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Magnetic fluctuations and resonant peak in cuprates: Towards a microscopic theory
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Magnetic fluctuations and evolution of the resonant peak with doping in superconducting cuprates are
studied within the planart-J model. The analysis is based on the equations of motion for spins and the
memory-function approach to dynamics of magnetic response where the main damping of the low-energy spin
collective mode comes from the decay into fermionic degrees of freedom. In general the normal-state damping
is large, leading to a overdamped collective mode. At an intermediate doping in the superconducting phase, a
d-wave gap leads to a sharp resonant peak with reduced intensity and downward dispersion. At low doping the
damping function is closely related to thec-axis optical conductivity, and the resonant-peak behavior is
determined by two energy scales: the pseudogap and the coherent superconducting gap.
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I. INTRODUCTION

Since its discovery in inelastic neutron-scattering exp
ments in superconducting~SC! YBa2Cu3O7,1 the magnetic
resonance peak has been the subject of numerous exper
tal investigations as well as theoretical analyses and inter
tations. The magnetic peak has been systematically follo
in YBa2Cu3O61x ~YBCO! into the underdoped regime,2–4

where the resonant frequencyv r decreases while the pea
intensity is increasing. Its pronounced appearance is still
lated to the onset of SC, although it could start appear
even atT.Tc . More recent results confirm similar behavi
in Bi2212 and Tl2201 cuprates.5

Several theoretical hypotheses have been considere
the origin of the resonant peak that it is~a! a bound state in
the electron-hole excitation spectrum,6 ~b! a consequence o
a novel symmetry between antiferromagnetism~AFM! and
SC,7 and ~c! that it represents a collective spin-wave-lik
mode induced by strong AFM correlations.8,9 There is also
an ongoing debate whether the resonant peak is intima
related to the mechanism of SC and regarding whether it
account for anomalies in single-electron properties.

We are here following the scenario of the resonant m
~as well as the low-frequency mode in the normal state! be-
ing a soft collective mode, a precursor of magnon mode
an undoped AFM. In a doped system the mode is gapped
to the loss of AFM long-range order. Such a scenario o
resonant magnetic mode seems to correspond well to ex
mental facts, in particular the qualitative development of
resonant mode with doping and its onset forT,Tc . How-
ever, the status of the theory of the resonant mode—an
the magnetic response in cuprates in general—is not satis
tory, both from the point of understanding and even more
of the appropriate analytical method. Relevant microsco
models, such as the Hubbard model and thet-J model, have
been so far studied in the weak coupling or random-ph
approximation~RPA!,6 neglecting strong correlations. Th
latter have been considered using the Hubbard-oper
technique,10,11 and more recently within the self-consiste
slave-boson approach,12 self-consistent spin-fluctuatio
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method,13 as well as within the phenomenological spi
fermion model.8,9

Our aim is to develop a theory of the dynamical sp
susceptibility xq(v) within the t-J model. We use the
memory-function formalism of Mori,14 which enables us to
go beyond the previous approximations6,10,12in analyzing the
collective excitations. In analogy to the previous study
spectral functions,15 we employ the method of equations o
motion~EQM! to generate spin dynamics and in particular
establish the effective decay of localized spins into fermio
degrees of freedom. This process predominantly contribu
to the damping of the collective mode. We explicitly calc
late this decay vertex and thus provide connection with m
phenomenological approaches.8,9 Since the memory-function
formalism does not provide directly the static susceptibili
we rather enforce it via the fluctuation-dissipation sum r
relating it to static~equal-time! spin correlation functions,
which are more robust and rather well known from nume
cal and analytical work.16

The paper is organized as follows. In Sec. II, we brie
outline the memory-function approach of Mori. In Sec. I
the equation of motion for the second time derivative of t
spin variableSj in site representation is presented and
relevance of different contributions to damping is assesse
is based on a mean-field-type argument and on the exp
mental fact that the damping of spin excitations is larg
since the magnetic response is strongly overdamped foT
.Tc . In Sec. IV, the damping function is analyzed in term
of coherent vs incoherent dynamics. In Sec. V, we first dis
the optimally doped regime introducing a BCSd-wave-like
dispersion of quasiparticle excitations forT!Tc . In the low-
doping regime, we believe that the incoherent respons
more appropriate and the damping is proportional to the p
pendicular, i.e., out-of-plane conductivitysc(v). In Sec. VI,
we summarize our results and reemphasize our main con
sions.

II. MEMORY-FUNCTION APPROACH

Our starting point is thet-J model,

H52(
i , j ,s

t i j c̃ js
† c̃is1J(̂

i j &
S Si•Sj2

1

4
ninj D , ~1!
©2003 The American Physical Society24-1
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on a square lattice, and we consider both the near
neighbor~nn! hopping t i j 5t as well as the next nnt i j 5t8
hopping. Strong correlations among electrons are incor
rated via projected operators, e.g.,c̃is

† 5(12ni ,2s)cis
† , which

do not allow for double occupance of sites. We assume
theronJ50.3t, as relevant to cuprates.

Within the memory-function approach of Mori14 to dy-
namical response functions, the dynamical spin susceptib
xq(v) can be expressed in the following form:

xq~v!52^^Sq
z ;Sq

z&&v5
2hq

v21vMq~v!2vq
2

, ~2!

which is well suitable for the analysis of collective magne
response, emerging both as the resonant mode in the
phase and as an overdamped mode in the normal pha
cuprates.

In order to evaluate the quantities entering Eq.~2!, we
follow the formalism of memory functions,14 defining the
scalar products and projections in terms of static respo
functions

~AuB!5xAB
0 52 i̇E

0

`

dt^@A~ t !,B#&, ~3!

and the action of the Liouville superoperatorLA[@H,A#5

2 i̇Ȧ. Within this framework, we can express

hq52 i̇^@S2q
z Ṡq

z!#&, ~4a!

Mq~v!5
1

hq
S QS̈q

zU 1

QLQ2vUQS̈q
zD , ~4b!

wherexq
05xq(v50) is the static susceptibility and

vq
25

hq

xq
0

5E vxq9~v!dv/E xq9~v!

v
dv ~5!

is the second frequency moment ofxq9(v)/v, the spectral
shape function.Q is a projector which removes from an op
eratorA any component ofA proportional to eitherSq

z or Ṡq
z

in the sense of the scalar product,14 i.e.,

QA5A2
~Sq

zuA!

xq
0

Sq
z2

~Ṡq
zuA!

hq
Ṡq

z . ~6!

In order to proceed, we write down the EQM for the sp
operatorsSq

z . By evaluatingLSq
z it is straightforward to ex-

plicitly expresshq in Eq. ~4a! as

hq5
1

4N (
k,s

@eq1k
0 1eq2k

0 22ek
0#^c̃ks

† c̃ks&

1
1

2N (
k

@Jq1k1Jq2k22Jk#^Sk
1S2k

2 &. ~7!

In the regionq;Q that we are primarily concerned with,hq
is closely related to the internal energy, i.e.,hQ;2^H&/N.
This indicates thathq does neither substantially depend
temperatureT nor onq, while the dependence on hole co
05452
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centrationch512^ni& ~at low doping! h;2achutu12bJ is
as well modest, wherea;b;O(1).

Before proceeding to the discussion and the evaluation
the damping functionGq(v), we note that the theory re
quires an additional input, i.e., in Eq.~2! we needxq

0 ~or
vq). Since the latter quantity can be quite sensitive~in par-
ticular,T dependent! even in the normal state, we rather fix
with the fluctuation-dissipation sum rule in the paramagne
phase,

1

pE0

`

dv cth
v

2T
xq9~v!5^S2q

z Sq
z&5Cq , ~8!

where in addition

1

N (
q

Cq5
12ch

4
.

Static correlation functionsCq are much better known within
the t-J model,17 in particular one can relateCQ}j2. The
latter is also known experimentally, e.g., in La22xSrxCO4,18

wherej2;ch . Also, it is expected thatCq in doped cuprates
saturate approaching lowT.

Let us now briefly comment on the behavior of the sp
response inxq(v), @Eq. ~2!#. We note thatvq is indeed
related to the dispersion of the collective mode provided t
the mode dampinggq is small enough, i.e.,gq;Mq9(vq)
,vq . The dispersion of such an underdamped mode is
tirely determined by the static correlation functions via E
~8!,

vq5
hq

2Cq
, ~9!

provided thatT,vq .
In the opposite casegq.vq , we are dealing with an over

damped mode, as seems to be generally the case for
magnetic response near the AFM wave vectorq;Q
5(p,p) in the normal state of cuprates.2–5 In such a case,
vq is not simply related to the dispersion of~some! collec-
tive mode. It is likewise not as simply related via the su
rule, @Eq. ~8!# to Cq as in Eq.~9! because it must also self
consistently satisfy the~nontrivial! constraint~5!.

III. EQUATIONS OF MOTION

The evaluation ofS̈q
z52L 2Sq

z is also straightforward, bu
results in a rather lengthy expression, so it is convenien
split the action into separate terms involving different pow
of kinetic and exchange terms, i.e.,

L 25L t
21L I

21L J
2 ,

L I
25@Lt ,LJ#1 . ~10!

Moreover, since in the final expression spin and particle c
rents are involved, we also introduce the local current ope
tors connecting sitesj andk,

Jjk
m 5 i̇~Sk j

m 2Sjk
m !, m5x,y,z, ~11!
4-2
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where

Sjk
m 5

1

2 (
ss8

c̃ js
† ~sm!ss8c̃ks8 . ~12!

Here sx, etc., are the usual 232 Pauli matrices. Finally,
taking care of the projected character of fermionic operat
the equation of motion forSj in the site representation the
yields

L t
2Sj5(

k
t jk
2 @~12nk!Sj2~12nj !Sk#1(

lÞ j
t jktklTjkSj l

2(
lÞk

t jkt j l Tj l Slk1(
lÞ j

t jktklJj l 3Sk1H.c., ~13a!

L I
2Sj52

1

2 (
lÞk

Jjkt j l Jj l 3Sk1
1

2 (
lÞ j

JjktklJkl3Sj

1
1

2 (
lÞk

t jkH jl Sjk2
1

2 (
lÞk

t jkHklSk j1H.c.,

~13b!

L J
2Sj5 i̇(

lÞk
JjkJjl @~Sk•Sl !Sj2~Sj•Sk!Sl #

1 i̇(
lÞ j

JjkJkl@~Sj•Sl !Sk2~Sj•Sk!Sl #. ~13c!

HereTjk and the local spin bond energyH jk are

Tjk5nj~12nk!1Pjk ,

H jk5Jjk~Pjk2njnk!, ~14!

where Pjk51/2njnk12Sj•Sk defines the spin interchang
operator.

Let us start the analysis with the termL J
2Sj . First, fol-

lowing Mori’s formalism, we should project out from th
right-hand side~rhs! of Eq. ~13c! terms proportional toSj
itself. On substitutingSj•Sk and similar terms with their ther
mal averageŝSj•Sk& and performing the transformation toq
space, it follows

L J
2Sq

z5vq,RPA
2 Sq

z1corrections, ~15!

wherevq,RPA
2 is the usual RPA AFM spin-wave dispersio

Fluctuations which contribute to damping are contained
‘‘corrections.’’ Therefore QL J

2Sq
z'corrections. It is well

known, however, that for an undoped system atT;0, the
damping of spin modes is much smaller than the freque
of excitationsvq , provided thatqj@1, where the AFM cor-
relation lengthj;exp(const/T).19,20 The argument can be
extended to doped systems, and at least for small doping
contribution to damping fromL J

2Sq
z should remain sublead

ing.
The role of L I

2 cannot bea priori neglected atv→0.
However, within the same approximation as described be
the last two terms cancel each other, whereas the first
05452
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terms, i.e., currents coupled to the local magnetization, c
tribute to vertex corrections inMq(v) and are again sublead
ing in relevance.

Then, the main contribution to the damping functio
Gq(v)5Mq9(v) in the regime of interest, i.e., atq;Q, low
T;0 and low to intermediate doping, should result from t
kinetic termL t

2Sq
z . Namely, in the normal state the dampin

Gq(v) should approach a constantgq for v→0 as in a Fermi
liquid ~although anomalous!. Such a damping can arise on
from the coupling to fermionic degrees of freedom and
decay of spin fluctuations via the kinetic termHt into
electron-hole excitations.

The complicated form of Eq.~13a! reflects the well-
known involved nature of correlated hopping in a strong
correlated system, i.e., with a reshuffling of spins along
hole path, due to the action of the spin interchange oper
Pjk . Since the main goal is to obtain the coupling to non
cal fermionic degrees, we replace the operatorsPi j ,Ti j in Eq.
~13a! by their thermodynamical averagesPi j ,Ti j , respec-
tively. This results in an effective hopping renormalizatio
which can be quite substantial, since in a Nee´l state one
would get, e.g.,P150 while in heavily doped systemP1
;1/22ch . For the doping regime of interest, i.e., 0.1&ch
&0.25, one can on the basis of numerical results for
static correlation functions within thet-J model simplify
T1;ch . Finally, applying the projectorQ, whereupon the
first two terms in Eq.~13a! drop out, we obtain

QL t
2Sj;(

lÞ j
t jk t̃ klSj l 2(

lÞk
t jk t̃ j l Slk1H.c., ~16!

where t̃ i j 't i j Ti j are the effective hopping parameters a
the coupling of the bond currentJj l to the neighboring spin
Sk has again been neglected. Performing the transforma
into theq space, it follows

QL t
2Sq

z;
1

2AN
(
ks

wkqsc̃ks
† c̃k1q,s , ~17!

wkq5~ek
02ek1q

0 !~ ẽk
02 ẽk1q

0 !2zq .

Here ek
0 is the ‘‘free’’ band dispersion with hoppingt i j ,

whereasẽk
0 is defined with renormalized hopping paramete

t̃ i j . zq is determined by the condition(kwkq50.

IV. DAMPING FUNCTION

Equation~17! represents the decay of spin variables in
fermions in a doped system and the resultingMq(v) is, in
fact, closely related to the irreducible particle-ho
bubble.8,12 We evaluateMq(v) by performing a decoupling
~in the normal state! in the lowest approximation,

Gq~v!5
1

2hqv
E dv8@ f ~v8!2 f ~v1v8!#Rq~v,v8!,

~18!

with
4-3
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I. SEGA, P. PRELOVSˇEK, AND J. BONČA PHYSICAL REVIEW B 68, 054524 ~2003!
Rq~v,v8!5
p

N (
k

wkq
2 Ak~v8!Ak1q~v1v8!, ~19!

whereAk(v) are electron spectral functions andf (v) is the
Fermi function. At low doping an alternative decoupling
fermionic operators directly in the site representation,
~13a!, neglecting the coherence between different sites m
be more appropriate, since in underdoped systems spe
functions exhibit pronounced incoherent behavior. T
yields

R̃q~v,v8!'pzq
2N~v8!N~v1v8!, ~20!

where N(v)5(2/N)(kAk(v) is the electron density o
states~DOS!. The form @Eqs. ~19!, ~20!# is particularly ap-
pealing since by Eq.~18! the damping becomes proportion
to thec-axis conductivity, i.e.,

Gq~v!}sc~v!, ~21!

which can be well represented within the same form.21,22

In the present study, we assume some simple form
spectral functionsAk(v). In the normal state, we insert a
effective coherent band crossing the Fermi energy, i.e.,

Ak~v!;Zkd~v2ek
eff!. ~22!

Such a form yields atT→0 and smallv the damping
GQ(v→0);const from Eq.~18!, using either expression
~20! or ~19!, provided that the Fermi surface crosses
AFM zone boundary. We can estimate the size of norm
state damping as

GQ;
pzQ

2 Z̄2

2W̃2hQ

. ~23!

The doping dependence entersGQ in several ways. There
is a direct contribution from the effective hoppingt̃ i j in wkq

2 ,

Eq. ~17!. On the other hand, the effective band widthW̃ and
the quasiparticle weightZ̄ also depend onch . Alternatively,
there is the proportionality toch which is evident from the
relation ofGq with sc ,21 Eq. ~21!. Thus, at low doping the
damping can be quite small,gQ!t. Nevertheless, from the
available numerical data we obtain the damping still t
large, gQ.vQ , to allow for an underdamped collectiv
mode in the normal state.

V. DYNAMICAL SUSCEPTIBILITY AND RESONANT
PEAK

In order to get un underdamped resonant mode atv r as
observed experimentally,1–5 one needs a depleted dampin
GQ(v r). The latter can evidently arise in the SC state,T
,Tc , from the SC gap. Whether the~three-dimensional! t-J
model develops a SC phase at low temperature is as
unclear, although there are strong indications from numer
results that in two-dimensional quantum fluctuations are
strong enough to suppress the off-diagonal long-ra
order.23 We proceed our analysis phenomenologically a
introduce an effectived-wave gap
05452
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Dk5
D0

2
~coskx2cosky! ~24!

into the spectral functionsAk(v). However, due to assume
broken symmetry, Eq.~18! must be supplemented by contr
butions from anomalous spectral functionsFq(v) ~Refs.
8,24! as well, leading forT;0 andv.0 to

Gq~v!;
p

2hqvN (
k

ZkZk1qwkq
2 ~ukvk1q2vkuk1q!2

3@ f ~Ek!2 f ~Ek2v!#@d~v2Ek2Ek1q!#,

~25!

where uk , etc., are the usual BCS coherence amplitude24

and

Ek5A~ek
eff2m!21Dk

2. ~26!

The SC gap eventually leads to the vanishing ofGQ(v
,vQ* )50, wherevQ* ;2Dk* ,2D0, andk* is the position
of the ‘‘hot spot’’ along the AFM zone boundary.

A. Optimum-doping regime

Such an analysis with ad-wave SC gap is particularly
appropriate for the situation close to optimum doping. T
resultingGq(v) is presented in Fig. 1~a! for severalq along
the zone diagonal. Selectingch;0.2, we choose the othe
parameters to correspond to cuprates as follows: effec
band with t̃ 50.3t, t̃ 8520.1t, Z̄50.4, and the SC gapD0

FIG. 1. ~a! Damping functionGq(v) at optimal dopingch

;0.2 for variousqiQ for a d-wave SC,~b! corresponding to spin
responsexq9(v). Note thatt;400 meV. The resonance peaks a
artificially broadened withd50.01t.
4-4
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;0.1t. Note thatGq(v) has a single step atq5Q. For q
ÞQ, it develops two steps and the thresholdvq* →0 closes

for q̃5uq2Qu.q* ;0.5. This is a mechanism for the ons
of strong damping of the collective mode forq̃.q* . An-
other important feature is the size of ‘‘normal-state’’ dam
ing gQ5GQ(v.vQ* ), which we calculate explicitly. Note
that gQ@v r prevents any coherent feature in the norm
state.

The correspondingxq9(v) is presented in Fig. 1~b!. Since
in the optimum-doping regimeq* !j21, Cq should only
weakly depend onq for q̃,q* . We chooseCq;0.4, being
consistent with results within thet-J model17 which by Eq.
~8! yields vq;0.38t. At q5Q the resonant mode is un
damped since 2D0.v r . However, due to largeGQ(v
.vQ* ) the resonant frequency is significantly renormalize

v r

vQ
5F11

MQ8 ~v!

v
Uv5vr

G21/2

, ~27!

while its intensityI Q is simultaneously reduced,

I Q;
v r

vQ
CQ . ~28!

The ratio for our case isv r /vQ;0.25. The rest of the spec
tral weight is distributed over a shallow but very broad co
tinuum. Moving away fromQ the mode gets overdampe
and merges with a broad continuum forq̃.q* . In Fig. 1~b!,
we observe a downward dispersion of the resonant pea25

consistent with experiments.3,26 The latter is due to the clos
ing of the gap inGq(v) asq̃→q* , which shifts the resonan
peak downward, before eventually entering the heavily ov
damped regime.

B. Low-doping regime

Analyzing the regime of low doping, it appears more a
propriate to use the incoherent approximation, Eq.~20!. It is
crucial that the normal-state dampinggQ also decreases with
doping. On the other hand, it seems clear that for underdo
cuprates the experimental data in the SC phase canno
explained with a single gap only. Neutron-scattering res
for xQ9 (v) in the underdoped YBCO~Ref. 2! indicate the
appearance of the resonance atT,Tc , possibly even atT
.Tc .3 However, in contrast to optimum doping, the mode
v r appears quite broad although still underdamped.2 The
drop inxQ9 (v,vc), wherevc,v r , can be again interprete
with a coherent SC gap inGQ(v), but with a substantially
diminished SC gapvc;2D0,v r . Since the ’normal’ damp-
ing is still too large, i.e.,gQ.v r , we need to assume als
the appearance of a pseudogap in the DOS below somv
;vpg for T,T* , where T* .Tc . This is well consistent
with the behavior ofsc(v) in underdoped cuprates27 where
the pseudogap appears atT,T* , well aboveTc .

In Fig. 2~a!, we present characteristicGQ(v), calculated
at T;0 for ch;0.1 with correspondingD0;0.01t and hQ
;0.5t whereastN(v.vpg);0.15, as inferred from nu
merical results for thet-J model.22 An additional pseudogap
05452
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reduction forv,vpg;0.1t is assumed, consistent with ex
perimental data.27 By further specifyingCQ;1.0,17 xQ9 (v) is
completely determined via Eq.~8! and is shown in Fig. 2~b!.
In the normal state, but above the pseudogapT.T* , xQ9 (v)
reveals an overdamped form. Still, a substantial part of
sum rule is exhausted in the window,v,vQ . It should be
also pointed out that in the normal state the role of tempe
ture T.0 is essential, as it brings about—via the sum ru
~8!—a shift in vQ(T) with T.

From Fig. 2~b!, it is evident that also in the SC stat
several features are different, given below, when compa
to the regime of intermediate to large doping in Fig. 1~b!.

~a! The resonant peak is damped even forT,Tc , but still
underdamped.

~b! The spin response and the sum rule forxQ9 (v) are
essentially exhausted withinv,vpg . Since in the under-
doped regime normalgQ is also reduced, peak position give
by Eq. ~27! is only moderately renormalized andv r;vQ .
Consequently, for the underdamped mode using the sum
we obtainv r}j22}ch .

~c! A spin-gap shoulder appears forv,vc below which
there are no spin excitations.2

VI. SUMMARY AND DISCUSSION

To summarize, our analysis of the dynamical spin
sponse and resonance peak in cuprates within the mem
function approach can qualitatively, and at low doping ev
quantitatively, reproduce the spectra as measured in neu
scattering experiments.1–4 The central point of the presen

FIG. 2. ~a! GQ(v) in underdoped regime,ch;0.1. Dashed
curve: normal-state regime beyond the pseudogap temperatuT
;0.05t.T* . Full curve: SC regime,T!Tc . Here, damping is as-
sumed proportional tosc(v) with a SC gapD0;0.01t. ~b! Corre-
sponding toxQ9 (v).
4-5
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I. SEGA, P. PRELOVSˇEK, AND J. BONČA PHYSICAL REVIEW B 68, 054524 ~2003!
theory is the evaluation of the damping functionGq(v), us-
ing the EQM where we consider the decay of a spin fluct
tion into electron-hole excitations as the dominant proce
In the normal state, we obtain a large dampinggQ.vQ in-
creasing with doping, leading generally to an overdamp
AFM collective mode. Here the renormalization due toTi j
!1 in Eq. ~17! is essential. Namely, without this reductio
the damping would be much too large. In particular, it wou
prevent the matching of the sum rule@Eq. ~8!# with any
pronounced short-range AFM order, e.g.,CQ.0.5.

Addressing the resonance peak in the SC state, we
that in optimally doped samples it can arise only inside
frequency gap;2D0. The peak exhibits a downward dispe
sion and a significant reduction in intensity. It is also stron
renormalized in comparison to the characteristic freque
vQ . On the other hand, the incoherent part of spin fluct
tions extends over a broad frequency range;W̃ and ac-
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counts for.75% of the integrated intensity,*xQ9 (v)dv.
In the underdoped~weakly doped! case, however, the sum

rule atT50 is nearly exhausted within the peak width. As
consequence, we obtain in this regimev r}ch , quite consis-
tent with experiments.2 Moreover, in contrast to optimum
doping with a single SC gap, in underdoped samples
energy scales seem to play the role in the SC state.2,3 The
coherent SC gapD0 appears to be belowv r , hence there is
a full spin gap forv,2D0, while the resonant peak seems
be broadened but still underdamped forT,T* .4 The propor-
tionality to sc , Eq. ~21!, results in gradual closing of the
pseudogap with doping.
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