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The Boltzmann equation for excess Cooper pairs abbyes derived in the framework of the time-
dependent Ginzburg-Land&liDGL) theory using Langevin’s approach of the stochastic differential equation.
The Newton dynamic equation for the momentum-dependent drift velocity is obtained and the effective drag
force is determined by the energy-dependent lifetime of the metastable Cooper pairs. The Newton equation
gives just the Drude mobility for the fixed momentum of Cooper pairs. It is shown that the comparison with the
well-known result for Aslamazov-Larkin paraconductivity and BCS treatment of the excess Hall effect can
give the final determination of all the coefficients of TDGL theory. As a result the intuitive arguments used for
an interpretation of the experimental data for fluctuation kinetics are successively introduced. The presented
simple picture of the degenerated Bose gas approximation near the Bose-Einstein condensation tempera-
ture can be used for analysis of fluctuation conductivity for the cases of high frequency and external magnetic
field for layered and bulk superconductors. The work of the Boltzmann equation is illustrated by frequency-
dependent Aslamazov-Larkin conductivity in nanowires, in the two-dimensional case and in the case of strong
electric field where the TDGL equation is solved directly. There are also derived explicit formulas for the
current in the case of arbitrary time dependence of electric field up to the THz range, the distribution of
fluctuation Cooper pairs for nonparabolic dispersion, the influence of the energy cut-off, and the self-consistent
equation for the reduced temperature. The general theory is illustrated by formulas for fluctuation conductivity
in nanowires and nanostructured superconductors.
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[. INTRODUCTION prediction. We are coming to the conclusion that a systematic
investigation of the lifetime of fluctuation Cooper pairs will
For all high temperature superconductors the fluctuatiogive important information for our understanding of the
phenomena can be observed and their investigation takesp@ysics of superconductivity.
significant part of the complete understanding of these mate-
rials; for a contemporary review on the fluctuation phenom- 1. FROM THE TDGL EQUATION VIA BOLTZMANN
ena in superconductors see the review by Larkin and EQUATION TO NEWTON EQUATION

Varlamov! The Ginzburg-LandadGL) approach of the or- _ . . .
der parameter is an adequate tool to investigate the Iow(— Our starting point is the time-dependent Ginzburg Landau

frequency behavior of fluctuations negy; for a review of TDGL) equation for the superconducting order parameter

the Gaussian GL fluctuations see Ref. 2. A lot of importantderivgd fin8the glasfsical papertbyéAbrﬁhams andesEnle;fmz d
papers on the fluctuation phenomena in superconductors aﬁo el. 8 and references cited In the review by Larkin an

related topics have not been cited in these reviews, see f rlamov;
example Ref. 3. We wish to point out that the GL approach is (—i%D,)?
the standard tool for the investigation of magnetic field pen- '
etration in superconductdrand even the non-Gaussian ap- 2m*
proach to critical fluctuations.

Amidst all kinetic phenomena the fluctuation conductivity
created by the metastable in the normal state Cooper pairs
probably best investigated. The Boltzmann equation is

V+aV+b|¥|?V=—-hyDVY-7), (1)

where m* and |e*|=2|e| are the mass and charge of the
Cooper pairs, parametey describes the dissipation, and
ﬁr,t) is the external noise in the TDGL equation. Here

standard tool for investigation of.kinetic phenomena and the —ihD,=—ihV—e*Alc,
purpose of the present paper is to derive the Boltzmann
equation for fluctuation Cooper pairs and to illustrate its ihD=ifhd—e* ¢

work on the example of the fluctuation conductivity; a short-

ened version of the present research was presented in prare the operators of kinetic momentum and enefgys a
liminary communication§. We rederive the frequency de- vector potential, and is the potential.

pendence of the Aslamazov-Larkin conductivity, fluctuation Close to the critical temperaturg(T)~(T—T.)ag/Te,

Hall effect at weak magnetic fields, and magnetoconductivand b~ const, wherea,=72/2m* £2(0), and£(0) is coher-
ity. We analyze the experimental data for indium oxide filmsence length.

and find significant deviation from the BCS weak coupling The correlations of the white noisé)=0,
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(& (ry, 1) L(rp, 1)) =T 8(t1—t,) 8(ri—r5,), 2) gives the eq_uilibrium numb_er _of particles. The fluctuation
parameterl” is related to dissipation parameter by the

?hre parametrized by fluctuation parametér The BCS  fjctuation-dissipation theorem, which here takes the form
eory gives

7 8 P2 M T (10
yBCS:§T_C’ Y Tp aoTO'
and that is why we parametrize=y__ 7, by the dimen- where
sionless parametet., =1, which describes the relative life- o T
time of fluctuation Cooper pairs. np=+—.|_
The most simple is the case of free particles, which means epta(T)

A=0, ¢=0, b|¥|?~0. Introducing the Fourier transforma- s the Rayleigh-Jeans distribution.

tion Let us now analyze the influence of a weak electric field

, in the Boltzmanii equation
e|p~r/i’z

(rt)=2 5 (3 1
P 4 atnp+e*E-apnp=—T—(np—np). (11)
p
eip-r/ﬁ . .
g(r,t)=2 0] (4) For the solution we search in the form
N _
= ~ — *
where Np(t)=n(p,t)~n[p—m*V(p,t)], (12
and we obtain the Newton equation
d®p
E %VJ o m*
P (27h) m* d,Vp(t)=e*E— T—vp(t) (13
and p
for the field of drift velocity in momentum space. The gen-
({5 (1) Lq(t2)) =T 8, q6(t1—15), eral formula for the current gives
we obtain the TDGL equation in momentum representation n n
=2 e V=g E, np=X <7, (19
(8p+a)¢p:_ﬁ7(dt¢p_§p)- 5 p 4 PV
The solution of this reads wherenp is the D-dimensional volume density of the fluc-

tuation Cooper pairs. Substitution here of the shifted equilib-
rium distribution gives the well-known formula for the con-
ductivity tensot°

wp(t>=e‘t’2’p( f;et”zfpgp(t’)dt'wp(m . ®

where . , d®p Vp®V, on,
0'ﬂ=e* f b 1r—i -, (15)
fiy p2 - (27h) Tl dey
To= A, =1 En= —
P 2(epta(T)) Poom* wherev,= d,e,=p/m* is the Cooper pairs’ velocity. This is
are the momentum-dependent lifetime and kinetic energy 0?nly a small fraction of the total conductivity
fluctuation Cooper pairs. The number of particles for every T—T
momentum can be found by noise averaging o(M)=ony(T)+oq(e), €= T ¢ op<oy. (16)
Cc

Np= (5 () (1)) =ny(0)e” "o+ (1=e""?)ny, (8  For thin superconducting filmB =2 substituting
wheren,(0)=]#,(0)|? is the initial number. The time dif-

, _
ferentiation of this solution gives the well-known Boltzmann ~ dP«dpy _ d(@p%)  m* L T
equation (2mh)?  (2wh)? 2xh? P de (s+a)?
1 17
gie(0=——(np() —np), (99 we obtain the classical result by Aslamazov and Larkin
p
which can be considered in this physical situation as a con- e? T, e?T
sequence of the TDGL equation. The quantity o, (e)= 16 T T, WT( €), (18
np=ny(t=2)=Ir, where
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mh Tl To This method is very popular in the quantum field theory, but
ne)=r(p=06)= 7 = (19 works effectively for classical problems as well. In such a
¢ way we obtain
is the lifetime for Cooper pairs with zero momentum.

For the two-dimensiondRD) case conductivity is just the _ 2 [ Xsa(X)
inverse resistance?®)(T)=R5}(T). For conventional dis- s1(2)= 2 - ;PJO x2_ 72 dx,
ordered superconductors normal conductivity can be ap- (24)
proximated by residual conductivity far abovig, for ex-
ample, T=3T,. In this approximation Aslamazov-Larkin 2
conductivity can be rewritten in a convenient for experimen- So(2)= -
tal data processing form z

1
zarctariz) - 5 In(1+ z%)

z
arctariz) —z+ 5 In(1+2%)

1 1 )‘1 16h (T Y . Lo (25)

RO Ro(3To) T_c_l)' 20 7 Jo -2

eZTreI
Then the frequency-dependent conductivity reads
Performing the linear regression fit of the data presented
in Ref. 12 we have obtained that for indium oxide films o (ew)=0, (e)s(wT(e)). (26)
1= 1.15. This significant 15% deviation from the weak , ) ) ,
coupling BCS value is created by strong coupling effects. Wel N€ integral Eq(21) can be solved for arbitrary dimension
conclude that analogous systematic investigations for thin B
films would be very helpful for our understanding of the op(ew)=0o. (€)s(2), (27)
dynamics of the order parameter in superconductors. Dest ihe paper by Dorsé§
creasing the lifetime and, by depairing impurities or dis-

order for anisotropic gap superconductors definitely deserves I'(2-D/2) e Tr(e)
a great attention. =4— — 2-b__ -
g (D=4~ o Rl P @8
IIl. FLUCTUATION CONDUCTIVITY IN DIFFERENT where 5(6)55(0)/\/2 is the temperature-dependent coher-
PHYSICAL CONDITION ence length. The conductivity in this case has the form
A. High-frequency conductivity D
For diagonal components of conductivity taking into ac- s (2)= 5 1—(1+22)D’4c05<§arctanz ,
count that Ti=D, from the general formula Eq15), we ' D(D-2)z
obtain
2 s. (2)= L Ez+(1+22)D’4sin Earctanz
e* 2 de v an 2,D D(D-2 2 2 2 )
o=~ P " - _p . (21) ( )Z
D (27h)P Urp—iw deg (29
It is convenient to introduce a dimensionless frequency B. Hall effect

=w7(€). In order to derive the dimensionless complex con-

ductivity s(w) we need to solve the elementary integral The fluctuation Hall conductivity also can be derived in

the framework of the Boltzmann kinetic equation. We have
v x—1 to take into account a small imaginary partof the y pa-
g(z):gl(z)ﬂgz(z):zf =~ dx (22 rameter in the TDGL equation, i.ey— y+ia, and a<<y.

1 x3(x+y) The solutiofi of the kinetic equation gives
1 Z 5
=— 1+§ In(1+y)—1 ny(é)zngT(E)O'AL(E)OCT(E), (30)
1 wherew.=e* B/m* c is the “cyclotron” frequency and
=—|| 1+ —]In(1-iz)-1 (23
—iz —iz
o

where x=p?/2m*a(e)+1 is the kinetic energy of Cooper Z=—Im ytia ?<1' (31)
pairs taken into account from the “chemical potential” in
a(e) units, andy=—iz=—iwr(e) is the dimensionless This result agrees with microscopic calculatidridue to the
Matsubara frequencyy=—iw. The integral Eq.(22) is  small value of the parameter, the fluctuation Hall effect is

solved considering the Matsubara frequerctio be a real difficult to observe. With fitting ofe and m* from the ex-
variable. Then we can make the analytical continuation tgerimental data finishes the complete determination of pa-
real frequencies substituting= —iz in the result Eq.(23). rameters of TDGL theory.
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It is interesting to mention that the classical formula for Yolu)=
the conductivity Eq.(15) correctly works even for strong

u 1 uy
J ex EJ [(q+fU2)2+€]dU2 §q(u1)dul
0 0
magnetic fields. We only have to substitute the momentum

1 (u
— 2
integration with summation on discrete Landau levels, taking + lﬂq(O)} exr{ 2J0 [(q+fug)”+ e]du?’} (38)

into account the density of Landau magnetic subbands ) ) o
In order to obtain the statitt> 7(€)] momentum distribu-

1 tion we have to perform the noise averaging
€p—en=ro; n+§ =ag(2n+1)h, (32 .
M= 1im (| g+ ru(W) %)
where i
T (= 1
hog B, =— ex;{—(k2+e)v+fkv2——f2v3 dv, (39
= = (33 aoJo 3
2a; BcA0)

. . . L. whereu;=u—v and
is the dimensionless magnetic field and

L $0)
d k=q+fu=(p—e A)T

BeA0)=— TCﬁBCZ(TNTC (34
. . _ is the dimensionless kinetic momentum. This distribution can
is the linear extrapolation. In the numerator of Ef5) we  pe directly derived from Boltzmann equation Ed1) for
have to substitute the classical velocity with the oscillatorflyctuation Cooper pairs. In Ref. 15 it was demonstrated
matrix elements of the momentum. Analogously for thethat substitution of the momentum distribution Eg9) in
energy-dependent lifetime we have to average on neighbothe formula for the current density E¢L4) gives the result

ing levels. Due to the tr|V|al|ty of the oscillator prOblem which agrees with the formula by Dorsléycf_ also the pa-
these substitutions can be performed in only one way, an@er by Gor’kov®

Aslamazov-Larkin conductivity Eq18) is substituted by the

magnetoconductivity of Abrahams, Prange, and Steffhen €1 oE, Jw exp(— eu—gud)
j(Ey)= du,
(APS) 1(EY) 164[272£(0)]°2J o 4(D-2)12
e’Try 1 e’Trg (40)
UAL(G - ah ;—“TAPS(E’h): mh f(e.h), (39 where
i.e., 1k has to be substituted by APS function B f2 (= e*E,£(0) 7 7 eE&(0)
T120 h 8 T, b
2 1
f(e,h)z_2 eF(—-I— ih)_EF 1+ ih +h|. (36 Differentiating the upper expression we obtain differential
h 2 2 2 conductivity
This two-dimensional result can be easily generalized for di(E,) s
layered and bulk superconductors using the layering operator O i = 1B rel
introduced in Ref. 2. dEx  16[2\/7£(0)]P~2
o 1 — 3
D. Strong electric fields f 1-29u exr(—eu—gu3)du
(D—2)/2 :
Using the optical gauge o u
(41
¢=0, A=—tE, , .
Applying a voltageU(t) = UDC+ UACCOSwt to the nanowire,
the TDGL equation Eq(1) reads the differential conductivity can be easily determined mea-

1 suring the AC component for the currenUfAC<UDC. Cool-
dyibg(U)=— =[(q+fu)2+ e]ehg(U)+ L4(u), (370 ing the sample the differential conductivity will decrease,
el 2[(q 1 Ll then at some temperature it will be annulated and what will
happen at further cooling is an interesting experimental

where we are introducing dimensionless variables foruhe question.

=t/7y time, q=pé&(0)/A momentum, f=e*E7y&(0)/A
electric field, andy(u)=7,{,(t) noise. We have a linear
ordinary differential equation which can be solved for arbi-
trary f(u), i.e., for arbitrary time dependence of the electric
field. For constant electric field the TDGL equation has the The self-consistent approximation for the reduced critical
solution temperature®®in the one-dimensiondfLD) case reads

IV. CURRENT FUNCTIONAL: SELF-CONSISTENT
APPROXIMATION AND ENERGY CUT-OFF
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T b T _ _ e* £(0)
eren=ln_|_—o+a—0n1D=InT—0+elej\/l(eren,f), (42 k(uy=g+A(u), A(u)=-— 7 A(t).

wheren_is the bulk density of the fluctuation Cooper pairs | the case of parabolic dispersion and arbitrary time de-
when we have 1D fluctuations in a wire with cross sectionpendence of the electric field we can write Et4) for the

S<&?(€) and current functional in the form
~ moN*(0)E(0)e’T, kg Jmhe [T (u —
€ 43 = —

16 JSh? 8\/—AC§(0 (43 j[A]= M £(0) | 2 f Falupldu + nk(o)FA[O]},
whereX(€) =\ (0)/\/— € is the temperature-dependent pen- (50
etration depth and C is the jump of the specific heat &  where for brevity we introduce the functionals
per unit volume. For numerical calculations the function o

A(u) Balu4]
® dv Falui]= - (51)
/\fl(e,f))zf exp(— ev —guv®)—= (44) Ju—up  (u—up)¥?
0 Vo
2
has to be programmed as Xexr{w_e(ul)
— U1
(52)

Nl(s,f)=2f expg—g—ez’)dz, Z?=v. (45
0 and

Analogously for the thin superconducting film with thickness 5 _ UK q
d;<£(€) the equation for reduced temperature at zero elec- alua]= Uy (Uz)dug,
tric field takes the forrh

u __
T b T GA[U1]E_€(U_U1)+J (A(uy))?du,.
Erenzln-l—_o+ a_0n2D:|nT_0+€26N2(6re”)’ (46) uy
wheren__ is the volume density of the fluctuation Cooper Local GL theory with an energy cut-off for the kinetic
pairs having 2D fluctuations, energye ,<a,C [or for the kinetic energy taken into account
from the chemical potentiad,+a(T)<aqc] is very often

2 used for describing the fluctuation phenonfena
kg (A(O)) 4
€ =— >
6" 4pACE(0)d, 0dy agk?, |k|<A
is the 2D Ginzburg number, and (K)=) agc, [KI>A (53
Ny(e)=In C+f) (48) where the dimensionless constanh=.c=1. For
2 ' YBa,Cw,0;_ 5 the recent investigatioh$of high-frequency

fluctuation conductivity determined ~0.5. Then the func-
As simplest possible application of these results wetional which participates in the formula for the current Eqg.
have to mention nanostructured superconductors, e.g(50) takes the form
nanowires;’ similar to those used for long time investigation
of phase slip centetdof the superconducting phase. We areF [ u,]
pointing out that paraconductivity is a property of the normal

phase. ~ sinh(2ABa[u,]) exd — (u—up)| c+ (Balus])?

For generalnonparabolit dispersion we can derive from - A SUTHL 2
the TDGL equation the formula for the distribution of fluc- it (u=uy)
tuation Cooper pairs —_ BalU Baluy])?

perp +| A - AlU1] ex (Baluil) —G[uy]
(u—=uy) u-—
ule(k(uz))
nk(u)—— a ——+e€|duyrduy A—AU) Ba[u;])2
0 xj ex —(u—ul)(q+ ) dq|. (59
~A—A(u) u—u,

8(k(UZ))+e

J— u
+ nk(O)exp[ B j . dUZ} » (49 These rather complicated formulas are necessary for investi-
' gation of paraconductivity in the THz range. In the next sec-
where the dimensionless kinetic momentum and the vectaion we will give an illustration for the important one-
potential are dimensional case.
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V. FLUCTUATION CONDUCTIVITY IN NANOWIRES

The recent development of the technology of the perfor-
mance of nanowires made it possible and even indispensable
for the investigation of fluctuation conductivity. In this sec-
tion we will analyze in detail the general results in 1D case.

The integrants in the momentum distribution E89) is
actually age distribution for fluctuation Cooper pairs

1
f(v;k,e,f)=exp[ —(K*+ e)v + fkv2— §f2v3 , (55

the variablev is the age in unitsr(e). Time integration
returns us to the momentum distribution, which using the

dimensional variables

(56)

reads

. nT
n(k;evf):_]_—i(keje)i (57)

|l

where

3 1
fi(kf,ff)zf ex;{—(kitl)x+fékéx2— §f§x3 dx
0
(58)
andx=|e|u.

For the case=0, T=T. or whenf—ox, i.e.,

f=e*E(e)m(e)/h>1, &(e)=E&0)/|eY? (59

we obtain

Ny

n(k,f):f—fo(kf), Ky

60

:fl/S'

where in

— * 2 2 1 3
Folk)= | exp —kiy+ky = gy*\dy  (61)
we use the transformation= 2% .
For the 1D case using E¢40), we express the current
. Jme?
J(Ex.0)= g7 e (0)E,Je.) (62
where

2

J(e,f)Zf: exp(—ev—gv?’)\/;dv,

The fluctuational current for Cooper pairs above and un-

der the critical temperature is

- 71'ezTrelg(o) Ex

s+(fo), 64
Tk (64

PHYSICAL REVIEW B 68, 054525 (2003

where

2 o0
gi(fe): \/— 0 exqive_gevi) Vvedve (65)
o

is the dimensionless function, which depends on the strength
of the electric field. For convenience we uge=f2/12 and
v.=v|e|l. We wish to point out the normalization and the
asymptotics

4
gi(f6—>00)~ . (66)
3f

s (0)=1,

€

Using the strong field asymptotids>1, we obtain the
fluctuational current at;

2 eT;
e

We wish to point out thaj(f .—«)/T is universal and con-
tains only fundamental physical constants. All material con-
stants like&(0), A(0) or the cross section of the nanowie

are cancelled. For experimental data processing it is neces-
sary to perform linear regression of the IV curve

j(femo0)= (67)

jtoFL +sign(U)x24.22 nAT[K], (68
Rn(Te)

where the second term is the universal fluctuational current
at strong electric fields around@;. In order to avoid the
thermoelectric effect coming from different materials form-
ing the contacts to the nanowire one can analyze the current
harmonics predicted by E§68). In such a way the investi-
gation of fluctuation current in nanowires can be used as a
high accuracy test for applicability of the TDGL equation for
nanostructured superconductors.

Using Eq.(14) and Eq.(39) we derive the 1D dimensional
density

ny
2\/;5(0)8./\/1(6,1:), (69
where V;(e,f) is previously defined in Eq44), when we
considered without a derivation the self-consistent equation
for the reduced temperature. The analysis of temperature and
electric field dependence is reduced to two functions of one
variablef, above and below th&.

Nip

Ny
Nip=———N.(f,), (70)
 r oS
where
N (f )=ireivs—gev3dve N, (f.=0)=1
*\le \/; 0 \/U—E, +\le .
(72)

Analogously afT., wheree=0 andf_ 1 we obtain
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sults of the fluctuation theory in the normal phase and it is a

r'c1/e)n 1
nlD(f):#T_ (720  adequate tool to predict new phenomena related to meta-
221356 \[7£(0)S 13 stable Cooper pairs, like negative differential conductivity in

ethe fluctuation regime predicted in Ref. 15 and strong elec-

£(0)=1000A, \(0)=1000A, D=500 A, S==D2/4 ac- tric field effect in nanostructured superconductors where the

. ) . heating effects are reduced. Our universal result(&g). for
cording Eg.(43) we obtain for the 1D Ginzburg number_ a fluctuational current in a nanowire under strong electric

— -5 ; i i
€16=4.3x10"". This parameter is essent!al for the numeri-e 4 shows that the Boltzmann equation for the fluctuation
cal solution of the equation for renormalized reduced tem'Cooper pairs will become an indispensable tool for
perature Eq(42). understanding the electronic processes in nanostructured
superconductors.
VI. DISCUSSION AND CONCLUSION Note added in proofCitation of some very recent papers

Solving in parallel the TDGL equation and the Boltzmann and graphical mategial will be given in the cond-mat version
equation we obtained coinciding results: not only for the©f the present work:
linear case of Aslamazov-Larkin conductivity, but for the
cases of strong electric fields, arbitrary time dependence of
the electric field, nonparabolic momentum dependence of en- Two of the authors, T.M. and D.D., would like to thank
ergy of Cooper pairs, energy cut-off, self-consistent equatiom. Ausloos and A. Varlamov for the hospitality in NATO
for the renormalized reduced temperature, frequency depemiSl in Trieste where the present results for derivation of the
dence of the fluctuation conductivity etc. The number ofBoltzmann equatioricf. Ref. § have been presented. The
fluctuation Cooper pairs which participates in the Boltzmannauthors are thankful to J.O. Indekeu for the hospitality in K.
equation and the formulas for the current is actually the di-U. Leuven where the present work was completed. One of
agonal element of the order parameter correfdtog(t)  the authors, T.M., is thankful to E. Abrahams, M. Ausloos,
=C[pkin=pP—€*A(t);t,t]. One can also easily check that and L.P. Gor’kov for the correspondence related to his pa-
the entropy of fluctuation Cooper paifgis increasing with  pers and appreciates the discussions on the Boltzmann ki-
the timed»/dt=0; the capitaly in the »-theorem by Bolt- netic equation with J.O. Indekeu, A.l. Larkin, S. Michotte,
zmann is often spelled as Lati. Our self-consistent for- E.S. Penev, L.P. Pitaevskii, A. Rigamonti, E. Silva, and A.
mula for the fluctuation conductivity of a superconductingVarlamov. He is very much indebted to the late L.G. Aslama-
nanowire can be directly used for the experimental data prozov for introducing him long ago to the problem of fluctua-
cessing. In such a way we conclude that the Boltzmann equaion conductivity. This research has been partially supported
tion for fluctuation Cooper pairs reproduces the known re-dy the Flemish program GOA.

Choosing a typical set of parameters for the Sn nanowir

ACKNOWLEDGMENTS

*Email address: todor.mishonov@fys.kuleuven.ac.be

IA. Larkin and A. Varlamov, cond-mat/010917Zinpublished
Sec. 4.3, Ref. 73 devoted to kinetic equation of fluctuation Coo-
per pairs is inaccessible for the authors;Rhysics of Conven-
tional and Unconventional Superconductoeslited by K. Ben-
nemann and J.B. Kettersd8pringer, Berlin, 2002

2T. Mishonov and E. Penev, Int. J. Mod. Phys1& 3831(2000;
Eqg. (11) and Eq.(167).

3p. Konsin, B. Sorkin, and M. Ausloos, Fluctuation Phenomena
in High Critical Temperature Superconductoredited by M.
Ausloos and A.A. Varlamov, NATO ASI Partnership Subseries
3: High Technology, Vol. 32ZKluwer, Dordrecht, 199} pp. 91—
100; P. Konsin and B. Sorkin, Phys. Rev5B, 5795(1998); P.
Konsin, B. Sorkin, and M. Ausloos, Supercond. Sci. Techhf!.
1(1998; A. A. Varlamov and M. Ausloos, irFluctuation Phe-
nomena in High Temperature Superconductadited by M.
Ausloos and A. A. Varlamov, vol. 32 in the NATO ASI Partner- 243(1966 [Sov. Phys. JETR3, 160(1966]; A. Schmid, Phys.
ship Subseries 3: High Technologkluwer, Dordrecht, 1997 Kondens. Mater5, 302 (1966.
pp. 3—41; M. Ausloos, P. Clippe, and Ch. Laurent, Solid State °L. Boltzmann, Vorlesungen 'ber Gastheorie(Amnrosius Barth,

Il, Proc. NATO-ASI on High Temperature Superconductors
Porto Carras, 1991, edited by R. Kossowsky, B. Raveau, D.
Wohlleben, and S.K. Patapigluwer, Dordrecht, 1992 pp.
755-785; S.A. Sergeenkov, V.V. Gridin, P. de Villiers, and M.
Ausloos, Phys. ScA9, 637 (1994.

4K. Vos, J.M. Dixon, and J.A. Tuszynski, Phys. Rev4B 11 933
(1991

5JA. Tuszynski and A. Wierzbicki, Phys. Rev.43, 8472(1991).

6T. Mishonov and D. Damianov, Czech. J. Ph¢s.(Suppl. S2,
631 (1996; D. Damianov and T. Mishonov, Superlattices Mi-
crostruct.21, 467 (1997.

"E. Abrahams and T. Tsuneto, Phys. ReVI®, 1416 (1966.

8E. Abrahams and J.W.E. Woo, Phys. LetRA 117(1968; J.W.F.
Woo and E. Abrahams, Phys. Rev. 189 407 (1968; Phys.
Rev. B 1, 208 (1970; H. Schmidt, Z. Phys216, 336 (1968
M.P. Kemoklidze and L.P. Pitaevskii, Zhk&p. Teor. Fiz.50,

Commun.73, 137(1990; P. Konsin, B. Sorkin, and M. Ausloos,
in Symmetry and Pairing in Superconductaedited by M. Aus-
loos and S. Kruchinin, NATO Science Series 3: High Technol-
ogy 63(Kluwer, Dordrecht, 1999pp. 151-160; M. Ausloos, F.

Leipzig, 1912.

10E. M. Lifshitz and L. P. PitaevskiiCourse on Theoretical Phys-

ics, Vol. 10: Physical Kinetic§Pergamon Press, Oxford, 1981

L.G. Aslamazov and A.l. Larkin, Phys. Lett. 26, 238 (1968.

Gillet, Ch. Laurent, and P. Clippe, Z. Phys. B: Condens. Matter'A.T. Fiory, A.F. Hebard, and W.I. Glaberson, Phys. Rev2®

84, 13(1991; M. Ausloos, S.K. Patapis, and P. Clippe,Rhys-

5075(1983.

ics and Materials Science of High Temperature Superconductor§3A. Dorsey, Phys. Rev. B3, 7575(1991).

054525-7



MISHONOQOV, PACHOV, GENCHEV, ATANASOVA, AND DAMIANOV PHYSICAL REVIEW B 68, 054525 (2003

14E. Abrahams, R.E. Prange, and M.J. Stephen, Phygiosster- A. Michel, J. Eymery, J.L. Duvall, and L. Piraux, J. Mater. Res.
dam 55, 230(1971). 14, 665(1999.

15T.M. Mishonov, A.l. Posazhennikova, and J.O. Indekeu, Phys8w.w. Web and R.J. Warburton, Phys. Rev. Lefl, 461(1968; J.
Rev. B65, 064519(2002. Meyer and G. von Minnigerodeipid. 38, 529 (1972; W.J.

'°L.P. Gor’kov, Pis'ma Zh. Esp. Teor. Fiz.11, 52 (1970 [JETP Skocpol, M.R. Beasley, and M. Tinkham, J. Low Temp. Phys.
Lett. 11, 32 (1970], Eq. (5). 16, 145(1974; L. Kramer and A. Baratoff, Phys. Rev. Le88,

''S. Michotte, S. Megfi-Tempfli, and L. Piraux, Semicond. Sci. 518 (1977; L. Kramer and R.J. Watts-Tobiribid. 40, 1041
Technol. 16, 557 (2003; D. Y. Vodolazov, F. M. Peeters, L. (1978; R.J. Watts-Tobin, Y. Kiaenbihl, and L. Kramer, J. Low
Plrau_x., S. M#fi-Tempfli, and S. Michotte(unpublishegt F. Temp. Phys42, 459(1981; L. Kramer and R. Rangeibid. 57,
Sharifi, A.V. Herzog, and R.C. Dynes, Phys. Rev. L&t 428 391 (1984; J.P. Maneval, F. Boyer, Kh. Harrabi, and F.-R.
(1993; A. Bezryadin, C.N. Lau, and M. Tinkham, Natufleon- Ladan, J. Supercond4, 347 (2001)

o s ) e, o S S M, ot o . .Low
» ApPL. FNys. ' el ’ Temp. Phys131, 831(2003.

1961(1994; G. Yi and W. Schwarzacher, Appl. Phys. Lett, 20T.M. Mishonov, G. V. Pachov, I. N. Genchev, L. A. Atanasova

1746(1999; S. Michotte, L. Piraux, S. Dubois, F. Pailloux, G. ) lish
Stenuit, and J. Govaerts, Physica8T7, 267 (2002; S. Dubois, and D. C. Damianov, cond-mat/030204published

054525-8



