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Modeling nonclassical nonlinearity, conditioning, and slow dynamics effects
in mesoscopic elastic materials

P. P. Delsanto and M. Scalerandi
INFM - Dip. Fisica, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino, Italy

~Received 2 January 2003; published 12 August 2003!

Several materials with mesoscopic characteristics~e.g., defects or intergrain regions! have been shown to
share several nonclassical nonlinear features, which distinguish them from classical nonlinear media. Most
striking among them is the log-time recovery of the material properties after they have been conditioned by the
action of an external perturbation. A simple model based on the description of the mesoscopic features as bond
regions between elastic portions is presented here. The implementation of the model is illustrated by the
application of a special bi-state protocol, which, by considering also thermally induced transitions between the
two basic states, allows to explain all experimentally observed nonclassical nonlinear effects.
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I. INTRODUCTION

A tremendous amount of research work has been car
on in recent years in the field of Molecular Dynamics,1 in-
cluding ab initio calculations, pseudopotential energy a
proaches, atomistic models, etc. At the same time, the de
opment of more and more sophisticated industrial proce
and products, in all fields of applications, requires a cor
spondingly large progress in the understanding of the m
rials employed, their basic properties and behavior un
changes of environmental conditions, components inte
tions, etc. A deeper understanding of materials must,
course, be related to what one learns about their microsc
structure and dynamics. Yet, bridging from a microscopic
a macroscopic description of matter is extremely difficu
since, after all, there is a gap spanning about ten order
magnitude between the two scales. As a consequenc
spite of the huge progress in both, very little informati
percolates from the former to the latter.

Modeling and numerical simulations at the mesosco
level2,3 offer a natural and powerful approach to the soluti
of the problem discussed above, i.e., exploiting the advan
of molecular dynamics for applications in nondestruct
evaluation, material science, seismic studies, and engin
ing. In fact, the discretization of a material specimen in
lattice of, say, 50035003500 grid elements~cells! allows
for the possibility of considering at the local level features
the order of a micrometer. At that size it becomes possibl
analyze and implement local mechanisms, which sho
eventually be inferred, e.g., by atomistic models.

Of particular interest within this context is the numeric
simulation of both quasistatic and resonant dynamic exp
ments, which have been performed in recent years4–6 on a
variety of materials, such as rocks, soil, damaged and in
concretes, metal alloys with mesoscopic flaws, etc. In s
of their very different microstructure and chemistry, all the
materials exhibit the same peculiar elastic nonlinear beh
ior, which we shall call nonclassical, since it cannot be
plained by the classical nonlinear theory of Landau.7,8

The quasistatic experiments reveal the existence of
0163-1829/2003/68~6!/064107~9!/$20.00 68 0641
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hysteretic loop in the stress-strain relation with end-po
memory.9 Phase shifts in resonance experiments, the gen
tion of higher-order harmonics with a well-defined rate, no
classical attenuation, and other effects have also been fou5

Perhaps the most striking feature observed so far is the
called ‘‘slow dynamics,’’ which consists in a downshift o
the resonance frequency when the specimen has been
namically excited, and consequent recovery proportiona
the logarithm of the elapsed time.10,11

It is remarkable that ‘‘fast dynamics’’ effects are alwa
accompanied by ‘‘slow dynamics’’ effects and vice versa12

The former are direct results of mesoscopic features~grain
structures, interstices, cracks, etc.!, while the latter depend
directly on atomic/molecular mechanisms~from which, of
course, also the former ultimately derive!. The two kinds of
effects are very well separated in terms of times involv
~fraction of seconds vs minutes or even hours, days! and no
effects on other scales have been observed.

The results of quasistatic13,14 and ‘‘fast dynamics’’15,16

have been well reproduced by the models based on the L
Interaction Simulation Approach~LISA!,17 applied in con-
junction with a Spring Model18 and a Preisech-Mayergoit
~PM! representation.19,20 In these models the specimen is d
scribed as a sequence of elastic elements, the ‘‘grains,’’
nonclassical regions corresponding to the interstices~called
Hysteretic Mesoscopic Units—HMU!, which behave either
rigidly or elastically, depending on the local pressure.15

The purpose of the present contribution is to include
basic ingredients previously proposed14,15 into a more gen-
eral and flexible model, which should provide a suitable v
hicle for the introduction of realistic~i.e., based on physica
considerations!, rather than phenomenological interactio
forces. In addition, the model, by including thermally ac
vated random transitions between different intersticial sta
allows one to keep into account the stress history of
specimen. It becomes then possible to predict effects, suc
the specimen conditioning and logarithmic recovery, wh
are ‘‘signatures’’ of slow dynamics and, to our knowledg
have not yet been predicted by other models.

The proposed model is presented in the following secti
The protocol, i.e., the set of initial and boundary conditio
©2003 The American Physical Society07-1
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and detailed specifications of the behavior of the HMU
which we have adopted in order to implement the mode
numerical simulations, is described in Sec. III. In Sec. IV, t
problem of wave propagation in a bar made of a mu
grained material is defined~and the relevant parameters a
specified!. Both ‘‘fast’’ and ‘‘slow’’ dynamics effects are then
simulated, with an excellent qualitative agreement w
available experimental results.

II. THE MODEL

A. Specimen discretization

The problem we wish to analyze is the propagation of
ultrasonic wave through a multigrained material specim
~see Fig. 1!. If the specimen consists of a thin bar, we c
simplify the problem with a one-dimensional~1D! schema-
tization in which longer segments representing grains al
nate with shorter ones representing interstices~see Fig. 2!.

Following the Spring Model of Ref. 18, the representati
of Fig. 2 corresponds to a lattice in which each nodei is split
into two subnodesi 2 and i 1, delimiting the i th interstice
( i 51,I 21, whereI is the total number of grains included i
the discretization of the bar!. We shall label with the same
index i also the grain to the left of the interstice and calll i its
length. We also assign to each subnodei 6 the massmi

6 of
half of the grain to the right and left of the subnode, resp
tively. If the densityr is constant, we havemi

251/2r l i ,
mi

151/2r l i 11. An advantage of the Spring Model represe
tation is the natural way in which the formalism can be e
tended to 2D and 3D.21

B. Constitutive relationships

Both in the grains and in the interstices we consider for
~or stresses! acting on the subnodes, which we shall callFi

6

and f i
6 , respectively, as depicted in Fig. 2. Neglecting te

perature effects~i.e., assuming the temperature to be co

FIG. 1. 2D representation of a multigrained material specim

FIG. 2. 1D schematization: gray areas represent the grains
white areas the interstices.
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stant!, the forcesFi
6 depend on the strain« i of the grain,

while the intersticial forcesf i
6 have, in general, a more com

plex dependence on external factors. In fact, since interst
may be thought of as bonding regions among grains,f i

6

represent the reaction of the bond to the incoming dis
bance. They also include implicitely the effects of the s
rounding grains.

The explicit expression off i
6 should be evinced from a

detailed knowledge of interaction mechanisms at the mole
lar or mesoscopic level, e.g., dislocations theory,22 the Biot
theory for capillary pressure,23 glass transitions,24 etc. Since
such information is not yet available, we limit ourselves to
phenomenological treatment, in whichf i

6 is assumed to de
pend on the propagating external pressure and on the in
stice strainh ~or deformationd) and its first time derivative:

f 5 f 152 f 25 f ~P,d,ḋ !, ~1!

where

P5F22F1,

d5u12u2. ~2!

Here and in the following the node index is omitted f
brevity when equal toi. u6 are the displacements of the tw
subnodesi 6. f 252 f 1 since the interstice is assumed to
massless. Forces~bothF6 and f 6) are considered to be pos
tive when pointing to the right, while pressure and strains
defined to be positive when compressional.

By assuming, as a first step, that both the grain and in
stice forces may be approximated as linear, we obtain
constitutive relationships

F656K«6, ~3!

and

f 5a1P1a2d1a3ḋ, ~4!

where K is the ~linear! elastic constant of the grain,«2

5« i , «15« i 11, andan(n51,2,3) are the linear expansio
coefficients.

Nonlinear terms can~and should! be added to both Eqs
~3! and~4!. Since, however, we are mostly interested, in t
present context, in nonclassical nonlinearities, we neg
them entirely in Eq.~3! and explicitely in Eq.~4!, i.e., we
assume thatan may depend onP, while K may not. More
precisely, we assume that the interstice is normally in a ‘‘l
ear’’ state (an constant!, except for a number of sudden tran
sitions from a linear state to another, due, e.g., to local mo
fications induced by the propagating disturbance. We
‘‘protocol’’ the explicit dependencean(P), including the ini-
tial conditions. Although, in principle, a detailed specific
tion of an(P) is necessary for a detailed prediction of th
behavior of the interstice, in practice, at a macroscopic le
the large number of interstices~usually many 1000’s! dilutes
the relevance of the particular protocol for any of the
Thus, as we will see later, even a very simple protocol s

.

nd
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fices to reproduce all the observed phenomena
quasistatic14 and dynamic resonant experiments~see Sec.
IV !.

A basic feature that must be included in any protoco
the natural ‘‘resistance’’ of the grains surface and intersti
matter in returning to the initial state when the pressure
released. This leads to a differentan(P) dependence whenP
decreases and, as a consequence, to hysteretic loops. An
important feature to be added to the protocol is the poss
ity, due to thermal activation, of random transitions betwe
the two branches ofan(P).

C. Equations of motion

From the constitutive laws, the equations of motion
the two subnodesi 6 easily follow

m6ü65F66 f 2gu̇6, ~5!

where an attenuative term with coefficientg has been in-
cluded.

Since, due to the large number of HMU’s, the details
the specimen discretization are unimportant, we can ass
for simplicity that l 15 l 25 l . By applying the usual first-
order finite difference formalism and assuming, for the sa
of notational simplicty that the time stept51, we obtain

d~ t11!5
1

m2a
@~2a121!P12~m1a2!d~ t !

2~m1a!d~ t21!#, ~6!

y~ t11!5
1

2m1g
@F11F214my~ t !2~2m2g!y~ t21!#,

~7!

where

a5a32
g

2
,

and

y5
1

2
~u11u2!

represents the displacement of the interstice center of m
From the definitions ofy andd, the corresponding equation
for u1 andu2 can be easily obtained.

III. THE PROTOCOL

A. Bi-state protocol

Assuming, as discussed in Sec. II B, to consider only
ear intersticial states and sudden nonlinear transitions f
one to the next, the detailed information about the para
eters of each state and each transition, including the value
the pressure at which they occur, should be evinced fr
basic physical considerations. In principle, we could exp
to have, for each HMU, a long ‘‘ladder’’ of transitions vsP,
with a different return path, giving rise to a hysteretic loo
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Since, however, the very large number of HMU’s wash
away the relevance of a detailed description, we replace
each HMU the ladder with a basic bi-state ‘‘block’’~see Fig.
3!, in which two linear states coexist in the pressure ran
(P1 ,P2). The two states represent the interstice behav
when the pressure is increased or, respectively, decre
and are labeled by the two arbitrary values of the state v
able r ~e.g.,r 50 andr 51).

In addition to the hysteretic behavior, Fig. 3 shows t
thermal activated random transition ratesq1 andq2 between
the two linear states. These states may be assumed to be
‘‘free,’’ i.e., with d elastically variable, or both ‘‘rigid,’’ i.e.,
with d bound not to change thereafter, or one free and
rigid. The two former choices may be aesthetically mo
pleasant, due to their symmetry. We adopt, however, the
ter choice~a free and a rigid state!, since a free state is mor
intuitively physical, but a rigid state helps in explaining th
experimental observation of residual strains atP50 in qua-
sistatic compressional experiments.14 In fact, residual strains
at zero stress, which disappear very slowly with time, imp
the~at least temporary! existence of interstice configuration
reached during phases of increasing pressure, which rem
‘‘frozen’’ during pressure release.

The protocol is then defined as follows~see Fig. 3!. Start-
ing for any given HMU at a given pressureP,P1, we as-
sume thatd varies elastically (r 51) up toP5P1, at which
point it becomes rigid (r drops to 0!. Conversely, whenP
decreases, the HMU remains rigid up to the valueP5P2,
where r jumps to 1 and the HMU becomes elastic aga
Since the rigid state (r 50) is expected to be more stab
than the elastic one, we assume for the thermal activa
transition rates thatq1.q2. These hopping transition rate
increase, of course, with the temperature, but in the pre
context, in which only isothermal processes are conside
this dependence is not explicitly included. Likewise, a
other dependence of the rates on, e.g., the applied pressP
is neglected.

The choice of the set of pairs of parameters (P1 ,P2) for
each HMU is, of course, crucial for the performance of a
given protocol. Such a set is usually represented in the
called PM space, i.e., as a distribution of points in a (P1 ,P2)
plane. In the case of virtual quasistatic experiments, in wh
pressures up to 108 Pa are involved, the PM space distrib
tion is obtained by inverting the experimental data.13,25 For
the simulation of resonant dynamic experiments the rang
pressures is usually much smaller and only an extrem
small portion of the PM space around the ambient press
Po is explored by the incoming perturbation. In such a ti
region, it is reasonable to assume a uniform distribution
(P1 ,P2) points.

FIG. 3. Basic hysteretic loop for each HMU. We assume t
r 51 represents a ‘‘free’’ state andr 50 a ‘‘rigid’’ one. q1 and q2

are the thermal activated transition rates between the two state
7-3
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As a result of the proposed protocol and conventionr
50,1), we rewrite Eq.~6! as follows:

d~ t11!5d~ t !1r @b1P1b2d~ t !2b3d~ t21!#, ~8!

wherebn are the coefficients in the elastic case (r 51),

b15
2a121

m2a
,

b25
m1a12a2

m2a
, ~9!

b35
m1a

m2a
.

B. Initial and boundary conditions

We assume that at the beginning~i.e., before starting the
‘‘virtual experiment’’! the specimen is completely relaxe
and kept at the atmospheric pressurePo . For simplicity, we
redefine the pressure scale, so thatPo50. Three cases ar
possible~see Fig. 3!.

~1! P2.0, then only the stater 51 is allowed;
~2! P1,0, then only the stater 50 is possible;
~3! P2,0,P1, then both states are allowed.
Since the specimen is relaxed, the state distribution i

equilibrium condition. Hence their respective probabiliti
are given by

p~r 51!512p~r 50!5
q2

q11q2
. ~10!

In a dynamic experiment, the boundary conditions
given by an external forcing@e.g.,F5F0cos(vt) for a mono-
chromatic wave# at one end of the bar and free bounda
conditions~zero stress! at the other.

C. Predictions of the Young modulus behavior

It may be useful to visualize the discretized bar as co
posed of units including both a grain and a HMU@e.g., from
( i 21)1 to i 1 in Fig. 2#. Its effective elastic constantKi may
then be obtained from the elastic constants of the grainK and
of the HMU K8522a2 /(112a1):

1

Ki
5

1

K
1

1

K8
. ~11!

Note thatK8 varies with time and space and so doesKi . At
any given timeT, the bar Young modulus is then given by

1

Y
5

1

I (
i 51

I
1

Ki
5

1

K
1

Ne

K8
,

whereNe is the number of HMU’s, which, att5T, are in the
elastic state~the other ones do not contribute, since they
rigid!. Ne depends, of course, on the local pressure distri
tion ~hence on the driving excitation amplitude!, but also on
the stress history of the specimen.
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Let us now consider a dynamic experiment and assum
first, that the local pressure varies between2P1 and P1
(2P1,P,P1). Neglecting the effects of thermal activa
tion transitions~which become important on a much long
time scale than that of dynamic experiments!, we find the
following possibilities, according to the location of (P1 ,P2)
in the PM space@see Fig. 4~a!#.

~1! In the regionP1.P1 ,P2.2P1 ~light gray area!, the
HMU’s are permanently elastic.

~2! In the regionP1,P1 ,P2,2P1 ~dark gray area!, the
HMU’s are permanently rigid;

~3! In the region2P1,P1 ,P2,P1 ~checkered area!, the
HMU’s are switching twice for each cycle between the tw
states. Their contribution to the elastic constant is prop
tional to the occupancy rate of ther 51 state.

~4! In the region P1.P1 ,P2,2P1 ~white area!, the
HMU’s remain in their inital state.

FIG. 4. Distributuion of HMU’s according to their elastic prop
erties: permanently elastic~light gray areas!, permanently rigid
~dark gray areas!, variable between the two cases~checkered areas!,
frozen in their initial condition~white area!. ~a! Pressure range
2P1,P,P1, ~b! range2P2,P,P2 with P1,P2, ~c! sudden
return to the2P1,P,P1 range.
7-4
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Increasing the driving amplitude, the local pressure exc
sion increases@see Fig. 4~b!# to 2P2,P,P2. As a conse-
quence, the HMU’s elastic properties change as depic
Due to symmetry considerations, the changes in the HMU
whose elastic state becomes variable with time (P1,P1
,P2 ;2P2,P2 and 2P2,P2,2P1 ;P1,P1) mutually
compensate. This is not true for the other affected regi
(P1,P1,P2 ;P2,2P2 and 2P1,P2,2P2 ;P1.P2),
since in the initial distribution rigid units are dominant (q1
.q2) with respect to the elastic ones. As a consequenc
softening effect will appear, as experimentally observed.

Let us now suppose to reduce the specimen excitatio
the previous lower amplitudeP1, without allowing time for
relaxation. The corresponding distribution in the PM spac
depicted in Fig. 4~c!. Not all the HMU’s go back to the sam
configuration as in Fig. 4~a! and the specimen elastic mod
lus remains approximately the same as at the larger am
tude P2. Note that the state of units in the regionP1,P1
,P2 ;2P1,P2,2P2 strongly depends on the pressu
behavior during the transition to the low amplitude excitati
and cannot be predicteda priori.

From the configuration of Fig. 4~c!, after a sufficiently
long time, relaxation occurs. In fact, in the regionP1
.P1 ;P2,2P1, the pressure is constantly in the interv
(P1 ,P2). As a consequence, random transitions slowly le
towards a stationary configuration as in Fig. 4~a!.

IV. RESULTS AND DISCUSSION

In order to illustrate the applicability of the model an
protocol discussed in the previous sections, we present in
following a few numerical examples. The parameters cho
for the reported simulations~expressed for generality in ar
bitrary units! are I 51000, K51, a150.99, a253 ~unless
otherwise specified!, a351, r51, g50.001, q150.0003,
and q250.0001. The opening and closing pressures for
HMU’s have been chosen in the range@20.1,0.1#.

Since quasistatic ‘‘in-silico’’ experiments have been d
cussed elsewhere,14 we limit ourselves here to simulate dy
namic resonant experiments. We assume that monochrom
waves of driving amplitudeF0 and varying frequencyv are
input in a rod-shaped specimen by a transducer attache
one end of the specimen. The signal is recorded by an ac
erometer attached to the other end. At any given excita
level, the frequencyv is swept through the fundament
resonance modevR of the specimen and the time-averag
acceleration amplitudeA ~in stationary conditions! is re-
corded. This procedure of resonance curve tracking is
peated for several different levels of excitation.

In the course of the experiments several macroscopic
fects can be observed, resulting from the proposed mi
scopic interaction mechanisms, as discussed in Sec. III C

~1! ‘‘Mechanical’’ interactions induce variations in the e
fective elastic moduli of the HMU’s, which are directly pe
turbed by the external excitation. As a result a resona
frequency shift is observed.

~2! Stress-history effects are also induced, leading
variations in the dynamic moduli that do not immediate
disappear when the disturbance is removed. In other wo
06410
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the specimen is ‘‘conditioned,’’ i.e., the resonance frequen
at a fixed amplitude depends on the history of the specim

~3! When no stress is left, thermal fluctuations induce
laxation of the dynamic moduli towards an equilibrium sta
As a consequence, the resonance frequency slowly return
its initial value, with a logarithmic time recovery.

A. Behavior of a single HMU

To understand the behavior of a single HMU in dynam
conditions, we analyze the interstice response to a given
plied pressure varying with time. The behavior of the int
stice deformationd has been analyzed for units representi
five different classes, classified according to the relative
sition of P1 and P2 with respect to the applied pressu
range. The five cases are schematized in the upper pa
Fig. 5, with square brackets delimiting the pressure ran
The plots of the HMU displacementd vs pressure, time dur
ing excitation and time during relaxation are reported in
three columns for the five cases.

The following conclusions can be drawn.
~1! First column:P1 above the maximum andP2 above

the minimum of the applied pressure range. The plotd vs P
shows no hysteretic behavior, sinced matches~with a delay!
the sinusoidal behavior of the pressure. As soon as the p
sure is removed, the interstice deformation vanishes.

~2! Second column: BothP1 and P2 are within the ap-
plied pressure range. The plotd vs P shows a real hysteretic
loop, with the appearence of a rigid state (d independent
from P) at large pressures. The sinusoidal behavior is s
visible, but it cuts in the upper part due to the rigidity of th
interstice. Note~particularly in the upper plot! the different
pressure values at which the transitions rigid-elastic a
elastic-rigid occur. Again the interstice deformation vanish
when the pressure is released, except forP1,0, in which
case it may remain rigid with a nonzero deformation, whi
returns to 0 with a random process as discussed in the
case.

~3! Third column:P2 below the minimum andP1 below
the maximum of the applied pressure range. The plotd vs P
shows no hysteresis with a rigid interstice~except at the very
beginning, if the HMU is initially in the elastic state!. When
the applied pressure is removed, the interstice remains
formed and eventually~if P2,0,P1) d falls to 0, when a
random transition to the elastic state occurs.

To conclude, since many HMU’s follow in a chain, varia
tions ind in each of them may affect the pressure elsewh
as a function of time. Hence, very complex~and even cha-
otic! patterns may emerge, according to the location of
HMU inside the chain and its two PM space parametersP1
andP2.

B. Resonance frequency shift

The resonance frequency shift is analyzed in Fig. 6, wh
the average acceleration recorded on the free edge of the
is plotted vs frequency for several values of the driving a
plitude. In agreement with experimental results,26 the reso-
nance frequencyvR is shifted downwards for increasin
7-5
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FIG. 5. Behavior of the inter-
stice deformationd for a given
pressure protocol. All five differ-
ent combinations of position ofP1

and P2 with respect to the pres
sure range~delimited by brackets!
are shown at the top of the thre
columns. In each column the thre
plots representd vs P, vs time
during the excitation, and vs time
during relaxation~from top to bot-
tom!. In the second plot the pres
sure is also reported as a dotte
line for reference.
ect
or-
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ved
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,
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FIG. 6. Resonance frequency shift: amplitude of the recei
signal as a function of frequency for different values of the am
tude of the driving forceF0.
06410
driving amplitudes. Note also a nonlinear attenuation eff
due to hysteretic loops: the peak amplitude is not prop
tional to the driving amplitudeF0 and the width of the reso
nance curve becomes larger withF0. This effect can be bet-
ter appreciated in Fig. 7~b!.

In Fig. 7~a! the relative frequency shiftDv5(vR
2v0)/v0 is plotted vs the peak amplitudeAR in the reso-
nance frequency curve for different values ofa2 @see Eq.
~4!#. v0 is the ‘‘linear’’ resonance frequency, i.e., the lim
value of the resonance frequency when the driving amplit
goes to 0. As observed experimentally,4 Dv behaves linearly
with AR , in contrast with the quadratic dependence obser
in the case of classical nonlinearities. By changing the da
age level of the material~e.g., the modulus of the bond
which depends ona2), the dependence remains linear, b
the slope decreases with increasinga2.

In Fig. 7~b!, to illustrate the effect of nonlinear attenua
tion, the quantityDQ5(QR2Q0)/Q0 is reported vs the peak

d
-
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amplitudeAR . Q is the quality factor and is calculated from
the resonance curve by using a Lorentzian fitting. A m
accurate evaluation, obtained by fitting the region close
the resonance frequency with a parabola, leads to minor
rections.Q0 is the limit value ofQR for F0→0. Again,DQ is
linear with the amplitude, as observed experimentally5 for
nonclassical elastic materials.

C. Conditioning

The effect of conditioning is illustrated by means of tw
different experiments~Figs. 8 and 9, respectively!. In the first
one ~Fig. 8!, a frequency sweep with a driving amplitud
F050.001 is performed, both starting with a relaxed spe
men and right after prestressing with a larger driving fo
(F050.03). The effect of the stress history in the latter ca
is very conspicuous both in the clear cut separation of
two curves~with two well-defined peaks! and in the higher
attenuation of the latter due to the conditioning cycle. O
after a considerable amount of time does the resonance
quency of the prestressed specimen return to the ‘‘relax
value of the right peak~see the following subsection!.

Another conditioning effect may be observed in Fig.
where we compare the resonance curves obtained by

FIG. 7. Same experiment as in Fig. 6.~a! Relative frequency
shift vs output amplitude at resonance,~b! Corresponding relative
variation in attenuation.
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forming resonance sweeps upwards and downwards,
from below to above the resonance frequency and vice ve
As observed in experimental measurements~see Fig. 1 in
Ref. 11!, the resonance curve is slightly different in the tw
cases. In fact, in the downgoing sweep the conditioning
plied by the drivingA(vR) affects measurements at freque
cies lower thanvR .

D. Recovery

An experiment of recovery~slow dynamics! is presented
in Fig. 10. At first the input driving force is kept constant
a certain levelF0. Correspondingly the resonance frequen
vR is also constant@see Fig. 10~a!#. Then, atT51200t, an
external large amplitude disturbanceF1 is input. As a conse-
quence, the resonance frequency drops considerably. Re
ing F1 and returning toF0, the specimen draws back to th
initial resonance frequency, with a very slow recovery, wh
may be monitored by a large sequence of successive r
nance curve measurements. Some of them are plotted in
10~b! and show that also the attenuation is affected by

FIG. 8. First conditioning experiment: amplitude of the outp
signal vs frequency for a fixed forcing amplitude:~a! starting from
a relaxed state,~b! after prestressing with a large amplitude drivin
force.

FIG. 9. Second conditioning experiment: amplitude of the o
put signal vs frequency in an upward~solid line with squares! and a
downward~dashed line with crosses! frequency sweep.
7-7
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recovery process. The recovery time is extremely large, c
pared to typical cycling periods during resonant dynam
experiments. In Fig. 10~c!, the recovery is plotted vs log(t):
the resulting curve is well fitted by a straight line for a ve
long time interval~up to about 6000t). Also this kind of
behavior has been experimentally observed.5

FIG. 10. Slow dynamics experiment:~a! resonance frequency v
time for a driving force fixed at a low valueF0 except for a sudden
jump to a very large excitation for a very short time att51200t,
~b! resonance curves measured at successive times during the
ation process,~c! same as~a! but in a log(t) scale fort.1200t.
06410
-
s

V. CONCLUSIONS

The propagation of a monochromatic ultrasonic wave~or
pulse! in a multigrained material specimen is a problem
both practical relevance~e.g., for nondestructive evaluatio
~NDE! purposes or in seismic studies! and theoretical inter-
est. In fact, a rich phenomenology of both classical and n
classical nonlinear effects has been observed and it is
enticing to look for the microscopic interaction mechanis
behind. Detailed microscopic calculations are, however,
tremely difficult and the computational load required is e
pected to be well beyond our current possibilities.

In the present contribution a model has been propos
which allows us to perform simulations of the ultrason
wave propagation in multigrained aggregates, based o
simple but very supple protocol for the intersticial forces
the local value of pressure. The implementation of the mo
~and selected protocol! has allowed us to obtain all the non
classical nonlinear effects, which have been observed
resonant dynamic experiments, with an excellent qualita
agreement with the experimental data. In fact, in addition
the ‘‘fast dynamics’’ effects~such as the wave shape disto
tion, resonance frequency shift, and nonclassical atten
tion!, already explained by previous simulation approach
the hitherto unexplained effects of conditioning and slow d
namics have been well reproduced in our simulations. T
result is due to the introduction in the model of therma
activated random transition mechanisms, which have alre
been succesfully included in the simulation of quasista
experiments.14

Although in the present context only a phenomenologi
protocol has been implemented, the flexibility of the mod
allows one to extend its applicability to all kinds of intera
tion mechanisms, as suggested by basic physical cons
ations. Work in this direction is in progress.
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