point vibrational contributions neglected) by means of first-principles techniques. The topology of the electron density is examined by means of Bader's atoms in molecules (AIM) formalism. 15 Our study allows to discriminate the role played by A-N bonds in the three crystals and their different strength at the fourfold and sixfold coordinations. Moreover, volumes and compressibilities can be rigorously associated to each of the non equivalent atoms of the unit cell. The atomic volumes and compressibilities are additive and recover the corresponding bulk values. 17 This simple partition is also related here to the more usual decomposition in terms of the elementary AN₄ and AN₆ polyhedra of the cubic spinel structures. ¹⁸ As a result, the linking between compressibility and chemical bonding is clearly established, and factors determining the difficulty in the synthesis of γ -A₃N₄ polymorphs are also derived.

The rest of the paper is organized as follows: In Sec. II, the technical details are briefly given for the total energy calculations, the AIM analysis, and the compressibility decomposition. Section III contains the discussion of our results with the interpretation of the equations of state in terms of the elementary polyhedra and the chemical bonding. The last section summarizes the main findings of our investigation.

II. COMPUTATIONAL ASPECTS

Total energy ($E_{\rm crys}$) calculations based on the density functional theory were performed using the Becke¹⁹ and Perdew-Wang²⁰ nonlocal exchange and correlation functionals, respectively, as implemented in the CRYSTAL package.²¹ Standard Gaussian-type basis sets of triple- ζ quality²¹ were used with the modification of the most diffuse exponents of nitrogen, carbon, silicon, and germanium that were optimized requiring $E_{\rm crys}$ to be minimum at the corresponding experimental or theoretical equilibrium geometries of the γ -A₃N₄ crystals. For γ -C₃N₄, the C basis set was also reoptimized at different volumes of the computed configuration space. Details of the basis sets are available upon request.

The electron densities coming from the crystalline wavefunctions are investigated under the AIM framework. ¹⁵ The unit cell volume (V) of the three γ -A₃N₄ spinels is divided into nonoverlapping atomic regions containing one nucleus and surrounded by surfaces where the local flux of the electron density gradient is nil. Appropriate integrations within these basins yield atomic volumes (V_i) and charges (Q_i). First order saddle points of the electron density unequivocally determine the existence of bond paths between pairs of atoms. The chemical nature of these bonds is characterized by the values of the electron density (ρ_b) and the Laplacian ($\nabla^2 \rho_b$) of the electron density at those points. ^{15,16} Since the atomic volumes fill up the unit cell space, atomic compressibilities (κ_i) can be defined to decompose the macroscopic compressibility (κ) using the following expression: ¹⁷

$$\kappa = \frac{1}{B} = \sum_{i} f_{i} \kappa_{i}, \quad f_{i} = \frac{n_{i} V_{i}}{V}, \quad \kappa_{i} = -\frac{1}{V_{i}} \frac{\partial V_{i}}{\partial p}, \quad (1)$$

where i runs over the nonequivalent atoms in the unit cell, and n_i is the number of equivalent atoms i in the unit cell.

In γ -A₃N₄ spinels, the group-IV element A is located either at octahedral (A°) or at tetrahedral (A¹) sites of a distorted face centered cubic packing of nitrogens. A¹ atoms form a diamondlike subarray, whereas A° are distributed in one half of a face centered cubic lattice. Nitrogens are inside distorted tetrahedra of three A° and one A¹ atoms. N internal position (u,u,u) has been accurately optimized by minimizing $E_{\rm crys}$ at different volumes. Numerical and Vinet analytical²² fittings to the resulting $E_{\rm crys}$ versus V curve were performed to obtain the EOS and the u(p) relationship. Atomiclike EOS and AN₄ and AN₆ polyhedral EOS were then evaluated using V(P) and u(p) values, and the equations $V^t = 8V(u-1/8)^3/3$ and $V^o = 16V(u-3/8)^2u/3$ (see Refs. 18 and 23 for more details).

III. RESULTS AND DISCUSSION

The calculated zero pressure properties of the three spinels are compared in Table I with the available experi-

TABLE I. Cohesive properties of group-IV nitride spinels. Lengths in \mathring{A} , B_0 in GPa.

	γ -C ₃ N ₄		γ -Si $_3$ N $_4$		γ-Ge ₃ N ₄	
	Present	Other	Present	Other	Present	Other
a	6.841	6.8702 ^a	7.846	7.7734 ^b	8.304	8.213 ^c
и	0.2562	0.2568 ^a	0.2576	0.2583 ^b	0.2580	0.2577 ^c
$d_{\mathrm{A^t-N}}$	1.555	1.568 ^a	1.802	1.795 ^b	1.913	1.888 ^c
$d_{\mathrm{A^0-N}}$	1.667	1.672 ^a	1.924	1.881 ^b	2.012	1.992 ^c
B_0	415	369 ^a	335	290 ^d -317 ^e	231	296 ^f
B_0'	3.91	3.85 ^a	2.78	$4.9^{\text{ d}} - 2.3^{\text{ e}}$	4.48	4.0 ^f

^aCalculated (Ref. 11).

mental data for γ -Si₃N₄ and γ -Ge₃N₄ and the calculated values for γ -C₃N₄. The agreement is good in terms of the unit cell geometry. The lattice parameter a increases around 1.5 Å from γ -C₃N₄ to γ -Ge₃N₄, a large change compared with the variations found in oxide spinels. In the rutile phases of SiO₂ and GeO₂, the increase of the molecular volume is predicted to be lower than 4%,²⁷ whereas for the equivalent binary nitrides is greater than 15%. Notice also that as u is lower than 0.2625 the A-N distances in the octahedra (d_{A^0-N}) are greater than in the tetrahedra (d_{A^t-N}) . Some differences appear with respect to previous values of the bulk modulus. In particular, we suspect that the experimental value ($B_0 = 296 \text{ GPa}$) reported for γ -Ge₃N₄ (Ref. 26) is too high. In fact, it is even higher than the B_0 = 290 GPa value obtained by Zerr et al. 25 in γ -Si₃N₄. If the B-V correlations hold for these materials, a much greater compressibility than in γ -Si₃N₄ should be expected given the larger unit cell parameter of γ -Ge₃N₄. Other calculations using the local density and gradient generalized approximations give B₀ values of 240 GPa and 208 GPa, respectively.³⁰ Concerning γ -C₃N₄, Teter and Hemley also predicted B_0 above 400 GPa for several C₃N₄ polymorphs,⁵ in agreement with our results.

A key parameter to understand the crystal response to hydrostatic pressure in spinels is the slope of the u(p) curve. We have found negative du/dp values around -1.5 $\times 10^{-5} \text{ GPa}^{-1}$ in γ -C₃N₄ and γ -Si₃N₄ and about -2.0 $\times 10^{-5}$ in γ -Ge₃N₄ GPa⁻¹. This means that u deviates more from the 0.2625 value as pressure is applied and, consequently, d_{A^0-N} decreases less than d_{A^t-N} . These bond length compressibilities roughly determine the polyhedral compressibilities as illustrated by a higher B_i value in the AN₆ than in the AN₄ polyhedra (see Table II). Our recent experiments in γ -Si₃N₄ confirm this behavior. ¹³ Moreover, they are in concordance with our previous analysis in several oxide spinels. 18 Thus, the unit cell reduction under pressure is mostly achieved through AN4 deformations. A complete partition of the unit cell in terms of empty and occupied polyhedra reveals other two remarkable results: (i) the average of

^bExperiment (Ref. 24).

^cExperiment (Ref. 10).

^dExperiment (Ref. 25).

^eExperiment (Ref. 13).

^fExperiment (Ref. 26).

TABLE II. Calculated charges (Q_i in e), volumes (V_i in bohr³), bulk moduli (B_i in GPa), and occupation factors (f_i) in γ -A₃N₄ spinels according to AIM and polyhedral analysis.

Crystal	Constituent	\mathcal{Q}_i	${V}_{i}$	B_{i}	f_i
γ -C ₃ N ₄	C^t	+0.85	35.5	111	0.1301
$B_0 = 415$	C^o	+0.83	28.0	346	0.2048
	N	-0.62	45.4	503	0.6651
	CN_4		13.1	355	0.0482
	CN_6		41.8	458	0.3084
γ-Si ₃ N ₄	Si^t	+2.97	29.5	91	0.0765
$B_0 = 335$	Si^o	+3.01	23.2	226	0.1206
	N	-2.25	82.9	395	0.8029
	SiN_4		20.3	298	0.0497
	SiN_6		61.7	361	0.3031
γ -Ge ₃ N ₄	Ge^t	+1.93	67.7	161	0.1402
$B_0 = 231$	Ge^o	+1.97	52.3	213	0.2165
	N	-1.47	77.6	262	0.6433
	GeN_4		24.3	195	0.0502
	GeN_6		72.8	260	0.3013

the tetrahedral and octahedral bulk moduli is found to be a good estimation of the macroscopic bulk modulus due to the low variation of u with pressure in the three crystals, and (ii) those polyhedra with larger (smaller) volumes than in the ideal u = 0.25 lattice show compressibilities larger (smaller) than the bulk value.²⁹ This interesting rule is clearly obeyed by the AN₄ and AN₆ polyhedra as evidenced by the comparison of the occupation factors (f_i) in the ideal unit cell $(\frac{1}{24} = 0.0417 \text{ and } \frac{1}{3} = 0.3333, \text{ respectively})$ with the corresponding values in Table II. All these results indicate that the behavior of the group-IV nitride spinels resembles that of normal oxide ordered spinels with tetrahedra (octahedra) compressing more (less) than the bulk. 18 This conduct is confirmed by the calculated atomic sizes of the group-IV element since the tetrahedral (octahedral) interstices are occupied by the biggest (smallest) A atom (see Table II).

Let us go now to the more distinctive findings enclosed in the electron density. A common feature of these nitride spinels is the existence of highly directional bonds governing the molecular graph and conferring them great resistance to pressure load. Nonetheless, the compressibility shows noticeable differences between the three compounds with a bulk modulus reduction of almost 185 GPa along the sequence γ -C₃N₄ $\rightarrow \gamma$ -Si₃N₄ $\rightarrow \gamma$ -Ge₃N₄. The nature of their respective chemical bonds (see Table III) explains the above trend. At zero pressure, it is observed that γ -C₃N₄ shows strong covalent bonds with high values of the electron density and negative values of the Laplacian at the C-N bond critical points. It is clearly shown in Fig. 1(a) that these bonds generate a three-dimensional network of charge accumulation $(\nabla^2 \rho < 0)$ very difficult to compress, as in C-diamond, for instance. The formation of directional covalent bonds implies the contribution of high angular momentum orbitals to the bonding in the octahedral environment.

TABLE III. The chemical bonding in γ -A $_3$ N $_4$ spinels according to the AIM analysis.

Crystal	Bond	$\rho_b(e/\mathrm{bohr}^3)$	$ abla^2 ho_b(e/\mathrm{bohr}^5)$
γ -C ₃ N ₄	C^t -N	0.2227	-0.4341
$B_0 = 415 \text{ GPa}$	C^o -N	0.1755	-0.1826
γ -Si ₃ N ₄	$\mathrm{Si}^t \mathrm{-N}$	0.1160	+0.3546
$B_0 = 335 \text{ GPa}$	$\mathrm{Si}^o\mathrm{-N}$	0.0941	+0.2523
γ -Ge ₃ N ₄	Ge^t -N	0.1245	+0.1194
$B_0 = 231 \text{ GPa}$	$Ge^{o}-N$	0.1018	+0.1275

This is a critical requirement from an energetic perspective for the synthesis of γ -C₃N₄. The C^t-N bond is stronger than the C^o-N one, in agreement with the bond orders calculated by Ching *et al.*,⁴ and can be seen as a consequence of the shorter C-N distance at the tetrahedral sites. There is no contradiction between the C-N bond strengths and the values of the bulk moduli of CN₄ and CN₆ since the number of C-N bonds involved in the polyhedra have also to be considered.

In γ -Si₃N₄ and γ -Ge₃N₄, the positive values of the Laplacian and the low values of the electron density at the bond points do not evidence a typical covalent bonding character. As displayed in Figs. 1(b) and 1(c), the isolaplacian lines of these two compounds show zones of charge accumulation within the nitrogen volumes, but now they are disrupted by the depletion of the electron density $(\nabla^2 \rho > 0)$ associated with Si and Ge. The main difference between ν -Si₂N₄ and y-Ge₃N₄ lies in the greater ionicity of the former (see the ionic charges in Table II) with directional polarized bonds that tend to resemble the Laplacian map of γ -C₃N₄. These characteristics inform of a departure from a central force description of the crystalline interactions and, consequently, the crystal does not verify Cauchy's relationships. The bonding in γ -Ge₃N₄ is characterized by higher values of ρ_b and lower values of $\nabla^2 \rho_b$. Regions of flatter electron density surround the Ge-N bonds which are now clearly less polarized. The deviation from Cauchy's elastic constant ratio $C_{44}/C_{12} \approx 1$ is then predicted to be lower than in γ -Si₃N₄. The calculated values for this ratio by Soignard et al.³¹ are 1.78 (γ -Si₃N₄) and 1.42 (γ -Ge₃N₄), in a satisfactory agreement with our expectations.

The analysis of the topology of the electron density at selected pressures between 0 and 50 GPa uncovers other interesting results. We have found that the size of nitrogen is greater than the corresponding sizes of the two non equivalent A atoms in each of the three spinels (see Table II). The greatest and smallest differences are found in γ -Si₃N₄ and in γ -C₃N₄ in concordance with the dominant ionic and covalent character of the two compounds, respectively. Given the stoichiometry of these nitrides, N becomes the atomic species determining the compressibility of the crystals, as Eq. (1) and the occupation factors inform. Contrarily to oxide materials, ¹⁷ N atoms are surprisingly found to present the lowest compressibility in the three spinels with $B_{\rm N}$ values

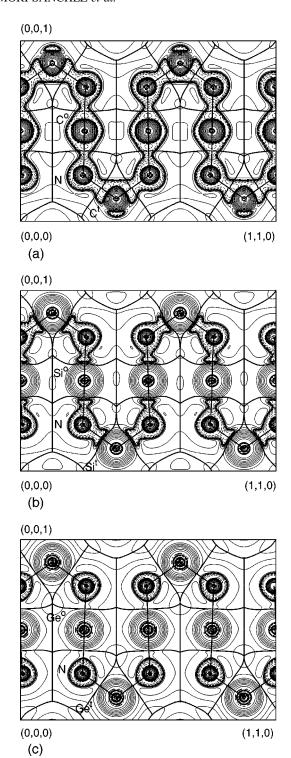


FIG. 1. $\nabla^2 \rho$ isolines of γ -C₃N₄ (a), γ -Si₃N₄ (b), and γ -Ge₃N₄ (c) in the (110) plane at the equilibrium geometry. Dashed lines correspond to negative isovalues of charge accumulation. Nitrogen atoms do not exactly lie on this plane.

following the same trend as the B_0 crystal values. This fact is at the heart of the high hardness exhibited by these materials.

A successful explanation is given in terms of a simple physical argument. We define the average valence electron density $\rho_{\text{av},i} = N_{v,i}/V_i$ as a measure of the resistance of the atomic valence electron density to be compressed. $N_{v,i}$ is the

effective number of valence electrons of atom i in the crystal after considering \mathcal{Q}_i values, i.e., $N_{v,i} = N_{v,i}^0 - \mathcal{Q}_i$, where $N_{v,i}^0$ is the number of valence electrons in the atom. Core electrons are supposed to participate negligibly in the compressibility of the crystal. Atoms with greater values of $\rho_{\text{av},i}$ are expected to display lower compressibilities. The evaluation of $\rho_{\text{av},i}$ becomes satisfactory since it is obtained: (i) $\rho_{\text{av},N} > \rho_{\text{av},A^o} > \rho_{\text{av},A^t}$, and (ii) $\rho_{\text{av},N}$ decreases from γ -C₃N₄ to γ -Ge₃N₄, i.e., these two sequences support the calculated B_i trends.

On the other hand, the atomic volumes of the group-IV elements are greater in the tetrahedral than in the octahedral positions. This result is a consequence of the different confinement imposed by the four- and sixfold coordinations. AN4 and AN6 polyhedral volumes clearly show that whereas Ao atoms are constrained inside the octahedra, the electron density of the A^t atoms expands out of the corresponding tetrahedra. Thus, as pressure is applied it is much easier to reduce the atomic volume of A^t than A^o , as illustrated by the different B_A values collected in Table II. The strong dependence of the cation compressibilities on their coordination correlates with the atomic number of the group-IV element. Thus, the difference between $B_{\rm A}^{\it o}$ and $B_{\rm A}^{\it t}$ is enhanced in γ-C₃N₄. Our results clearly reveal that carbon atoms are required to behave in very different manners in the spinel structure according to their local environment. It seems very reasonable to add this observation to the factors explaining the difficulty in synthesizing the cubic spinel phase of C_3N_4 .

IV. CONCLUSIONS

In summary, several physically based hints are put forward here to understand the observed behavior under pressure of spinel nitrides: (i) γ -A₃N₄ polymorphs resemble normal ordered spinels, the average compressibility of AN₆ and AN₄ polyhedra being a good estimation of the compressibility of the crystals, (ii) the crystal bonding picture explains well the observed trend in the compressibility: strong covalent and highly polarized bonds dominate the chemical bonding of γ -C₃N₄ and γ -Si₃N₄, whereas weaker ionic interactions are present in γ -Ge₃N₄, (iii) the low compressibility of N due to its high average electron density determines the superhard nature of these compounds, and (iv) the different volume and compressibility of the group-IV element in the fourfold and sixfold coordinations points towards procedures to reduce the mismatch (formation of defects by adding other elements or nanometer sized-grains) as a direction for the synthesis of superhard carbon nitrides.

ACKNOWLEDGMENTS

Financial support from the Spanish DGICYT (Project Nos. BQU2000-0466 and BQU2000-1425) and the Danish Technical Research Council are gratefully acknowledged. P.M.S. and M. M. thank the Fulbright Commission and the Spanish MCYT for a postdoctoral grant and a graduate grant, respectively.

- *Permanent address: Departamento de Química Física y Analítica, Universidad de Oviedo, E-33006 Oviedo, Spain.
- [†]Author to whom correspondence should be addressed. Email address: mateo@fluor.quimica.uniovi.es
- ¹S. Vepřek, J. Vac. Sci. Technol. A **17**, 2401 (1999).
- ²R.M. Hazen and L.W. Finger, J. Geophys. Res. B **84**, 6723 (1979).
- ³M.L. Cohen, Phys. Rev. B **32**, 7988 (1985).
- ⁴W.Y. Ching, S. Mo, I. Tanaka, and M. Yoshiya, Phys. Rev. B **63**, 064102 (2001).
- ⁵D.M. Teter and R.J. Hemley, Science **271**, 53 (1996).
- ⁶F. Weich, J. Widany, and Th. Frauenheim, Phys. Rev. Lett. **78**, 3326 (1997).
- ⁷J.E. Lowther, Phys. Rev. B **59**, 11 683 (1999).
- ⁸M. Mattesini and S.F. Matar, Phys. Rev. B **65**, 075110 (2002).
- ⁹ A. Zerr, G. Miehe, G. Serghiou, M. Schwarz, E. Kroke, R. Riedel, H. Fuess, P. Kroll, and R. Boehler, Nature (London) 400, 340 (1999).
- ¹⁰K. Leinenweber, M. O'Keefle, M. Somayazulu, H. Hubert, P.F. McMillan, and G.H. Wolf, Chem.-Eur. J. 5, 3076 (1999).
- ¹¹S.D. Mo, L. Ouyang, W.Y. Ching, I. Tanaka, Y. Koyama, and R. Riedel, Phys. Rev. Lett. **83**, 5046 (1999).
- ¹² T. Sekine, H. He, T. Kobayashi, M. Zhang, and F. Xu, Appl. Phys. Lett. **76**, 3706 (2000).
- ¹³J.Z. Jiang, H. Lindelov, L. Gerward, K. Stahl, J.M. Recio, P. Mori-Sanchez, S. Carlson, M. Mezouar, E. Dooryhee, A. Fitch, and D.J. Frost, Phys. Rev. B 65, 161202(R) (2002).
- ¹⁴See the web page of the First International Workshop on Spinel Nitrides and Related Materials in http://www.hotmaterials.de
- ¹⁵ R.F.W. Bader, Atoms in Molecules (Oxford University Press, Oxford, 1990).

- ¹⁶A. Martín Pendás and V. Luana, the CRITIC code, Universidad de Oviedo, 1995.
- ¹⁷ A. Martín Pendás, A. Costales, M.A. Blanco, J.M. Recio, and V. Luaña, Phys. Rev. B 62, 13 970 (2000).
- ¹⁸J.M. Recio, R. Franco, A. Martín Pendás, M.A. Blanco, R. Pandey, and L. Pueyo, Phys. Rev. B 63, 184101 (2001).
- ¹⁹ A.D. Becke, Phys. Rev. A **38**, 3098 (1988).
- ²⁰J.P. Perdew, *Electronic Structure of Solids '91*, edited by P. Ziesche and H. Eschrig (Academic, Berlin, 1991).
- ²¹ V.R. Saunders, R. Dovesi, C. Roetti, M. Causá, N.M. Harrison, R. Orlando, and C.M. Zicovich-Wilson, *CRYSTAL98 User's Manual* (University of Torino, Torino, 1998).
- ²²P. Vinet, J. Ferrante, J.H. Rose, and J.R. Smith, J. Geophys. Res., [Solid Earth Planets] 92, 9319 (1987).
- ²³ P. Mori-Sánchez, R. Franco, A. Martín Pendás, V. Luaña, and J.M. Recio, Europhys. Lett. **54**, 760 (2001).
- ²⁴J.Z. Jiang, K. Stahl, R.W. Berg, D.J. Frost, T.J. Zhou, and P.X. Shi, Europhys. Lett. **51**, 62 (2000).
- ²⁵ A. Zerr, M. Kempf, M. Schwarz, E. Kroke, M. Göken, and R. Riedel, J. Am. Ceram. Soc. **85**, 86 (2002).
- ²⁶M.S. Somayazulu, K. Leinenweber, H. Hubert, P.F. McMillan, and G.H. Wolf, Proc. AIRAPT-17 (1999).
- ²⁷D.M. Christie and J.R. Chelikowsky, Phys. Rev. B **62**, 14 703 (2000).
- ²⁸R.J. Hill, J.R. Craig, and G.V. Gibbs, Phys. Chem. Miner. 4, 317 (1979).
- ²⁹L. Gracia, A. Beltrán, J. Andrés, R. Franco, and J.M. Recio, Phys. Rev. B **66**, 224114 (2002).
- ³⁰ J. Dong, O.F. Sankey, S.K. Deb, G. Wolf, and P.F. McMillan, Phys. Rev. B **61**, 11 979 (2000).
- ³¹E. Soignard, M. Somayazulu, J. Dong, O.F. Sankey, and P.F. McMillan, J. Phys.: Condens. Matter 13, 557 (2001).