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Theory of proximity effect in superconductorÕferromagnet heterostructures
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We present a microscopic theory of the proximity effect in the ferromagnet/superconductor/ferromagnet
~F/S/F! nanostructures where S is ans-wave low-Tc superconductor and F’s are layers of 3d transition ferro-
magnetic metal. Our approach is based on the direct analytical solution of Gor’kov equations for the normal
and anomalous Green’s functions together with a self-consistent evaluation of the superconducting order
parameter. We take into account the elastic spin-conserving scattering of the electrons assumings-wave scat-
tering in the S layer ands-d scattering in the F layers. In accordance with previous quasiclassical theories, we
found that due to exchange field in the ferromagnet the anomalous Green’s functionF(z) exhibits the damping
oscillations in the F layer as a function of distancez from theS/F interface. In the given model, a half of the
period of oscillations is determined by the lengthjm

0 5pvF /«ex, wherevF is the Fermi velocity and«ex is the
exchange field, while damping is governed by the lengthl 05(1/l ↑11/l ↓)

21, with l ↑ and l ↓ being spin-
dependent mean free paths in the ferromagnet. The superconducting transition temperatureTc(dF) of the F/S/F
trilayer shows the damping oscillations as a function of the F-layer thicknessdF with periodjF5p/Am«ex,
wherem is the effective electron mass. The oscillations ofTc(dF) are a consequence of the oscillatory behavior
of the superconducting order parameter at the S/F interface vs thicknessdF , which in turn is caused by the
oscillations ofF(z) in the F region. We show that strong spin-conserving scattering either in the supercon-
ductor or in the ferromagnet significantly suppresses these oscillations. The calculatedTc(dF) dependences are
compared with existing experimental data for Fe/Nb/Fe trilayers and Nb/Co multilayers.
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I. INTRODUCTION

The artificially fabricated layered nanostuctures with
ternating superconducting~S! and ferromagnetic~F! layers
provide a possibility to study the physical phenomena aris
due to the proximity of two materials~S and F! with two
antagonistic types of long-range ordering. One such inter
ing effect is the existence of the so-calledp-phase supercon
ducting state in which the order parameter in adjacentS lay-
ers has opposite sings. Thep junctions were originally
predicted to be possible due to spin-flip processes in m
netic layered structures containing paramagnetic impuri
in the barrier between S layers.1 Later on, Buzdinet al.2,3

and Radovic´ et al.4 showed that, due to the oscillatory b
havior of the Cooper pair wave function in the ferromagn
p coupling can be realized also for S/F multilayers. Thep
coupling leads to a nonmonotonic oscillatory dependenc
the superconducting transition temperatureTc as a function
of ferromagnetic layer thicknessdF .2–4 The effect occurs
because of periodically switching of the ground state
tween 0 andp phases, so that the system chooses the s
with higher transition temperatureTc .

These theoretical predictions stimulated a considerable
terest to proximity effect in S/F structures also from expe
mental point of view. First, the oscillatory behavior
Tc(dF) was observed by Wonget al.,5 in V/Fe multilayers
and later on these results were well explained by theore
calculations of Radovic´ et al.4 However, in subsequent ex
periments with V/Fe multilayers,6 the oscillatoryTc(dF) de-
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pendence was not observed. The following experiments7–13

revealed the different and even controversial behavior
Tc(dF) for different structures. The nonmonotonic oscill
tionlike behavior ofTc(dF) was reported by Jianget al.7 for
Nb/Gd multilayers and Nb/Gd/Nb trilayers, by Mu¨hgeet al.8

for Fe/Nb/Fe trilayers, and recently by Obiet al.9 for Nb/Co
and V/Co multilayers. However, negative results were
ported for Nb/Gd/Nb trilayers by Strunket al.,10 for
V/V12xFex multilayers by Aartset al.,11 for Fe/Nb bilayers
by Mühge et al.,12 and Nb/Fe multilayers by Verbanc
et al.13 For interpretation of experimental results, along w
mechanisms ofp coupling and suppression ofTc due to
strong exchange field in the ferromagnet, other mechani
were suggested such as the complex behavior of the ‘‘m
netically dead’’ interfacial S/F layer~for details, see Ref. 8!,
the effects of a finite interface transparency,11 and spin-orbit
scattering.14

The original theory of the proximity effect proposed b
Buzdin et al.3,4 is based on the quasiclassical Usad
equations15 applied for S/F structures. In this case the Usa
equations must be supplemented by boundary conditions
the quasiclassical Green’s functions at the S/F interface. T
essential point was recently discussed in Ref. 16. On
other hand, the boundary conditions for microscopic Gree
functions can be written obviously for ideal S/F interfaces
one uses Gor’kov equations.17 These equations, however, a
more complex to resolve than the quasiclassical ones. In
given paper, we present a theoretical investigation of
Tc(dF) behavior for F/S/F trilayer structures based
©2003 The American Physical Society32-1
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Gor’kov equations. We consider that F layers are 3d transi-
tion metals and assume that the main mechanism of s
conserving electron scattering in F layers is thes-d scatter-
ing, while S layer is ans-wave superconductor withs-s
scattering. We find the characteristic lengths determining
periods of oscillations and damping of critical temperatu
Tc and Cooper pair wave function, and show that in t
given model these lengths differ from length scales predic
by quasiclassical theories.3,4,16,18We show that strong spin
conserving scattering either in the superconductor or in
ferromagnet significantly suppresses the oscillations ofTc .
We compare our results with the existing data onTc(dF) for
Fe/Nb/Fe trilayers8 and V/Co multilayers,9 where F’s are 3d
ferromagnets, and find reasonable agreement between th
and experiment.

II. GOR’KOV EQUATIONS AND GREEN’S FUNCTIONS

We consider a trilayer structure F1 /S/F3, where S is a
low-Tc superconductor and F’s are 3d-metal ferromagnetic
layers. The thicknessesdS anddF of the S and F layers ar
assumed to be much smaller than the in-plane dimensio
the structure, so that the system can be considered as h
geneous in thexy plane~parallel to the interfaces!. We de-
note the axis perpendicular to thexy plane as thez axis. Let
z56a be the positions of the outer boundaries of the
layers andz56d be the positions of S/F interfaces, the
dS52d anddF5a2d. We adopt thatS is a simples-wave
superconductor withs-s mechanism of electron scatterin
According to Ref. 19, for superconducting Nb which is us
ally used in preparing the S/F heterostructures,s-wave scat-
tering is indeed prevailing. Concerning the ferromagne
layers, we adopt the simplified model20 considering that two
types of electrons form the total band structure of 3d transi-
tion metals: almost freelike spin-up and spin-down electr
from sp bands~these electrons are referred to ass electrons!
and localizedd electrons from narrow strongly exchang
split bands. The main mechanism of spin-conserving elec
scattering in 3d ferromagnetic metals is thes-d scattering21

because of a dominant contribution ofd density of states
~DOS! to the total DOS at the Fermi energy«F . The mean
free path of the conductions electrons depends on the sp
due to thes-d scattering and the differentd density of states
at «F for majority- and minority-spin bands. In the prese
work, we consider only the scattering by nonmagnetic im
rities.

As a starting point, we take the system of Gor’ko
equations17 for the normal and anomalous Green’s functio
G↑↑

ss(x1 ,x2)52^Ttc↑(x1)c↑
†(x2)& and F↓↑

ss(x1 ,x2)
5^Ttc↓

†(x1)c↑
†(x2)&, where x5(t,r ) is a four-component

vector and the creation and annihilation field operators
associated withs electrons. By carrying out the Fourie
transformation in thexy plane and over the imaginary tim
t, we get the following system for the Green’s functions.

~i! For the F layers,

F iv1
1

2m S ]2

]z2
2k2D 1«F1h~z!2x0gsd

2 G↑↑
dd~z,z!G

3G↑↑
ss~z,z8!1D~z!F↓↑

ss~z,z8!

5d~z2z8!,
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D* ~z!G↑↑
ss~z,z8!1F iv2

1

2m S ]2

]z2
2k2D 2«F1h~z!

2x0gsd
2 G↓↓

dd~z,z!GF↓↑
ss~z,z8!50. ~1!

~ii ! For the S layer,

F iv81
1

2m S ]2

]z2
2k2D 1«FGG↑↑

ss~z,z8!1Dv~z!F↓↑
ss~z,z8!

5d~z2z8!,

Dv* ~z!G↑↑
ss~z,z8!1F iv82

1

2m S ]2

]z2
2k2D 2«FGF↓↑

ss~z,z8!

50 ~2!

with

v85v1 icu0
2G↑↑

ss~z,z!,

Dv~z!5D~z!1cu0
2F↓↑*

ss~z,z!. ~3!

In Eqs.~1! and~2!, k is the in-plane momentum, paralle
to the S/F interface,m is the effective electron mass which
assumed to be the same for both metals,h(z) is the exchange
field in the ferromagnet, andv5pT(2n11) are Matsubara
frequencies~the units are\515kB). The scattering pro-
cesses are introduced in the Born approximation. The par
etersu0 andgsd are the strengths of impurity potentials, an
c and x0 are impurity concentrations in theS and F layers.
We assume that a BCS coupling constant is zero for
ferromagnet, thereforeD(z)50 in the F layers. We also ne
glect the possible deviation ofD(z) from zero in the F region
due to scattering, since this correction is of the order ofgsd

4

which is small.
The superconductor order parameter has to be found

consistently,

D~z!5lT(
v

E
0

kFkdk

2p
F* ~v,k,z5z8!, ~4!

where summation overv goes up to Debye frequencyvD ,
l.0 is the BCS coupling constant in a superconductor, a
F5F↓↑

ss . The critical temperatureTc is defined as the firs
zero of equationD(z)50 whenT decreases from high tem
peratures.

Below, in this section and in Sec. III we present a sche
to evaluate the Green’s functions considering as the first
the non-self-consistent solution of Eqs.~1! and ~2!, where
D(z)5D is a real number which does not depend onz. Sec-
tion IV is devoted to the self-consistent evaluation ofD(z).
We will assume that the mutual orientation of magnetizatio
in the F layers is antiparallel~AP!, thereforeh(z)5h.0 in
the F1 layer andh(z)52h in the F3 layer. The advantage o
the AP configuration is that in this case the self-consiste
can be achieved for real values ofD(z) in the S region. The
2-2
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study of the influence of the mutual orientation of magne
zations onTc ~Refs. 22–24! in the framework of the given
model requires consideringD(z) as a complex-valued func
tion. This question is beyond the present study and will
discussed in a forthcoming paper. However, as can be
further, the general conclusions of the given paper are
sensitive to the particular configuration of th
magnetizations.25 At the first step we also suppose that the
is no scattering in the S layer. The scattering processes in
S layer@Eq. ~3!# are taken into account at the last step of t
evaluation of the critical temperature~Sec. V!.

By introducing the Green’s functionsG̃↓↓
ss(x1 ,x2)

52^Ttc↓
†(x1)c↓(x2)& and F̃↑↓

ss(x1 ,x2)5^Ttc↑(x1)c↓(x2)&
the system of Gor’kov equations can be written in the ma
form26

@ iv Î 2Â#S G F̃

F G̃
D 5 Îd~z2z8!, ~5!

whereÎ is the unit matrix andÂ is the (232)-matrix differ-
ential operator, the components of which can be found
comparing the Eqs.~1! and ~2! and Eq.~5!.

In order to find the matrix Green’s function, consid
Schrödinger’s equation with HamiltonianÂ:

@ iv Î 2Â#c~z!50. ~6!

This equation has four linear independent solutions

wm~z!5S wm
1~z!

wm
2~z!

D ~m5↑,↓ !,

and

cr~z!5S cr
1~z!

cr
2~z!

D ~r5↑,↓ !.

We require thatcm(z) and cr(z) obey zero boundary con
ditions at pointsz56a, and choose these independent so
tions in such a way that two functionsw↑(z) and c↑(z)
describe spin-up electrons in the ferromagnetic layers,
functionsw↓(z) andc↓(z) describe spin-down holes in the
layers. Namely, in the layerF1 (2a,z,2d) the solutions
wm(z) have the form

w↑~z!5S 1

0D sin@p1
↑~z1a!#, ~7!

w↓~z!5S 0

1D sin@p1
↓~z1a!#,

and in the F3 layer (d,z,a) the solutionscr(z) are

c↑~z!5S 1

0D sin@p3
↑~a2z!#, ~8!

c↓~z!5S 0

1D sin@p3
↓~a2z!#.
05453
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Herep1
↑(↓) is an electron~hole! momenta in the F1 layer,

p1
↑(↓)5A2mS «F2

k2

2m
6h6

i

2
t↑(↓)

21 6 iv D , ~9!

andp3
↑(↓) are momenta in the F3 layer,

p3
↑(↓)5A2mS «F2

k2

2m
7h6

i

2
t↓(↑)

21 6 iv D . ~10!

The inverse lifetimes of quasiparticles are giv
by t↑(↓)

21 522x0gsd
2 ImG↑↑(↓↓)

dd 5kF
↑(↓)/(ml↑(↓)), where kF

↑(↓)

5A2m(«F6h) being Fermi momenta in the ferromagn
and l ↑(↓) being mean free paths which are considered as
rameters.

In the S region (2d,z,d) the solutions of Eq.~6! are

wm~z!5A1
m S 1

a D eik1(z1d)1A2
m S 1

a D e2 ik1(z1d)

1B1
m S a

1 D eik2(z1d)1B2
m S a

1 D e2 ik2(z1d), ~11!

cr~z!5C1
r S 1

a D eik1(z2d)1C2
r S 1

a D e2 ik1(z2d)

1D1
r S a

1 D eik2(z2d)1D2
r S a

1 D e2 ik2(z2d),

where the wave vectorsk6 are defined as

k65A2mS «F2
k2

2m
6 iAv21D2D

and

a5
i

D
@Av21D22v#.

We neglect the interfacial roughness, thus the coefficie
A6

m , B6
m , C6

r , andD6
r have to be found from the condition

of continuity of the functionswm(z) and cr(z) and their
derivatives at the pointsz56d, which can be found easily
by solving the system of algebraic linear equations.

To evaluate the matrix Green’s function, let us introdu
the matrices

F~z!5S w↑
1~z! w↓

1~z!

w↑
2~z! w↓

2~z!
D ,

C~z8!5S c↑
1~z8! c↓

1~z8!

c↑
2~z8! c↓

2~z8!
D ,

and letJ be the matrix of ‘‘currents,’’

J5S j ↑↑ j ↑↓
j ↓↑ j ↓↓

D ,

with components
2-3
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j mr5wm
1~z!¹

↔
zcr

1~z!2wm
2~z!¹

↔
zcr

2~z!. ~12!

Here m,r5↑,↓ and ¹
↔

z5( ¹
→

z2¹
←

z) is the antisymmetric
gradient operator. The matrixJ is the Wronskian of system
~6!, which does not depend onz, i.e., ]J(z)/]z50. Finally,
the matrix Green’s function introduced in Eq.~5! is given by

Ĝ~z,z8!52mF~z!@J21#TC~z8!. ~13!

HereT denotes the transposition operation. The obtained
pression allows one to evaluate the normal and anoma
Green’s functions in both layers~S and F!.

III. ANOMALOUS GREEN’S FUNCTION

A. S layer

Consider first the anomalous Green’s function~Cooper
pair wave function! F(v,k,z5z8) in the S region. Denote
u652ik6d andu65u6 id, i.e.,u andd are real and imagi-
nary parts of phasesu6 . Using solutions~11! in Eq. ~6! in
the superconductor, we get the exact expressions for curr

j mr5~12a2! j mr
0 ,

where

j mr
0 52ik1@A2

m C1
r e2 iu12A1

m C2
r eiu1#

22ik2@B2
m D1

r e2 iu22B1
m D2

r eiu2#. ~14!

Since the currentsj mr do not depend onz, the same expres
sions can be obtained using the solutions of Eq.~6! in the
ferromagnetic layers.

It is convenient to introduce an energy variablej5«F
2k2/2m. The typical dependence ofF(j) on j under given
argumentsv andD at the pointz5z850 is shown in Fig. 1.
FunctionF(j) exhibits the quantum oscillations which a

FIG. 1. The typical dependence of the anomalous Green’s fu
tion F(v,j,z) on the energyj5k2/2m2«F under given D
59.25 K, v50, z50, «ex50, mean free paths in the F layer a
l ↑5120 Å and l ↓540 Å, and Fermi momentumkF50.826 Å21.
F(j) exhibits quantum oscillations; the smooth line shows funct
F(j) averaged over oscillations, i.e.,F0(j) ~see text for the details!.
05453
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the result of exponentialse6 iu6 in Eq. ~14! with rapidly
varying phases. Since the superconducting order parame
determined by the integral ofF(j) over j, one can average
F(j) over the oscillations.

Denoteamr (m,r5↑,↓) as the components of the matr

@J21#T5S a↑↑ a↑↓
a↓↑ a↓↓

D .

For amr we get

amr5
sgn~mr!

~12a2!D̃
j 2m,2r
0 5

1

D̃
@amr

2 e2 iu1amr
1 eiu#,

where

amr
2 5

sgn~mr!

~12a2!
@2ik1A2

2mC1
2red22ik2B2

2mD1
2re2d#,

amr
1 52

sgn~mr!

~12a2!
@2ik1A1

2mC2
2re2d22ik2B1

2mD2
2red#,

~15!

whereu6 id5u652ik6d andD̃5detJ/(12a2)2 is the de-
terminant of the matrix of currents:

D̃52D01G1e2iu1G2e22iu.

The expressions forD0 andG6 are given in Appendix A.
By carrying out the Fourier transformation ofamr , we

can write the first terms of the expansion

^amr&5bmr
1 eiu1bmr

2 e2 iu1•••, ~16!

wherebmr
6 are defined by the following integrals:

bmr
6 5

1

2pE2p

1p

df
amr

7 e2 if1amr
6

G1eif1G2e2 if2D0

.

Using Eq.~13!, we get an expression forF(v,j,z5z8):

F~v,j,z5z8!52m (
m,r5↑↓

wm
2~z!^amr&cr

1~z!,

where wm
2(z) and cr

1(z) are the components of solution
wm(z) andcr(z) in the S layer. Denote

u16 id15k6~d1z!, u26 id25k6~d2z!,

thenu11u25u, d11d25d, and

wm
2~z!5L1

m eiu11L2
m e2 iu1,

cr
1~z!5S1

r eiu21S2
r e2 iu2,

where

L1
m 5aA1

m e2d11B1
m ed1, L2

m 5aA2
m ed11B2

m e2d1,

S1
r 5C2

r e2d21aD2
r ed2, S2

r 5C1
r ed21aD1

r e2d2.

c-

n
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The higher-order terms withe6 inu, wheren>2, can be
dropped in expansion~16! because they are responsible f
rapid oscillations ofF(j). Finally, we arrive at the following
expression for the anomalous Green’s function in the S la

F~v,j,z5z8!5F0~v,j,z!1F1~v,j,z!,

where

F0~v,j,z!52m(
mr

$L1
m S1

r bmr
2 1L2

m S2
r bmr

1 %, ~17!

F1~v,j,z!52m(
mr

$L1
m S2

r @bmr
1 e2iu11bmr

2 e22iu2#

1L2
m S1

r @bmr
1 e2iu21bmr

2 e22iu1#%.

ContributionF1 to functionF is essential only in the vi-
cinity of S/F interfaces,z56d, as far asu1;(z1d) and
u2;(d2z). At the point z5z850 ~the middle of the S
layer!, the anomalous Green’s function is determined by
functionF0(v,j,z) which is shown by the thick smooth lin
in Fig. 1. The obtained result is used below in Sec. IV wh
we discuss the self-consistent evaluation of the order par
eter.

B. F layer

Due to the proximity effect, the correlations between el
trons are induced in the ferromagnet close to the supe
ducting layer. Instead of a simple decay, as it would be
the superconductor/normal-metal interface, in the case of
romagnetic layer the Cooper pair wave function exhibits
damping oscillatory behavior in the ferromagnet by incre
ing the distance from the S/F interface.3,4,18 The reason is
that exchange splitting of bands in the F region changes
pairing conditions for electrons; therefore, the Cooper pa
are formed from quasiparticles with equal energies, but w
difference in modulus momentap↑ and 2p↓ . Due to the
nonzero center of mass momentumDp, the Cooper pair
wave function obtains the spatially dependent phase in
ferromagnetic layer. In the ‘‘clean’’ limit~no scattering in the
ferromagnet! one can find18 that the Cooper pair wave func
tion oscillates with distancez into the F layer as
;sin(z/jF

0)/(z/jF
0), wherejF

05vF /«ex.
This result holds also in the case of ‘‘dirty’’ ferromagne

The microscopic theory of S/F multilayers based on the q
siclassical Usadel equations3,4 predicts that the anomalou
Green’s function behaves in the ferromagnet as;exp$2(1
1i)Ah/DMz%, whereDM5vFl /3 is the diffusion coefficient
andl is the electron mean free path in the F layer. Therefo
a length scale for oscillations and damping is the same
this scale is set by the lengthjM5A2l jF

0/3. Below, in this
section it is shown that in the framework of our model t
scales for oscillations and damping of the anomalous Gre
function are determined by different lengths.

We can find the anomalous Green’s functionF(v,j,z
5z8) in the F region (d,z,a) following the same ap-
proach that was used to evaluate theF function in the super-
05453
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conductor. The solutionsc↑(↓)(z) in the layer F3 (d,z
,a) are given by Eq.~8!. For solutionswm(z) (m5↑,↓) we
can write

wm~z!5X1
m S 1

0D eip3
↑(a2z)1X2

m S 1

0D e2 ip3
↑(a2z)

1Y1
m S 0

1D eip3
↓(a2z)1Y2

m S 0

1D e2 ip3
↓(a2z),

whereX6
m andY6

m can be found from conditions of continu
ity of functionswm(z) and their derivatives atz5d, assum-
ing the perfect S/F interface.

The anomalous Green’s function averaged over osc
tions is

F~v,j,z5z8!52m(
m

wm
2~z!^am↑&c↑

1~z!

52m(
m

Fm^am↑&. ~18!

It turns out that functionwm
2(z) contains four terms with

multipliers e6u1 and e6u2. Denotingu65u6 id, we can
write Fm in the form

Fm5Fm
1eiu1Fm

2e2 iu, ~19!

where

Fm
15@Q1

m cos~p3
↓z1!1J1

m sin~p3
↓z1!#sin@p3

↑~dF2z1!#,
~20!

Fm
25@Q2

m cos~p3
↓z1!1J2

m sin~p3
↓z1!#sin@p3

↑~dF2z1!#.

Herez15z2d is the distance from the S/F interface, and

Q1
m 5B1

m ed1aA1
m e2d,

Q2
m 5aA2

m ed1B2
m e2d,

J1
m 5

ik2

p3
↓ Bm

1ed1a
ik1

p3
↓ A1

m e2d,

J2
m 52S a

ik1

p3
↓ A2

m ed1
ik2

p3
↓ B2

m e2dD .

Using Eqs.~16!, ~18!, and~19! we get the expression fo
function F averaged over the rapid oscillations

F~v,j,z5z8!52m(
m

@Fm
2bm↑

1 1Fm
1bm↑

2 #.

It follows from Eq. ~20! for Fm
6 that the dependence o

function F(v,j,z) on variablez or z15z2d is given by a
sum of the terms with sine and cosine from argumentsp3

↑

1p3
↓)z1 and (p3

↑2p3
↓)z1. The terms with phases (p3

↑

1p3
↓)z1 determine the short-periodic oscillations with r

spect to oscillations with a larger period;(p3
↑2p3

↓)21. Ne-
2-5
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glecting the nonessential terms with short-periodic osci
tions, the anomalous Green’s function can be presente
the form

F~v,j,z5z8!5Q̃~v,j!cos~Dp3z1!1J̃~v,j!sin~Dp3z1!,
~21!

wherez15z2d, Dp35p3
↑2p3

↓ , andp3
↑(↓) are given by Eqs.

~9! and ~10!.
The real and imaginary parts of the function

F~z!5T(
v

E
0

«F
dj F~v,j,z!

normalized on the value of its real part at the pointz50 ~the
middle of the S layer! are shown in Fig. 2. The dashed line
Fig. 2 shows the contributionF0(z) @see Eq.~17!# to the
function F(z) in the S layer. We can estimate the lengt
responsible for the oscillations and decay using Eq.~10! for
momentap3

↑ and p3
↓ . Neglecting6 iv in Eq. ~10!, since

uvu<vD , we obtain

p3
↑(↓)5A2m~j6h!F16

i

4
t↓(↑)

21 1

j6h
1•••G .

As far as the integration overj goes from 0 to«F , then the
damping of oscillations is determined by the value

;
1

l 0
5

1

l ↑
1

1

l ↓
.

Neglecting6 i t↓(↑)
21 and6 iv in Eq. ~10!, we get

p3
↑(↓)5A2mjF16

h

2j
1•••G .

If j;«F , then

FIG. 2. The behavior of the anomalous Green’s functionF(z)
along the F/S/F structure withdS5400 Å, dF550 Å, «ex

51.156 eV, l ↑5133 Å, l ↓535 Å. The pointz5200 Å is the S/F
interface. Solid line — ReF(z) and dashed dotted line — ImF(z).
The contribution ReF0(z) @see Eq.~17!# to the function ReF(z) in
the S layer is shown by the dashed line.
05453
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Dp3z1;
«ex

vF
z15

pz1

jm
0

,

wherejm
0 5pvF /«ex5pjF

0 is the half-period of oscillations
of F(z) ~the distance between the nearest zeros!. Note that
jm

0 Þp l 0 in contrast to what is found by using a quasiclas
cal approach.

The oscillatory terms in Eq.~21! arise due to quantum
interference between two plane waves describing an elec
and a hole propagating in the ferromagnetic layer with d
ferent momentap3

↑ and 2p3
↓ along thez axis. If hÞ0 then

Dp3Þ0, and the oscillatory dependence of the Cooper p
wave function occurs due to the exchange field in the fer
magnet. If h50, then F(z) exhibits only the exponentia
decay into the F layer with characteristic lengthl 0. As it was
already pointed out by many authors, the physical picture
the proximity effect is similar to the nonuniform Fulde
Ferrel-Larkin-Ovchinnikov state27,28 which is characterized
by the oscillatory dependent order parameter and arises
homogeneous superconductor in the presence of a st
enough uniform exchange field.

IV. SELF-CONSISTENT EVALUATION
OF THE ORDER PARAMETER

In this section we proceed further by constructing the s
consistent solution of Eqs.~1!, ~2!, and ~4!. In the case of
antiparallel orientation of magnetizations in the ferroma
netic layers the self-consistency can be reached if the o
parameterD(z) takes the real values. We will search th
self-consistent solution of Eq.~4! in the S layer assuming
that in this equation the functionF(v,j,z) is replaced by its
first contribution F0(v,j,z) given by Eq. ~17!. Function
F0(z) is shown by a dashed line in Fig. 2 and can be a
proximated by a simple analytical function onz, such as
}cos(qz), whereq is a parameter. In order to take into a
count the correctionF1(z) one has to choose a more com
plex class of sample functions forD(z). However, this will
not change the results significantly.

Let us look forD(z) in the form

D~z!5Dcos~qz!.DS 12
q2z2

2 D ,

where the wave vectorq ~which has to be found! is small.
The magnitudeD(d)5(12d0)D defines the amplitude o
the superconducting order parameter at the S/F interface~see
Fig. 2!; hered05q2d2/2;0.1 is a small parameter. Follow
ing the well-known WKB approximation,29 we search the
solutions of Schro¨dinger’s equation~6! in the form

c~z!5S ei j1(z)

ei j2(z)D .

For j6 we get the system of equations
2-6
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F iv1j1
1

2m
~ i j19 2j18

2!Gei j11D~z!ei j250,

~22!

D* ~z!ei j11F iv2j2
1

2m
~ i j29 2j28

2!Gei j250,

wherej5«F2k2/2m and primes abovej6 denote the de-
rivatives byz.

In the case ofq50, D(z)5D, four solutions of system
~22! are j1

0 56k1z, j2
0 56k1z1 i ln a and j1

0 56k2z
1 i ln a, j2

0 56k2z which give four initial eigenfunctions o
the nonperturbed equation~6! (q50):

u6
0 ~z!5S 1

a D e6 ik1z, v6
0 ~z!5 Sa1De6 ik2z.

Consider, for example, the perturbed solutionu1(z)
which corresponds tou1

0 (z) in the case ofqÞ0. We look for
the phasesj6 in the form j65j6

0 1h6 , wherej1
0 5k1z,

j2
0 5k1z1 i ln a for u1

0 (z). The typical order ofh6 is
;qz;qd5A2d0,1. By linearizing system~22! with re-
spect toh6 we arrive at the following equations:

2
1

a

k1

m
h18 1 iD~h22h1!5D

q2z2

2
, ~23!

a
k1

m
h28 2 iD~h22h1!5D

q2z2

2
.

We have also dropped the terms withh68
2 andh69 which are

small as compared tok6h68 , since h68
2;h68 h6 /d

;h68 A2d0/d!k6h68 if d;200 Å, k6;0.5 Å21, and h69
;h68 /d!k6h68 . The equations similar to Eqs.~23! can be
written also for phasesh6 which determine other three so
lutions u2(z) andv6(z). Solving these equations we get

u6~z!5S e6 i [k1z1h1
(6)(z)]

ae6 i [k1z1h2
(6)(z)] D ,

with

h6
(1)~z!5t3

6z31t2
6z21t1

6z1t0
6 ,

h6
(2)~z!5t3

6z32t2
6z21t1

6z2t0
6 ;

and

v6~z!5S ae6 i [k2z1z1
(6)(z)]

e6 i [k2z1z2
(6)(z)] D ,

where

z6
(1)~z!5r3

6z31r2
6z21r1

6z1r0
6 ,

z6
(2)~z!5r3

6z32r2
6z21r1

6z2r0
6 .

The expressions for coefficientst i
6 and r i

6 of polynomials
are given in Appendix B.
05453
Next, the procedure of evaluation of the anomalo
Green’s function in the S layer is similar to one described
detail in Secs. II and III for the case ofD(z)5D. By repre-
senting the solutionswm(z) andcm(z) of Eq. ~6! as a linear
combination of eigenfunctionsu6(z) and v6(z) similar to
representation~11!, we can find the new coefficientsA6

m ,
B6

m , C6
m , and D6

m solving the system of four linear equa
tions. By evaluating the currentsj mr at the pointz50 ( j mr

do not depend onz), we obtain the expressions forj mr simi-
lar to Eq.~14!, wherek6 should be replaced by

k̃15k11
t1

12a2t1
2

12a2
, k̃25k21

r1
22a2r1

1

12a2
,

and u652ik6d5u6 id. The substitutionsk6→ k̃6 also
have to be made in Eq.~15! for amr and in the expression fo
detJ ~see Appendix A!. Finally, the anomalous Green’s func
tion F(v,j,z) is given by Eqs.~17!, whereL6

m andS6
r are

replaced by new functionsL̃6
m and S̃6

r :

L̃1
m 5aA1

m e2d11 ih2
(1)

1B1
m ed11 i z2

(1)
,

L̃2
m 5aA2

m ed12 ih2
(2)

1B2
m e2d12 i z2

(2)
,

S̃1
r 5C2

r e2d22 ih1
(2)

1aD2
r ed22 i z1

(2)
,

S̃2
r 5C1

r ed21 ih1
(1)

1aD1
r e2d21 i z1

(1)
,

whered1 , d2 , h6
(6) , andz6

(6) are functions onz. The fixed
point q5q* which determines the order parameterD(z) has
to be found numerically by solving Eq.~4! using the iterative
procedure.

V. CRITICAL TEMPERATURE Tc

If the anomalous Green’s function in the S regio
F(v,j,z)5F(v,j,z50)cos(q*z) is known, the supercon
ducting transition temperatureTc can be found. Up to now
we assume the ‘‘clean’’ limit for a superconductor. Corre
tions ~3! due to scattering will be taken into account furthe
Let us introduce the function

Fv5
1

kF
E

0

«F
djF~v,j,z50!,

wherekF is Fermi momentum in the S layer. This integr
can be evaluated only numerically. However, we can
proximateFv by the analytical function of argumentv. Let
us representFv in the form

Fv5
D

Av21D2
Fv

(1) .

For the bulk superconductorFv
(1)51. Let T→Tc , therefore

D!D(0), whereD(0) is the order parameter atT50. If v
takes values from 0 till;5vD , Fv

(1) can be well approxi-
mated by the following function:
2-7
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Fv
(1).A0tanhS g0uvu

2vD
D . ~24!

The coefficientsA0 and g0 are found numerically by mini-
mizing the norm of a difference between the exact and
approximate function. These coefficients are nonmonoto
functions of the F-layer thicknessdF when dS is fixed. For
typical values of the parameters describing the F/S/F st
ture the magnitudes ofA0 andg0 areA0;0.9 andg0;4.0.

The scattering in the S layer is introduced by Eq.~3!.
Numerical analysis shows that in Eq.~3! the Green’s func-
tion G↑↑

ss(z,z) does not depend onz in the S region and its
real part is negligibly small. Obviously, Dv(z)
5Dvcos(q*z). From numerical analysis it follows thatGv in
the S layer can be represented as

Gv5
1

kF
E

0

«F
dj G↑↑

ss~v,j,z50!'2A0

iv

Av21D2
.

~25!

Taking into account Eqs.~24! and~25!, Eqs.~3! can be writ-
ten in the form similar to the case of the bu
superconductor:26

v8'v1
A0

2t0

v8

Av821Dv
2

,

Dv'D1
A0

2t0

Dv

Av821Dv
2

, ~26!

wheret0
2152pcu0

2N(«F) is the inverse lifetime of quasipar
ticles in the superconductor, andN(«F)5mkF/2p2 is density
of states at the Fermi energy. Deriving Eq.~26! we took into

FIG. 3. Critical temperatureTc for the F/S/F trilayer as a func
tion of the ferromagnetic layer thicknessdF . The parameters are
«ex50.771 eV~exchange field in the ferromagnet!, l ↑5129 Å, l ↓
537 Å, l s5132 Å ~mean free paths in the F and S layers!, kF

50.826 Å21 ~Fermi momentum in the superconductor!, vD

5275 K, andTc
059.25 K.
05453
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account that if 1
2 t0

21;vD;300 K corresponding to mea
free pathl s;130 Å, then forv8.v1A0/2t0 and g0;4.0
we have tanh(g0uv8u/2vD)'1.

Equations~26! can be written as26

v85vh~v!, Dv5Dh~v!,

h~v!511
A0

2t0Av21D2
. ~27!

Using Eqs.~27! and ~4! we come to the equation forTc :

prTc(
v

1

uvu
tanhS g0uv8u

2vD
D51, ~28!

where

v85v1
A0

2t0
, r5r0A0,r0 ,

and r05lN(«F) is the renormalized coupling constant. B
carrying out the summation over Matsubara frequenciesv
5pTc(2n11) in Eq. ~28!, we get the equation for the re
duced critical temperaturet5Tc /Tc

0 :

t5expH S 1

r0
2

1

r D2F@h0~t!#J , ~29!

where

F~h0!5 (
n50

1`
4G0e2(2n11)h0

~2n11!~11G0e2(2n11)h0!
,

h0~t!5
g0pT0

vD
t, t5Tc /Tc

0 ,

G05expS 2
g0A0

2t0vD
D ,

FIG. 4. The dependence of the normalized amplitude (12d0) of
the superconducting order parameter at the S/F interface as a
tion of the F-layer thicknessdF for the same parameters as in Fig.
2-8
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THEORY OF PROXIMITY EFFECT IN . . . PHYSICAL REVIEW B68, 054532 ~2003!
and Tc
052p21vDge21/r0 (g5eC, C50.577 . . . ) is transi-

tion temperature of the bulk superconductor.

VI. RESULTS AND DISCUSSION

In this section we present the results of numerical cal
lation of the critical temperatureTc . We first focus on the
general features of a behavior of the system. Next, we c
sider selected experimental data which can be interprete
the framework of the given model.

A. Oscillatory behavior of Tc

The typical dependence of critical temperatureTc(dF)
with respect to ferromagnetic layer thicknessdF with dS
5400 Å is shown in Fig. 3 where the model parameters
given in the figure caption. The effective electron mass
m5me (me is a bare electron mass!. For the superconducto
we took vD5276 K andTc

059.25 K which are the param
eters of bulk Nb. The corresponding normalized magnitu
(12d0) of the order parameter at the S/F interface as a fu
tion of dF is shown in Fig. 4.

Both functions (12d0) andTc(dF) show the pronounced
damping oscillatory behavior with the same period. The
cillatory behavior ofTc(dF) is a consequence of oscillation
of the amplitudeD(d)5D(12d0) of the order parameter a
the S/F interface whendF is varying. The minima ofD(d)
correspond to minima ofTc and the maxima ofD(d) corre-
spond to the maxima ofTc , as they should. The oscillation
of D(d) in turn are caused by the oscillations of the anom
lous Green’s functionF(z) in the F layer. FunctionF(z)
must satisfy the zero boundary condition at the ferromag
vacuum interface. Because of oscillations ofF(z) in the F
region, the order parameter at the S/F interface is force
adjust in such a way that the conditionF(a)50 is fulfilled at
the outer boundaryz5a of the F layer.

The results of numerical analysis, presented in Table I
different values of exchange field«ex and effective electron
massm, show that the periodjF of Tc oscillations is defined
as

jF5
p

Am«ex

5Apjm
0 kF

21, ~30!

TABLE I. The comparison of the periods of oscillationsjF pre-

dicted by formula~30! with the periodj̃F obtained from numerica
analysis for different values of exchange field«ex, effective elec-
tron massm, and a superconductor layer thicknessdS . Other model
parameters are the same as in Fig. 3. The accuracy of determ

of j̃F is restricted by a finite step fordF in numerical calculations.

«ex ~eV! m (me) dS ~Å! jF ~Å! j̃F ~Å!

0.385 1.0 400 13.97 14.0
0.771 1.0 400 9.98 10.0
1.156 1.0 400 8.06 8.0
2.027 1.0 400 6.09 6.0
0.610 0.45 600 16.55 16.5
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wherekF is the Fermi momentum in a superconductor. T
periodjF , therefore, does not depend on the electron m
free paths in the S and F layers. The first minimum ofTc(dF)
occurs at the thicknessjF/2, while the location of first maxi-
mum isjF .

As can be seen from Fig. 5, the strong scattering in
ferromagnetic layers significantly damps the oscillations
Tc , but their period remains unchanged for any values of
mean free pathsl ↑ and l ↓ . As it follows from the analysis
presented in Sec. III, the reason of such a behavior is tha
strong scattering in the F region affects only the lengthl 0 of
decay of the Cooper pair wave functionF(z) but not the
period;jm

0 of its oscillations. The less pronounced are t
oscillations ofF(z) with respect toz15z2d in the case of
strong electron scattering, the less is the amplitude of os
lations of D(d) and Tc with respect to the ferromagneti
layer thicknessdF . In the case of extremely strong scatte
ing, the coherent coupling which was established due
these oscillations between two boundaries of the ferrom
netic layer is destroyed and thus the oscillations ofTc are
suppressed completely.

We also observed that strong scattering in the S la
~small mean free pathl s) suppresses the amplitude ofTc
oscillations ~look at Fig. 6!. The critical temperature is
higher for smaller values ofl s . The reason for it is that in the
thin superconducting filmsTc is reduced with respect toTc

0

due to dimensional effect, and the magnitude ofTc depends
on dS only via the dimensionless thicknessdS /jS , where
jS}Aj0l s is a coherence length for the dirty superconduct
andj0 is a BCS coherence length. Small mean free pathl s ,
therefore, corresponds to large value of the effective fi
thicknessdS /jS .

B. Comparison with experiment

The experimental situation regarding the oscillatory b
havior of Tc(dF) in the S/F structures is known to be co

ing

FIG. 5. The critical temperatureTc(dF) for the case of weak and
strong scattering in the ferromagnetic layers;«ex50.385 eV, l s

5132 Å. Dots ~weak scattering!—l ↑5124 Å, l ↓538 Å; squares
~strong scattering!—l ↑532.5 Å, l ↓59 Å.
2-9
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troversial. Nevertheless, there are two groups of experim
described in the literature where oscillations ofTc(dF) were
clearly observed and the 3d ferromagnets were used as
layers—these are reports on Fe/Nb/Fe trilayers by Mu¨hge
et al.8 and Nb/Co and V/Co multilayers by Obiet al.9

In Fig. 7 the fitting is shown to experimental data b
Mühge et al.8 for Fe(dF)/Nb(400 Å)/Fe(dF) trilayers pre-
pared by rf sputtering. According to formula~30! the period
jF of oscillations is determined by exchange-splitting ene
in the ferromagnet. If we take the value«ex

d .0.149 Ry
52.03 eV~Ref. 30! of exchange splitting of the Fed bands
near the Fermi energy and putm5me , we obtain jF

(d)

56.09 Å ~see Table I! which is too small as compared to th
location of a maximum atdF;10–15 Å in Fig. 7. However,
we can assume that in the S and F layers the Cooper pair
formed bys electrons of Nb and Fe. The value of exchan

FIG. 6. The critical temperatureTc(dF) for different values of
the mean free paths in the S layer;«ex50.385 eV, l ↑5124 Å, l ↓
538 Å. Squares:l s5132 Å; dots:l s5265 Å.

FIG. 7. The comparison of the theoreticalTc(dF) curve with
experiment by Mu¨hgeet al. ~Ref. 8! for Fe/Nb~400 Å!/Fe trilayers.
The fitting parameters arel ↑5120 Å, l ↓540 Å, l s5269 Å.
05453
ts
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splitting «ex
s 50.028 Ry50.381 eV at the bottom of Fes

bands (G point, Ref. 30! together withm5me gives the pe-
riod jF514.05 Å. Thus, the first minimum ofTc(dF) is at
the pointjF/2'7 Å and the first maximum is atjF'14 Å.
From Fig. 7 it follows that these values correlate with po
tions of minimum and maximum ofTc which can be roughly
determined from the scattered experimental points. We h
put «F50.387 Ry corresponding to thes band of Nb~Ref.
30! which gives the Fermi momentum valuekF51.18 Å21

for m5me . We usedvD5276 K andTc
059.25 K for Nb.

The fitting parameters are the values of mean free paths i
and Nb which were estimated approximately asl ↑5120 Å,
l ↓540 Å, andl s5269 Å. Note that magnetic measuremen
by Mühge et al. showed that thin Fe layers were not ma
netic for dF<7 Å, and it was assumed that magnetica
dead Fe-Nb alloy of a thickness about 7 Å was formed at
interfacial S/F region for all samples with differentdF . Mü-
hgeet al.qualitatively explained the observed nonmonoton
behavior ofTc(dF) in terms of a rather complex behavior o
this magnetically dead Fe-Nb layer whendF was varying
~for details, see Ref. 8!. They also argued that a nonmon
tonic Tc(dF) behavior in their case could not be possible d
to the mechanism ofp coupling as it was predicted for th
S/F multilayers because of a single S layer in the trila
system. Indeed, the well-known theoretical prediction
Buzdinet al.3,4 ascribes the oscillatory behavior ofTc(dF) to
the periodical switching of the ground state energy betw
0 andp phases of the order parameter if the neighboring
layers in the S/F multilayer are coupled. However, it follow
from the above analysis that the oscillatory behavior
Tc(dF) does not necessary requirep coupling and can occu
also for a trilayer~or bilayer! F/S/F structure.

Let us consider the experiments on Nb/Co multilayers
Obi et al.9 The theoretical curveTc(dF) in comparsion with
experimental data is shown in Fig. 8. The exchange splitt
of Co spin-up and -downs bands at G point is «ex
50.014 Ry ~Ref. 30! which givesjF519.87 Å (m5me).

FIG. 8. The comparison of the theoreticalTc(dF) curve with
experiment by Obiet al. ~Ref. 9! for Nb~400 Å!/Co multilayers.
The fitting parameters arel ↑5240 Å, l ↓580 Å, andl s5188 Å.
2-10
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The first and second minimum ofTc(dF) should, therefore,
be placed at pointsdmin

1 510 Å anddmin
2 530 Å. These val-

ues correlate with values 12 Å and 32 Å obtained from
periment. The fitting mean free paths arel ↑5240 Å, l ↓
580 Å, andl s5188 Å. We have to note that in experime
Nb/Co structures are multilayers. A qualitative resembla
of theoreticalTc curve calculated for a trilayer structure wit
experimental points for a multilayer and the agreement
tween theoretical and experimental values ofdmin

1 and dmin
2

allows us to assume that neighboring S layers were de
pled in the experiment. As it was observed by Strunket al.10

for similar Nb/Fe multilayered system~where the F layer is
3d transition metal!, the decoupling regime is set whendF is
larger than some critical valuedc

dc which in turn is less than
the critical thicknessdc

F of the onset of ferromagnetism. Th
threshold value wasdc

F'7 Å in experiments by Obiet al.9

In Ref. 9 it was noted thatdc
F was less than the first mini

mum ofTc at dmin
1 '12 Å, so that for Nb/Co system the firs

minimum could not be ascribed to the onset of ferrom
netism as it was argued by Mu¨hge et al. for the Fe/Nb/Fe
system.8 Our theoretical explanation assuming the dec
pling regime is incorrect only for very thin Fe layers wi
dF,dc

d when, probably, the Fe films are nonmagnetic due
alloying effect.

Note also that experiments by Obiet al.9 on Nb12xTix /Co
multilayers with Nb12xTix alloy being the superconducto
with small coherence length did not reveal the oscillato
behavior ofTc , but showed only a small reduction of th
critical temperatureTc'8 K for largedF as compared to the
bulk valueTc

0'9.2 K ~see Fig. 3 in Ref. 9!. Therefore, the
observation of increasingTc when the scattering is strong i
the S layer together with damping of oscillations for smalll s
~see Fig. 6! is in a qualitative agreement with these expe
mental observations.

VII. SUMMARY

In conclusion, we have presented a theory of proxim
effect in F/S/F trilayer nanostructures where S is a superc
ductor, and F are layers of 3d transition ferromagnetic meta
As a starting point of our calculations, we took the system
Gor’kov equations, which determine the normal and anom
lous Green’s functions. The solution of these equations
found together with a self-consistent evaluation of the sup
conductor order parameter. In accordance with the kno
quasiclassical theories of proximity effect for S
multilayers,3,4,16,18we found that due to the presence of
exchange field in the ferromagnet the anomalous Gre
functionF(z) exhibits damping oscillations in the F layer a
a function of a distancez from the S/F interface. In the pre
sented model, a half-period of oscillations ofF(z) is deter-
mined by the lengthjm

0 5pvF /«ex, wherevF is the Fermi
velocity,«ex is the exchange field, and the length of dampi
is given by l 05(1/l ↑11/l ↓)21, where l ↑ and l ↓ are spin-
dependent mean free paths in the ferromagnetic layer.
oscillations of the anomalous Green’s function~Cooper pair
wave function! in the F region and a zero boundary conditi
at the ferromagnet/vacuum interface give rise to the osc
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tory dependence of the superconductor order parameter a
S/F interface vs the F-layer thicknessdF . These oscillations
result in oscillations of the superconductor transition te
peratureTc(dF) with a periodjF5p/Am«ex. Thus, we have
demonstrated that the nonmonotonic oscillatory depende
of critical temperatureTc(dF) does not necessarily requir
the mechanism ofp coupling between neighboring supe
conducting layers as it takes place in the S/F multilayers3,4

The strong electron scattering either in the superconducto
in the ferromagnet significantly suppresses the oscillatio
In the case of extremely strong scattering in the ferromag
the length of dampingl 0 becomes very short and the osc
lations ofTc are suppressed completely. The reason for t
is the loss of coherent coupling between two boundaries
the ferromagnetic layer that was established due to osc
tions of Cooper pair wave functionF(z). We compared our
results with the existing data onTc(dF) for Fe/Nb/Fe
trilayers8 and V/Co multilayers,9 where F’s are 3d ferromag-
nets, and found reasonable agreement with theory and
periment.
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APPENDIX A

The determinantD̃5detJ/(12a2)2 of the matrix of cur-
rents@Eq. ~12!# is given by the expression

D̃52D01G1e2iu1G2e22iu,

where

D054k1
2 UA1

↑ A1
↓

A2
↑ A2

↓ UUC1
↑ C1

↓

C2
↑ C2

↓ U14k2
2 UB1

↑ B1
↓

B2
↑ B2

↓ UUD1
↑ D1

↓

D2
↑ D2

↓ U
14k1k2e2dUA2

↑ A2
↓

B1
↑ B1

↓ UUC1
↑ C1

↓

D2
↑ D2

↓ U
14k1k2e22dUA1

↑ A1
↓

B2
↑ B2

↓ UUC2
↑ C2

↓

D1
↑ D1

↓ U,
G154k1k2UA1

↑ A1
↓

B1
↑ B1

↓ UUC2
↑ C2

↓

D2
↑ D2

↓ U,
G254k1k2UA2

↑ A2
↓

B2
↑ B2

↓ UUC1
↑ C1

↓

D1
↑ D1

↓ U,
and A6

m , B6
m , C6

m , D6
m are coefficients introduced in

Eq. ~11!.
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APPENDIX B

Let us define the quantities

l6
215

2m

k6

Av21D2,

W65
D2

3 S m

k6
D 2

q2,

V65
q2

2 S m

k6
D F v2

Av21D2
7vG .

In the case ofqÞ0 four linear independent solutions o
Eq. ~6! have the following forms.

~i! Solutionu1(z):

u1~z!5S eik1z1 ih1
(1)(z)

aeik1z1 ih2
(1)(z)D ,

where

h1
(1)~z!52 il1W1z31 il1V1z212il1

2 V1z12il1
3 V1

[t3
1z31t2

1z21t1
1z1t0

1 ,

h2
(1)~z!5

1

a2
h1

(1)~z!1
D

3a S m

k1
Dq2z3

[t3
2z31t2

2z21t1
2z1t0

2 .

~ii ! Solutionu2(z):
d,

v.

v.

,
s.
,
.

.

05453
u2~z!5S e2 ik1z2 ih1
(2)(z)

ae2 ik1z2 ih2
(2)(z)D ,

where

h6
(2)~z!52h6

(1)~2z!5t3
6z32t2

6z21t1
6z2t0

6 .

~iii ! Solutionv1(z):

v1~z!5S aeik2z1 i z1
(1)(z)

eik2z1 i z2
(1)(z) D ,

where

z1
(1)~z!5 il2W2z31 il2V2z222il2

2 V2z12il2
3 V2

[r3
1z31r2

1z21r1
1z1r0

1 ,

z2
(1)~z!5a2z1

(1)~z!1
aD

3 S m

k2
Dq2z3

[r3
2z31r2

2z21r1
2z1r0

2 .

~iv! Solutionv2(z):

v2~z!5S ae2 ik2z2 i z1
(2)(z)

e2 ik2z2 i z2
(2)(z) D ,

where

z6
(2)~z!52z6

(1)~2z!5r3
6z32r2

6z21r1
6z2r0

6 .
,
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