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Kinetics and Boltzmann kinetic equation for fluctuation Cooper pairs
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The Boltzmann equation for excess Cooper pairs aboveTc is derived in the framework of the time-
dependent Ginzburg-Landau~TDGL! theory using Langevin’s approach of the stochastic differential equation.
The Newton dynamic equation for the momentum-dependent drift velocity is obtained and the effective drag
force is determined by the energy-dependent lifetime of the metastable Cooper pairs. The Newton equation
gives just the Drude mobility for the fixed momentum of Cooper pairs. It is shown that the comparison with the
well-known result for Aslamazov-Larkin paraconductivity and BCS treatment of the excess Hall effect can
give the final determination of all the coefficients of TDGL theory. As a result the intuitive arguments used for
an interpretation of the experimental data for fluctuation kinetics are successively introduced. The presented
simple picture of the degenerated Bose gas int approximation near the Bose-Einstein condensation tempera-
ture can be used for analysis of fluctuation conductivity for the cases of high frequency and external magnetic
field for layered and bulk superconductors. The work of the Boltzmann equation is illustrated by frequency-
dependent Aslamazov-Larkin conductivity in nanowires, in the two-dimensional case and in the case of strong
electric field where the TDGL equation is solved directly. There are also derived explicit formulas for the
current in the case of arbitrary time dependence of electric field up to the THz range, the distribution of
fluctuation Cooper pairs for nonparabolic dispersion, the influence of the energy cut-off, and the self-consistent
equation for the reduced temperature. The general theory is illustrated by formulas for fluctuation conductivity
in nanowires and nanostructured superconductors.
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I. INTRODUCTION

For all high temperature superconductors the fluctua
phenomena can be observed and their investigation tak
significant part of the complete understanding of these m
rials; for a contemporary review on the fluctuation pheno
ena in superconductors see the review by Larkin a
Varlamov.1 The Ginzburg-Landau~GL! approach of the or-
der parameter is an adequate tool to investigate the l
frequency behavior of fluctuations nearTc ; for a review of
the Gaussian GL fluctuations see Ref. 2. A lot of import
papers on the fluctuation phenomena in superconductors
related topics have not been cited in these reviews, see
example Ref. 3. We wish to point out that the GL approach
the standard tool for the investigation of magnetic field p
etration in superconductors4 and even the non-Gaussian a
proach to critical fluctuations.5

Amidst all kinetic phenomena the fluctuation conductiv
created by the metastable in the normal state Cooper pa
probably best investigated. The Boltzmann equation i
standard tool for investigation of kinetic phenomena and
purpose of the present paper is to derive the Boltzm
equation for fluctuation Cooper pairs and to illustrate
work on the example of the fluctuation conductivity; a sho
ened version of the present research was presented in
liminary communications.6 We rederive the frequency de
pendence of the Aslamazov-Larkin conductivity, fluctuati
Hall effect at weak magnetic fields, and magnetoconduc
ity. We analyze the experimental data for indium oxide film
and find significant deviation from the BCS weak coupli
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prediction. We are coming to the conclusion that a system
investigation of the lifetime of fluctuation Cooper pairs w
give important information for our understanding of th
physics of superconductivity.

II. FROM THE TDGL EQUATION VIA BOLTZMANN
EQUATION TO NEWTON EQUATION

Our starting point is the time-dependent Ginzburg Land
~TDGL! equation for the superconducting order parame
derived in the classical paper by Abrahams and Tsuneto7; see
also Ref. 8 and references cited in the review by Larkin a
Varlamov,1

~2 i\Dr !
2

2m*
C1aC1buCu2C52\g~DtC2z!, ~1!

where m* and ue* u52ueu are the mass and charge of th
Cooper pairs, parameterg describes the dissipation, an
z(r,t ) is the external noise in the TDGL equation. Here

2 i\Dr52 i\¹2e* A/c,

i\Dt5 i\] t2e* w,

are the operators of kinetic momentum and energy,A is a
vector potential, andw is the potential.

Close to the critical temperaturea(T)'(T2Tc)a0 /Tc ,
andb'const, wherea05\2/2m* j2(0), andj(0) is coher-
ence length.

The correlations of the white noise^z&50,
©2003 The American Physical Society25-1
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^z* ~r1 ,t1!z~r2 ,t2!&5Gd~ t12t2!d~r12r2!, ~2!

are parametrized by fluctuation parameterG. The BCS
theory gives

g
BCS

5
p

8

a0

Tc
,

and that is why we parametrizeg5g
BCS

t rel , by the dimen-

sionless parametert rel.1, which describes the relative life
time of fluctuation Cooper pairs.

The most simple is the case of free particles, which me
A50, w50, buCu2'0. Introducing the Fourier transforma
tion

C~r ,t !5(
p

eip•r /\

AV cp~ t !, ~3!

z~r,t !5(
p

eip•r /\

AV zp~ t !, ~4!

where

(
p

'VE dD p

~2p\!D
,

and

^zp* ~ t1!zq~ t2!&5Gdp,qd~ t12t2!,

we obtain the TDGL equation in momentum representati

~«p1a!cp52\g~dtcp2zp!. ~5!

The solution of this reads

cp~ t !5e2t/2tpS E
0

t

et8/2tpzp~ t8!dt81cp~0! D , ~6!

where

tp5
\g

2~«p1a~T!!
, «p5

p2

2m*
~7!

are the momentum-dependent lifetime and kinetic energ
fluctuation Cooper pairs. The number of particles for ev
momentum can be found by noise averaging

np5^cp* ~ t !cp~ t !&5np~0!e2t/tp1~12e2t/tp!n̄p , ~8!

wherenp(0)5ucp(0)u2 is the initial number. The time dif-
ferentiation of this solution gives the well-known Boltzman
equation

d

dt
np~ t !52

1

tp
~np~ t !2n̄p!, ~9!

which can be considered in this physical situation as a c
sequence of the TDGL equation. The quantity

n̄p5np~ t5`!5Gtp
05452
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gives the equilibrium number of particles. The fluctuati
parameterG is related to dissipation parameterg by the
fluctuation-dissipation theorem, which here takes the form

G5
2T

\g
5

n̄p

tp
5

T

a0t0
, ~10!

where

n̄p5
T

«p1a~T!

is the Rayleigh-Jeans distribution.
Let us now analyze the influence of a weak electric fie

in the Boltzmann9 equation

] tnp1e* E•]pnp52
1

tp
~np2n̄p!. ~11!

For the solution we search in the form

np~ t !5n~p,t !'n̄@p2m* V~p,t !#, ~12!

and we obtain the Newton equation

m* dtVp~ t !5e* E2
m*

tp
Vp~ t ! ~13!

for the field of drift velocity in momentum space. The ge
eral formula for the current gives

j fl5(
p

e*
np

V vp5sJfl•E, nD5(
p

np

V , ~14!

wherenD is the D-dimensional volume density of the fluc
tuation Cooper pairs. Substitution here of the shifted equi
rium distribution gives the well-known formula for the con
ductivity tensor10

sJfl5e* 2E dDp

~2p\!D

vp^ vp

1/tp2 iv S 2
]np

]«p
D , ~15!

wherevp5]p«p5p/m* is the Cooper pairs’ velocity. This is
only a small fraction of the total conductivity

s~T!5sN~T!1sfl~e!, e5
T2Tc

Tc
, sfl!sN . ~16!

For thin superconducting filmsD52 substituting

dpxdpy

~2p\!2
5

d~pp2!

~2p\!2
5

m*

2p\2
d«p , 2

]n̄

]«
5

T

~«1a!2
,

~17!

we obtain the classical result by Aslamazov and Larkin11

s
AL

~e!5
e2

16\
t rel

Tc

T2Tc
5

e2T

p\2
t~e!, ~18!

where
5-2
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t~e![t~p50,e!5
p\

16Tc

t rel

e
5

t0

e
~19!

is the lifetime for Cooper pairs with zero momentum.
For the two-dimensional~2D! case conductivity is just the

inverse resistances (2D)(T)5Rh
21(T). For conventional dis-

ordered superconductors normal conductivity can be
proximated by residual conductivity far aboveTc , for ex-
ample, T53Tc . In this approximation Aslamazov-Larkin
conductivity can be rewritten in a convenient for experime
tal data processing form

S 1

Rh~T!
2

1

Rh~3Tc!
D 21

'
16\

e2t rel
S T

Tc
21D . ~20!

Performing the linear regression fit of the data presen
in Ref. 12 we have obtained that for indium oxide film
t rel51.15. This significant 15% deviation from the wea
coupling BCS value is created by strong coupling effects.
conclude that analogous systematic investigations for
films would be very helpful for our understanding of th
dynamics of the order parameter in superconductors.
creasing the lifetime andt rel by depairing impurities or dis-
order for anisotropic gap superconductors definitely dese
a great attention.

III. FLUCTUATION CONDUCTIVITY IN DIFFERENT
PHYSICAL CONDITION

A. High-frequency conductivity

For diagonal components of conductivity taking into a
count that Tr15D, from the general formula Eq.~15!, we
obtain

sfl5
e* 2

D E dDp

~2p\!D

vp
2

1/tp2 iv S 2
]np

]«p
D . ~21!

It is convenient to introduce a dimensionless frequencz
5vt(e). In order to derive the dimensionless complex co
ductivity §(v) we need to solve the elementary integral

§~z!5§1~z!1 i §2~z!52E
1

` x21

x2~x1y!
dx ~22!

5
2

y F S 11
1

yD ln~11y!21G
5

2

2 iz F S 11
1

2 izD ln~12 iz!21G ~23!

where x5p2/2m* a(e)11 is the kinetic energy of Coope
pairs taken into account from the ‘‘chemical potential’’
a(e) units, and y52 iz52 ivt(«) is the dimensionless
Matsubara frequencyzM52 iv. The integral Eq.~22! is
solved considering the Matsubara frequencyy to be a real
variable. Then we can make the analytical continuation
real frequencies substitutingy52 iz in the result Eq.~23!.
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This method is very popular in the quantum field theory, b
works effectively for classical problems as well. In such
way we obtain

§1~z!5
2

z2 Fz arctan~z!2
1

2
ln~11z2!G5

2

p
PE

0

` x§2~x!

x22z2
dx,

~24!

§2~z!5
2

z2 Farctan~z!2z1
z

2
ln~11z2!G

52
2z

p
PE

0

` §1~x!

x22z2
dx. ~25!

Then the frequency-dependent conductivity reads

s
2D

~e,v!5s
AL

~e!§„vt~e!…. ~26!

The integral Eq.~21! can be solved for arbitrary dimension

s
D
~e,v!5s

D
~e!§

D
~z!, ~27!

cf. the paper by Dorsey13

s
D
~e!54

G~22D/2!

~4p!D/2

e2

\
@j~e!#22D

Tt~e!

\
, ~28!

where j(e)[j(0)/Ae is the temperature-dependent cohe
ence length. The conductivity in this case has the form

§
1,D

~z!5
8

D~D22!z2 F12~11z2!D/4cosS D

2
arctanzD G ,

§
2,D

~z!5
8

D~D22!z2 F2
D

2
z1~11z2!D/4sinS D

2
arctanzD G .

~29!

B. Hall effect

The fluctuation Hall conductivity also can be derived
the framework of the Boltzmann kinetic equation. We ha
to take into account a small imaginary parta of the g pa-
rameter in the TDGL equation, i.e.,g→g1 ia, anda!g.
The solution6 of the kinetic equation gives

sxy~e!5
Z

3
vct~e!sAL~e!}t2~e!, ~30!

wherevc5e* B/m* c is the ‘‘cyclotron’’ frequency and

Z52Im
1

g1 ia
'

a

g2
!1. ~31!

This result agrees with microscopic calculations.1 Due to the
small value of the parametera, the fluctuation Hall effect is
difficult to observe. With fitting ofa and m* from the ex-
perimental data finishes the complete determination of
rameters of TDGL theory.
5-3
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C. Magnetoconductivity

It is interesting to mention that the classical formula f
the conductivity Eq.~15! correctly works even for strong
magnetic fields. We only have to substitute the moment
integration with summation on discrete Landau levels, tak
into account the density of Landau magnetic subbands

ep→en5\vcS n1
1

2D5a0~2n11!h, ~32!

where

h5
\vc

2a0
5

Bz

Bc2~0!
~33!

is the dimensionless magnetic field and

Bc2~0!52Tc

d

dT
Bc2~T!uTc

~34!

is the linear extrapolation. In the numerator of Eq.~15! we
have to substitute the classical velocity with the oscilla
matrix elements of the momentum. Analogously for t
energy-dependent lifetime we have to average on neigh
ing levels. Due to the triviality of the oscillator problem
these substitutions can be performed in only one way,
Aslamazov-Larkin conductivity Eq.~18! is substituted by the
magnetoconductivity of Abrahams, Prange, and Steph14

~APS!

s
AL

~e!5
e2Tt0

p\

1

e
→s

APS
~e,h!5

e2Tt0

p\
f ~e,h!, ~35!

i.e., 1/e has to be substituted by APS function

f ~e,h!5
2

h2 FezS 1

2
1

e

2hD2ezS 11
e

2hD1hG . ~36!

This two-dimensional result can be easily generalized
layered and bulk superconductors using the layering oper
introduced in Ref. 2.

D. Strong electric fields

Using the optical gauge

w50, A52tE,

the TDGL equation Eq.~1! reads

ducq~u!52
1

2
@~q1 f u!21e#cq~u!1 z̄q~u!, ~37!

where we are introducing dimensionless variables for thu
5t/t0 time, q5pj(0)/\ momentum, f 5e* Et0j(0)/\
electric field, andz̄q(u)5tozp(t) noise. We have a linea
ordinary differential equation which can be solved for ar
trary f (u), i.e., for arbitrary time dependence of the elect
field. For constant electric field the TDGL equation has
solution
05452
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cq~u!5H E
0

u

expF1

2E0

u1
@~q1 f u2!21e#du2Gz q̄~u1!du1

1cq~0!J expF2
1

2E0

u

@~q1 f u3!21e#du3G . ~38!

In order to obtain the static@ t@t(e)# momentum distribu-
tion we have to perform the noise averaging

nk5 lim
u→`

^ucq1 f u~u!u2&

5
T

a0
E

0

`

expF2~k21e!v1 f kv22
1

3
f 2v3Gdv, ~39!

whereu15u2v and

k5q1 f u5~p2e* A!
j~0!

\

is the dimensionless kinetic momentum. This distribution c
be directly derived from Boltzmann equation Eq.~11! for
fluctuation Cooper pairs.15 In Ref. 15 it was demonstrate
that substitution of the momentum distribution Eq.~39! in
the formula for the current density Eq.~14! gives the result
which agrees with the formula by Dorsey13; cf. also the pa-
per by Gor’kov16

j ~Ex!5
e2t relEx

16\@2p1/2j~0!#D22E0

` exp~2eu2gu3!

u(D22)/2
du,

~40!

where

g[
f 2

12
, f 5

e* Exj~0!t0

\
5

p

8

eExj~0!

Tc
t rel .

Differentiating the upper expression we obtain different
conductivity

sdiff5
d j~Ex!

dEx
5

e2t rel

16\@2Apj~0!#D22

3E
0

` 122gu3

u(D22)/2
exp~2eu2gu3!du.

~41!

Applying a voltageU(t)5U
DC

1U
AC

cosvt to the nanowire,
the differential conductivity can be easily determined me
suring the AC component for the current ifU

AC
!U

DC
. Cool-

ing the sample the differential conductivity will decreas
then at some temperature it will be annulated and what
happen at further cooling is an interesting experimen
question.

IV. CURRENT FUNCTIONAL: SELF-CONSISTENT
APPROXIMATION AND ENERGY CUT-OFF

The self-consistent approximation for the reduced criti
temperature2,13 in the one-dimensional~1D! case reads
5-4
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e ren5 ln
T

T0
1

b

a0
n

1D
5 ln

T

T0
1e

1G
N1~e ren, f !, ~42!

wheren
1D

is the bulk density of the fluctuation Cooper pa
when we have 1D fluctuations in a wire with cross sect
S!j2(e) and

e
1G

[
m0l2~0!j~0!e2Tc

ApS\2
5

kB

8ApDCj~0!S
, ~43!

wherel(e)5l(0)/A2e is the temperature-dependent pe
etration depth andDC is the jump of the specific heat atTc
per unit volume. For numerical calculations the function

N1~e, f !)[E
0

`

exp~2ev2gv3!
dv

Av
~44!

has to be programmed as

N1~e, f !52E
0

`

exp~2gz62ez2!dz, z25v. ~45!

Analogously for the thin superconducting film with thickne
df!j(e) the equation for reduced temperature at zero e
tric field takes the form2

e ren5 ln
T

T0
1

b

a0
n

2D
5 ln

T

T0
1e

2G
N2~e ren!, ~46!

wheren
2D

is the volume density of the fluctuation Coop
pairs having 2D fluctuations,

e
2G

[
kB

4pDCj2~0!df

52pm0

Tc

df
S l~0!

F0
D 2

~47!

is the 2D Ginzburg number, and

N2~e![ lnS c1e

e D . ~48!

As simplest possible application of these results
have to mention nanostructured superconductors,
nanowires,17 similar to those used for long time investigatio
of phase slip centers18 of the superconducting phase. We a
pointing out that paraconductivity is a property of the norm
phase.

For general~nonparabolic! dispersion we can derive from
the TDGL equation the formula for the distribution of flu
tuation Cooper pairs

nk~u!5
T

a0
E

0

u

expH 2E
u1

u F«~k~u2!!

a0
1e Gdu2J du1

1n̄k~0!expH 2E
u1

u F«~k~u2!!

a0
1eGdu2J , ~49!

where the dimensionless kinetic momentum and the ve
potential are
05452
n
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c-

e
g.,

l

or

k~u!5q1Ā~u!, Ā~u!52
e* j~0!

\
A~ t !.

In the case of parabolic dispersion and arbitrary time
pendence of the electric field we can write Eq.~14! for the
current functional in the form

j @A#5
Ap\e

m* j~0!
F T

a0
E

0

u

FA@u1#du11n̄k~0!FA@0#G ,
~50!

where for brevity we introduce the functionals

FA@u1#[S Ā~u!

Au2u1

2
BA@u1#

~u2u1!3/2D ~51!

3expF ~BA@u1# !2

u2u1
2G~u1!G

~52!

and

BA@u1#[E
u1

u

Ā~u2!du2 ,

GA@u1#[2e~u2u1!1E
u1

u

~Ā~u2!!2du2 .

Local GL theory with an energy cut-off for the kineti
energy«p,a0c @or for the kinetic energy taken into accou
from the chemical potential«p1a(T),a0c] is very often
used for describing the fluctuation phenomena2

«~k!5H a0k2, uku,L

a0c, uku.L ~53!

where the dimensionless constantL[Ac.1. For
YBa2Cu3O72d the recent investigations19 of high-frequency
fluctuation conductivity determinedL'0.5. Then the func-
tional which participates in the formula for the current E
~50! takes the form

FA@u1#

52
sinh~2LBA@u1# !

Au2u1

expF2~u2u1!S c1
~BA@u1# !2

~u2u1!2 D G
1S Ā~u!2

BA@u1#

~u2u1! DexpS ~BA@u1# !2

u2u1
2GA@u1# D

3E
2L2A(u)

L2A(u)

expF2~u2u1!S q1
BA@u1#

u2u1
D 2

dqG . ~54!

These rather complicated formulas are necessary for inv
gation of paraconductivity in the THz range. In the next se
tion we will give an illustration for the important one
dimensional case.
5-5
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V. FLUCTUATION CONDUCTIVITY IN NANOWIRES

The recent development of the technology of the perf
mance of nanowires made it possible and even indispens
for the investigation of fluctuation conductivity. In this se
tion we will analyze in detail the general results in 1D ca

The integrants in the momentum distribution Eq.~39! is
actually age distribution for fluctuation Cooper pairs

F~v;k,e, f !5expF2~k21e!v1 f kv22
1

3
f 2v3G , ~55!

the variablev is the age in unitst(e). Time integration
returns us to the momentum distribution, which using
dimensional variables

ke[
k

ueu1/2
, f e[

f

ueu3/2
~56!

reads

n̄~k;e, f !5
nT

ueu
F6~ke , f e!, ~57!

where

F6~ke , f e![E
0

`

expF2~ke
261!x1 f ekex

22
1

3
f e

2x3Gdx

~58!

andx5ueuu.
For the casee50, T5Tc or when f→`, i.e.,

f e5e* Exj~e!t~e!/\@1, j~e!5j~0!/ueu1/2 ~59!

we obtain

n~k, f !5
nT

f 2/3
F0~kf !, kf5

k

f 1/3
, ~60!

where in

F0~kf ![E
0

`

expF2kf
2y1kfy

22
1

3
y3Gdy ~61!

we use the transformationy5 f 2/3v.
For the 1D case using Eq.~40!, we express the current

j ~Ex ,e!5
Ape2

8\
t relj~0!ExJ~e, f ! ~62!

where

J~e, f !5E
0

`

exp~2ev2gv3!Avdv, g[
f 2

12
. ~63!

The fluctuational current for Cooper pairs above and
der the critical temperature is

j 5
pe2t relj~0!Ex

16\ueu3/2
§6~ f e!, ~64!
05452
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where

§6~ f e!5
2

Ap
E

0

`

exp~7ve2geve
3!Avedve ~65!

is the dimensionless function, which depends on the stren
of the electric field. For convenience we usege5 f e

2/12 and
ve5vueu. We wish to point out the normalization and th
asymptotics

§1~0!51, §6~ f e→`!;
4

A3 f e

. ~66!

Using the strong field asymptoticsf e@1, we obtain the
fluctuational current atTc

j ~ f e→`!5
2

A3

eTc

\
. ~67!

We wish to point out thatj ( f e→`)/Tc is universal and con-
tains only fundamental physical constants. All material co
stants likej(0), l(0) or the cross section of the nanowireS
are cancelled. For experimental data processing it is ne
sary to perform linear regression of the IV curve

j tot5
U

RN~Tc!
1sign~U !324.22 nA Tc@K#, ~68!

where the second term is the universal fluctuational curr
at strong electric fields aroundTc . In order to avoid the
thermoelectric effect coming from different materials form
ing the contacts to the nanowire one can analyze the cur
harmonics predicted by Eq.~68!. In such a way the investi-
gation of fluctuation current in nanowires can be used a
high accuracy test for applicability of the TDGL equation f
nanostructured superconductors.

Using Eq.~14! and Eq.~39! we derive the 1D dimensiona
density

n1D5
nT

2Apj~0!S
N1~e, f !, ~69!

whereN1(e, f ) is previously defined in Eq.~44!, when we
considered without a derivation the self-consistent equa
for the reduced temperature. The analysis of temperature
electric field dependence is reduced to two functions of o
variable f e above and below theTc

n1D5
nT

2j~0!SAueu
N6~ f e!, ~70!

where

N6~ f e!5
1

Ap
E

0

`

e7ve2geve
3 dve

Ave

, N1~ f e50!51.

~71!

Analogously atTc , wheree50 and f e@1 we obtain
5-6
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n1D~ f !5
G~1/6!nT

22/335/6Apj~0!S

1

f 1/3
. ~72!

Choosing a typical set of parameters for the Sn nanow
j(0)51000Å, l(0)51000Å, D5500 Å, S5pD2/4 ac-
cording Eq. ~43! we obtain for the 1D Ginzburg numbe
e1G54.331025. This parameter is essential for the nume
cal solution of the equation for renormalized reduced te
perature Eq.~42!.

VI. DISCUSSION AND CONCLUSION

Solving in parallel the TDGL equation and the Boltzma
equation we obtained coinciding results: not only for t
linear case of Aslamazov-Larkin conductivity, but for th
cases of strong electric fields, arbitrary time dependenc
the electric field, nonparabolic momentum dependence of
ergy of Cooper pairs, energy cut-off, self-consistent equa
for the renormalized reduced temperature, frequency de
dence of the fluctuation conductivity etc. The number
fluctuation Cooper pairs which participates in the Boltzma
equation and the formulas for the current is actually the
agonal element of the order parameter correlator19 nk(t)
5C@pkin5p2e* A(t);t,t#. One can also easily check th
the entropy of fluctuation Cooper pairsh is increasing with
the timedh/dt>0; the capitalh in the h-theorem by Bolt-
zmann is often spelled as LatinH. Our self-consistent for-
mula for the fluctuation conductivity of a superconducti
nanowire can be directly used for the experimental data p
cessing. In such a way we conclude that the Boltzmann eq
tion for fluctuation Cooper pairs reproduces the known

*Email address: todor.mishonov@fys.kuleuven.ac.be
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sults of the fluctuation theory in the normal phase and it i
adequate tool to predict new phenomena related to m
stable Cooper pairs, like negative differential conductivity
the fluctuation regime predicted in Ref. 15 and strong el
tric field effect in nanostructured superconductors where
heating effects are reduced. Our universal result Eq.~68! for
a fluctuational current in a nanowire under strong elec
field shows that the Boltzmann equation for the fluctuat
Cooper pairs will become an indispensable tool
understanding the electronic processes in nanostruct
superconductors.
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