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Curvature effects on the surface thickness and tension at the free interface of4He systems
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The thicknessW and the surface energysA at the free interface of superfluid4He are studied. Results of
calculations carried out using density functionals for cylindrical and spherical systems are presented in a
unified way, including a comparison with the behavior of planar slabs. It is found that for large speciesW is
independent of the geometry. The obtained values ofW are compared with prior theoretical results and
experimental data. Experimental data favor results evaluated by adopting finite range approaches. The behavior
of sA andWsA exhibits overshoots similar to that found previously for the central density, and the trend of
these observables towards their asymptotic values is examined.
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I. INTRODUCTION

The understanding of the density profiles in the surfa
region of a quantum fluid such as4He has long been consid
ered a very important basic problem.1–3 At the liquid-vapor
interface, the density profile of4He changes continuousl
from liquid densityr, to vapor densityrv over a distance of
some Angstro¨m. In the case of a liquid-vacuum interface
T50 K, r, falls monotonically torv50. The widthW of a
surface is defined as the distance in which the density
creases from 0.9r, to 0.1r, . A glance at recent literature
reveals several works addressing the question of the th
ness of the free interface,4–7 indicating the continuous inter
est in this area of theoretical and experimental research.
surface tension at the free interface has been also inv
gated for a long time.1,5,8–12A list of results for the surface
thickness and tension determined up to the middle of 198
given by Osborne in Table 1 of Ref. 2.

In the systematic study of free planar4He films at T
50 K we have, among other issues, discussed features o
surface thickness.5 There, our own results forW evaluated
using several density-functional~DF! approaches are com
pared with values obtained from Monte Carlo simulations
Vallés and Schmidt12 and experimental data of Lurioet al.3

From Fig. 4 in Ref. 5 one can realize that the size of
experimental error bar was too large to disregard any of
applied DF approaches. After that paper had been publis
other theoretical and experimental results for this quan
have appeared. Evaluations ofW for free planar slabs and
droplets utilizing a variational Monte Carlo approach w
shadow wave functions~SWF! with a glue term~glue-SWF!
were published by Galli and Reatto.6 On the other hand, a
different measurement ofW using x-ray reflectivity was re-
ported by Penanenet al.7 These data superseded that pre
ously obtained at the same laboratory.3 To complete the sur-
vey of investigations about the surface thickness
superfluid helium droplets, one should mention the calcu
tion of Stringari and Treiner13 and the comprehensive exper
mental and theoretical study of Harms, Toennies, a
Dalfovo.4
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The foregone summary indicates that there is an impor
piece of information about the free surface thickness of p
nar and spherical superfluid4He systems that is missing
Although in recent years there has been a renewal of inte
for examining cylindrical species,14–20 hitherto, there has
been no study undertaking the problem of exploring featu
of W in the case of such geometry, to our best knowledg

We have explored the evolution of the surface energy
the liquid-vacuum interface of planar slabs as a function
their size in Ref. 5. However, as far as we know, there
been no work devoted to studying this property in the case
systems with curved geometries. Therefore, such an ana
becomes an interesting problem by its own right.

In view of the situation described above, the aim of th
work is to study systematically the interface thickness a
the surface tension of liquid4He with cylindrical and spheri-
cal shapes, making a connection to the case of planar s
Although the spherical systems are energetically favo
against free cylinders and slabs an analysis of the ove
picture presents instructive features. The width at the liqu
vacuum interface of free systems is compared with exp
mental data and with theoretical results obtained for sta
planar films of 4He adsorbed onto the lightest alkali meta
The theoretical tools are outlined in Sec. II. In Sec. III w
search for the size at which the systems reach its asymp
global behavior. The discussion of the pattern exhibited
the width and tension at the surface may be found in Sec.
where the results are presented in a unified way allowin
direct comparison of data obtained for different geometri
Section V is devoted to a summary.

II. THEORETICAL FRAMEWORK

The calculations performed in the present work were c
ried out using DF approaches, which have proven to be s
cessful tools for treating this kind of quantum many-bo
problem. In such a theory the ground-state energy,Egs, of an
interacting N-body system of4He atoms, confined by an
adsorbate-substrate potentialUsub(r ), may be written as
©2003 The American Physical Society18-1
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Egs5E drr~r !H@r,“r#1E drr~r !Usub~r !

52
\2

2mE drAr~r !“2Ar~r !1E drr~r !esc~r !

1E drr~r !Usub~r !, ~2.1!

where r(r ) is the one-body density. The first term on th
right-hand side is the quantum kinetic energy of the heli
particles of massm. The second term represents the inter
tion between the particles of the system, whereesc(r ) is the
self-correlation energy per particle depending on the DF
proach. The last term is the interaction with the exter
field.

The density profiler(r ) is determined from the Euler
Lagrange equation derived from the condition

dV

dr~r !
5

d$Egs@r,“r#2mN%

dr~r !
50. ~2.2!

Herem is the chemical potential,N the number of particles

N5E drr~r !, ~2.3!

andV the grand thermodynamic potential. The variation
Eq. ~2.2! leads to a Hartree-like equation for the square r
of the one-body density

F2
\2

2m
“

21VH~r !1Usub~r !GAr~r !5mAr~r !, ~2.4!

which also determinesm. Here VH(r ) is a Hartree mean
field potential given by the first functional derivative of th
total correlation energyEsc@r#,

VH~r !5
dEsc@r,“r#

dr~r !
5

d

dr~r !
E dr 8r~r 8!esc~r 8!

5F ]

]r~r !
2“

]

]“r~r !G E dr 8r~r 8!esc~r 8!. ~2.5!

Two different DFs were used, namely, the Skyrme-ty
‘‘zero-range’’ version suggested in Refs. 13 and 21, and
nonlocal-density functional~NLDF! proposed in Ref. 22. Fo
each DF an expression forVH(r ) should be derived.

A. Zero-range density functional

The simplest DF successfully employed to interpret pr
erties of4He systems is a zero-range correlation proposed
Stringari and Treiner.13,21It has been inspired in Skyrme-typ
functionals extensively used to describe properties of ato
nuclei.23,24 The explicit form of this correlation energy pe
particle is

esc
Sky~r !5

b4

2
r~r !1

c4

2
rg411~r !1d4

1

r~r !
u¹r~r !u2.

~2.6!
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The phenomenological parametersb4 , c4 , g4, andd4 have
been fixed in Ref. 13 so as to reproduce the known obs
ables of the bulk liquid at equilibrium. The data of the
saturation quantities~whereP50), i.e., the equilibrium den-
sity r0, the minimum energy per particleeB , the compress-
ibility K, and the surface tensions` of a semi-infinite4He
system, are listed in Table I. Experimental values are c
rectly reproduced by the set

b4528.888103102 K Å3,

c451.045 543107 K Å3(g411),

g452.8,

d452.3833103 K Å5. ~2.7!

B. Orsay-Paris nonlocal-density functional

Currently, in the literature one may find a few NLDF a
proaches. The Orsay-Paris~OP! version~OP-NLDF! devel-
oped by Dupont-Rocet al.22 treats correctly the long-rang
part of the helium-helium interaction and provides a reas
able description of correlations. The most elaborate vers
has been formulated by the Orsay-Trento~OT!
collaboration.25 However, the OP-NLDF is sufficient to re
produce properties of nonlayered samples such as fre
weakly confined systems. This functional reads

esc
OP~r !5

1

2E dr 8r~r 8!Vl
OP~ ur2r 8u!1

c4

2
@ r̄~r !#g411.

~2.8!

TABLE I. Bulk observables for liquid4He at T50 and the
calculated parameters«, andac . PW stands for results obtained i
the present work.

Observable Data Reference

eB ~K! 27.15 21
r0 (Å23) 0.021836 21
K ~K! 27.2 21
sexp (K/Å2) 0.27460.003 8

0.25760.001 9
0.27260.002 10

Parameter Value Theory Reference

«, ~K/Å ! 1.237 Skyrme DF PW
«, ~K/Å ! 0.882 OP NLDF PW
ac ~K! 10.45 Skyrme DF 13
ac ~K! 10.90 21
ac ~K! 10.86 PW
ac ~K! 8.58 OP NLDF PW
(pr0/48)1/3ac /«, 0.99 Skyrme DF PW
(pr0/48)1/3ac /«, 1.10 OP NLDF PW
(pr0/48)1/3ac /«, 1.00 DM Eq.~4.38!; PW
8-2
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In this case the two-body interaction,Vl
OP(ur2r 8u), was

taken as the4He-4He Lennard-Jones~LJ! potential screened
in a simple way at distances shorter than a character
distancehOP,

Vl
OP~r !55

4eLJF S sLJ

r D 12

2S sLJ

r D 6G if r>hOP,

Vl
OP~hOP!S r

hOP
D 4

if r ,hOP,

~2.9!

with the standard de Boer and Michels parameters,26 namely,
well depth eLJ510.22 K and hard-core radiussLJ
52.556 Å. In order to recover the correct results for bu
liquid, the screening distancehOP was adjusted so that th
integral ofVl

OP(r ) over the whole three-dimensional space
equal to the value ofb4 given by Eq.~2.7!,

b45E drVl
OP~r !5

32p

21
sLJ

3 eLJF8

3 S sLJ

hOP
D 9

25S sLJ

hOP
D 3G .

~2.10!

This procedure led tohOP52.376 728 Å.
The r̄(r ) is the ‘‘coarse-grained density’’ defined as th

straight average ofr(r ) over a sphere centered atr and with
a radius equal to the screening distancehOP,

r̄~r !5E dr 8r~r 8!W~ ur2r 8u!, ~2.11!

whereW(ur2r 8u) is taken as the normalized step function

W~ ur2r 8u!5
3

4phOP
3

Q~hOP2ur2r 8u!

55
3

4phOP
3

if ur2r 8u<hOP,

0 if ur2r 8u.hOP.

~2.12!

C. Hartree-like equation

In the case of curved geometries Eq.~2.4! takes the form

2
\2

2m S d2

dr2
1

D21

r

d

dr DAr~r !1@VH~r !1Usub~r !#Ar~r !

5mAr~r !, ~2.13!

with D52 for cylindrical systems andD53 for spherical
ones. The equation for planar systems is obtained by se
D51 and assuming thatr represents the coordinate perpe
dicular to the plane of symmetry~usually denotedz). The
Hartree potential derived by applying Eq.~2.5! to the
Skyrme DF reads
05451
tic

ng
-

VH
Sky~r !5b4r~r !1

g412

2
c4rg411~r !

22d4S d2

dr2
1

D21

r

d

dr D r~r !. ~2.14!

The expression forVH(r ) derived in the OP-NLDF approac
for cylindrical systems is given in the Appendix of Ref. 1
The corresponding one for spherical systems is provided
Appendix A of the present work. It is worthwhile to notic
that we expressed this quantity in a rather simple comp
form similar to Eq.~2.16! written in Ref. 27 for planar films
instead of adopting the expansion in terms of Legendre p
nomials proposed in Ref. 28. The latter procedure is m
appropriate for studying excitations of a given system.
mainly report results for curved geometries obtained by s
ting Usub(r )[0.

In the case of cylindrical symmetry Eq.~2.13! is solved
for a fixed number of particles per unit lengthL,

nl5N/L52pE
0

`

rdrr~r !, ~2.15!

while for helium spheres the constraint is directly the num
of particles,

N54pE
0

`

r 2drr~r !. ~2.16!

Typical density profiles are displayed in Fig. 2 of Ref. 18 f
cylinders and in Fig. 1 of Ref. 13 for spheres.

We first test whether the size of the considered system
liquid 4He is large enough to expect asymptotic behavio
Next, we focus our attention on the surface energy and
width of the interface.

III. ASYMPTOTIC GLOBAL BEHAVIOR OF THE
SYSTEMS

In the case of spherical systems, it has become custom
to define for each moment^r k& an equivalent uniform radius
Rk . This quantity is equal to the radius of a uniformly occ
pied sphere~of density ru) with the same momentum o
orderk given by the true density distribution. It is possible
extend this idea to the cylindrical geometry. So, in gene
an equivalent uniform radiusRk associated to a momentum
r k given by

^r u
k&D5

2D21pL32DE
0

Rk
drr k1D21ru

2D21pL32DE
0

Rk
drr D21ru

5

E
0

Rk
drr k1D21ru

E
0

Rk
drr D21ru

5
D

k1D
Rk

k ~3.1!
8-3
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is determined by matching the result of this integral with t
k moment of the true radial distribution of the system

^r k~N!&D5
2D21pL32D

N E
0

`

drr k1D21r~r !. ~3.2!

This condition leads to the generalized Ford-Wills mome
@see Eq.~1! in Ref. 29#

Rk5Fk1D

D
^r k~N!&DG1/k

. ~3.3!

A. Cylindrical systems

One expects that very thick cylinders would tend to e
hibit features of bulk liquid at saturation conditions. In th
asymptotic limit of very large cylinders one expects that E
~2.15! will reduce to

N/L52pE
0

R0
rdrr05pR0

2r0 , ~3.4!

where r0 is the saturation density of bulk4He quoted in
Table I andR0 is the radius of the uniformly filled cylinder
Since in the limit of very large cylinders the equivalent r
dius Rk tends towardR0 defined by Eq.~3.4!, one gets the
following asymptotic law:

lim
nl→`

H @^r k~nl!&#1/k

nl
1/2 J 5A 1

pr0
S 2

k12D 1/k

. ~3.5!

Figure 1 shows how the normalized moments^r & and ^r 2&
attain their asymptotic values as a function of the expans
parameterncyl5nl

21/2. One may conclude that the resul
given by Eq.~3.5! are safely reached fornl.70 Å21.

B. Spherical systems

From a similar analysis to that performed for cylinde
one can state that for very large spheres Eq.~2.16! will be-
come

FIG. 1. Normalized moments@^r k(nl)&#1/k/nl
1/2 as a function of

the inverse of the square root of longitudinal densityncyl5nl
21/2 for

free helium cylinders. Open and full symbols stand for Skyrme-
and OP-NLDF results, respectively. The dashed and dot-da
curves are only given to guide the eye. The solid lines correspon
the asymptotic values given by Eq.~3.5!.
05451
s
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,

N54pE
0

R0
r 2drr05

4p

3
R0

3r0 , ~3.6!

whereR0 is now the radius of the uniformly filled sphere
Furthermore, since in this asymptotic limitRk tends toward
R0 defined by Eq.~3.6!, the following law is obtained:

lim
N→`

H @^r k~N!&#1/k

N1/3 J 5S 3

4pr0
D 1/3S 3

k13D 1/k

. ~3.7!

Figure 2 shows how the normalized moments^r & and ^r 2&
attain their asymptotic values as a function ofnsph5N21/3.
The results given by Eq.~3.7! are reached atN.2000. In
summary, from values of the normalized moments displa
in Figs. 1 and 2 it is clear that the largest systems exami
in the present work have, in practice, reached the asymp
global behavior.

IV. ANALYSIS OF RESULTS

A. Surface tension

The evolution of the central density,rc , for cylinders
with increasingnl was explored in Ref. 18. It was found tha
after a certain value ofnl the central density becomes larg
than the saturation density of infinite helium matter,rc
.r0, giving rise to a squeezing effect. This phenomenon
been previously found in calculations carried out for atom
nuclei @see Figs. 1~a! and 1~b! in Ref. 30# as well as for
spherical clusters of4He ~see Fig. 3 in Ref. 13! and it is
known as the ‘‘leptodermous’’ behavior. It wa
demonstrated18 that for cylinders the squeezing effect, i.e
the differencerc2r0, vanishes fornl→` according to the
law

ecyl5
rc2r0

r0
5

s`

KA
p

r0
nl

21/2, ~4.1!

which is similar to

esph5
rc2r0

r0
52

s`

K S 4p

3r0
2D 1/3

N21/3, ~4.2!

corresponding to4He spheres@see the asymptotic limit of
Eq. ~12! in Ref. 13#.

ed
to

FIG. 2. Similar to Fig. 1, but for free helium spheres. The so
lines correspond to the asymptotic values given by Eq.~3.7!.
8-4
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In the present work we describe the evolution of the s
face tension when the size of the4He systems is increased
From thermodynamic considerations one sees that

dEgs52PdV1sAdA1mdN, ~4.3!

where V is the volume of the system,A the surface area
enclosingV, and sA the surface tension. For both curve
geometries the grand free energy takes the form

V5Egs2mN52PV1sAA, ~4.4!

while P50 for planar slabs. In the following we examine th
different cases.

1. Cylindrical systems

In Ref. 18 it was shown that for cylinders the relationsh
between the grand free energy per unit length and the sur
tension becomes

V

L
5

Egs2mN

L
5~e2m!nl5pRssA . ~4.5!

HereRs is the sharp mean radius defined by

N/L52pE
0

Rs
rdrrc5pRs

2rc , ~4.6!

and it is related toR0 by

Rs5R0A 1

11ecyl
. ~4.7!

Furthermore, it was demonstrated in Ref. 18 that for la
cylindrical systems~in the sense of largeRs) the total energy
per particle may be expressed as

e5
Egs

N
5eB12s`Ap

r0
nl

21/21S «,2
ps`

2

2r0KDnl
211•••,

~4.8!

where s` and «, are, respectively, the asymptotic surfa
tension and the residual energy per unit length defined
Ref. 18. A formula for the surface tensionsA may be derived
by taking into account Eq.~5.7! of Ref. 18,

pRssA52nl
2 de

dnl
, ~4.9!

and the present relationship~4.5!. After keeping all terms up
to second order inncyl5nl

21/2 one gets

sA5
2V

Acyl
5

2~e2m!N

2pRsL
52

nl
2

pRs

de

dnl

5s`1Ar0

p
«,nl

21/21
s`

2K S «,2
3

4

ps`
2

r0K Dnl
21 .

~4.10!

This expression indicates that the asymptotic resultsA(nl

→`)5s` , which may be identified with the
experimental8–10 values of the surface tensionsexp quoted in
05451
r-

ce

e

in

Table I, should be attained linearly in the parameterncyl

5nl
21/2 with a slope proportional to«, ,

sA.s`1Ar0

p
«,nl

21/2. ~4.11!

The values of«, obtained from the fits of energies per pa
ticle to Eq.~4.8! are listed in Table I. Since these results a
positive one expects an overshoot@i.e., a region in which
sA(nl).s`] for large cylinders.

2. Spherical systems

In the case of spherical systems, upon starting from E
~4.3! and ~4.4! one arrives at

dV5d~Egs2mN!52PdV1sAdA2Ndm. ~4.12!

At equilibrium, for fixedm, the virtual work resulted from
changing the radius of the sphere should vanish,

2PdV1sAdA52P4pRs
2dRs1sA8pRsdRs50.

~4.13!

This equation leads to

P5
2sA

Rs
, ~4.14!

where the sharp mean radius is

Rs5R0S 1

11esph
D 1/3

, ~4.15!

with R0 defined by Eq.~3.6!. Then by using Eq.~4.4! one
gets

V52PV1sAA52S 2sA

Rs
D S 4p

3 DRs
31sA4pRs

2

5
4p

3
Rs

2sA . ~4.16!

The total energy per particle can be expanded in the follo
ing way @cf. Eq. ~13! of Ref. 13#:

e5
Egs

N
5eB1s`S 36p

r0
2 D 1/3

N21/3

1Fac22
s`

2

K S 4p

3r0
2D 2/3GN22/31•••. ~4.17!

Hence, for spherical systems one gets

sA5
3V

Asph
5

3~e2m!N

4pRs
2

52
3N2

4pRs
2

de

dN
.s`1acS 2r0

2

9p D 1/3

N21/3. ~4.18!

The values ofac determined by fitting energies per partic
of drops withN>300 to Eq.~4.17! are quoted in Table I.
8-5
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Since these results are positive, overshoots ofsA should be
expected. For the sake of comparison prior results repo
in Refs. 13 and 21 obtained by using the Skyrme DF a
considering systems withN<728 are also included in Tabl
I. All these data are in good agreement.

3. Comparison of results for regular geometries

Let us now summarize the results for the surface tens
for the three regular geometries. Instead of showing the
face tension separately for each geometry as a function o
appropriate expansion parametern, we find it more interest-
ing to present all the data in a unified picture. In order
achieve this goal it is useful to consider that for all thr
symmetries~planar, cylindrical, and spherical! the final trend
of the energy per particle toward the asymptotic value, i
the bulkeB , is mainly determined by the linear term in th
corresponding expansion parameter. Therefore, it beco
reasonable to adopt the energy differencee2eB as an appro-
priate common abscissa. In order to facilitate the forthco
ing discussion we recall that for a symmetric planar s
~see, e.g., Ref. 5! the energy per particle may be expressed
an expansion in terms of inverse coveragenc

215Aslab/N,

e5
Egs

N
5eB12s`nc

211gcnc
231•••, ~4.19!

and the total surface tension becomes

sA
(tot)5

V

Aslab
5

Egs2mN

Aslab
5

~e2m!N

L2
52nc

2 de

dnc
.2s`

13gcnc
22 . ~4.20!

Values for the surface tension obtained from calculatio
carried out using the Skyrme DF are displayed in Fig.
while Fig. 4 shows the behavior ofsA evaluated using the
finite range OP NLDF. The main features exhibited by bo
these drawings are similar. In particular, for curved geo
etries the surface tension tends towards` showing the pre-
dicted overshoot, which is similar to that previously fou

FIG. 3. Surface tension calculated using the Skyrme DF
shown as a function of the energy differencee2eB . In order to
avoid overcrowding the picture only some selected data are plo
and solid curves are drawn to guide the eye. Dashed lines ind
the linear asymptotic laws for curved geometries given by E
~4.21! and ~4.22!.
05451
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for rc ~see Fig. 6 in Ref. 18 and Fig. 3 in Ref. 13!. Further-
more, in both figures the final trends towards` match the
linear asymptotic expressions

~i! for cylindrical systems

sA.s`1
r0«,

2ps`
~e2eB!, ~4.21!

~ii ! and for spherical systems

sA.s`1
r0ac

3ps`
S pr0

6 D 1/3

~e2eB!. ~4.22!

On the other hand, the data for planar slabs attain
asymptotic value in a smooth way with zero slope, that
without any linear term. This behavior may be understood
the basis of the fact that upon starting from Eq.~4.20! one
gets

~iii ! for planar systems

sA5
sA

(tot)

2
.s`1

3gc

8s`
2 ~e2eB!2. ~4.23!

Here sA is the surface tension at each free interface. T
values obtained with the OP-NLDF approach match this l
with gc521.4431023 K/Å6 listed in Table 2 of Ref. 5,
while the trend of results provided by the Skyrme DF is ev
flatter suggesting a (e2eB)n law with n>3. The latter be-
havior results from the fact that in such a mean-field appro
mationgc.0 because the Lennard-Jones potential is not
cluded in the theory~cf. Table 2 and the discussion in Re
5!.

4. Relation between ac and «ø

We now search for a relation betweenac and«, . Accord-
ing to the droplet model30,31 ~DM! the total ground-state en
ergy of a large system may be written as a sum of volum
surface, and curvature terms,

Egs5Ev1Es1Ec . ~4.24!

The surface and curvature energies for cylindrical syste
may be written as@see Eq.~4.8! in Ref. 18#

s

ed
te
.

FIG. 4. Same as Fig. 3 with data calculated using the OP NL
In addition, the dashed curve for planar slabs is the quadr
asymptotic law given by Eq.~4.23!.
8-6
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Es~cyl!52pR0LE
0

`

$r~r !H@r,“r#2r0e0%dr

52pR0~cyl!Ls` , ~4.25!

Ec~cyl!52pLE
0

`

$r~r !H@r,“r#2r0e0%~r 2R0!dr5«,L,

~4.26!

while for spheres Eq.~2.11! in Ref. 31 holds that

Es~sph!54pR0
2E

0

`

$r~r !H@r,“r#2r0e0%dr

54pR0
2~sph!s`5asN

2/3, ~4.27!

Ec~sph!58pR0E
0

`

$r~r !H@r,“r#2r0e0%~r 2R0!dr

5acN
1/3. ~4.28!

In this approach the integrals in Eqs.~4.25! and ~4.27! are
associated withs` , and it was verified numerically that the
yield equal results. The integrals in Eqs.~4.26! and ~4.28!
may be considered to be higher-order moment of the for
integrals, hence, it becomes plausible to suppose that
should exhibit similar features. Therefore, one would be a
to write

Ec~cyl!5pLl`5«,L, ~4.29!

and

Ec~sph!54pR0~sph!l`5acN
1/3. ~4.30!

Herel` is twice the asymptotic value of the integrals in Eq
~4.26! and ~4.28! and may be interpreted as the asympto
coefficient for the curvature energy. It is worth noticing th
the curvature energy may be expressed in terms of the
and curvature of the cylindrical and spherical surfaces.
cording to a theorem of Euler the average curvature a
given point of a surface is defined as32

C5
1

2 S 1

R1
1

1

R2
D , ~4.31!

whereR1 and R2 are the radii of curvature along any tw
orthogonal tangents. Hence, for wide cylinders one gets

Ccyl5
1

2 S 1

Rw
1

1

Rz→` D5
1

2R0~cyl!
; ~4.32!

for large spheres

Csph5
1

2 S 1

Rw
1

1

Ru
D5

1

R0~sph!
, ~4.33!

while for planar slabs it holds thatCslab50. So, one may
write

Ec~cyl!52pR0~cyl!L
1

2R0~cyl!
l`5AcylCcyll` ,

~4.34!
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and

Ec~sph!54pR0
2~sph!

1

R0~sph!
l`5AsphCsphl` .

~4.35!

The relation betweenac and «, may be derived from the
ratio of this equation:

Ec~sph!

Ec~cyl!
5

AsphCsphl`

AcylCcyll`
5

4R0~sph!

L
5

acN
1/3

«,L
, ~4.36!

which yields

ac

«,
5

4R0~sph!

N1/3
54S 3

4pr0
D 1/3

, ~4.37!

leading to

S pr0

48 D 1/3ac

«,
51. ~4.38!

The values of this relation calculated with parameters de
mined from both examined DFs are included in Table I. F
the Skyrme DF the result was 0.99, in excellent agreem
with the DM prediction. The ratio yielded by the OP NLDF
i.e., 1.10, differs slightly from unity. This is indeed to b
expected when the DF is not only written in terms ofr(r )
but has explicit information onr as happens with the
Lennard-Jones potential. In such a case there is an additi
curvature contribution which in the approach adopted her
embedded in the coefficientac .31

Upon starting from Eqs.~4.11! and ~4.18!, in both cases,
one may express the excess of surface energy in terms o
curvature and the quantityl` , and get

~sA2s`!cyl.Ar0

p
«,nl

21/25
«,

pR0~cyl!
5

2«,

p
Ccyl

52l`Ccyl , ~4.39!

~sA2s`!sph.acS 2r0
2

9p D 1/3

N21/3

5S pr0

6 D 1/3 ac

pR0~sph!
5S pr0

6 D 1/3ac

p
Csph

52l`Csph. ~4.40!

By taking into account these results one arrives at

~sA2s`!sphAsph

~sA2s`!cylAcyl
5

AsphCsph

AcylCcyl
5

Ec~sph!

Ec~cyl!
. ~4.41!

This means that the ratio of the excess of surface energie
equal to the ratio of curvature energies.

B. Thickness at the free interface

All the calculated results for the surface thicknessW of
free 4He systems are plotted together in Fig. 5 as a funct
of e2eB . Let us first look at values obtained by applying th
8-7
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Skyrme DF. In this case we must state a word of caut
because our results for spheres differ noticeably from th
listed in the fifth column of Table I in Ref. 13. We attribu
this difference to a misprint in Table I of Ref. 13 in view o
the fact that the tabulated values are also inconsistent
the thickness inferred from the profiles plotted in Fig. 1
the same paper. This point is stressed because due to
mistake the range ofW ascribed to calculations with th
Skyrme-DF for spheres withN<728 quoted in the summar
of Table III in Ref. 4 is incorrect, actually it is 6.6&W
&7.4 Å.

Turning to the present results, the displayed data indic
that the asymptotic surface width obtained with the ze
range functional does not depend on the geometry of
helium system. In all the cases it attainsW`.7 Å, in agree-
ment with the asymptotic result for an infinite system
ported in Ref. 13.

The results obtained from calculations carried out with
OP NLDF are smaller than those yielded by the Skyrme
but exhibit a similar trend as a function ofe2eB and the
asymptotic width is also independent of the geometry, be
W`.5.9 Å. For large systems the OP-NLDF thickness
close to that reported for droplets in Table II of Harmset al.4

These authors have performed calculations for large syst
(1000<N<10 000, i.e.,26.4&e&25.4 K) with the more
elaborate OT NLDF, gettingW.5.7 Å, as may be seen i
the drawing.

The values obtained from Monte Carlo simulations
free planar slabs6,12 and spherical drops6 are also plotted in
Fig. 5. However, in particular, the data evaluated by us
glue-SWF ~Ref. 6! exhibit a spread too large to facilitat
meaningful systematics.

A comparison between the theoretical results mentio
above and the experimental data is performed in Fig. 5.

FIG. 5. Thickness of the free surface as a function of the ene
differencee2eB . The circles, triangles, and squares represent
own data for spherical, cylindrical, and planar systems, respectiv
Empty symbols stand for data calculated using the Skyrme
while full symbols are results from the OP-NLDF approach. As
previous figures, only some selected data are plotted and s
curves are drawn to guide the eye. Diamonds are OT-NLDF res
for spheres from Ref. 4. Full and empty five-point stars are Mo
Carlo simulations for spheres and slabs reported in Ref. 6.
points star are Monte Carlo data from Ref. 12. Asterisks are
NLDF results for helium adsorbed onto planar Na and Li substra
(3), (^ ), and (% ) are experimental values from Refs. 3, 4, and
respectively.
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data obtained in the measurement of large droplets publis
in Ref. 4 are represented by the reported mean thicknesW
56.461.3 Å. In the case of Ref. 7 only the two data in
cluded by the authors in the abstract are shown. Since th
values correspond to rather broad planar films, we plot
them schematically close to the origin for the abscissa
similar criterion was adopted for the value of Ref. 3. As c
be seen in this figure, all the results provided by finite ran
functionals for the largest systems are consistent with
most recent and precise experimental data.7

The measurements of Refs. 3 and 7 have been perfor
for planar films of4He adsorbed onto a substrate of Si, wh
the calculations mentioned above have been carried ou
free planar slabs. Therefore we completed the investiga
exploring the extent that theoretical results change when
lium is adsorbed on a solid surface. In doing so, we inclu
in this analysis the results of our OP-NLDF estimations
the thickness at the free interface for4He films adsorbed on
surfaces of Na and Li. These substrates provide the stron
adsorption potentials among alkali metals.33,34 For example,
we show in Fig. 5 the values calculated for stable films w
coveragenc50.34 Å22 in the case of both substrates, i.e
W55.57 ~Na! and 5.45 Å~Li !.35 These results fit perfectly
into the general pattern exhibited by evaluations perform
with NLDF and recent experimental data.7

1. Simple models for the surface thickness

Let us now show that very simple models provide reas
able estimations of the interface thickness and its rela
with the surface tension for large systems. For this purpo
it is useful to start first from Eq.~2.6! of Ref. 5 for sA of
planar slabs obtained within the Skyrme DF. It reads

sA5
1

2E2`

`

dzH \2

m FdAr~z!

dz G2

12d4Fdr~z!

dz G2J .

~4.42!

We evaluate this integral adopting a crude approximation
the density profile of a wide slab. Let us consider that fro
z50 to z5z0 the density is constant and equal to its value
the center,rc . Subsequently, forz.z0 the falloff begins.
Assuming that the first stretch of the falloff up toz5z, is
linear, provided thatr(z,),rc/10, one may write

r~z!5rcS 12
z2z0

W̃
D 5rcF12

4~z2z0!

5W G . ~4.43!

Next, for z>z, , the falloff of the density profile follows the
asymptotic exponential law@see, for instance, Eqs.~7! and
~9! of Ref. 36#

r~z!5
rc

a
exp@22B~z2z,!#, ~4.44!

with B5A22meB /\251.09 Å21. The parametersz, anda
are determined by matching atz5z, the expressions~4.43!
and~4.44! for r(z) as well as its derivativesdr(z)/dz. This
task is performed in Appendix B and the result is
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sA.
rc

5W S \2

m
18d4rcD . ~4.45!

So, in this crude approach the asymptotic width becom

W`.
r0

5s`
S \2

m
18d4r0D56.83 Å, ~4.46!

lying close to the limit suggested by data displayed in Fig
A slightly different version of the simple model describe

above may provide separate formulas for the surface th
ness and tension in terms of parameters of the Skyrme
As we see below, such expressions are valid for all the a
lyzed geometries. In this model, the proposedr(r ) is the
simplest that takes into account three of the most relev
characteristics of the density profile: the sharp radius of
density distributionRs , the thickness of the interfaceW, and
the ‘‘leptodermous’’ behaviorrc.r0. We assume that from
r 50 to r 5R15Rs2bW̃ the density is constant and equal
rc5r(r 50), and we recall thatW̃55W/4. At r 5R1 a lin-
ear falloff begins and forr>R25Rs1(12b)W̃ the density
vanishes. The parameterb depends on the geometry throug
the normalization condition given by Eq.~2.3!, where N
should be suitably written for nonspherical systems in ter
of nc or nl . The obtained formulas for the normalizatio
condition and the parameterb are given in Appendix C.
Subsequently, the ground-state energy provided by
Skyrme DF for slabs, cylinders, and spheres was expre
by taking into account the proposedr(r ). In order to avoid
an unphysical divergence in the integration of the kine
term caused by the kink of the adopted density profile
assumed that

dAr~z!

dz
.2

4Ar~z!

5W
. ~4.47!

As an example, the energy for cylinders is given in Appen
C.

Upon minimizing the grand free energy@e.g., for cylin-
ders, see Eq.~C5!# with respect toW and e, and keeping
only the dominant terms, the following relation valid for a
three considered geometries is obtained:

WsA5
4rc

5 S \2

m
12d4rcD . ~4.48!

Here, the dominant contribution which is given by the te
proportional tod4 is equal to that previously obtained in E
~4.45!. This procedure also yields an expression for
asymptotic width in terms of parameters of the functiona

W`5
4

5

A~\2/m!12d4r0

A2eB1
b4

3
r01

c4

g413
r0

g411

56.90 Å.

~4.49!
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This value is in excellent agreement with the asymptotic
sult obtained from the complete numerical solutions in
Skyrme-DF approach. The corresponding result for
asymptotic surface tension,

s`5
4

5

r0

W`
S \2

m
12d4r0D50.294 K/Å2, ~4.50!

indicates a good degree of self-consistency of this appr
mation. In conclusion, we can state that the crude sim
models used here to estimate the surface thickness are ab
account for a substantial part of the physics involved.

2. The quantity WsA

By looking at the relation betweenW and sA given by
Eqs. ~4.45! and ~4.48!, we found it worthy to examine the
product WsA as a function ofe2eB . Such a behavior is
shown in Fig. 6, where for curved geometries one may
serve overshoots similar to that exhibited by the central d
sity and the surface tension. Since according to Eqs.~4.45!
and~4.48! the main contribution toWsA is given by the term
containing d4, in this case the linear departure would b
governed by

rc
25r0

2~11e!2.r0
2~112e!, ~4.51!

which leads to

WsA.~WsA!`~112e!. ~4.52!

This relation yields linear asymptotic expressions, where
slope is determined by the compressibilityK which is an
input for the adopted DF approaches

~i! for cylindrical systems

WsA.~Ws!`F11
1

K ~e2eB!G ; ~4.53!

~ii ! and for spherical systems

FIG. 6. QuantityWsA as a function of the energy differencee
2eB . As in Fig. 5, the circles, triangles, and squares represent
for spherical, cylindrical, and planar systems, respectively. Em
symbols stand for data calculated using the Skyrme DF, while
symbols are results from the OP-NLDF approach. Dashed li
indicate the linear asymptotic laws for curved geometries given
Eqs.~4.53! and ~4.54!.
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WsA.~Ws!`F11
4

3K ~e2eB!G . ~4.54!

These approximations are plotted as dashed lines in Fig
From this drawing one can realize that these very sim
forms account fairly well for the obtained departures. In t
case of planar systems there is no overshoot.

By combining the expansions for the productWsA and
for the surface tensionsA it is possible to estimate the de
parture ofW from its asymptotic value

~i! for cylindrical systems

W5
~WsA!

sA
.W`F11S 1

K 2
r0«,

2ps`
2 D ~e2eB!G ;

~4.55!

~ii ! and for spherical systems

W5
~WsA!

sA
.W`H 11F 4

3K 2
r0ac

3ps`
2 S pr0

6 D 1/3G ~e2eB!J .

~4.56!

For both geometries there is an important cancellation wit
the coefficient of the linear term in these expressions. T
fact explains why for large systems the thickness as a fu
tion of e2eB is flat in Fig. 5.

V. SUMMARY

The curvature effects on the thickness of the free interf
W and the corresponding surface tensionsA are studied. It is
known that the free spherical systems are those with the l
est surface area to volume ratio which leads to the low
energy per particle, but nevertheless, we found it interes
to also examine other geometries to get a more comp
view of surface properties. In addition, some general prop
ties of free systems could be extended to adsorbed ones

First of all, we tested whether the largest systems h
already reached the critical size for exhibiting a glob
asymptotic behavior. From Figs. 1 and 2 one may realize
the moments^r k&, with k51 and 2, have attained th
asymptotic values.

In this paper, the results forsA and W corresponding to
different geometries are presented in a unified scale a
function ofe2eB allowing a direct comparison. As far as w
know, this procedure has not been previously used.

It was found that for cylindrical and spherical systems
surface tension presents an overshoot similar to that pr
ously observed for the central density.13,18This fact indicates
that the squeezing effect known as ‘‘leptodermous’’ behav
is also manifested in the surface tension. On the contrary,
feature is not present in the case of symmetric planar slab
is shown that the behavior of large systems may be w
interpreted within the DM,30,31 adapted to each geometry. I
particular, a relation between coefficients of the curvat
energy is derived.

An analysis of the surface thicknessW indicates that for
large systems, i.e., whene2eB&1 K, the asymptotic resul
05451
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is independent of the geometry of the4He system. The de-
parture from that value is different for each geometry. The
features are common to both examined density function
We should mention that according to a discussion given
the text, the range 8.8&W&9.2 Å quoted in Table III of Ref.
4 as corresponding to droplets~with N<728) studied by
utilizing the Skyrme DF, which was determined with da
taken from Table I of Ref. 13, must be replaced by 6.6&W
&7.4 Å.

The results obtained with the OP NLDF for large syste
are close to those calculated with the OT NLDF for sphe
by Harmset al.4 It is shown in Fig. 5 that the most recen
experimental data7 favor the results yielded by the finit
range density functionals. In addition, the thickness of
free surface of helium films adsorbed on planar substrate
Na and Li evaluated with the OP NLDF matches very w
with the pattern depicted in Fig. 5.

We have also analyzed the productWsA . As expected,
for curved geometries this quantity exhibits an oversho
However, it is interesting to note that in this case the dep
ture from the asymptotic values is mainly determined by
inverse of the compressibilityK of bulk 4He. Furthermore,
this analysis gives a hint for understanding the flat behav
of W at smalle2eB .
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APPENDIX A: OP-NLDF HARTREE MEAN-FIELD
POTENTIAL

In this Appendix we compile the relevant expressions
rived in the OP-NLDF approach for a spherical geomet
The explicit form of the Hartree mean-field potentialVH(r )
derived according to Eq.~2.5! becomes

VH
OP~r !5

dEsc@r#

dr~r !
5E dr 8r~r 8!Vl

OP~ ur2r 8u!

1
c4

2
@ r̄~r !#g4111

c4

2
~g411!E dr 8r~r 8!

3@ r̄~r 8!#g4W~ ur2r 8u!. ~A1!

Let us first provide the expressions of the contributions
volving the ‘‘coarse-grained density’’r̄(r ), i.e.,

r̄~r !5E dr 8r~r 8!W~ ur2r 8u!, ~A2!

and

r̄V~r !5E dr 8r~r 8!@ r̄~r 8!#g4W~ ur2r 8u!. ~A3!
8-10
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Both these integrals may be cast into the form

R̄~r !5
3

4phOP
3 E dr 8R~r 8!Q~hOP2ur2r 8u!. ~A4!

After introducing spherical coordinates and taking in
account the fact that the step function is symmetric in
azimuthal anglew, the integration over this variable yields

R̄~r !5
3

2hOP
3 E

r min8

r max8
r 82dr8R~r 8!

3E
0

umax
sinuduQ@hOP

2 2r 22r 8212rr 8cosu#.

~A5!

For the point located atr 50 one gets

R̄~r 50!5
3

2hOP
3 E

r min8

r max8
r 82dr8R~r 8!Q@hOP

2 2r 82#E
0

p

sinudu

5
3

hOP
3 E

0

hOP
r 82dr8R~r 8!. ~A6!

For r .0 two different cases should be considered:~i! 0,r
,hOP and ~ii ! r>hOP. For 0,r ,hOP the integral overr 8
should be split into two parts,

R̄~r !5
3

2hOP
3 H E

0

hOP2r

1E
hOP2r

r 1hOPJ r 82dr8R~r 8!

3E
0

umax
sinuduQ@hOP

2 2r 22r 8212rr 8cosu#.

~A7!

Since for the first integral overr 8 the upper angular limit is
umax5p, while for the second integralumax is determined by
the condition

cosumax5
r 21r 822hOP

2

2rr 8
, ~A8!

then

R̄~r !5
3

2hOP
3 E

0

hOP2r

r 82dr8R~r 8!E
0

p

sinudu

1
3

2hOP
3 E

hOP2r

r 1hOP
r 82dr8R~r 8!E

0

umax
sinudu.

~A9!

The integration overu leads to the very simple expression
05451
e

R̄~r !5
3

hOP
3 E

0

hOP2r

r 82dr8R~r 8!

1
3

4rhOP
E

hOP2r

r 1hOP
r 8dr8R~r 8!F12S r 2r 8

hOP
D 2G .

~A10!

For r>hOP, there is only one contribution similar to th
second term in Eq.~A9!, that is,

R̄~r !5
3

2hOP
3 E

r 2hOP

r 1hOP
r 82dr8R~r 8!E

0

umax
sinudu

5
3

4rhOP
E

r 2hOP

r 1hOP
r 8dr8R~r 8!F12S r 2r 8

hOP
D 2G .

~A11!

Let us now focus on the integration of the screened
potential contributing to Eq.~A1!:

VH
LJ Scr~r !5E dr 8r~r 8!Vl

OP~ ur2r 8u!

5Vl
OP~hOP!E dr 8r~r 8!S R

hOP
D 4

Q~hOP2R!14e

3E
R>hOP

dr 8r~r 8!F S s

RD 12

2S s

RD 6G , ~A12!

with

R5ur2r 8u. ~A13!

Heres ande stand forsLJ andeLJ , respectively. In this case
one can follow the same procedure as that utilized to ca
late the ‘‘coarse-grained density’’ terms. As before there
three different domains ofr to be considered. Atr 50 the
Hartree potential reads

VH
LJ Scr~r 50!5

4p

hOP
4

Vl
OP~hOP!E

0

hOP
r 86dr8r~r 8!

116peE
hOP

`

r 82dr8r~r 8!F S s

r 8
D 12

2S s

r 8
D 6G .

~A14!

For 0,r ,hOP the integral overr 8 becomes
8-11
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VH
LJ Scr~r !5

phOP
2

3r
Vl

OP~hOP!H E
0

hOP2r

r 8dr8r~r 8!

3F S r 1r 8

hOP
D 6

2S r 2r 8

hOP
D 6G1E

hOP2r

r 1hOP
r 8dr8r~r 8!

3F12S r 2r 8

hOP
D 6G J 1

4pes2

r E
hOP2r

r 1hOP
r 8dr8r~r 8!

3H 1

5 F S s

hOP
D 10

2S s

r 1r 8
D 10G2

1

2 F S s

hOP
D 4

2S s

r 1r 8
D 4G J 1
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r 2r 8
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2S s

r 1r 8
D 10G2

1

2 F S s

r 2r 8
D 4

2S s

r 1r 8
D 4G J . ~A15!

Finally, for r>hOP one gets

VH
LJ Scr~r !5

phOP
2

3r
Vl

OP~hOP!E
r 2hOP

r 1hOP
r~r 8!

3F12S r 2r 8

hOP
D 6G r 8dr81

4pes2

r H E
0

r 2hOP

1E
r 1hOP

` J r 8dr8r~r 8!H 1

5 F S s

r 2r 8
D 10

2S s

r 1r 8
D 10G2

1

2 F S s

r 2r 8
D 4

2S s

r 1r 8
D 4G J

1
4pes2

r E
r 2hOP

r 1hOP
r 8dr8r~r 8!H 1

5 F S s

hOP
D 10

2S s

r 1r 8
D 10G2

1

2 F S s

hOP
D 4

2S s

r 1r 8
D 4G J .

~A16!

APPENDIX B: SIMPLE MODEL I

Starting from Eqs.~4.43! and ~4.44!, after imposing con-
tinuity of functions and derivatives one gets

r~z,!5rcF12
4~z,2z0!

5W G5
rc

a
, ~B1!

and

Fdr~z!

dz G
z5z,

52
4rc

5W
52

2Brc

a
. ~B2!
05451
These conditions lead to

a5
5

2
BW, ~B3!

and

z,2z05
5

4
W2

1

2B
5

9

8
W1S W

8
2

1

2BD . ~B4!

Since for large slabs one expectsW.4/B.3.7 Å, thenz,

2z0 would be larger than 9W/8, ensuringr(z,),rc/10,
which in turn would support the consistency of the adop
law for the falloff and the definition of the thickness.

For the evaluation of the derivative one may use the re
tion

dAr~z!

dz
5

1

2Ar~z!

dr~z!

dz
. ~B5!

Now, the integral of Eq.~4.42! may be split into two parts,

sA5H E
z0

z,
1E

z,

`J dzF \2

4m

1

r~z!
12d4GFdr~z!

dz G2

, ~B6!

which leads to

sA5
rc

5W H \2

m F11 lnS 5

2
BWD G18d4rcF12

1

5BWG J .

~B7!

It is possible to verify that for the expected values ofW there
is an important cancellation between terms carrying
productBW. Hence, Eq.~B7! may be reduced to

sA.
rc

5W S \2

m
18d4rcD . ~B8!

APPENDIX C: SIMPLE MODEL II

The evaluation of the normalization condition yields

N5VDrc

@Rs1~12b!W#D112@Rs2bW#D11

D~D11!LD23W
, ~C1!

with VD5152, VD5252p, and VD5354p. In the case
D51 the ‘‘sharp radius’’Rs stands forzs . The parameterb
becomes

~i! for the planar geometry

b5
1

2
, ~C2!

~ii ! for cylinders

b5
1

2
1

Rs

W
2AS Rs

WD 2

2
1

12
, ~C3!

~iii ! and for spheres
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b5
1

2
1

Rs

W
2

1

21/3F S Rs

WD 3

1AS Rs

WD 6

1
1

2363G 1/3

1
21/3

12 F S Rs

WD 3

1AS Rs

WD 6

1
1

2363G21/3

. ~C4!

For instance, the ground-state energy for cylindric geo
etry reads
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Nacional de Investigaciones Cientı´ficas y Técnicas, Av. Rivadavia
1917, RA-1033 Buenos Aires, Argentina.

†Also at the Comisio´n de Investigaciones Cientı´ficas de la Prov. de
Buenos Aires, Calle 526 entre 10 y 11, RA-1900 La Plata, Arg
tina.
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