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Magnetic fluctuations and resonant peak in cuprates: Towards a microscopic theory
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Magnetic fluctuations and evolution of the resonant peak with doping in superconducting cuprates are
studied within the planat-J model. The analysis is based on the equations of motion for spins and the
memory-function approach to dynamics of magnetic response where the main damping of the low-energy spin
collective mode comes from the decay into fermionic degrees of freedom. In general the normal-state damping
is large, leading to a overdamped collective mode. At an intermediate doping in the superconducting phase, a
d-wave gap leads to a sharp resonant peak with reduced intensity and downward dispersion. At low doping the
damping function is closely related to tteaxis optical conductivity, and the resonant-peak behavior is
determined by two energy scales: the pseudogap and the coherent superconducting gap.
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. INTRODUCTION method!® as well as within the phenomenological spin-
fermion modef°
Since its discovery in inelastic neutron-scattering experi- Our aim is to develop a theory of the dynamical spin
ments in superconductingsC) YBa,Cu;0,,! the magnetic ~ Susceptibility xq(w) within the t-J 4m0<?'e'- We use the
resonance peak has been the subject of numerous experim&i€mory-function formalism of Mort; which enables us to
tal investigations as well as theoretical analyses and interpré10 beyond the previous approximatié*“in analyzing the

tations. The magnetic peak has been systematically followe pllective excitations. In analogy to the previous study of
' 9 P y y pectral functiond® we employ the method of equations of

. . . _4
in YB2;ClgOs 1 (YBCO) into the underdoped reginte, motion (EQM) to generate spin dynamics and in particular to
where the resonant frequenay, decreases while the peak establish the effective decay of localized spins into fermionic
intensity is increasing. Its pronounced appearance is still redegrees of freedom. This process predominantly contributes
lated to the onset of SC, although it could start appearingo the damping of the collective mode. We explicitly calcu-
even atfT>T.. More recent results confirm similar behavior late this decay vertex and thus provide connection with more
in Bi2212 and TI2201 cupratés. phenomenological approach&$Since the memory-function
Several theoretical hypotheses have been considered féfmalism does not provide directly the static susceptibility,
the origin of the resonant peak that it(@ a bound state in W rather enforce it via the fluctuation-dissipation sum rule
the electron-hole excitation spectrénib) a consequence of '€/ating it to static(equal-time spin correlation functions,
a novel symmetry between antiferromagnetiéhiEM) and which are more robust6and rather well known from numeri-
7 : ; : . cal and analytical work
SC," and (c) that it represents a collective spin-wave-like

. 0B : The paper is organized as follows. In Sec. Il, we briefly
mode induced by strong AFM correlations.There is also  gytline the memory-function approach of Mori. In Sec. I,

an ongoing debate whether the resonant peak is intimatelye equation of motion for the second time derivative of the
related to the mechanism of SC and regarding whether it cagpin variableS; in site representation is presented and the
account for anomalies in single-electron properties. relevance of different contributions to damping is assessed. It
We are here following the scenario of the resonant modés based on a mean-field-type argument and on the experi-
(as well as the low-frequency mode in the normal staee  mental fact that the damping of spin excitations is large,
ing a soft collective mode, a precursor of magnon modes iince the magnetic response is strongly overdamped for
an undoped AFM. In a doped system the mode is gapped dug Tc- In Sec. IV, the damping function is analyzed in terms

to the loss of AFM long-range order. Such a scenario of Pf coherent vs incoherent dynamics. In Sec. V, we first discus

resonant magnetic mode seems to correspond well to expetl€ OPtimally doped regime introducing a B@Svave-like

mental facts, in particular the qualitative development of thedISperSIon of quasiparticle excitations fbr T . In the low-

resonant mode with doping and its onset Tor T,. How- doping regime, we believe that the incoherent response is

ever, the status of the theory of the resonant mode—and dpore appropriate and the damping iS. proportional to the per-
the magnetic response in cuprates in general—is not satisfaB—end'CUIar’ €., out-of-plane conductwub;g(w). In Seq. Vi,

tory, both from the point of understanding and even more sgve summarize our results and reemphasize our main conclu-
of the appropriate analytical method. Relevant microscopi(,s'ons‘
models, such as the Hubbard model andtttiemodel, have

been so far studied in the weak coupling or random-phase
approximation(RPA),® neglecting strong correlations. The  Our starting point is thé-J model,

latter have been considered using the Hubbard-operator

techniquet®!! and more recently within the self-consistent He =S 46 1S (S'S'— En-n») )
slave-boson approadf, self-consistent spin-fluctuation s T T bogarmap

II. MEMORY-FUNCTION APPROACH
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on a square lattice, and we consider both the nearestentrationc,=1—(n;) (at low doping »~2ac|t|+2bJ is

neighbor(nn) hoppingt;;=t as well as the next niy;=t’

as well modest, whera~b~O(1).

hopping. Strong correlations among electrons are incorpo- Before proceeding to the discussion and the evaluation of

rated via projected operators, eqs, (I—n; _S)cls, which

the damping functiorl((w), we note that the theory re-

do not allow for double occupance of sites. We assume furduires an additional input, i.e., in Eq2) we needyq (or

theronJ=0.3, as relevant to cuprates.
Within the memory-function approach of Mdtito dy-

wg). Since the latter quantity can be quite sensitivepar-
ticular,T dependenteven in the normal state, we rather fix it

namical response functions, the dynamical spin susceptibilityvith the fluctuation-dissipation sum rule in the paramagnetic

Xq(@) can be expressed in the following form:

— 74
w’+ oMy(w)—

—((S5:8))e= (2)

Xq(w): >
Wq

phase,

Xq(@)=(S2Sp=Cq, 8

l 0
—f do Ct
mJo

which is well suitable for the analysis of collective magnetic Where in addition

response, emerging both as the resonant mode in the SC
phase and as an overdamped mode in the normal phase in

cuprates.
In order to evaluate the quantities entering E2), we
follow the formalism of memory function¥, defining the

scalar products and projections in terms of static responsg. o is also kn

functions

(AlB):XRB:_'Lf:d“[A(t)vB])v )

and the action of the Liouville superoperatdA=[H,A]=
—A. Within this framework, we can express

~([S2SHD), (43
M —i( ¢ ‘—1 ¢ ) 4b)
@)= 0Sarg=0 S/ (
where)(8=)(q(w=0) is the static susceptibility and
wSZU—SZI w)(q(w dw/f q do (5)

Xq
is the second frequency moment pg(w)/w, the spectral

shape functionQ is a projector which removes from an op-

eratorA any component oA proportlonal to e|ther5Z or SZ
in the sense of the scalar proddti,e.

SIA
0 q
Xq g

(Sa|A>.

QA=A— S (6)

In order to proceed, we write down the EQM for the spin

operatorssé. By evaluating/:Sf| it is straightforward to ex-
plicitly expresszq in Eq. (48 as

1 —y o~
ﬂq:m kE; [€8+k+687k_258]<ciscks>

1 e
o 2 Hanct g 23d(S(820)- - (D)

In the regiong~ Q that we are primarily concerned withy,
is closely related to the internal energy, i.gg~ —(H)/N.

This indicates thatyy does neither substantially depend on
temperaturel nor onq, while the dependence on hole con-

> Cq=

Static correlation function€, are much better known within
the t-J model?’ in partlcular one can relat€qy= 2. The
own experimentally, e.g., in,L.aSr,CO,,*®
where&?~c,,. Also, it is expected that,, in doped cuprates
saturate approaching loi.

Let us now briefly comment on the behavior of the spin
response inyq(w), [EqQ. (2)]. We note thatw, is indeed
related to the dispersion of the collective mode provided that
the mode dampingy, is small enough, i.e.yg~Mg(w)

wq. The dispersion of such an underdamped mode is en-
tirely determined by the static correlation functions via Eq.

(8),

Z|l -

Tq

wQ:Z_Cq’ 9

provided thafT <wy.

In the opposite casg,> w,, we are dealing with an over-
damped mode, as seems to be generally the case for the
magnetic response near the AFM wave vecimprQ
=(r,) in the normal state of cupratés In such a case,
wgq is not simply related to the dispersion fome collec-
tive mode. It is likewise not as simply related via the sum
rule, [Eq. (8)] to Cq as in Eq.(9) because it must also self-
consistently satisfy thénontrivial) constraint(5).

Ill. EQUATIONS OF MOTION

The evaluation of%=— L 282 is also straightforward, but
results in a rather lengthy expression, so it is convenient to
split the action into separate terms involving different powers
of kinetic and exchange terms, i.e.,

L2=L2+ L2+ L3,

Li=[L, Lyl . (10)

Moreover, since in the final expression spin and patrticle cur-

rents are involved, we also introduce the local current opera-

tors connecting sitegandk,
Jhe=u(SG— Sk,

n=Xx,Y,z, (11
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where terms, i.e., currents coupled to the local magnetization, con-
tribute to vertex corrections i 4(w) and are again sublead-
PR N S ing in relevance.
Sik > g Cjs(0)ss Cks' - (12) Then, the main contribution to the damping function
I'y(w)=M}(w) in the regime of interest, i.e., at~Q, low
Here ¢, etc., are the usual 22 Pauli matrices. Finall d " i i i
e o, " ) CeS. Y: T~0 and low to intermediate doping, should result from the
:ﬁk'”g catr_e of tfhe p{_ole(;t%d ?h?rzacu?tr of ferm|ont|ctppetrstorskinetic term£ {'S;. Namely, in the normal state the damping
€ equation of motion fob; In the site representation then r (4,) should approach a constapg for v—0 as in a Fermi

yields liquid (although anomaloysSuch a damping can arise only
from the coupling to fermionic degrees of freedom and the
ﬁfsjzz tfk[(l—nk)sj—(l_nj)sk]+2 titZS; decay of spin fluctuations via the kinetic teri; into
k 1#] electron-hole excitations.

The complicated form of Eq(13a reflects the well-
_2 tjktj|7]|$k+2 titadj X Sc+H.c., (133 known involved nat'ure of correlated hopping i.n a strongly
I#k 1] correlated system, i.e., with a reshuffling of spins along the
hole path, due to the action of the spin interchange operator

1 1 P . Since the main goal is to obtain the coupling t lo-

21 e 1 ‘ _ K- g pling to nonlo
LiS=-3 ;k iktiidi XSt 5 ; Jitiadia < S cal fermionic degrees, we replace the operaRys7;; in Eq.
L L (139 by their thermodynamical averagd;,T;;, respec-

L - ‘ _ tively. This results in an effective hopping renormalization,
3 Zk GkHinSic— 3 ;k tikHSg+H.c., which can be quite substantial, since in a’Nstte one

would get, e.g.,P;=0 while in heavily doped syster®;
~1/2—c, . For the doping regime of interest, i.e., &t
=<0.25, one can on the basis of numerical results for the
£§Sj=l2 Jidil (S S)S—(S-S0S] static corr_elation func_tions Within the-J model simplify
I#k T,~cy. Finally, applying the projectof, whereupon the
first two terms in Eq(13a drop out, we obtain

(13b

+i§j I dil(S-9)S—(S-S)S]. (130

. QLIS~ 2 tiktuSi— 2 Ll Sk+H.c, (16
Here 7;,c and the local spin bond enerdy;, are 1#] I#k

Ti=n;(1=n)+ Py, where"fij.%tijTij are the effective hopping .param.eters _and
the coupling of the bond curredy, to the neighboring spin
Hj=Jik(P—n;ny), (14) S has again been neglected. Performing the transformation

i L into theq space, it follows
where Pj = 1/2njn,+2S;- S, defines the spin interchange

operator. 1
Let us start the analysis with the terfnﬁS,—. First, fol- Qﬁfsé~— > wkqscﬁsckms, (17)
lowing Mori's formalism, we should project out from the 2N s

right-hand side(rhs) of Eq. (130 terms proportional tc5

itself. On substitutings; - S, and similar terms with their ther- Wiq=(€p— €1 o) (€h—€psq) —Lq-
mal averagess; - S,) and performing the transformation ¢o 0. ) ) ) )
space, it follows Here ¢, is the “free” band dispersion with hopping; ,

WhereasEE is defined with renormalized hopping parameters

2z _ 2 Z : ~
L 5Sq= wg,reaSy+ COITECtIONS, (15) t;. {qis determined by the conditioB,wj,=0.

where a)z’RPA is the usual RPA AFM spin-wave dispersion.
Fluctuations which contribute to damping are contained in IV. DAMPING FUNCTION

« : ” 2z : H
kcorrecurc])ns. Therheforfe QLJSqucorr:cUons. It is V\;]e” Equation(17) represents the decay of spin variables into
nown, however, that for an undoped systemTat0, the  formigns in a doped system and the resultMg(w) is, in

damping of spin modes is much smaller than the frequency,oy  (josely related to the irreducible  particle-hole
of excitationswg, provided thagé>1, where the AFM cor- ) \bb10812\z\ evaluateM () by performing a decoupling

relation length¢~exp(constr)."*’ The argument can be (in the normal statein the lowest approximation,
extended to doped systems, and at least for small doping the

contribution to damping fronﬁfsé should remain sublead- 1
ing. Fq(w)zz—f do'[f(e")—f(wt+o")]Ry(w,0"),
2 P Nqw
The role of £L; cannot bea priori neglected atw—0. (18)
However, within the same approximation as described below,
the last two terms cancel each other, whereas the first twwith
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’ ™ 2 ’ ’ 2 1

Ry(w,0) =5 ; We A0 ) A g0+ o), (19 3 .
whereA,(w) are electron spectral functions ah) is the [ @ ]
Fermi function. At low doping an alternative decoupling of £ 2 [ ""‘""j
fermionic operators directly in the site representation, Eq. S f .
(13a), neglecting the coherence between different sites might . I ]
be more appropriate, since in underdoped systems spectral 1F 3 N \e-.i ]

functions exhibit pronounced incoherent behavior. This [ !
i |

}
yields [ i
0 ; f— . ;
’lfiq(w,w')gwfé./\/’(w’)./\/’(w-i-w’), (20 80 -
where Mw)=(2/N)2A(w) is the electron density of I
states(DOS). The form[Egs. (19), (20)] is particularly ap- —_ 60
pealing since by Eq18) the damping becomes proportional _é [
to thec-axis conductivity, i.e., \340
To(0)%o(w), (21) 00 |
which can be well represented within the same féHf. [
In the present study, we assume some simple form for ol
spectral function®\,(w). In the normal state, we insert an 0
effective coherent band crossing the Fermi energy, i.e.,
Ak(w)~Zk§(w—eEﬁ). (22) FIG. 1. (8 Damping functionI'q(w) at optimal dopingcy

~0.2 for variousq||Q for a d-wave SC,(b) corresponding to spin
Such a form yields aff—0 and smalle the damping responseyy(w). Note thatt~400 meV. The resonance peaks are
I'o(w—0)~const from EQq.(18), using either expression artificially broadened with=0.01.
(20) or (19), provided that the Fermi surface crosses the
AFM zone boundary. We can estimate the size of normal-

0
state damping as Ay=— (cosky—cosky) (24)
Trgé? into the spectral function8, (). However, due to assumed
Fo~ o2 77Q. (23 proken symmetry, Eq.18) must be supplemented by contri-

butions from anomalous spectral functiofg(w) (Refs.
The doping dependence entdfs in several ways. There 8,24 as well, leading fof~0 andw>0 to
is a direct contribution from the effective hoppiﬁg in wﬁq ,

~ aa
Eq. (17). On the other hand, the effective band wifthand Fy(w)~ 270N ; ZiZic+ Wieg (Ul ks = UkUk )2
the quasiparticle weight also depend o, . Alternatively, a
there is the proportionality te,, which is evident from the X[f(Ex) —f(Ex— o) ][ (0 —Ex—Eyiq)]

relation of I'y with o,?* Eq. (21). Thus, at low doping the (25
damping can be quite smalj,o<t. Nevertheless, from the

available numerical data we obtain the damping still toowhereu,, etc., are the usual BCS coherence amplittfties
large, yo>wq, to allow for an underdamped collective and

mode in the normal state.

Ex= V(e )2+ A2, (26)
V. DYNAMICAL SUSCEPTIBILITY AND RESONANT

PEAK The SC gap eventually leads to the vanishing Igf(w
<wj)=0, wherewg~2Ax<2A,, andk* is the position
In order to get un underdamped resonant mode,aés  of the “hot spot” along the AFM zone boundary.
observed experimentally® one needs a depleted damping
I'o(w). The latter can evidently arise in the SC stale,
<T,., from the SC gap. Whether thghree-dimensionalt-J o ) )
model develops a SC phase at low temperature is as yet Such an analysis with d-wave SC gap is particularly
unclear, although there are strong indications from numericaPPropriate for the situation close to optimum doping. The
results that in two-dimensional quantum fluctuations are nofesultingl’q(w) is presented in Fig.(&) for severalq along
strong enough to suppress the off-diagonal long-rangéhe zone diagonal. Selecting,~0.2, we choose the other
Order_zs We proceed our ana'ysis phenomeno'ogica”y an(parameters to COl’reSpond tO_Cuprates as fO”OWS: effeCUVe
introduce an effective-wave gap band witht=0.3, t'=—0.1t, Z=0.4, and the SC gap,

A. Optimum-doping regime
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~0.1t. Note thatl'q(w) has a single step ai=Q. For q S
#Q, it develops two steps and the threshm§1—>0 closes 03 y
for q=|q—Q|>q* ~0.5. This is a mechanism for the onset C

of strong damping of the collective mode fqe=q*. An- = o2l ]
other important feature is the size of “normal-state” damp- & r @ 1
ing yo=To(w> w’é), which we calculate explicitly. Note > r 1
that yo>w, prevents any coherent feature in the normal 01 -——--N .
State. - — SC
The corresponding(w) is presented in Fig.(b). Since o L . . . .
T T T L]

in the optimum-doping regimey* <& 1, Cq should only
weakly depend om for g<q*. We chooseC,~0.4, being

consistent with results within thed model’ which by Eq. i ]
(8) yields w,~0.38. At q=Q the resonant mode is un- S0 ]

damped since 2,>w,. However, due to largel’o(w :@ - ®)
>w6) the resonant frequency is significantly renormalized, :_‘Pg oe [
—-1/2 L
o | Mglw) [
oo 1Y T e @7) N P S
while its intensityl 5 is simultaneously reduced, 0 0 B 6.05; - .0.1' - 6.15; B '0.2. - 6.25
w/t
Wr
|Q~w—QCQ- (28) FIG. 2. (8 I'o(w) in underdoped regimeg,~0.1. Dashed

curve: normal-state regime beyond the pseudogap temperdture,
The ratio for our case i&,/wqg~0.25. The rest of the spec- ~0.08>T*. Full curve: SC regimeT<T,. Here, damping is as-
tral weight is distributed over a shallow but very broad con-sumed proportional tor(w) with a SC gapA,~0.01. (b) Corre-
tinuum. Moving away fromQ the mode gets overdamped sponding toxg(w).

and merges with a broad continuum fpr-g*. In Fig. 1(b), . ) ) )

we observe a downward dispersion of the resonant fieak,reduction foro<w,q~0.1t is assumed, consistent with ex-
consistent with experimen?€® The latter is due to the clos- Perimental datd’ By further specifyingCq~1.0,'" x() is
ing of the gap in"y() asq—q*, which shifts the resonant completely determined via E¢B) and is shown in Fig. @).

peak downward, before eventually entering the heavily overl" the normal state, but above the pseudogapr™, xo(«)
damped regime. reveals an overdamped form. Still, a substantial part of the

sum rule is exhausted in the window<wq. It should be
also pointed out that in the normal state the role of tempera-
ture T>0 is essential, as it brings about—via the sum rule
Analyzing the regime of low doping, it appears more ap-(8)—a shift in wg(T) with T.
propriate to use the incoherent approximation, §). It is From Fig. Zb), it is evident that also in the SC state
crucial that the normal-state damping also decreases with several features are different, given below, when compared
doping. On the other hand, it seems clear that for underdopew the regime of intermediate to large doping in Figo)1
cuprates the experimental data in the SC phase cannot be (a) The resonant peak is damped evenTerT., but still
explained with a single gap only. Neutron-scattering resultsinderdamped.
for xo(w) in the underdoped YBCQRef. 2 indicate the (b) The spin response and the sum rule fgj(w) are
appearance of the resonanceTat T, possibly even all  essentially exhausted withiz<w,q. Since in the under-
>T,..2 However, in contrast to optimum doping, the mode atdoped regime normay, is also reduced, peak position given
w, appears quite broad although still underdampdthe by Eq. (27) is only moderately renormalized angl ~ wq, .
drop inx4(w<wc), wherew < w,, can be again interpreted Consequently, for the underdamped mode using the sum rule,
with a coherent SC gap ifig(w), but with a substantially we obtainw,x & %xc;,.
diminished SC gam.~2A,<w, . Since the 'normal’ damp- (c) A spin-gap shoulder appears for<w. below which
ing is still too large, i.e.;yo>w,, we need to assume also there are no spin excitatio3s.
the appearance of a pseudogap in the DOS below seme
~wpg for T<T*, where T*>T.. This is well consistent
with the behavior ofr.(w) in underdoped cuprat&swhere
the pseudogap appearsTat T*, well aboveT,. To summarize, our analysis of the dynamical spin re-
In Fig. 2(a), we present characteristléo(w), calculated sponse and resonance peak in cuprates within the memory-
at T~0 for c,~0.1 with corresponding\,~0.01t and »5  function approach can qualitatively, and at low doping even
~0.5 whereast\M{w>w,,)~0.15, as inferred from nu- quantitatively, reproduce the spectra as measured in neutron-
merical results for thé-J model?? An additional pseudogap scattering experiments* The central point of the present

B. Low-doping regime

VI. SUMMARY AND DISCUSSION
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theory is the evaluation of the damping functibg(w), us-  counts for>75% of the integrated intensity,xg(w)dw.
ing the EQM where we consider the decay of a spin fluctua- |n the underdopedveakly dopedicase, however, the sum
tion into electron-hole excitations as the dominant processule atT=0 is nearly exhausted within the peak width. As a
In the normal state, we obtain a large damping> wq in-  consequence, we obtain in this regimg=cy,, quite consis-
creasing with doping, leading generally to an overdampedent with experiment$.Moreover, in contrast to optimum
AFM collective mode. Here the renormalization due‘ﬂ‘@ doping with a Sing|e SC gap, in underdoped 5amp|e5 two
<1 in Eqg.(17) is essential. Namely, without this reduction energy scales seem to play the role in the SC $tafehe
the damping would be much too large. In particular, it wouldcoherent SC gap, appears to be below, , hence there is
prevent the matching of the sum rul&q. (8)] with any 4 full spin gap forw<2A,, while the resonant peak seems to
pronounced short-range AFM order, e §g>0.5. be broadened but still underdamped Tor T*.* The propor-
Addressing the resonance peak in the SC state, we fingonality to o, Eq. (21), results in gradual closing of the
that in optimally doped samples it can arise only inside thgyseudogap with doping.
frequency gap-2A,. The peak exhibits a downward disper-
sion and a significant reduction in intensity. It is also strongly
renormalized in comparison to the characteristic frequency
wq. On the other hand, the incoherent part of spin fluctua- The authors acknowledge the support of the Ministry of
tions extends over a broad frequency rang&/ and ac- Education, Science and Sport of Slovenia.
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