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Diffraction patterns of stacked layer crystals
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The relation between diffraction and planar faulting is studied. The layer displacement probability correla-
tion function is shown to be related to the Fourier coefficients of the decomposed diffraction pattern. Peak
displacement can be considered as a consequence of the departure of the faulted structure from the original
periodicity, while peak broadening is associated with the loss of correlation. Several definitions of distance are
introduced to compare stacking sequence and measure their degree of randomness. A run-length encoding
procedure is considered, well suited for the identification of mixed polytypes and as a measure of disorder. The
problem of identification of faulting complexes is discussed in terms of the pair correlation function of the
binary sequence representing the layer stacks.

DOI: 10.1103/PhysRevB.68.064111 PACS number~s!: 61.72.Nn, 61.72.Dd, 61.10.Nz, 61.72.Bb
rd
e

th
rn

e
i

te
n
uc
p
nd

a

s
r t
in
r

on
a

th
de
it
o

in
ib

g
in
a
fo
fo
na
b

ha

ith
al-
end
d a

ct
dis-

he
ysi-
e as
ruc-
is
the
the
an
here

tion
the
re

ther

al
the
e
yer
ns
n

tal
s-
re-
-

ther
ral
the
he

fur-
I. INTRODUCTION

Several theories and approaches have been put forwa
characterize by x-ray diffraction the occurrence of polytyp
and planar disorder. Early works by Landau1 and Lifschitz2

were perhaps the first attempts to give an account of
influence of planar disorder in the x-ray diffraction patte
Works by Warren,3 Hendricks and Teller,4 Wilson,5

Jagodzinski,6 Dornberger-Schiff, and Farkas-Jahnke,7,8 Lele9

and Cowley et al.10 among others, further developed th
theory. Other significant references can be found
Welberry.11 With the advent of faster computers, Mon
Carlo methods and other computer procedures have bee
vised to simulate diffraction patterns of more complex str
tures with more complex faulting. Example of such a
proaches can be found in the work of Berliner a
co-workers,12–14 the softwareDIFFAX developed by Treacy
et al.,15 and the more recent works of Weiss and Capkov16

and Ustinov.17

The most simple layer structure is the so called clo
packed structure where two layers cannot occur one ove
other with no lateral displacement. The most simple stack
defect one can imagine is the random missing of one laye
a close packed structure, or the occurrence of an additi
layer in the otherwise perfect sequence. Such defects h
historically been called deformation faults. Twin or grow
faults, on the other hand, are random reversions of the or
ing sequence within the stack, while order and periodic
are maintained inside each block. When a high density
planar faulting occurs in the material, random noninteract
deformations or twin faults are too simple models to descr
the occurring disorder.

In spite of the large amount of work in planar faultin
accumulated over the years, the majority of the exist
methods are rather limited in their applicability, and are of
indirect nature. Most of the approaches are valid only
simple structures and noninteracting defects and there
fail to describe correctly the occurrence of heavy pla
faulting. Heavy disorder is precisely the type expected to
found in a rearrangement of a layer sequence during a p
0163-1829/2003/68~6!/064111~12!/$20.00 68 0641
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transformation between two polytpes or in structures w
almost energetically equivalent polytypes. Even more ‘‘re
istic’’ approaches such as Monte Carlo simulations dep
on the ingenuity of the researcher to propose beforehan
planar faulting model for their simulation.

Usually all of these approaches rely on what Varnet al.18

call the fault model, which considers an underlying perfe
stacking sequence perturbed by several types of stacking
order described by their probability of occurrence. In t
case of heavy disorder it does not seem correct, from a ph
cal point of view, to assume a particular stacking sequenc
the underlying perfect sequence. At least in the case of st
tures with different coexisting polytypes this assumption
incorrect. This should also be the case when analyzing
phase transition between different polytypes belonging to
same polytypic family. During the transition the structure c
be in a state made up of several stacking sequences w
none predominates.

There have been more direct approaches to find a solu
to the quantitative characterization of layer ordering from
diffraction pattern of a layered structure. Attempts we
made by Zachariasen19 and by Farkas-Jahnke8 for the par-
ticular case of ZnS and related structures. Recently, ano
procedure which makes use use of a so callede machine has
been proposed.18

A direct solution of the diffraction pattern from a cryst
structure with planar faulting has been reported by
authors.20 The use of the term ‘‘direct solution’’ must b
understood in the sense that quantitative information on la
ordering is derived directly from the kinematical equatio
of diffraction, avoiding the need of any prior assumptio
about the kind of stacking disorder occurring in the crys
and making no use of particular models of faulting with a
sociated faulting probabilities. The solution gives the cor
lation functions describing the probability of finding two lay
ers,D layers apart, and displaced with respect to each o
by a given vector. In this sense the formalism is of gene
use for any layer structure as long as it is considered that
planar faulting does not alter the interlayer distance. T
practical aspects of this direct method of analysis were
©2003 The American Physical Society11-1
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ther explored in Ref. 21, where a least-square procedure
described for dealing with the experimental diffraction p
terns in order to obtain the correlation functions.

The fact that the solution is derived directly from the d
fraction pattern permits the study, in a general framework
the relation between the different features of the diffract
pattern and the disorder of the stacking sequence. As
correlation function contains the maximum information fro
a diffraction pattern, we should explore that information
garding the appearance of different polytypes and disord

In this work we will further study the relation betwee
planar faulting and diffraction. The physical interpretation
the Fourier coefficients of the diffraction pattern will be stu
ied. We will define distance measures between stacking
quences which will allow us to compare different stacki
orderings and find measures of departure from periodicity
run length encoding procedure will be described for the id
tification of polytypes and as a measure of the stacking
quence complexity. Finally, it will be shown how simple p
rameters characterizing the probability of occurrence
different types of faulting can be derived.

II. DIRECT SOLUTION OF THE CORRELATION
FUNCTION FROM THE DIFFRACTION PATTERN

OF A LAYERED STRUCTURE

In an earlier paper20 it was found that the powder diffrac
tion pattern of a layered crystal can be decomposed i
cosine series where the coefficients could be linearly rela
to the so called correlation probability function. We will sta
in this section by making a more general deduction for a
diffraction pattern within the kinematical approximation, a
prove that, in the general case, the diffraction pattern can
considered a Fourier series where the coefficients can ha
direct physical interpretation. The relation with other a
proaches will be considered. Once we have derived the g
eral relations we will then, in Sec. III, focus on the interpr
tation of the Fourier coefficients and the relation between
diffraction pattern features, the planar disorder and the F
rier coefficients.

Layer structures can be considered to be built up by tra
lational equivalent layers. Every layer has associated
same bidimensional latticeruv5ua1vb whereu and v are
integers and (a,b) define a primitive cell for the bidimen
sional lattice. A three-dimensional lattice is then build up
stacking the two-dimensional layers in a prescribed seque
along a third direction.

Any vector pointing to a lattice point in one of the bid
mensional layers can be decomposed in two vectors, a ve
Rw that goes from the origin of object space to the origin
thew layer in the crystal and a vectorruv which points from
the origin of the bidimensional layer to the correspond
lattice point~Fig. 1!. Let L(r ) represent the layer crystal o
sizeNa3Nb3Nc ; then

L~r!5rm~r! ^ S (
u52Na/2

Na/2

(
v52Nb/2

Nb/2

d~r2ruv!D
3 (

w50

Nc21

d~R2Rw!, ~1!
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where^ represents the convolution operator,d represent the
Dirac delta, andr(r) the scatterer density.

The amplitude of a diffracted wave will be the Fouri
transform of the density of scatterer in object space.23 If
Fm(r* ) is the Fourier transform of the scatterer dens
rm(r), the corresponding amplitude will be proportional t

F~r* !}Fm~r* !S (
u52Na/2

Na/2

(
v52Nb/2

Nb/2

exp~2p i r*•ruv!D
3 (

w50

Nc21

exp~2p i r*•Rw!. ~2!

The corresponding diffracted intensity forNa , Nb@1 will
then be proportional to

I~r* !}Fm
2 ~r* !S (

ho52`

`

(
ko52`

`

d~h2ho!d~k2ko!D H 1

1
2

Nc
(
D51

Nc21

(
w50

Nc2D21

cos@2pr*•~Rw2Rw1D!#J ,

~3!

r* 5ha* 1kb* 1 lc* being the reciprocal space vector.
Expression~3! is equivalent to Eq.~4! found in Ref. 12.

The term inside the curly brackets in Eq.~3! is the contribu-
tion to the intensity of the layer arrangement and therefor
is the term we are interested in:

Q~r* !511
2

Nc
(
D51

Nc21

(
w50

Nc2D21

cos@2pr*•~Rw2Rw1D!#.

~4!

Q(r* ) can be considered a interference function measura
from the intensity profiles of the diffraction pattern as e
plained in Refs. 20 and 21.

FIG. 1. Schematic representation of the bidimensional lattice
a layer with the lattice origin atRw . A object space vectorr, point-
ing to the (u,v) node in the layer, can be decomposed as the sum
the vector pointing to the layer lattice originRw , and a vector
contained in the layerruv .
1-2
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If we now take the origin of object space in a node of a
of the layers, the vectorRw can be decomposed as the sum
two vectors, one along the stacking direction plus a vec
parallel to the layer lattice,

Rw5swrab1wc, ~5!

for layer structures with constant vector displacement,sw is
an integer,22 rab is the displacement vector parallel to th
layer lattice, andc is a vector along the stacking directio
with a length equal to the interlayer spacing. The stack
sequence will now be given by the sequence ofsw values
corresponding to eachw layer. If there areM possible s val-
ues thenM rab will be a lattice vector of the layer, and Eq.~4!
can be written as

Q~r* !511
2

Nc
(
D51

Nc21

(
s50

M21

Ns~D!

3cos@2ps~hx1ky!12pD l #, ~6!

where we have writtenrab5xa1yb, andNs(D) is the num-
ber of pair of layers,D layers apart, and laterally displace
one with respect to the other bysrab (D pairs!.

If we multiply and divide byNc2D, the total number of
D pairs, then we can write Eq.~6! in terms of the probability
of finding aD pair with lateral displacementsrab . Let us call
such a probabilityPs(D),

Q~r* !5112 (
D51

Nc21 S 12
D

Nc
D (

s50

M21

Ps~D!

3cos@2ps~hx1ky!12pD l #, ~7!

which can be rewritten as

Q~r* !5112 (
D51

Nc21

ADcos~2pD l !1BDsin~2pD l !, ~8!

where

AD5S 12
D

Nc
D (

s50

M21

Ps~D!cos@2ps~hx1ky!# ~9!

BD5S 12
D

Nc
D (

s51

M21

Ps~D!sin@2ps~hx1ky!#. ~10!

Equation ~8! expressesQ(r* ) as a Fourier series, from
where

AD5E
21/2

1/2

Q~r* !cos~2pD l !dl, D51,2, . . . , ~11!

BD5E
21/2

1/2

Q~r* !sin~2pD l !dl, D51,2, . . . . ~12!

As explained in Ref. 20, in the case of a random pow
sample, the probabilityPs(D) will be equal to the probabil-
ity PM2s(D). This result indicates that the only differenc
between asrab displacement in one grain and a2srab5M
06411
f
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2srab displacement in another grain is a rotation ofp along
an axis parallel toc. Then for a random powder sample th
BD coefficients vanish and Eq.~8! reduces to

Q~r* !5112 (
D51

Nc21

ADcos~2pD l !, ~13!

with

AD5S 12
D

Nc
D H P0~D!12 (

s51

(M21)/2

Ps~D!

3cos@2ps~hx1ky!#J , Modd ~14!

AD5S 12
D

Nc
D H @P0~D!1PM /2~D!#

12 (
s51

(M /2)21

Ps~D!cos@2ps~hx1ky!#J , Meven.

~15!

The collapse of Eq.~7! to Eq. ~13! for a powder sample
can also be viewed as a result ofQ(r* ) being an even func-
tion of the reciprocal variablel. Conversely, in the case of
single crystal, an even functionQ(r* ) of the reciprocal vari-
able l implies Ps(D)5P2s(D). Equation ~14! reduces to
expression~10! in Ref. 20 in the limit of an infinite crystal.

In the deduction of this result no assumption of a partic
lar sequence of layers was necessary and therefore, the r
is valid for any sequence and any density of stacking fa
present on the layer arrangement. In the same sense as
et al.,18 the formalism developed has to be considered
approach ‘‘beyond the fault model’’ as no underlying perfe
sequence had to be defined.

Relation to other approaches

Another direct approach was that of Zachariasen.19 The
AD coefficients in the present work can be seen to be equ
lent to theWH1H2

M coefficients in the Zachariasen approac

yet he failed to consider theBD coefficients and the condi
tions for nonaffected reflections are incorrectly stated.

In another formalism, use is made of the so called aver
phase factor.17,24 If we start by writing theQ function from a
layer structure as

Q~r* !5
1

Nc
(
w

(
w8

eif(D)e2p iD l , ~16!

wherew andw8 goes through all layers in the stack andD
5w2w8, f(D)52p(sw2sw8)r*•rab . Making the average
of all D neighbor pairs,̂eif(D)&, the double sum in Eq.~16!
can be reduced to a single sum:

Q~r* !5
1

Nc
(

D52(Nc21)

Nc21

~Nc2uDu!^eif(D)&e2p iD l . ~17!
1-3
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Noting from the definition thatf(2D)52f(D) then
^eif(2D)&5^e2 if(D)&5^eif(D)&* where * denotes complex
conjugate. Equation~17! can now be rewritten as

Q~r* !5112 (
D51

Nc21 S 12
D

Nc
D $Re@^eif(D)&#cos~2pD l !

2Im@^eif(D)&#sin~2pD l !% ~18!

where Re and Im stands for real part and imaginary p
respectively. A Comparison of Eq.~18! with Eq. ~8! gives us

AD5S 12
D

Nc
DRe@^eif(D)&#, ~19!

BD5S 12
D

Nc
D Im@^eif(D)&#. ~20!

AD is therefore related to the real part of the avera
phase factor̂eif(D)&, while BD is proportional to the imagi-
nary part. The imaginary part of the average phase factor
a powder sample vanishes.

Farkas-Jahnke and Dornberger-Schiff8 used a direct ap-
proach for a polytype analysis which can be related to
one presented here. Their analysis was for the partic
cases of ZnS, SiC, and similar structures, and therefore
above deduction can be considered in some sense a gen
zation of their results. An equivalent approach using the
called unitary structure factor was independently introdu
by Tokonami.25

The unitary structure factor is defined by writing th
structure factor of the unit cell in a perfect periodic lay
crystal as

F~r* !5F0~r* !S~r* !, ~21!

whereF0(r* ) denotes the structure factor of a structure h
ing the same unit cell as the real structure but the scatte
density distribution of only a single layer, andS(r* ) is the
unitary structure factor which is the Fourier transform o
periodic function with the same unit cell, characterizing t
stacking of the layers.

Starting from Eq.~2! and writingRw as in Eq.~5!, we get

F~r* !}Fm~r* ! (
w50

Nc21

exp@2p isw~hx1ky!12p iwl #,

~22!

where we have made use ofr ab5xa1yb and r* 5ha*
1kb* 1 lc* . Due to the periodicity of the perfect structu
sw5sw1D , whereD is the number of layers building up
unit cell, and Eq.~22! will then be

F~r* !}
Nc

D
Fm~r* ! (

w50

D21

exp@2p isw~hx1ky!12p iwl #

~23!

for Dl of an integer value. Comparing Eq.~23! with Eq.
~21!,
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F0~r* !5
Nc

D
Fm~r* ! ~24!

and

S~r* !5 (
w50

D21

exp@2p isw~hx1ky!12p iwl #. ~25!

Equation~25! is a straightforward generalization of the un
structure factor used by Dornberger-Schiff a
Farkas-Jahnke.7 From the above equation it also follows th

Q~r* !}S2~r* !. ~26!

III. FOURIER COEFFICIENTS

Equations~11! and~12! are central to the faulting problem
considered here, which shows that theAD and BD coeffi-
cients can be obtained from the experimental diffract
data. The peak broadening and peak shift will have a dir
influence over the values of bothAD andBD .

On the other hand, in Eq.~8!, AD and BD play similar
roles as coefficients in a Fourier expansion. In what follo
of this section we will make our analysis for theAD coeffi-
cient and results will be also generally valid for theBD co-
efficients.

In the limit of an infinite crystal we can write

AD5 (
s50

M21

Ps~D!cos@2ps~hx1ky!#. ~27!

If we determineAD for as much (h,k) as unknownPs(D)
are, then Eq.~27! defines a linear set of equations solvab
for Ps(D). Ps(D) are then obtainable from the experimen
data through theAD andBD coefficients. From Eq.~27! it is
clear that forhx1ky5n, wheren is an integer value,AD

will not depend on the particular stacking arrangement, t
is, the corresponding reflection in the x-ray diffraction pa
tern will not be affected by planar disorder.

Two types of stacks can be considered. In one case t
is no restriction on the layer ordering and for the extre
case of a complete random sequence we will haveAD50 for
all D values,Q(r* ) will be constant along al row. All Ps(D)
will have a value 1/M , M being the total number of possibl
lateral displacements.

A second type of stacking is the close-packed struct
where two adjacent layers cannot be found without a late
displacement. The best known close-packed crystals
those with three possible displacements of the layers, usu
described by the lettersA, B, andC. One of the letters stand
for a zero displacement, another for1

3 a2 1
3 b, and the third

one for 2(13 a2 1
3 b). Which letter corresponds to which dis

placement is irrelevant as long as consistency is kept.
close-packed condition will then mean the impossibility
finding the same letter consecutive times in the stacking
quence. In the case of a close-packed structure,

AD5P0~D!1@12P0~D!#cosF2p

3
~h2k!G ~28!
1-4
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and those reflections withh2k53n will not depend on the
stacking sequence.

Here we are constrained by the fact that two nondispla
layers cannot be found one over the other, which leads to
conditionP0(1)50. In such a case, for a random sequen

AD5H cosF2

3
p~h2k!G , D51

1/3H 112 cosF2

3
p~h2k!G J , DÞ1.

~29!

AD will be constant forD.1. For a close-packed struc
ture with random sequence theQ(r* ) function for a faulted
affectedl row (h2kÞ3n) will be

Q~ l !512S 12
1

Nc21D cos~2p l !. ~30!

The peak profiles will be a cosine function with maximu
at l integer values and a full width at half maximum value
1
2 . The cosine profile for the random sequence given by
~30! is a consequence of the nearest neighbor order resu
from the close-packed condition.

In the other limit of a perfect periodic crystalPs(D) will
have the value 1 forD a integer number of times the per
odicity of the crystal along the stacking direction. ThePs(D)
functions will be a periodic function with repeating lengt
Dp , the period of the crystal along the stacking directio
correspondingly theAD will exhibit the same periodic behav
ior. In the case of a perfectly periodic close packed str
tures, theP0(D) functions will also be constrain by the con
dition P0(Dp21)50.

For close packed structures Eq.~8! together with defini-
tion of the Fourier coefficients~9! and ~10! will lead to the
extinction condition for forbidden reflectionsl 0,

l o5noninteger, h2k53n,

(
D51

Dp

$A3@P1~D!2P2~D!#sin~2pD l o!

1@3P0~D!21#cos~2pD l o!%50, h2kÞ3n.

Influence of layer disorder on the peak profile
and displacement

A partly disordered crystal will be an intermediate ca
between the random sequence and a perfect periodic one
small values ofD, AD will be almost equal to the values fo
the perfect periodic structure, but will tend to the value of t
random sequence as theD value increases. This behavior
a partly disordered sequence is the result of a loss of co
lation between the layer displacement for large values ofD.
We can define a layer correlation lengthDc , the characteris-
tic length of the system above which correlation betwe
layers can be considered lost.20 Knowing the stacking se
quence up toD layers, we cannot predict in any sense ho
stacking sequence behaves beyondD1Dc.
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Along the integration path in Eq.~11! several diffraction
peaks could occur~e.g. in the close-packed rhombohedr
structure, forh2kÞ3n, two diffraction maxima occur!, and
the equation can be written as a sum of integrals over e
diffraction peak profile,

AD5(
i
E

21/2

1/2

Vi~ l 2 l oi
!cos~2pD l !dl5(

i
iAD , ~31!

whereVi is the peak profile for thei reflection andl oi
is the

position of the maximum. Each integral in Eq.~31! can be
written as

iAD5cos~2pD l oi
!E

2(1/2)2 l oi

(1/2)2 l oi Vi~ l !cos~2pD l !dl

2sin~2pD l oi
!E

2(1/2)2 l oi

(1/2)2 l oi Vi~ l !sin~2pD l !dl.

~32!

The terms in front of the integrals will determine a pe
odic oscillating behavior inAD . If the peak position can be
described as a rational numberl oi5p/q (qÞ1) then the pe-
riod of the oscillation will beq. The integral terms, on the
other hand, will give, for a Dirac delta function, a value of 1
the contribution of this profile to theAD values will then
consist only of the oscillating part extending to infinity wit
a periodicity ofq. This case corresponds to the perfect pe
odic stacking.

If the peak profile is not a delta function but instead
planar faulted broadened peak, then the integral terms
give a damped oscillating function tending to zero asD in-
creases. This behavior can be understood if we look at Fig
where we have plotted the integrand in the first term of E
~32!, and notice that the integral is nothing else but the a
under the curve. The absolute area will remain constant
all D values, but, as Fig. 2 shows, for increasingD values the
cosine term will have an increasing number of oscillatio
within the peak width and therefore the negative area con
bution will tend to increase or decrease at the expense o
positive area contribution while the sum will tend to zer
The contribution of one peak profile to theAD coefficients
can be summarized as

iAD5( ‘ ‘decay term’’3 ‘ ‘oscillating term .’’ ~33!

The decay term, which depends on the peak shape
width, will be the sole element responsible for determini
the correlation lengthDc of the stacking sequence. The o
cillation term, on the other hand, will be reflected in the pe
shift and will further affect the behavior of theAD coeffi-
cients without further loss of correlation length in the stac
ing sequence.

The limiting case of a delta function peak profile corr
sponds to a perfect periodic sequence and theAD coefficients
will be an oscillating periodic factor, with periodicity de
pending only on the peak position. The correlation length
this case will be infinite. The peak shift in this case~without
1-5
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FIG. 2. Integrand of the first term of Eq.~32!.
The figure illustrates the fact that with increasin
D value, the integral, which is the area under t
curve, will tend to zero.
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broadening! can be considered to reflect the departure of
riodicity from the original sequence towards other perio
orderings.

Let us consider another limiting case, a peak profile giv
by a step function; for simplicity let us further assume th
the function is symmetric in the integration interval and co
pletely contained within it

Q~ l !5H f 21, 2
f

2
< l<

f

2

0 otherwise.

~34!

In this case the contribution of the peak profile to theAD

coefficient will be

iAD5
sinpD f

pD f
. ~35!

The decaying term will be given by 1/pD f . When a corre-
lation function follows a power law, the decrease of the c
relation is always at the same rate and a characteristic le
cannot be defined.

We can ask if there is a physically consistent peak pro
which can lead to a decaying term proportional toD2n with
nÞ1. It follows directly from Eq.~11! that the peak profile
function following a2 l 2p (p51,2,3. . . ) law defined over
its positive range will give a decaying term with the leadi
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term following a D22 power law regardless of the actu
value of p. Both the step function and the power law pe
profiles have a definite cutoff or total width value, and bo
give rise to a power law decaying term.

Real profiles are never cutoff functions but instead slow
decaying functions. In this case we have found that the
caying term inAD will follow an exponential law for all the
common profiles used in diffraction. For the Lorentz profi
the decaying term follows an exp(2Dfp) law, with f being
the full width at half maximum, while for the Gauss term th
decaying law was found to be exp@2(Dfp)2#. Figure 3 shows
a comparison of the decaying term for Lorentz, Gauss,
step profile functions. All profiles were taken with the samf
value. A characteristic length can be defined asDc
51/( f p). The power law decreasing function for the st
profile decays slowly to zero with a constant decay ra
Voigt profile functions, which are usually considered bet
suited for describing diffraction peak profiles, are an int
mediate function between the Lorentz and Gauss functi
and therefore will introduce no new feature to the abo
analysis.

Two different characteristics can now be understood
the diffraction pattern of a planar faulted crystal. On the o
hand, peak broadening is associated with the decaying t
in AD , and consequently with the loss of correlation in t
layer stack due to the presence of random disorder. The p
shift, on the other hand, is related to the periodicity of theAD
1-6
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DIFFRACTION PATTERNS OF STACKED LAYER CRYSTALS PHYSICAL REVIEW B68, 064111 ~2003!
coefficients@Ps(D) functions#. The peak shift will reflect
that, as a result of the appearance of disorder, the stac
layers gradually loses its original periodicity and eventua
can move nearer to another stacking arrangement.

The loss of correlation in the stack and the change
periodicity in thePs(D) functions are to be considered tw
competing effects. It would make no sense to ascribe t
stacking sequence a periodic ordering of length larger t
the correlation length. The peak shift and peak broadening
not occur independently, and while the peak shift can
thought of as a departure from the old periodic order, a
therefore a possible new stacking order of the layers,
peak broadening can show that such an order is frustrate
the loss of the correlation length. The ‘‘new order’’ sugges
by the peak shift is not real as long as the correlation len
is smaller than the periodicity length of the ‘‘new’’ ordering
Only when the correlation length is larger than the period
ity of a possible ‘‘new periodic order’’ can we consider th
such an order has emerged, and the stacking sequenc
though still disordered, is now nearer to this new perio
stacking arrangement than to the ‘‘original’’ one.

A peak shift occurs as a continuous function of positio
for small shifts of the peak maximum, if they can be giv
by a rational number, will give rise to long stacking perio
icity orders which are frustrated by the underlying disord
as discussed above. Further peak shifts can be taken
strong indications that an increasing correlation between
faults is occurring, and that the ordering of the faulting
leading the stacking sequence to a new polytypic ordering
disorder is introduced without further peak shifting, this c
be taken as an indication that although a higher density
faulting is occurring in the crystal, this faulting is not accom
panied by correlation between the faults, and the sequen
shifting towards a random distribution of layers.

The above discussion concentrated on the effect of pla
disorder over one reflection in the diffraction pattern. In
complete analysis all the reflection contributionsiAD have to
be considered on the final Fourier coefficientAD . If more
than one peak is present in one periodic interval inl, then the

FIG. 3. Decay term for different diffraction peak profiles. Th
step function gives a constant decay rate characteristic of d
power laws, the other two profiles show different exponential
cays, and a characteristic decay length can be defined.
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periodic order is determined by the combined contribution
each peak position. The emergence of a new order, as
plained above, is accompanied by the appearance of
reflections. The generalization is straightforward, yet seve
cases now appear for the resulting oscillating term.

If at least one of the peak positions is an irrational nu
ber, the ‘‘periodicity’’ is effectively infinite and the close
rational number which leads to a periodic length smaller th
Dc is the one describing the underlying periodic order. If t
peak positions for all peaks are rational numbers, one m
still consider if the periodic length is larger or smaller th
the correlation length. If the periodicity is larger than th
correlation length, then the closer peak position which le
to a nonfrustrated periodic order is the one describing
underlying periodic order.

The oscillation term for the ‘‘perfect underlying struc
ture’’ can be determined as described in the preceding p
graphs. Yet even in this situation two cases arise. One c
corresponds to the existence of only one underlying po
type: the periodic correlation functions yields a stacking
dering which can be determined as explained, for the cas
close packed structures, in Ref. 28. In the other case, sev
polytypes occur without correlation among them, in this ca
the periodic correlation functions calculated from all t
peak contributions are not consistent with any layer arran
ment of this periodic length.

An example: intermetallic rare earth-cobalt structures

R2Co17 (R is a rare earth! alloys can be described as clos
packed layer structures which can be found in two crysta
graphic modifications, one described by a rhombohed
crystal system~for the lighter rare earths! and the other by an
hexagonal crystal system~for heavier rare earths!.29 The
rhombohedral stacking order corresponds to a seque
ABCABCABC. . . while the hexagonal sequence corr
sponds to aABABAB. . . stacking order. The minimum lat
eral displacement vector between the layers is the same
the fcc structure~for details, see Ref. 20!.

Figure 4 shows the diffraction patterns corresponding
three typical rare earth compounds. For the Nd alloy
rhombohedral structure is clearly determined and index
while for the Lu alloy the hexagonal structure is the o
present. The Dy alloy shows mixed reflections which cou
indicate the presence of a higher order polytype or a mixt
of the hexagonal and rhombohedral stacking.

Figure 5 shows the fitted profiles for the (02 4/31d l 1) for
the Nd2Co17 sample and the (20 3/21d l 2) for the Lu2Co17
sample. Fitting was done using a least square procedur
explained in Ref. 21.

From the powder diffraction pattern of each sample
P0 functions were determined and the correlation length c
culated. Nd had a correlation lengthDc of 134 layers, larger
than the correlation length of 31 layers for Dy, and sligh
smaller than Lu, which had a correlation length of 169 la
ers. The percent of hexagonality was also determined fr
eachP0 function, in this case the results where 1% for N
45% for Dy, and 98% for Lu.

The diffraction pattern of the Dy alloy shows the simu
taneous occurrence of two peaks at (02 4/31d l 1) and

ay
-
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FIG. 4. Diffraction pattern ofR2Co17 alloys
for R-Nd, Dy, and Lu. Nd and Lu diffraction
peaks can be indexed as rhombohedral and h
agonal structures, respectively. The Dy diffra
tion pattern shows peaks belonging to both rho
bohedral and hexagonal orderings.
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(20 3/21d l 2). The peak shifts were calculated asd l 1

50.0007 for (02 4/31d l 1) and d l 150.0009 for (20 3/2
1d l 2). From the peak shifts and the correlation length,
closer ‘‘ideal’’ underlying periodic order was found to be
periodic length 6. The corresponding combinedP0 correla-
tion function for such ideal order is shown in Fig. 6 togeth
with the faulted one.

The ‘‘ideal’’ correlation function of Fig. 6~b! is incompat-
ible with any close packed stacking sequence of six lay
repeating unit cell. The correlation function obtained c
thus be explained as the mixture of two polytypes, nam
the rhombohedral one, to which the (02 4/31d l 1) peak be-
longs, and the hexagonal one, to which the (20 3/21d l 2)
reflection belongs. Dy alloy diffraction pattern then sho
that, in this alloy, the hexagonal polytype nucleate random
within the rhombohedral phase.
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IV. QUANTITATIVE CHARACTERIZATION
OF PLANAR DISORDER

A question arises as to what type of information can
derived from the probability correlation functions. It is a
ready known that the percent of hexagonal environment
be directly determined asP0(2) while the relative cyclicity
can be calculated asP1(1)2P2(1).26

From the probability correlation functions representat
layer sequences of length up to the correlation length co
be calculated from a Markov process.18 The possibility of
obtaining such typical sequences allows the introduction
additional parameters for the characterization of disorder

In this section, further parameters will be proposed for
characterization of disordered layered crystal, and meas
of distance that could allow us to compare different seque
orders will be defined. As long as representative stack
e
e
ure
FIG. 5. Peak profile of the (02 4/31d l 1) peak
of the Nd2Co17 sample and the (20 3/21d l 2) re-
flection of the Lu2Co17 sample. The peaks ar
given in terms of the reciprocal variable l. Th
peaks were fitted using a least square proced
as explained in Ref. 21.
1-8
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FIG. 6. ~a! Calculated correlation function
from the (02 4/31d l 1) and the (20 3/21d l 2) re-
flections for the Nd2Co17 sample. The ‘‘ideal’’
underlying periodic correlation function is show
in ~b!.
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sequences can be deduced from the correlation function
so called Hamming distance and the run length encod
distance can be defined. The run length encoding proce
can also be used for the identification of polytypes in a
quence and as a measure of complexity or randomness o
disorder stack. Finally the identification of faulting com
plexes will be discussed.

For the discussion that follows it will be important t
understand how a stacking sequence can be coded as
of numbers. We will limit our discussion, for the sake
clarity, to close-packed structures.

In a close-packed structure we can write any sequenc
a binary string where every ‘‘1’’ stands for two consecuti
layers with lateral displacement vectorr ab and 0 for a lateral
displacement2r ab . Any two symbols in the sequenceA
→B→C→A will be represented by a 1, while any two sym
bols in the sequenceA→C→B→A will be represented by a
0 ~e.g., a sequenceABCABACBCACBAwill be repre-
sented by 111100011000). This notation is equivalent to
Hagg notation27 with ‘‘1’’ used instead of ‘‘1’’ and ‘‘0’’ in-
stead of ‘‘-.’’ An extension to non-close-packed structures
straight forward if we consider a sequence of number
some other base larger than 2.

Measure of distance between two stacking sequences

For a straightforward definition of a ‘‘distance’’ measu
between two stacking sequences theDc correlation length
can be used. It is clear that a more random sequence
have a shorter correlation length, and vice versa. The lim
tion with such a definition is that it will not allow a distinc
tion between two different polytype faulted sequences a
will only measure the loss of correlation due to disorder.

It can be shown28 that for the case of a close packe
structure disordered by deformation and growth faults,
correlation length for low density of faulting can be given

Dc52
2

log~122a13a222b!
, ~36!
06411
he
g
re
-

the

ring

as

e

s
n

ill
-

it

e

wherea andb are the deformation and twin faulting prob
ability, respectively. Figure 7 shows the corresponding
havior of theDc value with twin faulting probability. The
correlation length falls rapidly for increasing faulting pro
ability and then reduces it rate of decrease. For faulting d
sities beyond the applicability of Eq.~36!, the correlation
length should saturate as a result of the close-packed
straint. If we release the close-packed constraint, thenDc
will decrease up to a theoretically limiting value of zero for
completely random sequence.

Correlation length gives an absolute measure of disor
but fails to compare how close a particular disordered str
ture is to a predetermined perfect periodic sequence. Ano
disadvantage of using the correlation length as a measur
disorder is its nonlinear character, as seen in Fig. 7.

1. Hamming distance

In order to be able to compare two structures differing
their stacking order the concept of Hamming distance30

FIG. 7. Distance measures as a function of twin fault proba
ity. The Hamming distance shows a linear behavior contrary to
correlation length distance and the RLE. See the text for detail
1-9
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taken from information theory, can be used. The Hamm
distance is given by the number of sites when two sequen
differ from each other divided by the length of the sequen

DH~$ ja i%!5(
i

u1a i22a i u/N, ~37!

where 1a i denotes one sequence and2a i denotes the other
In the case of the Hamming distance of a binary seque

if a valuedh above 0.5 is obtained, then the value 12Dh is
taken, corresponding to the crystallographically equival
bitwise negated sequence. The Hamming distance dis
guishes between sequences belonging to different underl
polytypes, and will give a clearer distinction than the cor
lation length distance.

A conceptual difference between the Hamming dista
and theDc measure is that the latter gives an absolute m
sure of departure from disorder, while the Hamming d
tance, a relative measure, gives the mismatch between
sequence and a second sequence~in principle! arbitrarlly
chosen. We could separate the correlation functions from
oscillating part and determine the closest perfect seque
in
e
b

ge
do
L

lyi
no
t

th
o
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as described in Sec. III. In this case, for both the correlat
distance and the Hamming distance, a value of zero re
sents nondeparture from the perfect periodic order. T
Hamming distance definition used above is not limited
binary sequences; however, in the case of binary sequen
the Hamming distance can be obtained by adding the
sequence~mod 2! and dividing by the sequence length.

2. Run length encoding as a measure of disorder

We can consider the stacking sequence as a string o
teger numbers given in some base~for the case of close
packed structure a binary sequence suffices, as Sec
showed! and try to find the most compact representation
the string. If we choose to ‘‘compact’’ the sequence using
run length encoding~RLE!,31 then the perfectly periodic se
quence will correspond to a string of symbols represent
the smallest repeating unit and the corresponding numbe
times the unit cell repeats itself in the complete sequenc

Consider, for example, in the case of a compact struct
the periodic sequence
e times a
LE code
number

length of
perfect
110100110100110100110100110100110100110100110100110100.

The RLE code for this sequence will be

~2112!9 ,

which consists of four symbols algorithmically representing that to reproduce the sequence, we need to repeat nin
sequence formed by two 1’s, one 0, one 7, and two 0’s. With increasing size of the perfectly periodic sequence the R
will not increase but only the number of times the code is repeated. For the limit of an infinite periodic sequence the
of symbols in the RLE code divided by the length of the sequence will tend to zero.

On the other hand, if the sequence represents a disorder structure with a faulting probability larger than zero, the
the RLE code will be larger than the corresponding RLE code for the perfect sequence. If we consider the same
sequence used above, but with a faulting probability of 0.2, we could get

110011011010111000010010011010011010111110011110010.
e
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the
The RLE code for this sequence will be

~22!~21!2~11!~34!~12!@~12!~21!#2~11!~52!~42!~11!,

which now consists of 22 symbols.
In this case the RLE code will increase with an increas

sequence length, and in the limit of an infinite disorder
sequence the number of symbols in the RLE code divided
the length of the sequence will tend to a finite value lar
than zero and only depending on the percentage of ran
disorder. Figure 8 represents the tree structure of the R
code of a faulted sequence and the corresponding under
faulted sequence. Except for the end branch node, each
gives the number of times their subnodes should be repea
The end branch node gives the RLE symbols.

We can define the run length encoding distance as
number of symbols in the RLE code divided by the length
the sequence:
g
d
y
r
m
E
ng
de

ed.

e
f

Drle$a i%)5#@RLE~$a i%!#/N, ~38!

where #@RLE(x)# stands for the number of symbols in th
RLE code of x.

Again the RLE distance is not limited to a close-pack
structure, and from the definition a generalization to oth
types of stacking sequence is straightforward. RLE encod
in the case of nonbinary sequence is a known procedur
image processing and frequently used in common image
formats.32

Figure 7 compares the three defined distance measu
As in the case of theDc value, Drle can be considered a
absolute measure of departure from periodicity. Compare
the Hamming distance theDrle value does not behave lin
early. While the Hamming distance is measures just the
gree of mismatch of the measured sequence with a
defined one, theDrle distance will identify if the faulted
stacks gets closer to another periodic order different from
1-10
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DIFFRACTION PATTERNS OF STACKED LAYER CRYSTALS PHYSICAL REVIEW B68, 064111 ~2003!
original one. The RLE coding, contrary to the use of theDc
measure, also carries information of the new periodic
which is being ‘‘born’’ as a result of the rearrangement of t
layers through faulting~Fig. 8!.

The RLE coding can also be used for the identification
repeating patterns in the sequence and their correlations
occurring polytypeb i could be defined as a pattern repeati
itself above some defined threshold. The RLE distance
be related to the so called algorithmic randomness.32

3. Identification of faulting complexes

The concept of a damage field30 can be applied to the
solved faulted and perfect sequences. The damage fie
defined as the difference between the perfect sequence
the faulted sequence.

Consider the perfect sequence

11001100110011001100110011001100

and the faulted sequence

11011100010011001100011011001101.

The damage field between both sequences will then be

00010000100000000000101000000001,

where a 1 is found in every position the perfect and faul
sequences differ.
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1L. Landau, Phys. Z. Sowjetunion12, 579 ~1937!.
2M. Lifschitz, Phys. Z. Sowjetunion12, 623 ~1937!.
3B.E. Warren, Prog. Met. Phys.8, 147 ~1959!.
4Hendricks and E. Teller, J. Chem. Phys.10, 147 ~1942!.

FIG. 8. Tree structure of the RLE code of faulted sequen
with increasing fault probability. Except for the end branch no
each node gives the number of time their subnodes should b
peated. The end branch node gives the RLE symbols.
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Faulting complexes will appear as patterns in the dam
field. For example double faulting in two adjacent layers w
appear as 11 patterns in the damage field. The identifica
of other faulting complexes present in the original seque
should be also straightforward.

V. CONCLUSIONS

It has been shown that, contrary to previous indirect p
cedures, the probability correlation functions of the stak
arrangement in layer structures can be directly determi
from the diffraction pattern. This determination follows fro
kinematical equations of diffraction, and in their calculatio
no assumption about the particular stacking order of the c
tal or the density of faulting is needed; in this sense it can
considered as a method beyond the faulting model discu
by Varn et al.18

The obtained equations for the diffraction pattern allow
us to study, in a general framework, the effect of faulting
peak broadening and shift. Peak broadening is related to
lost of correlation length due to the random character
faulting, while a peak shift describes the departure of
ideal order from the perfect periodicity towards a possi
new ordering. The competing effect between the depar
from the ideal ordering and the correlation length has b
discussed. No new order can be considered to occur if
periodicity length is larger than the correlation length. It h
been shown how the probability correlation length can se
as a fingerprint of planar disorder and polytypism. The ide
tification of polytypes and disorder has been exemplifi
with experimental data from rare earth-Co alloys.

Parameters for a quantitative characterization of disor
have been proposed, taking concepts from informat
theory and algorithmic complexity. It is shown how the RL
procedure can be useful for the identification of intermix
polytypes and as distance measure of disorder. The in
duced parameters can serve as theoretical tools for a fu
discussion of phase transformations involving polytypis
and planar disorder. Experimental work is underway
single crystal to apply the defined distance parameters to
structures.
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