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Diffraction patterns of stacked layer crystals
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The relation between diffraction and planar faulting is studied. The layer displacement probability correla-
tion function is shown to be related to the Fourier coefficients of the decomposed diffraction pattern. Peak
displacement can be considered as a consequence of the departure of the faulted structure from the original
periodicity, while peak broadening is associated with the loss of correlation. Several definitions of distance are
introduced to compare stacking sequence and measure their degree of randomness. A run-length encoding
procedure is considered, well suited for the identification of mixed polytypes and as a measure of disorder. The
problem of identification of faulting complexes is discussed in terms of the pair correlation function of the
binary sequence representing the layer stacks.
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[. INTRODUCTION transformation between two polytpes or in structures with
almost energetically equivalent polytypes. Even more “real-
Several theories and approaches have been put forward istic” approaches such as Monte Carlo simulations depend
characterize by x-ray diffraction the occurrence of polytypeson the ingenuity of the researcher to propose beforehand a
and planar disorder. Early works by Landand Lifschit?  planar faulting model for their simulation.
were perhaps the first attempts to give an account of the Usually all of these approaches rely on what Vatral
influence of planar disorder in the x-ray diffraction pattern.call the fault model, which considers an underlying perfect
Works by Warrerr, Hendricks and Tellet, Wilson>  stacking sequence perturbed by several types of stacking dis-
Jagodzinskf, Dornberger-Schiff, and Farkas-Jahrfie,ele’®  order described by their probability of occurrence. In the
and Cowleyet all® among others, further developed the case of heavy disorder it does not seem correct, from a physi-
theory. Other significant references can be found incal point of view, to assume a particular stacking sequence as
Welberry!! With the advent of faster computers, Monte the underlying perfect sequence. At least in the case of struc-
Carlo methods and other computer procedures have been dewes with different coexisting polytypes this assumption is
vised to simulate diffraction patterns of more complex struc4ncorrect. This should also be the case when analyzing the
tures with more complex faulting. Example of such ap-phase transition between different polytypes belonging to the
proaches can be found in the work of Berliner andsame polytypic family. During the transition the structure can
co-workerst>1* the softwarepiFFax developed by Treacy be in a state made up of several stacking sequences where
et al,'® and the more recent works of Weiss and Capkbva none predominates.
and UstinoV’ There have been more direct approaches to find a solution
The most simple layer structure is the so called closdo the quantitative characterization of layer ordering from the
packed structure where two layers cannot occur one over thdiffraction pattern of a layered structure. Attempts were
other with no lateral displacement. The most simple stackingnade by Zachariaséhand by Farkas-Jahnkdor the par-
defect one can imagine is the random missing of one layer iticular case of ZnS and related structures. Recently, another
a close packed structure, or the occurrence of an additiongrocedure which makes use use of a so cadledachine has
layer in the otherwise perfect sequence. Such defects havmen proposetf
historically been called deformation faults. Twin or growth A direct solution of the diffraction pattern from a crystal
faults, on the other hand, are random reversions of the ordestructure with planar faulting has been reported by the
ing sequence within the stack, while order and periodicityauthors’® The use of the term “direct solution” must be
are maintained inside each block. When a high density ofinderstood in the sense that quantitative information on layer
planar faulting occurs in the material, random noninteractingdrdering is derived directly from the kinematical equations
deformations or twin faults are too simple models to describef diffraction, avoiding the need of any prior assumption
the occurring disorder. about the kind of stacking disorder occurring in the crystal
In spite of the large amount of work in planar faulting and making no use of particular models of faulting with as-
accumulated over the years, the majority of the existingsociated faulting probabilities. The solution gives the corre-
methods are rather limited in their applicability, and are of anlation functions describing the probability of finding two lay-
indirect nature. Most of the approaches are valid only forers,A layers apart, and displaced with respect to each other
simple structures and noninteracting defects and thereforigy a given vector. In this sense the formalism is of general
fail to describe correctly the occurrence of heavy planawuse for any layer structure as long as it is considered that the
faulting. Heavy disorder is precisely the type expected to bglanar faulting does not alter the interlayer distance. The
found in a rearrangement of a layer sequence during a phageactical aspects of this direct method of analysis were fur-
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ther explored in Ref. 21, where a least-square procedure was 1
described for dealing with the experimental diffraction pat-
terns in order to obtain the correlation functions.

The fact that the solution is derived directly from the dif-

fraction pattern permits the study, in a general framework, of lv ///7 -----
the relation between the different features of the diffraction G ft i
pattern and the disorder of the stacking sequence. As the

correlation function contains the maximum information from R T

a diffraction pattern, we should explore that information re-
garding the appearance of different polytypes and disorder.

In this work we will further study the relation between
planar faulting and diffraction. The physical interpretation of
the Fourier coefficients of the diffraction pattern will be stud-
ied. We will define distance measures between stacking se-
guences which will allow us to compare different stacking
orderings and find measures of departure from periodicity. A ) ) . _ _
run length encoding procedure will be described for the iden- FIG. 1_. Schema_tlc reprgsentatlon o_f the bidimensional Igttlce of
tification of polytypes and as a measure of the stacking se? [2Yer with the lattice origin &,,. A object space vectar, point-
quence complexity. Finally, it will be shown how simple pa- "9 1© the {,v) node in the layer, can be decomposed as the sum of
rameters characterizing the probability of occurrence o&it\;?ncézrir??r'::'gge? the layer lattice origiR,,, and a vector
different types of faulting can be derived. Yelu, -

Il. DIRECT SOLUTION OF THE CORRELATION where® represents the convolution operatémepresent the
FUNCTION FROM THE DIFFRACTION PATTERN Dirac delta, anch(r) the scatterer density. _
OF A LAYERED STRUCTURE The amplitude of a diffracted wave will be the Fourier

transform of the density of scatterer in object spZcé.

In an earlier papéf it was found that the powder diffrac- F,_ (r*) is the Fourier transform of the scatterer density
tion pattern of a layered crystal can be decomposed in @ (r), the corresponding amplitude will be proportional to
cosine series where the coefficients could be linearly related
to the so called correlation probability function. We will start Ny/2 Np/2
in this section by making a more general deduction for any F(r*)ocFm(r*)< 2 2 exp(2mirt-ry,)
diffraction pattern within the kinematical approximation, and u=—Na/2 v=—Np/2

prove that, in the general case, the diffraction pattern can be Ne—1
considered a Fourier series where the coefficients can have a ™ 2 exp2mirt-R,). )
direct physical interpretation. The relation with other ap- w=0 "

proaches will be considered. Once we have derived the gen-
eral relations we will then, in Sec. IlI, focus on the interpre- The corresponding diffracted intensity fé\,, N,>1 will
tation of the Fourier coefficients and the relation between théhen be proportional to
diffraction pattern features, the planar disorder and the Fou-
rier coefficients. ~ ~

Layer structures can be considered to be built up by trans- Z(r*)<Fz(r*) Z Z o(h—hg) (k- ko)) [ 1
lational equivalent layers. Every layer has associated the Mo= =% ko= ==

same bidimensional lattice,,=ua+uvb whereu andv are 9 Ne=1Ne—A-1

integers and &,b) define a primitive cell for the bidimen- + N 2 > co§2ar* - (Ry—Ru+a) ],
sional lattice. A three-dimensional lattice is then build up by c A=l w=0

stacking the two-dimensional layers in a prescribed sequence ®)

along a third direction.

Any vector pointing to a lattice point in one of the bidi- r* =ha* +kb* +1c* being the reciprocal space vector.
mensional layers can be decomposed in two vectors, a vector Expression(3) is equivalent to Eq(4) found in Ref. 12.
R, that goes from the origin of object space to the origin of The term inside the curly brackets in E@) is the contribu-
thew layer in the crystal and a vectog, which points from  tion to the intensity of the layer arrangement and therefore it
the origin of the bidimensional layer to the correspondingis the term we are interested in:
lattice point(Fig. 1). Let £(r) represent the layer crystal of

size N, X NpX N, ; then 9 N1 Ne—A-1
*) — _ * —
e g2 o(r*)=1+ N Azl WZO cog2mr* - (Ry—Rysa)].
LO=pu(N®| 2 2 8r-ry) @
u=—N,/2 v=—Np/2
Ne—1 Q(r*) can be considered a interference function measurable
_ from the intensity profiles of the diffraction pattern as ex-
X S(R—Ry), 1 : .
WEZO ( ) @) plained in Refs. 20 and 21.
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If we now take the origin of object space in a node of any— sr,;, displacement in another grain is a rotationmoflong
of the layers, the vectd®,, can be decomposed as the sum ofan axis parallel te. Then for a random powder sample the
two vectors, one along the stacking direction plus a vectoB, coefficients vanish and E@8) reduces to
parallel to the layer lattice, -
-
Ry= Sulap+WC, (5) o(r*)=1+2 > A,cog2wAl), (13)
A=1

for layer structures with constant vector displacemsptis )
an integef? r,;, is the displacement vector parallel to the With
layer lattice, andc is a vector along the stacking direction

with a length equal to the interlayer spacing. The stacking
sequence will now be given by the sequencesgpfvalues
corresponding to each layer. If there areM possible s val-

A (M—1)/2
AA=(1— N—)[PO<A>+2 2 Py(4)
c s=1

ues therMr,,, will be a lattice vector of the layer, and E@)
can be written as xcog2ws(hx+ky)];, Modd (14
Ne—1 M-1
r*)=1+ — Ng(A A
art) Nc AZI 520 s(4) AA=(1—N—)|[PO(A)+PM,2(A)]
C
X cog 2ws(hx+ky)+27Al], (6) (M2)-1

where we have written,,=xa+yb, andNg(A) is the num- +2 E Ps(A)cog 2ms(hx+ ky)]}, Meven.

ber of pair of layersA layers apart, and laterally displaced s=1

one with respect to the other lsy,, (A pairs. (15

If we multiply and divide byN.— A, the total number of
A pairs, then we can write E@6) in terms of the probability The collapse of Eq(7) to Eq.(13) for a powder sample
of finding aA pair with lateral displacemesst,,,. Letus call ~ can also be viewed as a result@{r*) being an even func-
such a probabilityP4(A), tion of the reciprocal variable Conversely, in the case of a
single crystal, an even functio@(r*) of the reciprocal vari-

N.—1 M-1 . . .
¢ able | implies Pg(A)=P_4(A). Equation(14) reduces to
Qr*)=1+2 >, (1— N > Py(A) expression(10) in Ref. 20 in the limit of an infinite crystal.
A=1 c/ s=0 . . . .
In the deduction of this result no assumption of a particu-
X cog2ws(hx+ky)+27Al], (7) lar sequence of layers was necessary and therefore, the result

is valid for any sequence and any density of stacking faults
present on the layer arrangement. In the same sense as Varn
Ne—1 et al,'® the formalism developed has to be considered an

o(r*)=1+2 2 A cog2mAl) +B,sin(27Al), (8) approach “beyond the fault model” as no underlying perfect
=1 ’ sequence had to be defined.

which can be rewritten as

where i
Relation to other approaches
M-1

A Another direct approach was that of ZachariaSemhe

An= ( 1- N_c) 520 Ps(A)cog2ms(hx+ky)] (9 A coefficients in the present work can be seen to be equiva-
lent to theW,'L"lHZ coefficients in the Zachariasen approach,

ANVME ) yet he failed to consider thB, coefficients and the condi-

Ba=|1- Ne SZ , Ps(B)sin2as(hx+ky)]. (100 tions for nonaffected reflections are incorrectly stated.

In another formalism, use is made of the so called average

Equation(8) expressex)(r*) as a Fourier series, from phase factot!?4If we start by writing theQ function from a
where layer structure as

1/2 1 ) )
A= | a()cog2mAhdl, A=12,..., (11) Q)= 2 2 edWermal, (16)
—1/2 c W w
12 wherew andw’ goes through all layers in the stack and
BA=f Q(r*)sin(2wAl)dl, A=1,2,.... (12 =w—W', ¢(A)=2m(s,—Sy/)r* -ru. Making the average
-12 of all A neighbor pairs{e'*(*)), the double sum in Eq16)

. . . can be reduced to a single sum:
As explained in Ref. 20, in the case of a random powder g

sample, the probability?(A) will be equal to the probabil- 1 Ng—1
ity Pym—s(A). This result indicates that the only difference ort)y=— > (Ng—|A])(el#@)ye2mAl - (17)
between asr,;, displacement in one grain and-asr,,=M N a=-®c-1)
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Noting from the definition that¢(—A)=—¢(A) then N,
(el 8y =(e ¢y = (g!¥(A))* where * denotes complex Fo(r*)= BFm(r*) (24)
conjugate. Equatiofil7) can now be rewritten as

and

No—1
o(r*)=1+2 >, (1—A){Re[(e“f’m)}]cos(ZwAl) D1
i=1 Nc S(r*)= 20 exf 2mis,(hx+ky)+2miwl]. (25
=
—Im[{e'*®)]sin(27Al)} (18)
Equation(25) is a straightforward generalization of the unit
where Re and Im stands for real part and imaginary partstructure factor used by Dornberger-Schiff —and
respectively. A Comparison of E¢L8) with Eq. (8) gives us  Farkas-Jahnk&From the above equation it also follows that

A . O(r*)ec S?(r*). (26)
AA=(1—N—) Re (€' ?W)], (19
Cc
lll. FOURIER COEFFICIENTS
By= ( 1- NA) Im[ (e'(A))]. (20) Equationg11) and(12) are central to the faulting problem
c considered here, which shows that tAg and B, coeffi-

cients can be obtained from the experimental diffraction

Ay i the“?f,gg? relat_ed to_the real part of the_aver_agedata_ The peak broadening and peak shift will have a direct
phase factofe ), while B, is proportional to the imagi- influence over the values of both, andB, .

nary part. The imagingry part of the average phase factor for On the other hand, in Eq8), A, and B, play similar
a pgwger ?]arr?pie van(;sges. b Séhifsed a di roles as coefficients in a Fourier expansion. In what follows
arkas-Jannke and ornberger- ed a direct ap- ot yhis section we will make our analysis for tide, coeffi-

proach for a polytype analysis which can be related 10 the;o 4 resuits will be also generally valid for tBg co-
one presented here. Their analysis was for the partiCUIaéfficients

cases of ZnS_, SiC, and similgr strugtures, and therefore the. In the limit of an infinite crystal we can write
above deduction can be considered in some sense a generali-
zation of their results. An equivalent approach using the so M-1
called unitary structure factor was independently introduced A= 2 Ps(A)cog 2ms(hx+ky)]. (27)
by Tokonami?® =0

The unitary structure factor is defined by writing the
structure factor of the unit cell in a perfect periodic layer
crystal as

If we determineA, for as much f,k) as unknownP¢(A)
are, then Eq(27) defines a linear set of equations solvable
for P¢(A). P4(A) are then obtainable from the experimental
*y_ * * data through thé\, andB, coefficients. From Eq(27) it is
Fr)=Fo(r)S(rt), @) clear that forhx+ky=n, wheren is an integer valueA,

whereF o(r*) denotes the structure factor of a structure hav-Will not depend on the particular stacking arrangement, that
ing the same unit cell as the real structure but the scatterinlg the corresponding reflection in the x-ray diffraction pat-
density distribution of only a single layer, a®{r*) is the tern will not be affected by planar disorder.
unitary structure factor which is the Fourier transform of a  Two types of stacks can be considered. In one case there
periodic function with the same unit cell, characterizing theiS no restriction on the layer ordering and for the extreme
stacking of the layers. case of a complete random sequence we will aye 0 for
Starting from Eq(2) and writingR,, as in Eq.(5), we get  all A values,Q(r*) will be constant along arow. All Ps(A)
will have a value I, M being the total number of possible
Ne—1 lateral displacements.
F(r*)ocF (r*) E exfg 2mis, (hx+ky)+2miwl], A second type of stacking is the close-packed structure
w=0 where two adjacent layers cannot be found without a lateral
(22) displacement. The best known close-packed crystals are
where we have made use of,=xa+yb and r*=ha* those_with three possible displacements of the layers, usually
+kb* +Ic*. Due to the periodicity of the perfect structure described by the letters, B, andC. One oI the letters stands
Su=Swip, WhereD is the number of layers building up a for a zero displacement, another fda— b, and the third
unit cell, and Eq(22) will then be one for 2Ga—3b). Which letter corresponds to which dis-
placement is irrelevant as long as consistency is kept. The
N _ _ close-packed condition will then mean the impossibility of
F(r)e 5 Fm(r*) >, exp 2mis,(hx+ky) +2miwl ] finding the same letter consecutive times in the stacking se-
w=0 23) quence. In the case of a close-packed structure,

D-1

for DI of an int lue. C ing ER3) with Eq. 2m
(grl), of an integer value. Comparing ER3) wi q AA=PO(A)-I-[l—PO(A)]CO{?(h—k)} 28)
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and those reflections with—k=3n will not depend on the Along the integration path in Eq11) several diffraction
stacking sequence. peaks could occufe.g. in the close-packed rhombohedral

Here we are constrained by the fact that two nondisplacedtructure, forh—k= 3n, two diffraction maxima occyr and
layers cannot be found one over the other, which leads to thihe equation can be written as a sum of integrals over each
conditionPy(1)=0. In such a case, for a random sequencediffraction peak profile,

2 1/2
Co{gw(h_k) , A=1 AA=2i _mviu —Ioi)c0327rAI)dI=2i Ay, (3D
Apr= (29 . , . . .
13 142 2 h—k A%1 whereV is the peak profile for thé reflection andoi is the
€0 §Tr( aiE ' position of the maximum. Each integral in E@®1) can be

written as
A, will be constant forA>1. For a close-packed struc-

ture with random sequence ti@(r*) function for a faulted A J'(l’z)*'oi _
affectedl row (h—k# 3n) will be As=cog2milo) _(1/2)_|Oiv,(l)cos(27-rAI)dl

Q(|)=1—(1— No—1

(112)~1,
)cos(zwl). (30 —sin(27-rAI0i)f W I‘ Vi(h)sin(2wAl)dl.

The peak profiles will be a cosine function with maximum (32
atl integer values and a full width at half maximum value of
. The cosine profile for the random sequence given by qud
(30) is a consequence of the nearest neighbor order resultin&;e
from the close-packed condition.

In the other limit of a perfect periodic cryst&(A) will
have the value 1 foA a integer number of times the peri-
odicity of the crystal along the stacking direction. TRgA)
functions will be a periodic function with repeating length,
A,, the period of the crystal along the stacking direction,
correspondingly thé , will exhibit the same periodic behav-
ior. In the case of a perfectly periodic close packed struc
tures, thePy(A) functions will also be constrain by the con-
dition Po(A,—1)=0.

For close packed structures E®) together with defini-
tion of the Fourier coefficient§d) and (10) will lead to the
extinction condition for forbidden reflectionig,

The terms in front of the integrals will determine a peri-
ic oscillating behavior i, . If the peak position can be
scribed as a rational numbgr=p/q (q#1) then the pe-
riod of the oscillation will beg. The integral terms, on the
other hand, will give, for a Dirac delta function, a value of 1;
the contribution of this profile to théd, values will then
consist only of the oscillating part extending to infinity with
a periodicity ofg. This case corresponds to the perfect peri-
odic stacking.

If the peak profile is not a delta function but instead a
planar faulted broadened peak, then the integral terms will
give a damped oscillating function tending to zeroAa-
creases. This behavior can be understood if we look at Fig. 2,
where we have plotted the integrand in the first term of Eq.
(32), and notice that the integral is nothing else but the area
under the curve. The absolute area will remain constant for
all A values, but, as Fig. 2 shows, for increasingalues the
cosine term will have an increasing number of oscillations
within the peak width and therefore the negative area contri-
bution will tend to increase or decrease at the expense of the
positive area contribution while the sum will tend to zero.

The contribution of one peak profile to the, coefficients
+[3Pg(A)—1]cog27Aly)}=0, h—k#3n. can be summarized as

I ,=noninteger, h—k=3n,

Ap
Azl {VB[P1(A) = P,(A)]sin(27Al )

Influence of layer di§order on the peak profile Ay= 2 “‘decay term’’x *‘oscillating term .”  (33)
and displacement

A partly disordered crystal will be an intermediate case The decay term, which depends on the peak shape and
between the random sequence and a perfect periodic one. Raidth, will be the sole element responsible for determining
small values ofA, A, will be almost equal to the values for the correlation lengti\. of the stacking sequence. The os-
the perfect periodic structure, but will tend to the value of thecillation term, on the other hand, will be reflected in the peak
random sequence as thevalue increases. This behavior in shift and will further affect the behavior of th&, coeffi-

a partly disordered sequence is the result of a loss of corresients without further loss of correlation length in the stack-
lation between the layer displacement for large valueA of ing sequence.

We can define a layer correlation length, the characteris- The limiting case of a delta function peak profile corre-
tic length of the system above which correlation betweersponds to a perfect periodic sequence anditheoefficients
layers can be considered IG8tKnowing the stacking se- will be an oscillating periodic factor, with periodicity de-
guence up ta\ layers, we cannot predict in any sense howpending only on the peak position. The correlation length in
stacking sequence behaves beyadnd A ... this case will be infinite. The peak shift in this caséthout
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broadening can be considered to reflect the departure of peterm following aA~2 power law regardless of the actual
riodicity from the original sequence towards other periodicvalue of p. Both the step function and the power law peak

orderings.

profiles have a definite cutoff or total width value, and both

Let us consider another limiting case, a peak profile givenyive rise to a power law decaying term.

by a step function; for simplicity let us further assume that

Real profiles are never cutoff functions but instead slowly

the function is symmetric in the integration interval and com-decaying functions. In this case we have found that the de-

pletely contained within it

1 f f
= —-=<Isz

Q)= 2 2 (34)
0 otherwise.

In this case the contribution of the peak profile to #hg
coefficient will be

_SinWAf

A=A (39

The decaying term will be given by #Af. When a corre-

caying term inA, will follow an exponential law for all the
common profiles used in diffraction. For the Lorentz profile
the decaying term follows an expAfw) law, with f being

the full width at half maximum, while for the Gauss term the
decaying law was found to be €xp(Afm)?]. Figure 3 shows

a comparison of the decaying term for Lorentz, Gauss, and
step profile functions. All profiles were taken with the saime
value. A characteristic length can be defined Ag
=1/(fm). The power law decreasing function for the step
profile decays slowly to zero with a constant decay rate.
\oigt profile functions, which are usually considered better
suited for describing diffraction peak profiles, are an inter-
mediate function between the Lorentz and Gauss functions

lation function follows a power law, the decrease of the cor-and therefore will introduce no new feature to the above
relation is always at the same rate and a characteristic leng#mnalysis.

cannot be defined.

Two different characteristics can now be understood in

We can ask if there is a physically consistent peak profilehe diffraction pattern of a planar faulted crystal. On the one

which can lead to a decaying term proportionalAto" with

n#1. It follows directly from Eq.(11) that the peak profile

function following a— 1% (p=1,2,3...) lawdefined over

hand, peak broadening is associated with the decaying term
in A,, and consequently with the loss of correlation in the
layer stack due to the presence of random disorder. The peak

its positive range will give a decaying term with the leading shift, on the other hand, is related to the periodicity of Ahe
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1.04

periodic order is determined by the combined contribution of

each peak position. The emergence of a new order, as ex-
plained above, is accompanied by the appearance of new
reflections. The generalization is straightforward, yet several

cases now appear for the resulting oscillating term.

_ _ If at least one of the peak positions is an irrational num-
Profiie funtions ber, the “periodicity” is effectively infinite and the closer
-y Lorentz rational number which leads to a periodic length smaller than
- @ Step A. is the one describing the underlying periodic order. If the
3 peak positions for all peaks are rational numbers, one must

."‘ still consider if the periodic length is larger or smaller than
@,

Decay term

320000 the correlation length. If the periodicity is larger than the
0.0 b1 { e S correlation length, then the closer peak position which leads
o 1 20 s a4 =0 to a nonfrustrated periodic order is the one describing the
A underlying periodic order.

FIG. 3. Decay term for different diffraction peak profiles. The The oscillation term for the “perfect underlying struc-

step function gives a constant decay rate characteristic of decag‘re hcan be determlnr?_d a_s dgscrlbed in the prgcedlng para-
power laws, the other two profiles show different exponential de raphs. Yet even in this situation two cases arise. One case

cays, and a characteristic decay length can be defined. corresponds to the existence of only one underlying poly-
type: the periodic correlation functions yields a stacking or-
coefficients[ Pg(A) functiong. The peak shift will reflect dering which can be dete_rmined as explained, for the case of
that, as a result of the appearance of disorder, the stack &fose packed structures, in Ref._28. In the other case, several
layers gradually loses its original periodicity and eventuallyPolytypes occur without correlation among them, in this case
can move nearer to another stacking arrangement. the perlod_lc c_orrelatlon functlo_ns calc_ulated from all the
The loss of correlation in the stack and the change opeak contr_lbutlo_ns are not consistent with any layer arrange-
periodicity in theP4(A) functions are to be considered two Ment of this periodic length.
competing effects. It would make no sense to ascribe to a
stacking sequence a periodic ordering of length larger than
the correlation length. The peak shift and peak broadening do R,Coy; (R is a rare earthalloys can be described as close
not occur independently, and while the peak shift can bepacked layer structures which can be found in two crystallo-
thought of as a departure from the old periodic order, andyraphic modifications, one described by a rhombohedral
therefore a possible new stacking order of the layers, therystal systentfor the lighter rare earthsnd the other by an
peak broadening can show that such an order is frustrated dyexagonal crystal syster(for heavier rare earthg® The
the loss of the correlation length. The “new order” suggestedrthombohedral stacking order corresponds to a sequence
by the peak shift is not real as long as the correlation lengthBCABCABC. .. while the hexagonal sequence corre-
is smaller than the periodicity length of the “new” ordering. sponds to &ABABAB. .. stacking order. The minimum lat-
Only when the correlation length is larger than the periodic-eral displacement vector between the layers is the same as in
ity of a possible “new periodic order” can we consider that the fcc structurdfor details, see Ref. 20
such an order has emerged, and the stacking sequence, al-Figure 4 shows the diffraction patterns corresponding to
though still disordered, is now nearer to this new periodicthree typical rare earth compounds. For the Nd alloy the
stacking arrangement than to the “original” one. rhombohedral structure is clearly determined and indexed,
A peak shift occurs as a continuous function of position,while for the Lu alloy the hexagonal structure is the one
for small shifts of the peak maximum, if they can be givenpresent. The Dy alloy shows mixed reflections which could
by a rational number, will give rise to long stacking period- indicate the presence of a higher order polytype or a mixture
icity orders which are frustrated by the underlying disorder,of the hexagonal and rhombohedral stacking.
as discussed above. Further peak shifts can be taken as aFigure 5 shows the fitted profiles for the (02 4/3l,) for
strong indications that an increasing correlation between théhe Nd,Co,; sample and the (20 3#26l,) for the Lu,Co;5
faults is occurring, and that the ordering of the faulting issample. Fitting was done using a least square procedure as
leading the stacking sequence to a new polytypic ordering. Iéxplained in Ref. 21.
disorder is introduced without further peak shifting, this can From the powder diffraction pattern of each sample the
be taken as an indication that although a higher density oP, functions were determined and the correlation length cal-
faulting is occurring in the crystal, this faulting is not accom- culated. Nd had a correlation length, of 134 layers, larger
panied by correlation between the faults, and the sequence flsan the correlation length of 31 layers for Dy, and slightly
shifting towards a random distribution of layers. smaller than Lu, which had a correlation length of 169 lay-
The above discussion concentrated on the effect of planasrs. The percent of hexagonality was also determined from
disorder over one reflection in the diffraction pattern. In aeachP, function, in this case the results where 1% for Nd,
complete analysis all the reflection contributigAs, have to  45% for Dy, and 98% for Lu.
be considered on the final Fourier coefficiekt. If more The diffraction pattern of the Dy alloy shows the simul-
than one peak is present in one periodic intervd] then the  taneous occurrence of two peaks at (024#;) and

An example: intermetallic rare earth-cobalt structures
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Nd,Co.,

] _ Dy,Co,, _LuZCow -
—~~~ —
S 114
= FIG. 4. Diffraction pattern oR,Co,; alloys
_d 7] . 7] _ g for R-Nd, Dy, and Lu. Nd and Lu diffraction
E 3 < peaks can be indexed as rhombohedral and hex-
~ ] agonal structures, respectively. The Dy diffrac-
=] - 7 tion pattern shows peaks belonging to both rhom-
£ bohedral and hexagonal orderings.

T T a ™
40 42 44 46 48 50 44 46 48 50 40 42 44 46 48 50
29 20 26

(203/2+ 6l,). The peak shifts were calculated a#; IV. QUANTITATIVE CHARACTERIZATION
=0.0007 for (024/3 6l;) and 61,=0.0009 for (203/2 OF PLANAR DISORDER

+ 6l,). From the peak shifts and the correlation length, the

closer “ideal” underlying periodic order was found to be of derived f ", babilit lation functi tis al
periodic length 6. The corresponding combiriegl correla- erived from the probabiiity correlation functions. 1t 1S al-
. ) . . - ready known that the percent of hexagonal environment can
tion function for such ideal order is shown in Fig. 6 together octl . hile th lati lici
with the faulted one be directly determined aBy(2) w 2|6e the relative cyclicity

The “ideal” I. tion functi f Fig. () is | i can be calculated a3,(1)—P,(1).
bl e'hl ca clorre a 'Orll znc 'OT(_O '9. IS mc;)m_pal - From the probability correlation functions representative
tole W'.t any close packe stac INg sequence ot S ayerﬁatyer sequences of length up to the correlation length could
repeating unit cell. The correlation function obtained CaNpa calculated from a Markov proce¥sThe possibility of
thus be explained as the mixture of two polytypes, namelypiaining such typical sequences allows the introduction of
the rhombohedral one, to which the (024/3l,) peak be-  aqgitional parameters for the characterization of disorder.
longs, and the hexagonal one, to which the (26+38E;) In this section, further parameters will be proposed for the
reflection belongs. Dy alloy diffraction pattern then showscharacterization of disordered layered crystal, and measures
that, in this alloy, the hexagonal polytype nucleate randomlyf distance that could allow us to compare different sequence
within the rhombohedral phase. orders will be defined. As long as representative stacking

A question arises as to what type of information can be

- {LuCo
J Nd,Co,, A

(02312)

1
(20 4/3)
1
D G —— O

7] ] FIG. 5. Peak profile of the (02 44351 ;) peak

of the Nd,Co,; sample and the (20 3#261,) re-
flection of the LyCo,;; sample. The peaks are
given in terms of the reciprocal variable |. The
7] ] peaks were fitted using a least square procedure
as explained in Ref. 21.

Int (arb. unit)

128 130 132 134 136 1.38 1.44 1.48 1.52
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sequences can be deduced from the correlation function, thehere« and 8 are the deformation and twin faulting prob-
so called Hamming distance and the run length encodingbility, respectively. Figure 7 shows the corresponding be-
distance can be defined. The run length encoding proceduteavior of the A, value with twin faulting probability. The
can also be used for the identification of polytypes in a secorrelation length falls rapidly for increasing faulting prob-
guence and as a measure of complexity or randomness of tlability and then reduces it rate of decrease. For faulting den-
disorder stack. Finally the identification of faulting com- sities beyond the applicability of Ed36), the correlation
plexes will be discussed. length should saturate as a result of the close-packed con-
For the discussion that follows it will be important to straint. If we release the close-packed constraint, then
understand how a stacking sequence can be coded as stringl decrease up to a theoretically limiting value of zero for a
of numbers. We will limit our discussion, for the sake of completely random sequence.
clarity, to close-packed structures. Correlation length gives an absolute measure of disorder,
In a close-packed structure we can write any sequence dsit fails to compare how close a particular disordered struc-
a binary string where every “1” stands for two consecutive ture is to a predetermined perfect periodic sequence. Another
layers with lateral displacement vecigy, and O for a lateral ~ disadvantage of using the correlation length as a measure of
displacement—r,,. Any two symbols in the sequence  disorder is its nonlinear character, as seen in Fig. 7.
—B—C— A will be represented by a 1, while any two sym-
bols in the sequencd— C— B— A will be represented by a 1. Hamming distance
0 (e.g., a sequencABCABACBCACBAwIll be repre-
sented by 111100011000). This notation is equivalent to thrt:;n
Hagg notatiof’ with “1” used instead of “+” and “0” in-
stead of “-.” An extension to non-close-packed structures is
straight forward if we consider a sequence of number in 45 |

In order to be able to compare two structures differing in
eir stacking order the concept of Hamming distatice,

some other base larger than 2. - A4c , /p
1 --o--Hamming e
0.4 - ~a--RLE A
Measure of distance between two stacking sequences ] /c,/
For a straightforward definition of a “distance” measure 03 4 5
between two stacking sequences thg correlation length 8 ] .- ;_f’_'_._._'_._,___,_._.-..
can be used. It is clear that a more random sequence wil§ ,,—""";;AAA/A;QAAAKAAAAAAAAAAAAA»~MAAMAA
have a shorter correlation length, and vice versa. The limitaa %21 ° . .7
tion with such a definition is that it will not allow a distinc- O 175 ~
tion between two different polytype faulted sequences as it o1 /,* 5~
will only measure the loss of correlation due to disorder. f ﬂ/'
It can be showff that for the case of a close packed
structure disordered by deformation and growth faults, the o o1 02 03 04 05
correlation length for low density of faulting can be given by Faulting Probability (%)
2 FIG. 7. Distance measures as a function of twin fault probabil-
=— , (36) ity. The Hamming distance shows a linear behavior contrary to the
log(1—2a+3a?—2p) correlation length distance and the RLE. See the text for details.
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taken from information theory, can be used. The Hammingas described in Sec. lll. In this case, for both the correlation
distance is given by the number of sites when two sequencetistance and the Hamming distance, a value of zero repre-
differ from each other divided by the length of the sequencesents nondeparture from the perfect periodic order. The
Hamming distance definition used above is not limited to
DH({ja’i}):E | i — 50 |IN, (37)  binary sequences; however, in the case of binary sequences,
[ the Hamming distance can be obtained by adding the two

where ;o; denotes one sequence apd, denotes the other. Seduencémod 2 and dividing by the sequence length.
In the case of the Hamming distance of a binary sequence,
if a valued,, above 0.5 is obtained, then the value D, is 2. Run length encoding as a measure of disorder
taken, corresponding to the crystallographically equivalent . . . .
bitwise negat%d sec?uence. Th)é: Han?miﬁg dis):an?:e distin- We can con5|d'er th? stacking sequence as a string of in-
guishes between sequences belonging to di1‘ferentunderlyin§ger numbers given in some bader the case of close
polytypes, and will give a clearer distinction than the corre-Packed structure a binary sequence suffices, as Sec. Il
lation length distance. showe_d and try to find the most compact representatlo_n for
A conceptual difference between the Hamming distancd€ String. If we choose to “compact” the sequence using a
and theA, measure is that the latter gives an absolute meatun length encodingRLE),”" then the perfectly periodic se-
sure of departure from disorder, while the Hamming dis-quence will correspond to a string of symbols representing
tance, a relative measure, gives the mismatch between ofiee smallest repeating unit and the corresponding number of
sequence and a second sequefineprinciple) arbitrarlly ~ times the unit cell repeats itself in the complete sequence.
chosen. We could separate the correlation functions from the Consider, for example, in the case of a compact structure,
oscillating part and determine the closest perfect sequenc#)e periodic sequence

110100110100110100110100110100110100110100110100110100.

The RLE code for this sequence will be

(2112,

which consists of four symbols algorithmically representing that to reproduce the sequence, we need to repeat nine times a
sequence formed by two 1's, one 0, one 7, and two 0’s. With increasing size of the perfectly periodic sequence the RLE code
will not increase but only the number of times the code is repeated. For the limit of an infinite periodic sequence the number
of symbols in the RLE code divided by the length of the sequence will tend to zero.

On the other hand, if the sequence represents a disorder structure with a faulting probability larger than zero, the length of
the RLE code will be larger than the corresponding RLE code for the perfect sequence. If we consider the same perfect
sequence used above, but with a faulting probability of 0.2, we could get

110011011010111000010010011010011010111110011110010.

The RLE code for this sequence will be Dye{ai) =# RLE({a;})]/N, (39
(22)(21),(11)(34)(12)[(12)(21) ]2(11)(52)(42)(11), gtge #(ERLE(X)] stands for the number of symbols in the
code of x.
which now consists of 22 symbols. Again the RLE distance is not limited to a close-packed

In this case the RLE code will increase with an increasingstructure, and from the definition a generalization to other
sequence length, and in the limit of an infinite disorderedtypes of stacking sequence is straightforward. RLE encoding
sequence the number of symbols in the RLE code divided byn the case of nonbinary sequence is a known procedure in
the length of the sequence will tend to a finite value largeiimage processing and frequently used in common image file
than zero and only depending on the percentage of randoformats®?
disorder. Figure 8 represents the tree structure of the RLE Figure 7 compares the three defined distance measures.
code of a faulted sequence and the corresponding underlyings in the case of the\. value, D, can be considered an
faulted sequence. Except for the end branch node, each nodésolute measure of departure from periodicity. Compared to
gives the number of times their subnodes should be repeatethe Hamming distance thB, . value does not behave lin-
The end branch node gives the RLE symbols. early. While the Hamming distance is measures just the de-

We can define the run length encoding distance as thgree of mismatch of the measured sequence with a pre-
number of symbols in the RLE code divided by the length ofdefined one, theéD,. distance will identify if the faulted
the sequence: stacks gets closer to another periodic order different from the
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20 layers 50 layers Faulting complexes will appear as patterns in the damage
field. For example double faulting in two adjacent layers will

° 0% Faulting ° appear as 11 patterns in the damage field. The identification

of other faulting complexes present in the original sequence

should be also straightforward.

V. CONCLUSIONS

It has been shown that, contrary to previous indirect pro-
cedures, the probability correlation functions of the staking
arrangement in layer structures can be directly determined
from the diffraction pattern. This determination follows from
kinematical equations of diffraction, and in their calculation
no assumption about the particular stacking order of the crys-
tal or the density of faulting is needed; in this sense it can be
considered as a method beyond the faulting model discussed
by Varnet al!®

The obtained equations for the diffraction pattern allowed
us to study, in a general framework, the effect of faulting in
peak broadening and shift. Peak broadening is related to the

FIG. 8. Tree structure of the RLE code of faulted sequencesost of correlation length due to the random character of
with increasing fault probability. Except for the end branch nOdevfauIting, while a peak shift describes the departure of the
each node gives the number of_ time their subnodes should be r¢qaa| order from the perfect periodicity towards a possible
peated. The end branch node gives the RLE symbols. new ordering. The competing effect between the departure

- . from the ideal ordering and the correlation length has been
original one. The RLE coding, contrary to the use of the discussed. No new order can be considered to occur if the

measure, also carries information of the new periodicitype ingicity length is larger than the correlation length. It has
which is being “born” as a result of the rearrangement of the

I h h fault . been shown how the probability correlation length can serve
ayers through faultingFig. 8). as a fingerprint of planar disorder and polytypism. The iden-

The.RLE coding.can also be used for the_ identifica_tion Oftification of polytypes and disorder has been exemplified
repeating patterns in the sequence and their correlations. ARith experimental data from rare earth-Co alloys.

_occurring polytypes; C(_)UId be defined as a pattern repeating  parameters for a guantitative characterization of disorder
itself above some defined threshold. The RLE distance cafj, e peen proposed, taking concepts from information

be related to the so called algorithmic randomriéss. theory and algorithmic complexity. It is shown how the RLE

procedure can be useful for the identification of intermixed

polytypes and as distance measure of disorder. The intro-
The concept of a damage fidfdcan be applied to the duced parameters can serve as theoretical tools for a further

solved faulted and perfect sequences. The damage field #scussion of phase transformations involving polytypism

defined as the difference between the perfect sequence aafld planar disorder. Experimental work is underway in

the faulted sequence. single crystal to apply the defined distance parameters to real
Consider the perfect sequence structures.

3. Identification of faulting complexes

11001100110011001100110011001100

and the faulted sequence
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