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Modeling nonclassical nonlinearity, conditioning, and slow dynamics effects
in mesoscopic elastic materials
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Several materials with mesoscopic characteridiicg., defects or intergrain regionsave been shown to
share several nonclassical nonlinear features, which distinguish them from classical nonlinear media. Most
striking among them is the log-time recovery of the material properties after they have been conditioned by the
action of an external perturbation. A simple model based on the description of the mesoscopic features as bond
regions between elastic portions is presented here. The implementation of the model is illustrated by the
application of a special bi-state protocol, which, by considering also thermally induced transitions between the
two basic states, allows to explain all experimentally observed nonclassical nonlinear effects.
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[. INTRODUCTION hysteretic loop in the stress-strain relation with end-point
memory’ Phase shifts in resonance experiments, the genera-
A tremendous amount of research work has been carrietion of higher-order harmonics with a well-defined rate, non-
on in recent years in the field of Molecular Dynamtcisi-  classical attenuation, and other effects have also been found.
cluding ab initio calculations, pseudopotential energy ap-Perhaps the most striking feature observed so far is the so-
proaches, atomistic models, etc. At the same time, the devefalled “slow dynamics,” which consists in a downshift of
opment of more and more sophisticated industrial processéf€ resonance frequency when the specimen has been dy-
and products, in all fields of applications, requires a corren@mically excited, and consequent recovery proportional to
spondingly large progress in the understanding of the matdhe logarithm of the elapsed timte: )
rials employed, their basic properties and behavior under It is remarkabl(f that “fast dyn§m|cs effects are alvlr\éays
changes of environmental conditions, components intera accompanied by .SIOW dynamics” effects a_nd vice versa.
tions, etc. A deeper understanding of materials must, o he former_are d!rect results of mesoscopic featdgeain
course, be related to what one learns about their microscoplsnucmres' mters_tlces, cracks, égt(whn(_a the latter _depend
’ éﬁrectly on atomic/molecular mechanisnsom which, of

structure and_dynamllcs.. Yet, bridging from a microscopic tOcourse, also the former ultimately derjv&he two kinds of
a macroscopic description of matter is extremely difficult

'effects are very well separated in terms of times involved

since, after all, there is a gap spanning about ten orders f{fraction of seconds vs minutes or even hours, days! no
magnitude between the two scales. As a consequence, B¥ects on other scales have been observed.

spite of the huge progress in both, very little information  The results of quasistatit!® and “fast dynamics?®6
percolates from the former to the latter. have been well reproduced by the models based on the Local
Modeling and numerical simulations at the mesoscopiqnteraction Simulation ApproactLISA),*” applied in con-
leveP- offer a natural and powerful approach to the solutionjunction with a Spring Modéf and a Preisech-Mayergoitz
of the problem discussed above, i.e., exploiting the advance®M) representatioh’?°In these models the specimen is de-
of molecular dynamics for applications in nondestructivescribed as a sequence of elastic elements, the “grains,” and
evaluation, material science, seismic studies, and engineenonclassical regions corresponding to the intersticesled
ing. In fact, the discretization of a material specimen in aHysteretic Mesoscopic Units—HMVJ which behave either
lattice of, say, 508 500X 500 grid elementgcells) allows  rigidly or elastically, depending on the local presstire.
for the possibility of considering at the local level features of The purpose of the present contribution is to include the
the order of a micrometer. At that size it becomes possible tbasic ingredients previously propos& into a more gen-
analyze and implement local mechanisms, which shouldral and flexible model, which should provide a suitable ve-
eventually be inferred, e.g., by atomistic models. hicle for the introduction of realisti¢i.e., based on physical
Of particular interest within this context is the numerical considerations rather than phenomenological interaction
simulation of both quasistatic and resonant dynamic experiforces. In addition, the model, by including thermally acti-
ments, which have been performed in recent ye&ren a  vated random transitions between different intersticial states,
variety of materials, such as rocks, soil, damaged and intactllows one to keep into account the stress history of the
concretes, metal alloys with mesoscopic flaws, etc. In spitepecimen. It becomes then possible to predict effects, such as
of their very different microstructure and chemistry, all thesethe specimen conditioning and logarithmic recovery, which
materials exhibit the same peculiar elastic nonlinear behavare “signatures” of slow dynamics and, to our knowledge,
ior, which we shall call nonclassical, since it cannot be ex-have not yet been predicted by other models.
plained by the classical nonlinear theory of Landdu. The proposed model is presented in the following section.
The quasistatic experiments reveal the existence of afhe protocol, i.e., the set of initial and boundary conditions
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stan), the forcesF;" depend on the strain; of the grain,
while the intersticial force$;” have, in general, a more com-
plex dependence on external factors. In fact, since interstices
may be thought of as bonding regions among grafis,
represent the reaction of the bond to the incoming distur-
bance. They also include implicitely the effects of the sur-
rounding grains.

The explicit expression of .~ should be evinced from a
detailed knowledge of interaction mechanisms at the molecu-
lar or mesoscopic level, e.g., dislocations theédrihe Biot
theory for capillary pressure,glass transitioné? etc. Since
such information is not yet available, we limit ourselves to a
) o ) ] phenomenological treatment, in whiéfi is assumed to de-
FIG. 1. 2D representation of a multigrained material spemmenpend on the propagating external pressure and on the inter-

stice strainy (or deformations) and its first time derivative:
and detailed specifications of the behavior of the HMU'’s, 7 ( )

which we have adopted in order to implement the model in

—ft =—f = :
numerical simulations, is described in Sec. lll. In Sec. IV, the f=1 f-=1(P.5,9), @
problem of wave propagation in a bar made of a multi-yhere
grained material is define@nd the relevant parameters are
specified. Both “fast” and “slow” dynamics effects are then P=F —F",
simulated, with an excellent qualitative agreement with
available experimental results. s=ut—u. )
Il. THE MODEL Here and in the following the node index is omitted for
A. Specimen discretization brevity whian (iqual tai. u- are thg dlsplgcements of the two
subnodes=. f~=—f7 since the interstice is assumed to be

The problem we wish to analyze is the propagation of ammassless. ForcdbothF~ andf*) are considered to be posi-
ultrasonic wave through a multigrained material specimenive when pointing to the right, while pressure and strains are
(see Fig. 1 If the specimen consists of a thin bar, we candefined to be positive when compressional.

simplify the problem with a one-dimensiondlD) schema- By assuming, as a first step, that both the grain and inter-
tization in which longer segments representing grains alterstice forces may be approximated as linear, we obtain the
nate with shorter ones representing intersticee Fig. 2. constitutive relationships

Following the Spring Model of Ref. 18, the representation
of Fig. 2 corresponds to a lattice in which each nodesplit Ff=+Ke"*, 3

into two subnodes™ andi*, delimiting theith interstice

(i=1)1—-1, wherel is the total number of grains included in and

the discretization of the barWe shall label with the same

indexi also the grain to the left of the interstice and d¢alts f=a,P+a,d+ 335, (4)
length. We also assign to each subnédethe massn.” of

half of the grain to the right and left of the subnode, respecwhere K is the (linean elastic constant of the graim;™
tively. If the densityp is constant, we haven =1/2pl;,  =&i, & ==&i+1, anday(n=1,2,3) are the linear expansion
m;"=1/2pl;.,. An advantage of the Spring Model represen-COefficients.

tation is the natural way in which the formalism can be ex- _ Nonlinear terms caitand shouldi be added to both Egs.
tended to 2D and 3B (3) and(4). Since, however, we are mostly interested, in the

present context, in nonclassical nonlinearities, we neglect
them entirely in Eq(3) and explicitely in Eq.(4), i.e., we
assume that, may depend orP, while K may not. More
Both in the grains and in the interstices we consider forceprecisely, we assume that the interstice is normally in a “lin-
(or stressesacting on the subnodes, which we shall ¢afl ear” state @, constan, except for a number of sudden tran-
a_ndfii , respectively, as depicted in Fig. 2. Neglecting tem-sitions from a linear state to another, due, e.g., to local modi-
perature effectgi.e., assuming the temperature to be con-fications induced by the propagating disturbance. We call
“protocol” the explicit dependence,(P), including the ini-
(-2 (-1 G-n* i i+ @i+1y tial conditions. Although, in principle, a detailed specifica-
«— tion of a,(P) is necessary for a detailed prediction of the
+ + + E ﬁ' M + behavior of the interstice, in practice, at a macroscopic level,
the large number of intersticéasually many 1000%sdilutes
FIG. 2. 1D schematization: gray areas represent the grains arifie relevance of the particular protocol for any of them.
white areas the interstices. Thus, as we will see later, even a very simple protocol suf-

B. Constitutive relationships
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fices to reproduce all the observed phenomena
quasistatit’ and dynamic resonant experimer(see Sec.
V).

A basic feature that must be included in any protocol is
the natural “resistance” of the grains surface and interstitial
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matter in returning to the initial state when the pressure is g5 3 Basic hysteretic loop for each HMU. We assume that

released. This leads to a differemi( P) dependence whem

r=1 represents a “free” state and=0 a “rigid” one. g, andq,

decreases and, as a consequence, to hysteretic loops. ANOthe! the thermal activated transition rates between the two states.
important feature to be added to the protocol is the possibil-

ity, due to thermal activation, of random transitions betweersince, however, the very large number of HMU’s washes

the two branches dd,(P).

C. Equations of motion

From the constitutive laws, the equations of motion for

the two subnodes™ easily follow

(5

where an attenuative term with coefficiepthas been in-
cluded.

m*U*=F* = f—yu™,

away the relevance of a detailed description, we replace for
each HMU the ladder with a basic bi-state “blociSee Fig.
3), in which two linear states coexist in the pressure range
(P4,P,). The two states represent the interstice behavior
when the pressure is increased or, respectively, decreased
and are labeled by the two arbitrary values of the state vari-
abler (e.g.,r=0 andr=1).

In addition to the hysteretic behavior, Fig. 3 shows the
thermal activated random transition ratgsandq, between
the two linear states. These states may be assumed to be both

Since, due to the large number of HMU's, the details of“free,” i.e., with & elastically variable, or both “rigid,” i.e.,
the specimen discretization are unimportant, we can assunweith 6 bound not to change thereafter, or one free and one

for simplicity that| " =1"=I. By applying the usual first-

rigid. The two former choices may be aesthetically more

order finite difference formalism and assuming, for the sakepleasant, due to their symmetry. We adopt, however, the lat-

of notational simplicty that the time step=1, we obtain

S(t+1)= %[(Zal—l)P+2(m+ a,) 8(t)

—(Mm+a)d(t—1)], (6)

— + — _ _ _
V(U 1)= 5o [FTHFTH4my(n) — (2m=y)y(t-1)],
(7)
where
e ?
(64 3 2,
and
1
Tt —
y=5(u’+u”)

ter choice(a free and a rigid statesince a free state is more
intuitively physical, but a rigid state helps in explaining the
experimental observation of residual straindat0 in qua-
sistatic compressional experimefitdn fact, residual strains
at zero stress, which disappear very slowly with time, imply
the (at least temporajyexistence of interstice configurations,
reached during phases of increasing pressure, which remain
“frozen” during pressure release.

The protocol is then defined as followsee Fig. 3. Start-
ing for any given HMU at a given pressuR<P,, we as-
sume that’ varies elastically (=1) up toP=P,, at which
point it becomes rigid i{ drops to Q. Conversely, wherP
decreases, the HMU remains rigid up to the vaRie P,,
wherer jumps to 1 and the HMU becomes elastic again.
Since the rigid stater0) is expected to be more stable
than the elastic one, we assume for the thermal activated
transition rates thatj;>q,. These hopping transition rates
increase, of course, with the temperature, but in the present
context, in which only isothermal processes are considered,
this dependence is not explicitly included. Likewise, any

represents the diSplacement of the interstice center of mas§ther dependence of the rates on, e.g., the app“ed prdgsure
From the definitions oy and s, the corresponding equations s neglected.

for u* andu™ can be easily obtained.

Ill. THE PROTOCOL

A. Bi-state protocol

The choice of the set of pairs of parametels (P,) for
each HMU is, of course, crucial for the performance of any
given protocol. Such a set is usually represented in the so-
called PM space, i.e., as a distribution of points irPa (P,)
plane. In the case of virtual quasistatic experiments, in which

Assuming, as discussed in Sec. I B, to consider only lin-pressures up to £tPa are involved, the PM space distribu-

ear intersticial states and sudden nonlinear transitions frortion is obtained by inverting the experimental d&ta> For

one to the next, the detailed information about the paramthe simulation of resonant dynamic experiments the range of
eters of each state and each transition, including the values ptessures is usually much smaller and only an extremely
the pressure at which they occur, should be evinced fronsmall portion of the PM space around the ambient pressure
basic physical considerations. In principle, we could expecP, is explored by the incoming perturbation. In such a tiny

to have, for each HMU, a long “ladder” of transitions ¥  region, it is reasonable to assume a uniform distribution of
with a different return path, giving rise to a hysteretic loop.(P,,P,) points.
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As a result of the proposed protocol and convention (
=0,1), we rewrite Eq(6) as follows: L I,
S(t+1)=68(t)+r[biP+by5(t) —bss(t—1)], (8) 1
whereb,, are the coefficients in the elastic case=(1), B>
L 221 - Py
Y m-a’ L
b m+ a+2a, 9 I1,
= mea ©
m+a«a
b3: m—a (b) P2 ]_[2
g
u o H1
B. Initial and boundary conditions ! | >
We assume that at the beginnifige., before starting the -, p
“virtual experiment”) the specimen is completely relaxed =t : R 1
and kept at the atmospheric pressBe For simplicity, we .
redefine the pressure scale, so tRgt=0. Three cases are TR e
possible(see Fig. 3. 2 == 1 2
(1) P,>0, then only the state=1 is allowed;
(2) P,<0, then only the state=0 is possible;
(3) P,<0< P4, then both states are allowed. é
Since the specimen is relaxed, the state distribution is in ) I1,
equilibrium condition. Hence their respective probabilities (C) / 5
are given by A 1
. >
a2 _
p(r=1)=1-p(r=0)= : (10 By
J1+0Qz I,
In a dynamic experiment, the boundary conditions are
given by an external forcinfe.g.,F = Fycos(t) for a mono- =1 1Ly 1

chromatic wavé at one end of the bar and free boundary

conditions(zero stresgat the other. FIG. 4. Distributuion of HMU’s according to their elastic prop-

erties: permanently elastifight gray areas permanently rigid
C. Predictions of the Young modulus behavior (dark gray aregsvariable between the two caseheckered areas
frozen in their initial condition(white area. (a) Pressure range
—1II;<P<Ily, (b) range—I1,<P<II, with I1;<II,, (c) sudden
return to the—11,<P<II, range.

It may be useful to visualize the discretized bar as com
posed of units including both a grain and a HNlélg., from
(i—1)" toi* in Fig. 2]. Its effective elastic constait; may

then be obtained from the elastic constants of the dfaamd Let us now consider a dynamic experiment and assume, at
of the HMU K’ = —2a,/(1+ 2a,): first, that the local pressure varies betweeil, and IT;
(—IT;<P<II;). Neglecting the effects of thermal activa-
1 1 N 1 (11 tion transitions(which become important on a much longer

time scale than that of dynamic experimentse find the
following possibilities, according to the location d?P{,P,)
Note thatK’ varies with time and space and so dégs At in the PM spacgsee Fig. 4a)].
any given timeT, the bar Young modulus is then given by (1) In the regionP,>11,,P,>—1I1, (light gray area the
HMU'’s are permanently elastic.

1 N (2) In the regionP,<II,,P,<—1II, (dark gray areg the
“ K, K+ K"’ HMU’s are permanently rigid;

(3) In the region—1I1,<P,,P,<II; (checkered argathe
whereN, is the number of HMU’s, which, &t=T, are inthe HMU's are switching twice for each cycle between the two
elastic statdthe other ones do not contribute, since they arestates. Their contribution to the elastic constant is propor-
rigid). N, depends, of course, on the local pressure distributional to the occupancy rate of the=1 state.
tion (hence on the driving excitation amplitydéut also on (4) In the regionP;>I1;,P,<—II; (white area, the
the stress history of the specimen. HMU'’s remain in their inital state.

K. K Kk’
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Increasing the driving amplitude, the local pressure excurthe specimen is “conditioned,” i.e., the resonance frequency
sion increasefsee Fig. 4b)] to —I1,<P<II,. As a conse- at a fixed amplitude depends on the history of the specimen.
quence, the HMU's elastic properties change as depicted. (3) When no stress is left, thermal fluctuations induce re-
Due to symmetry considerations, the changes in the HMU'slaxation of the dynamic moduli towards an equilibrium state.
whose elastic state becomes variable with tinig;€<P;  As a consequence, the resonance frequency slowly returns to
<IlI,;—1II,<P, and —I1,<P,<—1II;;P;<II;) mutually its initial value, with a logarithmic time recovery.
compensate. This is not true for the other affected regions
(I <P <I1,; Po,<—1I, and — 1, <P,< —11,;P{>1l,),
since in the initial distribution rigid units are dominarg;(
>(,) with respect to the elastic ones. As a consequence, a To understand the behavior of a single HMU in dynamic
softening effect will appear, as experimentally observed. conditions, we analyze the interstice response to a given ap-

Let us now suppose to reduce the specimen excitation tplied pressure varying with time. The behavior of the inter-
the previous lower amplitudH ;, without allowing time for  stice deformatior has been analyzed for units representing
relaxation. The corresponding distribution in the PM space idive different classes, classified according to the relative po-
depicted in Fig. 4). Not all the HMU’s go back to the same sition of P, and P, with respect to the applied pressure
configuration as in Fig. @) and the specimen elastic modu- range. The five cases are schematized in the upper part of
lus remains approximately the same as at the larger amplFig. 5, with square brackets delimiting the pressure range.
tudeIl,. Note that the state of units in the regibhy<P;  The plots of the HMU displacemeidtvs pressure, time dur-
<II,;—-II,<P,<—II, strongly depends on the pressureing excitation and time during relaxation are reported in the
behavior during the transition to the low amplitude excitationthree columns for the five cases.
and cannot be predictea priori. The following conclusions can be drawn.

From the configuration of Fig.(d), after a sufficiently (1) First column:P, above the maximum anB, above
long time, relaxation occurs. In fact, in the regidy  the minimum of the applied pressure range. The plot P
>T1I,;P,<~—1I,, the pressure is constantly in the interval shows no hysteretic behavior, sinenatcheqwith a delay
(P,,P,). As a consequence, random transitions slowly leadhe sinusoidal behavior of the pressure. As soon as the pres-
towards a stationary configuration as in Figa)4 sure is removed, the interstice deformation vanishes.

(2) Second column: BotlP; and P, are within the ap-
plied pressure range. The plétvs P shows a real hysteretic
loop, with the appearence of a rigid staté ihdependent

In order to illustrate the applicability of the model and from P) at large pressures. The sinusoidal behavior is still
protocol discussed in the previous sections, we present in thésible, but it cuts in the upper part due to the rigidity of the
following a few numerical examples. The parameters chosemterstice. Note(particularly in the upper plotthe different
for the reported simulation@xpressed for generality in ar- pressure values at which the transitions rigid-elastic and
bitrary unit are | =1000, K=1, a;=0.99, a,=3 (unless elastic-rigid occur. Again the interstice deformation vanishes
otherwise specified az=1, p=1, y=0.001, q;=0.0003, when the pressure is released, exceptPer 0, in which
andq,=0.0001. The opening and closing pressures for thease it may remain rigid with a nonzero deformation, which
HMU'’s have been chosen in the range0.1,0.1]. returns to 0 with a random process as discussed in the next

Since quasistatic “in-silico” experiments have been dis-case.
cussed elsewher8,we limit ourselves here to simulate dy-  (3) Third column:P, below the minimum andP, below
namic resonant experiments. We assume that monochromatize maximum of the applied pressure range. The fles P
waves of driving amplitud&, and varying frequencw are  shows no hysteresis with a rigid intersti@xcept at the very
input in a rod-shaped specimen by a transducer attached teeginning, if the HMU is initially in the elastic state/hen
one end of the specimen. The signal is recorded by an accdlhe applied pressure is removed, the interstice remains de-
erometer attached to the other end. At any given excitatioformed and eventuallyif P,<0<P,) ¢ falls to 0, when a
level, the frequencyw is swept through the fundamental random transition to the elastic state occurs.
resonance modeg of the specimen and the time-averaged To conclude, since many HMU's follow in a chain, varia-
acceleration amplitude\ (in stationary conditionsis re-  tions in é in each of them may affect the pressure elsewhere
corded. This procedure of resonance curve tracking is reas a function of time. Hence, very compléand even cha-
peated for several different levels of excitation. otic) patterns may emerge, according to the location of the

In the course of the experiments several macroscopic elHMU inside the chain and its two PM space paramefys
fects can be observed, resulting from the proposed microand P».
scopic interaction mechanisms, as discussed in Sec. Il C.

(1) “Mechanical” interactions induce variations in the ef-
fective elastic moduli of the HMU’s, which are directly per-
turbed by the external excitation. As a result a resonance The resonance frequency shift is analyzed in Fig. 6, where
frequency shift is observed. the average acceleration recorded on the free edge of the bar

(2) Stress-history effects are also induced, leading tas plotted vs frequency for several values of the driving am-
variations in the dynamic moduli that do not immediately plitude. In agreement with experimental resdftshe reso-
disappear when the disturbance is removed. In other wordsiance frequencywg is shifted downwards for increasing

A. Behavior of a single HMU

IV. RESULTS AND DISCUSSION

B. Resonance frequency shift
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Figure 5
driving amplitudes. Note also a nonlinear attenuation effect
1 —=—F0=0.0001 —e— F0=0.0005 due to hysteretic loops: the peak amplitude is not propor-
0.060 | —*— F0=0.00075 —v— F0=0.001 tional to the driving amplitud€&, and the width of the reso-
| —o—Fo-000125 —,_ Fo-00015 nance curve becomes larger wif. This effect can be bet-
7 Fo=0.00175 > Fo=0.002 ter appreciated in Fig.(B).
0.045 | Fo=0.00225 1— F0=0.0025 . . .
— 0 F0=-0.0030 0 o Fo0.0035 In Fig. 7(a) the relative frequency shiftA = (wg
< T s i —wg)/wg is plotted vs the peak amplitudky in the reso-
0.030 -. nance frequency curve for different values af [see Eq.
] ';:\& (4)]. wq is the “linear” resonance frequency, _i.(_e., the Iir_nit
0.015 1o~ 7P ::LZE';:-.: value of the resonance frequency when the driving amplitude
] ;ﬁ ;}:’I XY {% goes to 0. As observed experimentdll,, behaves linearly
0.000 Ef—4—— ;“Lf_‘j‘_ oo 84— with Ag, in contrast with the quadratic dependence observed
0.0045 0.0050 0.0055 0.0060 in the case of classical nonlinearities. By changing the dam-
® age level of the materiale.g., the modulus of the bond,

which depends om,), the dependence remains linear, but

FIG. 6. Resonance frequency shift: amplitude of the receivedhe slope decreases with increasag
signal as a function of frequency for different values of the ampli-

tude of the driving force~,.

In Fig. 7(b), to illustrate the effect of nonlinear attenua-
tion, the quantityA o= (Qr— Qo)/Qo is reported vs the peak
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®
0.20 A FIG. 8. First conditioning experiment: amplitude of the output
b signal vs frequency for a fixed forcing amplitude) starting from
o ) a relaxed statdb) after prestressing with a large amplitude driving
O 0.15 force.
~
— . .
=) forming resonance sweeps upwards and downwards, i.e.,
g o.10 4 from below to above the resonance frequency and vice versa.
'aﬁ As observed in experimental measureme(stse Fig. 1 in
O o005 - Ref. 1)), the resonance curve is slightly different in the two
-~ cases. In fact, in the downgoing sweep the conditioning ap-
o plied by the drivingA(wg) affects measurements at frequen-
0.00 =%, T . T . T . cies lower thanwg.
0.00 0.025 0.050 0.075 0.100

AR D. Recovery

An experiment of recoveryslow dynamicyis presented
FIG. 7. Same experiment as in Fig. @ Relative frequency in Fig. 10. At first the input driving force is kept constant at
shift vs output amplitude at resonancb) Corresponding relative 3 certain leveF,. Correspondingly the resonance frequency
variation in attenuation. wg is also constanfsee Fig. 108)]. Then, atT=1200r, an
: : . _ external large amplitude disturbanke is input. As a conse-
amplitudeAr . Q s the quality factor and is calculated from ¢, e thegresonpance frequency erops c?onsiderably. Releas-
the resonance curve by using a Lorentzian fitting. A moreng £, and returning tde,, the specimen draws back to the
accurate evaluation, obtained by fitting the region close tGyjtial resonance frequency, with a very slow recovery, which
the resonance frequency with a parabola, leads to minor cofsay he monitored by a large sequence of successive reso-
rections.Qy is the limit value ofQg for Fo—0. Again,Aqis  pance curve measurements. Some of them are plotted in Fig.

linear with the amplitude, as observed experimentalty  1((b) and show that also the attenuation is affected by the
nonclassical elastic materials.

C. Conditioning 0.06 i,df" by
067 F4
The effect of conditioning is illustrated by means of two /
different experimentgFigs. 8 and 9, respectivelyin the first y
one (Fig. 8), a frequency sweep with a driving amplitude 0.04- /

Fo=0.001 is performed, both starting with a relaxed speci-
men and right after prestressing with a larger driving force
(Fy=0.03). The effect of the stress history in the latter case
is very conspicuous both in the clear cut separation of the 0.021

two curves(with two well-defined peaKksand in the higher —_—

attenuation of the latter due to the conditioning cycle. Only 0.0045 0.0050 0.0055
after a considerable amount of time does the resonance fre 0

guency of the prestressed specimen return to the “relaxed”

value of the right peaksee the following subsectipn FIG. 9. Second conditioning experiment: amplitude of the out-

Another conditioning effect may be observed in Fig. 9, put signal vs frequency in an upwafsblid line with squargsand a
where we compare the resonance curves obtained by pedewnward(dashed line with crossefrequency sweep.
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V. CONCLUSIONS

 — e
0.00552 | o
& 0.00550 | ™

0.00548 |

0.00546 | #_4 (a)

0.00544 T

The propagation of a monochromatic ultrasonic wéawe
pulse in a multigrained material specimen is a problem of
both practical relevancée.g., for nondestructive evaluation
(NDE) purposes or in seismic studjesnd theoretical inter-
est. In fact, a rich phenomenology of both classical and non-
classical nonlinear effects has been observed and it is very

4000 6000

0 2000

enticing to look for the microscopic interaction mechanisms
behind. Detailed microscopic calculations are, however, ex-
tremely difficult and the computational load required is ex-
pected to be well beyond our current possibilities.

8000

0.0023
0.0022
0.0021
< 000
0.0019 Jug®
0.0018 |

In the present contribution a model has been proposed,
which allows us to perform simulations of the ultrasonic
wave propagation in multigrained aggregates, based on a
simple but very supple protocol for the intersticial forces vs
the local value of pressure. The implementation of the model
(and selected protocohas allowed us to obtain all the non-
classical nonlinear effects, which have been observed in
resonant dynamic experiments, with an excellent qualitative

0.0017 -

®
0.00554

0.00544 0.00548 0.00552  0.00556 agreement with the experimental data. In fact, in addition to

the “fast dynamics” effectgsuch as the wave shape distor-
tion, resonance frequency shift, and nonclassical attenua-

0.00552
oz 0.00550
S 0.00548]

0.00546 -

0.00544

tion), already explained by previous simulation approaches,
the hitherto unexplained effects of conditioning and slow dy-
namics have been well reproduced in our simulations. This
result is due to the introduction in the model of thermally
activated random transition mechanisms, which have already
been succesfully included in the simulation of quasistatic
experiments?

Although in the present context only a phenomenological

2000 4000

|°g1 0 (t)

8000 protocol has been implemented, the flexibility of the model
allows one to extend its applicability to all kinds of interac-
tion mechanisms, as suggested by basic physical consider-

FIG. 10. Slow dynamics experimeris) resonance frequency vs ations. Work in this direction is in progress.
time for a driving force fixed at a low valug, except for a sudden
jump to a very large excitation for a very short timetat1200r,
(b) resonance curves measured at successive times during the relax- ACKNOWLEDGMENTS
ation process(c) same aga) but in a logf) scale fort>1200r.

recovery process. The recovery time is extremely large, co
pared to typical cycling periods during resonant dynamic
experiments. In Fig. 1@), the recovery is plotted vs log(
the resulting curve is well fitted by a straight line for a very
long time interval(up to about 6008). Also this kind of

behavior has been experimentally observed.
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