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The thicknesdV and the surface energy, at the free interface of superfluitHe are studied. Results of
calculations carried out using density functionals for cylindrical and spherical systems are presented in a
unified way, including a comparison with the behavior of planar slabs. It is found that for large spéises
independent of the geometry. The obtained values\blre compared with prior theoretical results and
experimental data. Experimental data favor results evaluated by adopting finite range approaches. The behavior
of o, andWo, exhibits overshoots similar to that found previously for the central density, and the trend of
these observables towards their asymptotic values is examined.
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[. INTRODUCTION The foregone summary indicates that there is an important
piece of information about the free surface thickness of pla-
The understanding of the density profiles in the surfacenar and spherical superfluifiHe systems that is missing.
region of a quantum fluid such &sfe has long been consid- Although in recent years there has been a renewal of interest
ered a very important basic problén? At the liquid-vapor  for examining cylindrical speci€é 2 hitherto, there has
interface, the density profile ofHe changes continuously been no study undertaking the problem of exploring features
from liquid densityp, to vapor density, over a distance of of W in the case of such geometry, to our best knowledge.
some Angstrm. In the case of a liquid-vacuum interface at  \we have explored the evolution of the surface energy at
T=0 K, p, falls monotonically top,=0. The widthWof a  the liquid-vacuum interface of planar slabs as a function of
surface is defined as the distance in which the density deheir size in Ref. 5. However, as far as we know, there has
creases from 0@ to 0.1p,. A glance at recent literature heen no work devoted to studying this property in the case of
reveals several works addressing the question of the thicksystems with curved geometries. Therefore, such an analysis
ness of the free interfade; indicating the continuous inter- pecomes an interesting problem by its own right.
est in this area of theoretical and experimental research. The |n view of the situation described above, the aim of this
surface tension at the free interface has been also investjyork is to study systematically the interface thickness and
gated for a long timé:>*~1?A list of results for the surface the surface tension of liquiHe with cylindrical and spheri-
thickness and tension determined up to the middle of 1987 iga| shapes, making a connection to the case of planar slabs.
given by Osborne in Table 1 of Ref. 2. Although the spherical systems are energetically favored
In the systematic study of free plandHe films atT  against free cylinders and slabs an analysis of the overall
=0 Kwe have, among other issues, discussed features of thficture presents instructive features. The width at the liquid-
surface thickness.There, our own results fow evaluated vacuum interface of free systems is compared with experi-
using several density-functionaDF) approaches are com- mental data and with theoretical results obtained for stable
pared with values obtained from Monte Carlo simulations byplanar films of“He adsorbed onto the lightest alkali metals.
Vallés and Schmidf and experimental data of Luriet al®  The theoretical tools are outlined in Sec. II. In Sec. Il we
From Fig. 4 in Ref. 5 one can realize that the size of thesearch for the size at which the systems reach its asymptotic
experimental error bar was too large to disregard any of thglobal behavior. The discussion of the pattern exhibited by
applied DF approaches. After that paper had been publisheghe width and tension at the surface may be found in Sec. 1V,
other theoretical and experimental results for this quantityyhere the results are presented in a unified way allowing a
have appeared. Evaluations ¥f for free planar slabs and direct comparison of data obtained for different geometries.
droplets utilizing a variational Monte Carlo approach with Section V is devoted to a summary.
shadow wave function6SWF) with a glue term(glue-SWH
were published by Galli and ReaftdOn the other hand, a

different measurementhW using x-ray reflectivity was re- _ Il. THEORETICAL FRAMEWORK
ported by Penaneat al.” These data superseded that previ-
ously obtained at the same laboratdijo complete the sur- The calculations performed in the present work were car-

vey of investigations about the surface thickness ofried out using DF approaches, which have proven to be suc-
superfluid helium droplets, one should mention the calculacessful tools for treating this kind of quantum many-body
tion of Stringari and Treine? and the comprehensive experi- problem. In such a theory the ground-state enefgy, of an
mental and theoretical study of Harms, Toennies, andnteractingN-body system of*He atoms, confined by an
Dalfovo? adsorbate-substrate potentidd,{r), may be written as
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TABLE |. Bulk observables for liquid*He at T=0 and the
Egs=f dl’p(f)H[p,Vp]-l—J drp(r)Ugr) calculated parametets, anda. . PW stands for results obtained in
the present work.
hZ
:_ﬁf drp(r)Vv? P(r)+f drp(r)esd(r) Observable Data Reference
eg (K) -7.15 21
¥ f drp(N U 1), 21 po (A 0.021836 21
K (K) 27.2 21
where p(r) is the one-body density. The first term on the oex, (K/A?) 0.274+0.003 8
right-hand side is the quantum kinetic energy of the helium 0.257£0.001 9
particles of massn. The second term represents the interac- 0.272+0.002 10
tion between the particles of the system, wheygr) is the
self-correlation energy per particle depending on the DF apParameter Value Theory Reference
proach. The last term is the interaction with the external
field. g (KIR) 1.237 Skyrme DF PW
The density profilep(r) is determined from the Euler- €¢ (KIA) 0.882 OP NLDF PW
Lagrange equation derived from the condition ac (K) 10.45 Skyrme DF 13
a (K) 10.90 21
80 S{Eydp,Vp]— uN} a; (K) 10.86 PW
() 3p(1) =0. 22 4 (k) 8.58 OP NLDF PW
(mpold8)Pa.le, 0.99 Skyrme DF PW
Here u is the chemical potentia the number of particles, (7 ,,/48)%, /¢, 1.10 OP NLDF PW
(mpol48)ea /e, 1.00 DM Eq.(4.38; PW
sz drp(r), (2.3

and Q) the grand thermodynamic potential. The variation of | "€ Phenomenological parametds, C,4, v, andd, have

Eq. (2.2) leads to a Hartree-like equation for the square rootbee” fixed in Ref. 13 so as to reproduce the known observ-
iy oy € i@ eauat AHATE 1% bles of the bulk liquid at equilibrium. The data of these

saturation quantitieevhereP=0), i.e., the equilibrium den-
sity pg, the minimum energy per particky, the compress-
W=,u p(r), (2.9 ibility /C, and the surface tensiom, of a semi-infinitéHe
system, are listed in Table I. Experimental values are cor-
which also determineg.. Here V(r) is a Hartree mean- rectly reproduced by the set
field potential given by the first functional derivative of the

hZ
= om V2 Vi) +Usudr)

total correlation energ¥.J p], b,=—8.88810x 10> K A3,
_%Bsdp.Vpl S f et C4=1.04554<107 K A30a+1)
VH(r)_ 5‘0('.) - 5p(l’) dr P(r )eSC(r ) 4 ’ !
= J \v/ fd ’ ’ ’ 2 74:2-8:
- [7p(r) (?Vp(r) rp(r )esc(r ) ( 5)
d,=2.383x10° K AS, 2.7

Two different DFs were used, namely, the Skyrme-type
“zero-range” version suggested in Refs. 13 and 21, and the
nonlocal-density functiondNLDF) proposed in Ref. 22. For B. Orsay-Paris nonlocal-density functional

each DF an expression fo#y(r) should be derived. Currently, in the literature one may find a few NLDF ap-

proaches. The Orsay-Pari®P) version(OP-NLDF devel-
A. Zero-range density functional oped by Dupont-Roet al?? treats correctly the long-range
The simplest DF successfully employed to interpret propPart of the helium-helium interaction and provides a reason-
erties ofHe systems is a zero-range correlation proposed b@Ple description of correlations. The most elaborate version
Stringari and Treinet*?!It has been inspired in Skyrme-type Nas been _ formulated by the Orsay-Trent¢OT)
functionals extensively used to describe properties of atomigollaboratior’> However, the OP-NLDF is sufficient to re-

nuclei?>24 The explicit form of this correlation energy per Produce properties of nonlayered samples such as free or
particle is weakly confined systems. This functional reads

b c 1 1 Cq —
€SN =5 PN+ 5 P (1) +de e Vp(n) 2 eqr(r) = zf dr'p(r WWPR(r =)+ S p(0)] 2,
(2.6 (2.8
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In this case the two-body interactioN°"(|r—r’|), was
taken as thtHe*He Lennard-Jonef.J) potential screened

in a simple way at distances shorter than a characterist
distancehgp,
12 6
(o o .
46LJ (j) —<£> |f r?hop,
r r
VPR = P4
VP (hop) HEJ if r<hep,

(2.9

with the standard de Boer and Michels parametergmely,
well depth € ;=10.22 K and hard-core radiuso;
=2.556 A. In order to recover the correct results for bulk
liquid, the screening distande,p was adjusted so that the
integral ofV|°P(r) over the whole three-dimensional space is
equal to the value db, given by Eq.(2.7),

EE

This procedure led thop=2.376 728 A.

The p(r) is the “coarse-grained density” defined as the
straight average gé(r) over a sphere centeredragnd with
a radius equal to the screening distaheg,

327
EULJGLJ

8

3

3
oL
hop

b4=f drvPf(r)=

F<r>=fdr'p<r'>vv<|r—r'|>, (213

whereW(|r—r'|) is taken as the normalized step function

W(|r—r'|)= O(hgp—|r—r’
([r—=r'] parcy (hop—=[r=r'])
|f |r_r,|$hop,
4mhd
= “™or (2.12
0 if [r—r'|>hgp.

C. Hartree-like equation

In the case of curved geometries Eg.4) takes the form

#?2[d®> D-1d
~ml gt a)Jp<r>+[vH<r>+usub(r>]Jp<r>
= u\p(r), 213

with D=2 for cylindrical systems an® =3 for spherical

ones. The equation for planar systems is obtained by setting

D=1 and assuming thatrepresents the coordinate perpen-
dicular to the plane of symmetrjusually denotedz). The
Hartree potential derived by applying E@2.5 to the
Skyrme DF reads

PHYSICAL REVIEW B 68, 054518 (2003

+2
VEY(r) = bap(r)+ 2 Zcap7e 3(r)
ic
d®> D-1d
—2d, a2t T ar p(r). (214

The expression fovy(r) derived in the OP-NLDF approach
for cylindrical systems is given in the Appendix of Ref. 18.
The corresponding one for spherical systems is provided in
Appendix A of the present work. It is worthwhile to notice
that we expressed this quantity in a rather simple compact
form similar to Eq.(2.16) written in Ref. 27 for planar films
instead of adopting the expansion in terms of Legendre poly-
nomials proposed in Ref. 28. The latter procedure is more
appropriate for studying excitations of a given system. We
mainly report results for curved geometries obtained by set-
ting Ug,fr)=0.

In the case of cylindrical symmetry E¢R.13 is solved
for a fixed number of particles per unit lengdth

nA:N/LZZWfo rdrp(r), (2.15

while for helium spheres the constraint is directly the number
of particles,

N=4wfwr2drp(r). (2.1
0

Typical density profiles are displayed in Fig. 2 of Ref. 18 for
cylinders and in Fig. 1 of Ref. 13 for spheres.

We first test whether the size of the considered systems of
liquid “He is large enough to expect asymptotic behaviors.
Next, we focus our attention on the surface energy and the
width of the interface.

. ASYMPTOTIC GLOBAL BEHAVIOR OF THE
SYSTEMS

In the case of spherical systems, it has become customary
to define for each momexit) an equivalent uniform radius
Ri. This quantity is equal to the radius of a uniformly occu-
pied sphere(of density p,) with the same momentum of
orderk given by the true density distribution. It is possible to
extend this idea to the cylindrical geometry. So, in general,
an equivalent uniform radiuR, associated to a momentum
rk given by

Ry
207177_|_37Dj0 drrkP-1,

<r5>D: Re
2D—17TL3—DJO drr®-1p,

Ry
fo drrk+Dflpu

R

)

D

_ k
_k+DR

k

- (3.1
drrP~1p,
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FIG. 2. Similar to Fig. 1, but for free helium spheres. The solid

FIG. 1. Normalized momen{gr*(n,))1**/n? as a function of : |
lines correspond to the asymptotic values given by Bdj).

the inverse of the square root of longitudinal density= n;l’z for

free helium cylinders. Open and full symbols stand for Skyrme-DF
and OP-NLDF results, respectively. The dashed and dot-dashed
curves are only given to guide the eye. The solid lines correspond to
the asymptotic values given by E@®.5).

4

3 Ropo. (3.6

Ro
N=4Trj r2drpg=
0

where R, is now the radius of the uniformly filled sphere.
is determined by matching the result of this integral with theFurthermore, since in this asymptotic linf% tends toward

k moment of the true radial distribution of the system R, defined by Eq(3.6), the following law is obtained:
207 17L3°D (o k 1K 13 1K
<rk(N)>D=—N f drrk = 1p(r). (3.2 lim [(r'(N)] [ 3 3 3.7
0 e NI 4mpo| \k+3
This condition leads to the generalized Ford-Wills momentﬁzigure 2 shows how the normalized momefits and (r?)
[see Eq(1) in Ref. 29 attain their asymptotic values as a function uggth*lB.
1k The results given by Eq3.7) are reached a=2000. In

(3.3 summary, from values of the normalized moments displayed
in Figs. 1 and 2 it is clear that the largest systems examined
in the present work have, in practice, reached the asymptotic

A. Cylindrical systems global behavior.

kKD
Ry= TU (N))p

One expects that very thick cylinders would tend to ex-
hibit features of bulk liquid at saturation conditions. In the IV. ANALYSIS OF RESULTS
asymptotic limit of very large cylinders one expects that Eq. A. Surface tension

(2.195 will reduce to ) ] .
The evolution of the central density., for cylinders

Ro ) with increasingn, was explored in Ref. 18. It was found that
N/LZZWJO rdrpo=mRgpo, (3.4 after a certain value af, the central density becomes larger
than the saturation density of infinite helium matter,
where p, is the saturation density of bulkHe quoted in > po, giving rise to a squeezing effect. This phenomenon has
Table | andR, is the radius of the uniformly filled cylinder. been previously found in calculations carried out for atomic
Since in the limit of very large cylinders the equivalent ra- nuclei [see Figs. (& and 1b) in Ref. 30 as well as for
dius R, tends towardR, defined by Eq(3.4), one gets the Spherical clusters ofHe (see Fig. 3 in Ref. 18and it is

following asymptotic law: known as the “leptodermous” behavior. It was
demonstrateld that for cylinders the squeezing effect, i.e.,
[(r*(ny)) 1k 1 2\ 1k the differencep.— po, vanishes fon,—o according to the
Iim{——>—1=\/—\|7—5 3.
i =T Napolkrz) - (9 law
Figure 1 shows how the normalized momefits and(r?) _ Ecylzmz = 1n;1/2, (4.1)
attain their asymptotic values as a function of the expansion Po K N po
_ 12
pf'slrametervcy,—nA . One may conclude that qu results which is similar to
given by Eq.(3.5) are safely reached far,=70 A~ 1.
pe—p o | 4 1/3
¢ Po o _
B. Spherical systems €spr= =2—| —| N7 4.2
p Yy sph Po K (spg

From a similar analysis to that performed for cylinders,
one can state that for very large spheres gl will be-  corresponding to*He spheregsee the asymptotic limit of
come Eqg. (12) in Ref. 13.
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In the present work we describe the evolution of the sur-Taple |, should be attained linearly in the parametegy;
face tension when the size of tHéle systems is increased. =n;1’2 with a slope proportional te,,
From thermodynamic considerations one sees that

dEg= — PdV+ oad A+ wdN, (4.3 Tp=0ot \/Ewos(n;lfz. (4.12)

where V is the volume of the systeni the surface area
enclosingV, and o, the surface tension. For both curved
geometries the grand free energy takes the form

The values ofe, obtained from the fits of energies per par-
ticle to Eq.(4.8) are listed in Table I. Since these results are
positive one expects an overshdak., a region in which

Q=Eg— uN=—PV+0,A, (4.4 oa(ny)>o.] for large cylinders.

while P=0 for planar slabs. In the following we examine the 2. Spherical systems

different cases. . .
In the case of spherical systems, upon starting from Egs.

1. Cylindrical systems (4.3 and(4.4) one arrives at

In Ref. 18 it was shown that for cylinders the relationship dQ=d(Egs— uN)=—PdV+o,dA—Ndu. (4.12

between the grand free energy per unit length and the surface S . :
tension becomes At equilibrium, for fixed u, the virtual work resulted from

changing the radius of the sphere should vanish,

Q Eg—uN
- % —(e— p)n, = 7R 4.5 —PdV+ o adA= — P47R2dR+ 028 mRAR,=0.
(4.13
HereR;y is the sharp mean radius defined by This equation leads to
NIL=27 [ "t po=mREpe. 4.6 p— 274 (4.14
0 Rs ’ ’
and it is related tdR, by where the sharp mean radius is
\/T 1\
Rs=R . 4. =
s~RoVite, (4.7 Rs=Ro| 1 +Gsph) , (4.19

Furthermore, it was demonstrated in Ref. 18 that for largeyith R, defined by Eq.(3.6). Then by using Eq(4.4) one
cylindrical systemsin the sense of largB;) the total energy  gets
per particle may be expressed as
4
3
47
4.8 — TRy, (4.16

E T
e= _gs:eB+ 20-oc \/:n;1/2+
N Po
3

where o, and g, are, respectively, the asymptotic surface

tension and the residual energy per unit length defined ifThe total energy per particle can be expanded in the follow-
Ref. 18. Aformula for the surface tensiorn, may be derived ing way|[cf. Eq. (13) of Ref. 13

by taking into account Eq5.7) of Ref. 18,

20’A
Rs

Ep—

ol Q=—PV+0AA=—<
n o+,

-1
2p0/C

1/3
E 36
2 de e:is:eB_i_o.oc — N—L3
TRgoA=—N5 57—, (4.9 N Po
dn,
2 2/3
and the present relationship.5). After keeping all terms up oo 4w —2/3
' > +|la;—2—| — N4 ... (4.17
to second order i, =n, = one gets K\ 3p3
20 2(e— )N nZ de Hence, for spherical systems one gets
op=—— = —————=— _
A 27RL R
cyl TR mRs dny 30 3(e—wN
2 op= = —
_ Po  _ip, O= 3mon) Asph 47TR§
ot \/;8€n” ol g pok | ™ 2 2\ 113
3N< de 2p;
4.1 =_ g +al 2 -1/3
(4.10 4 N Tor ac( 97) N~ (418

This expression indicates that the asymptotic resuln,
—®o)=0,, Which may be identified with the The values ofa. determined by fitting energies per particle
experimentd °values of the surface tensien,, quoted in  of drops withN=300 to Eq.(4.17 are quoted in Table I.
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FIG. 3. Surface tension calculated using the Skyrme DF is FIG. 4. Same as Fig. 3 with data calculated using the OP NLDF.
shown as a function of the energy differenee eg. In order to  In addition, the dashed curve for planar slabs is the quadratic
avoid overcrowding the picture only some selected data are plottedsymptotic law given by Eq4.23.
and solid curves are drawn to guide the eye. Dashed lines indicate
the linear asymptotic laws for curved geometries given by Egsfor p. (see Fig. 6 in Ref. 18 and Fig. 3 in Ref.)1Further-
(4.21) and(4.22. more, in both figures the final trends towasd match the

linear asymptotic expressions
Since these results are positive, overshoots pEhould be (i) for cylindrical systems
expected. For the sake of comparison prior results reported

in Refs. 13 and 21 obtained by using the Skyrme DF and PoE¢

considering systems witN<728 are also included in Table oa=0st 5 —(e—eg), (4.2
. All these data are in good agreement. ”
, _ (i) and for spherical systems
3. Comparison of results for regular geometries
Let us now summarize the results for the surface tension _ podc [ mTpo\ 3
for the three regular geometries. Instead of showing the sur- OA= 0ot 370, 6 (e—ep). (4.29

face tension separately for each geometry as a function of the

appropriate expansion parametgrwe find it more interest- On the other hand, the data for planar slabs attain the
ing to present all the data in a unified picture. In order toasymptotic value in a smooth way with zero slope, that is,
achieve this goal it is useful to consider that for all threewithout any linear term. This behavior may be understood on
symmetriegplanar, cylindrical, and spherigahe final trend  the basis of the fact that upon starting from £4.20 one

of the energy per particle toward the asymptotic value, i.e.gets

the bulkeg, is mainly determined by the linear term in the  (iii) for planar systems

corresponding expansion parameter. Therefore, it becomes

reasonable to adopt the energy differereeeg as an appro- aff"t) 3ve 5
priate common abscissa. In order to facilitate the forthcom- TAT =0t Q(e_ eg)”.
ing discussion we recall that for a symmetric planar slab *

(see, e.g., Ref.)3he energy per particle may be expressed agjere o, is the surface tension at each free interface. The
an expansion in terms of inverse coverage'=Agy/N, values obtained with the OP-NLDF approach match this law

with y.=—1.44x10 3 K/A°® listed in Table 2 of Ref. 5,
while the trend of results provided by the Skyrme DF is even

(4.23

Eos_

= +20,n; Y yen 3+ 4.1 . :

€= N TN T YeNe ' (4.19 flatter suggesting ae(~eg)" law with n=3. The latter be-
. havior results from the fact that in such a mean-field approxi-
and the total surface tension becomes mation y.=0 because the Lennard-Jones potential is not in-

cluded in the theorycf. Table 2 and the discussion in Ref.
(100 Q =E95_MN=(G_M)N:—n2E:20 5).
A Aglab Aglap L? cdng .
4. Relation between aand ¢,
-2
+3yeN ”. (4.20 We now search for a relation betweapande, . Accord-

ing to the droplet modé?3! (DM) the total ground-state en-

carried out using the Skyrme DF are displayed in Fig. 3gyrface, and curvature terms,

while Fig. 4 shows the behavior ef, evaluated using the
finite range OP NLDF. The main features exhibited by both (4.24
these drawings are similar. In particular, for curved geom-

etries the surface tension tends toward showing the pre- The surface and curvature energies for cylindrical systems
dicted overshoot, which is similar to that previously found may be written agsee Eq(4.8) in Ref. 1§

Ege=E,+E¢+E..
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@ and
Eq(cyl)=27RoL JO {p(r)H[p,V p]— poeoldr

E.(sph =4mR3(sph Moo= AgptCapthcs -

(4.395

Ec(Cy|)=27TLfm{p(f)H[p,Vp]_poeo}(r—Ro)dl’:E)(L, The relation betweem. and ¢, may be derived from the
0 ' ratio of this equation:

1
=2mRy(cy)Lo.,, (4.25 Ro(sph

(4.26

13
while for spheres Eq(2.11) in Ref. 31 holds that Ec(sph = AsptCsprh-- = ARo(sph = aN (4.36)

Ec(cyl) AcyICcyI)\oo L gl ’

Es(SDW=47TR3f {p(r)HLp,V p]—po€otdr which yields
0
_ 2 o203 ac  4Ro(sph 3 \B
47Ry(spho.=aN", (4.27 ;: NETE =4 dmpa] (4.37
Ec(SpW=8vTRof {p(r)H[p,V p]—poo}(r —Ro)dr leading to
0
1/3
a

—aNB (4.28 (% 8—:= (4.39

In this approach the integrals in Eq€.25 and (4.27) are
associated witlr,, , and it was verified numerically that they
yield equal results. The integrals in Eqg.26) and (4.28

The values of this relation calculated with parameters deter-
mined from both examined DFs are included in Table I. For

may be considered to be higher-order moment of the formei€ Skyrme DF the result was 0.99, in excellent agreement
integrals, hence, it becomes plausible to suppose that théQ/”th the DM prediction. The ratio yielded by the OP NLDF,

should exhibit similar features. Therefore, one would be ablé € 1-10, differs slightly from unity. This is indeed to be
expected when the DF is not only written in termsggf)

to write
but has explicit information onr as happens with the
Ec(cy)=mLA,=¢,L, (4.29  Lennard-Jones potential. In such a case there is an additional
d curvature contribution which in the approach adopted here is
an embedded in the coefficieat, .3*
E.(sph=4mRo(sph\.=aN"3 (4.30 Upon starting from Egs4.11) and (4.18), in both cases,

one may express the excess of surface energy in terms of the
Here\., is twice the asymptotic value of the integrals in Egs. curvature and the quantity.., and get
(4.26) and (4.28 and may be interpreted as the asymptotic

coefficient for the curvature energy. It is worth noticing that PO _1p Y, 2ey
the curvature energy may be expressed in terms of the area  (0A™ Tw)ey="\/ &M "= TRo(Cyl) — Coy
and curvature of the cylindrical and spherical surfaces. Ac-
cording to a theorem of Euler the average curvature at a =2N..Cey, (4.39
given point of a surface is defined®as ) s
— ~ ﬂ —-1/3
o= 1 i+ 1 , (4.3D (oA—0u)spi=ac 977) N
2R R 13 13
a a
whereR; and R, are the radii of curvature along any two = m) —Cz(@ —Coph
orthogonal tangents. Hence, for wide cylinders one gets 6 mRo(sph 6 77
1/1 1 1 =2N.Csph- (4.40
Ccylzi(R_¢+ Rzﬁoo) - 2R (cyl) : (4.32 By taking into account these results one arrives at
for large spheres (op— a'oc)spHA‘sph_ Aspleph_ Ec(sph
= = . (4.4)
1/ 1 1 1 (oa—0 oo)cyIAcyI AcyICcyI Ec(cyl)
CSPh:E(R_¢+R_H) ~ Ry(sph’ (433 This means that the ratio of the excess of surface energies is
. . equal to the ratio of curvature energies.
while for planar slabs it holds thal,,=0. So, one may . g

write B. Thickness at the free interface

All the calculated results for the surface thickn&ysof
free “He systems are plotted together in Fig. 5 as a function
(4.39 of e—ep. Let us first look at values obtained by applying the

1
EC(CyD = 27TR0(Cy|)L m)\OC = Acy|Ccy|)\w ,

054518-7
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- ' ' ' L data obtained in the measurement of large droplets published
g U . He Systeme | in Ref. 4 are represented by the reported mean thickéss
=6.4+1.3 A. In the case of Ref. 7 only the two data in-
T 1 cluded by the authors in the abstract are shown. Since these
% . values correspond to rather broad planar films, we plotted
I 5 them schematically close to the origin for the abscissa. A
%l # * : similar criterion was adopted for the value of Ref. 3. As can
be seen in this figure, all the results provided by finite range
functionals for the largest systems are consistent with the
o = 4 s most recent and precise experimental data.
e—ep [K] The measurements of Refs. 3 and 7 have been performed
for planar films of*He adsorbed onto a substrate of Si, while
FIG. 5. Thickness of the free surface as a function of the energyhe calculations mentioned above have been carried out for
differencee—eg . The circles, triangles, and squares represent oufree planar slabs. Therefore we completed the investigation
own data for spherical, cylindrical, and planar systems, respectivelyexploring the extent that theoretical results change when he-
Empty symbols stand for data calculated using the Skyrme DRjum is adsorbed on a solid surface. In doing so, we include
while full symbols are results from the OP-NLDF approach. As inin this analysis the results of our OP-NLDF estimations of
previous figures, only 'some selecte.d data are plotted and solighe thickness at the free interface file films adsorbed on
curves are drawn to guide the eye. Diamonds are OT-NLDF resultg, faces of Na and Li. These substrates provide the strongest
for spheres from Ref. 4. Full and empty five-point stars are Mon_teadsorption potentials among alkali met3$4 For example,

Carlo simulations for spheres and slabs reported in Ref. 6. Sixgq ooy in Fig. 5 the values calculated for stable films with
points star are Monte Carlo data from Ref. 12. Asterisks are OP-

= —2 i
NLDF results for helium adsorbed onto planar Na and Li substrates\c.;\?iesrasg?eﬂ\lca) Oéigr 'é 45|r11&(tlf_1ie) %af.ﬁe‘;‘; br%?ul?sjeﬁtrpa;ﬁ‘zc;ijq

X i tal val f Refs. 3, 4 7,. L .
Ees)ée(cﬁ\)/é;nd (©) are experimental values from Refs. 3, 4, and "into the general pattern exhibited by evaluations performed
' with NLDF and recent experimental ddta.

Skyrme DF. In this case we must state a word of caution _ _
because our results for spheres differ noticeably from those 1. Simple models for the surface thickness

listed in the fifth column of Table | in Ref. 13. We attribute Let us now show that very Simp|e models provide reason-
this difference to a misprint in Table | of Ref. 13 in view of aple estimations of the interface thickness and its relation
the fact that the tabulated values are also inconsistent W|th/|th the surface tension for |arge Systems_ For this purpose,
the thickness inferred from the profiles plotted in Fig. 1 ofit is useful to start first from Eq(2.6) of Ref. 5 for o5 of

the same paper. This point is stressed because due to thahnar slabs obtained within the Skyrme DF. It reads
mistake the range oW ascribed to calculations with the

Skyrme-DF for spheres witN=<728 quoted in the summary 1 [ #2[d\p(2)|? dp(2)]?
of Table IIl in Ref. 4 is incorrect, actually it is 66W OA=% dz{—[— +2dy| —— j
=74 A 2) w m| dz dz
Turning to the present results, the displayed data indicate (4.42

that the asymptotic surface width obtained with the zeroyyg eyaluate this integral adopting a crude approximation for
range functional does not depend on the geometry of thg,e density profile of a wide slab. Let us consider that from
helium system. In all the cases it attaWs.~7 A, in agree-  ,_¢ 1o 7=z, the density is constant and equal to its value at
ment with the asymptotic result for an infinite system re-y,qo center,p,. Subsequently, foz>z, the falloff begins.

ported in Ref. 13. _ , , Assuming that the first stretch of the falloff up m=z, is
The results obtained from calculations carried out with the\inear provided thap(z,) < p/10, one may write
[ C [

OP NLDF are smaller than those yielded by the Skyrme DF,
but exhibit a similar trend as a function ef-eg and the
asymptotic width is also independent of the geometry, being - I _ M
. . p(2)=pc| 1 I~ pel 1 .

W.,.=5.9 A. For large systems the OP-NLDF thickness is SW
close to that reported for droplets in Table Il of Hareisal*
These authors have performed calculations for large systenf¥ext, forz=z,, the falloff of the density profile follows the
(1000<N<10000, i.e.,—6.4<e<—5.4 K) with the more asymptotic exponential lasee, for instance, Eq$7) and
elaborate OT NLDF, gettingV=5.7 A, as may be seen in (9) of Ref. 36
the drawing.

The values obtained from Monte Carlo simulations for
free planar slalfs? and spherical drofsare also plotted in
Fig. 5. However, in particular, the data evaluated by using
glue-SWF (Ref. 6 exhibit a spread too large to facilitate with B= J=2mey/72=1.09 A~L. The parameters, anda
meaningful systematics. are determined by matching at z, the expression{4.43

A comparison between the theoretical results mentione@nd(4.44) for p(z) as well as its derivativedp(z)/dz. This
above and the experimental data is performed in Fig. 5. Théask is performed in Appendix B and the result is

(4.43

p(2)="Sexd —2B(z-2,)], (4.44
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Pc

T W

ﬁ2 2.5 T T T
E + 8d4pc) . (445) : Free *He Systems seh,

So, in this crude approach the asymptotic width becomes

Wio, [K/A]

2

%
Po E+8d4p0) =6.83 A, (4.46

W= 50.

lying close to the limit suggested by data displayed in Fig. 5.
A slightly different version of the simple model described e—ey [K]

above may provide separate formulas for the surface thick- ) _ _

ness and tension in terms of parameters of the Skyrme DF. FIG. 6. QuantityWa, as a function of the energy differenee

As we see below, such expressions are valid for all the ana- - AS in Fig. 5, the circles, triangles, and squares represent data

lyzed geometries. In this model, the propose@) is the for spherical, cylindrical, and planar systems, respectively. Empty

simplest that takes into account three of the most relevans[ymbOIS stand for data calculated using the Skyrme DF, while full

characteristics of the density profile: the sharp radius of theSymbOIS are results from the OP-NLDF approach. Dashed lines

density distributiorR, , the thickness of the interfaddl, and indicate the linear asymptotic laws for curved geometries given by
“ ., . Eqgs.(4.53 and(4.59.
the “leptodermous” behaviop.>po. We assume that from

r=0 tor=R;=Rs— W the density is constant and equal t0 Thjs value is in excellent agreement with the asymptotic re-
pc=p(r=0), and we recall thav=5W/4. Atr=R; a lin-  sult obtained from the complete numerical solutions in the
ear falloff begins and for>R2=RS+(1—,8)\7Vthe density Skyrme-DF approach. The corresponding result for the
vanishes. The parametgrdepends on the geometry through asymptotic surface tension,

the normalization condition given by Ed2.3), where N
should be suitably written for nonspherical systems in terms
of n, or n,. The obtained formulas for the normalization
condition and the parametg® are given in Appendix C.
Subsequently, the ground-state energy provided by thindicates a good degree of self-consistency of this approxi-
Skyrme DF for slabs, cylinders, and spheres was expressgdation. In conclusion, we can state that the crude simple
by taking into account the proposedr). In order to avoid models used here to estimate the surface thickness are able to
an unphysical divergence in the integration of the kineticaccount for a substantial part of the physics involved.

term caused by the kink of the adopted density profile we

Po ﬁz 2
W H+20|4pO =0.294 K/&, (4.50

_4
O'x—g

assumed that 2. The quantity W
By looking at the relation betweeW and o5 given by
dvp(2) 4\p(z) Egs. (4.45 and (4.48, we found it worthy to examine the
dz _  s5W - (4.47) productWo, as a function ofe—eg. Such a behavior is

shown in Fig. 6, where for curved geometries one may ob-
As an example, the energy for cylinders is given in Appendixserve overshoots similar to that exhibited by the central den-
C. sity and the surface tension. Since according to E4<l5
Upon minimizing the grand free enerdg.g., for cylin- and(4.48 the main contribution t&Vo 4 is given by the term
ders, see Eq(C5)] with respect toW and e, and keeping containingd,, in this case the linear departure would be
only the dominant terms, the following relation valid for all governed by
three considered geometries is obtained:
p§=pg(1+ 6)22p5(1+26), (4.5
dp.[h

2
oA= m+2d4pc)_ (4.48 which leads to

Here, the dominant contribution which is given by the term Wop=(Wop)=(1+2€). (4.52

proportional tod, is equal to that previously obtained in Eq. Thjs relation yields linear asymptotic expressions, where the

(4.45. This procedure also yields an expression for theslope is determined by the compressibility which is an
asymptotic width in terms of parameters of the functional, input for the adopted DF approaches

(i) for cylindrical systems

4 V(#2Im)+2d4po
W, =— =6.90 A. 1 _
5 b4 C4 'y4+1 WO’A:(W(T)OO 1+ E(e_eB) y (453
—egt —pot Po
3 '}/4+3
(4.49 (i) and for spherical systems
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is independent of the geometry of tHele system. The de-
: (4.54 parture from that value is different for each geometry. These
features are common to both examined density functionals.
These approximations are plotted as dashed lines in Fig. 6Me should mention that according to a discussion given in
From this drawing one can realize that these very simpléhe text, the range 8:8W=9.2 A quoted in Table IIl of Ref.
forms account fairly well for the obtained departures. In the4 as corresponding to droplefsiith N<728) studied by
case of planar systems there is no overshoot. utilizing the Skyrme DF, which was determined with data
By combining the expansions for the proditr, and  taken from Table | of Ref. 13, must be replaced by=6\8
for the surface tensiom, it is possible to estimate the de- <7.4 A.
parture ofW from its asymptotic value The results obtained with the OP NLDF for large systems
(i) for cylindrical systems are close to those calculated with the OT NLDF for spheres
by Harmset al? It is shown in Fig. 5 that the most recent
experimental dafafavor the results yielded by the finite

4
Wop=(Wa),| 1+ %(e— eg)

(Waa) Po€¢ . . ; L .
W= p =W,| 1+ X o2 (e—ep)|; range density functionals. In addition, the thickness of the
A 270, free surface of helium films adsorbed on planar substrates of

(4.59 Na and Li evaluated with the OP NLDF matches very well
with the pattern depicted in Fig. 5.
We have also analyzed the prodito, . As expected,
for curved geometries this quantity exhibits an overshoot.
(e—e )} However, it is interesting to note that in this case the depar-
B/ ture from the asymptotic values is mainly determined by the
(456  inverse of the compressibilitiC of bulk “He. Furthermore,
this analysis gives a hint for understanding the flat behavior
For both geometries there is an important cancellation withirof W at smalle—eg .
the coefficient of the linear term in these expressions. This
fact explains why for large systems the thickness as a func- ACKNOWLEDGMENT
tion of e—eg is flat in Fig. 5.

(ii) and for spherical systems
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W and the corresponding surface tensignare studied. It is
known that the free spherical systems are those with the low- APPENDIX A: OP-NLDF HARTREE MEAN-FIELD
est surface area to volume ratio which leads to the lowest POTENTIAL

energy per particle, but nevertheless, we found it interesting ] ) ] .

to also examine other geometries to get a more complete N this Appendix we compile the relevant expressions de-

view of surface properties. In addition, some general propertived in the OP-NLDF approach for a spherical geometry.

ties of free systems could be extended to adsorbed ones. The explicit form of the Hartree mean-field potentig(r)
First of all, we tested whether the largest systems havéerived according to Eq2.5 becomes

already reached the critical size for exhibiting a global

asymptotic behavior. From Figs. 1 and 2 one may realize that SE<d p]

the moments(r*), with k=1 and 2, have attained the HOE 3o(1) =Jdr'p(r’)V|OP(|r—r’|)

asymptotic values. P

V. SUMMARY

In this paper, the results far, and W corresponding to Cq — L1 Ca
different geometries are presented in a unified scale as a +o (D] S (et 1)f dr'p(r’)
function ofe— eg allowing a direct comparison. As far as we
know, this procedure has not been previously used. X[p(r") 1" W(|r—r'|). (A1)

It was found that for cylindrical and spherical systems the
surface tension presents an overshoot similar to that previ-et us first provide the expressions of the contributions in-
ously observed for the central density® This fact indicates  volving the “coarse-grained densitys(r), i.e.,
that the squeezing effect known as “leptodermous” behavior
is also manifested in the surface tension. On the contrary, this
_feature is not present in th_e case of symmetric planar slabs. It ;(r):j dr'p(r'"HYW(r—r’|), (A2)
is shown that the behavior of large systems may be well
interpreted within the DM®3! adapted to each geometry. In
particular, a relation between coefficients of the curvature
energy is derived.
An analysis of the surface thickne¥®¢ indicates that for — R ,
large systems, i.e., wheseg=<1 K, the asymptotic result pV(r):f dr’p(r)p(r )T WM(r=r']). (A3
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Both these integrals may be cast into the form

R(r)= wth dr'R(r")O (hop—|r—r']). (Ad)

After introducing spherical coordinates and taking into

account the fact that the step function is symmetric in the

azimuthal anglep, the integration over this variable yields

r/
3 ,maxr/ZdrrR(r/)
2hop i

R(r)=

fmax__ 2 2 2
X sin@d O hgp—r<—r'“+2rr’'cosé].
0

(A5)

For the point located at=0 one gets

7€(r=0)=

fr/maxr/zdrrR(r/)®[héP—r’ZJJ singd 6o
) 0

min

3
OP

3 h

or 12 ’ ’
=3 ), r'edr’R(r").
OP

(AB)

Forr>0 two different cases should be consideregd0<r
<hgp and (ii) r=hgp. For 0<r<hgp the integral over’
should be split into two parts,

r+hop

hop—r
L)
0 hop—r

0max
X f sin#d#O[h3,—r2—r'2+2rr 'cosd].
0

R(r)=

r'2dr'R(r’)
|

(A7)

Since for the first integral over’ the upper angular limit is
Omax= 1, While for the second integrdl,o, is determined by
the condition

COSO o= , (A8)
2rr’
then
N hop_r e
R(r)=—3f r’zdr’R(r’)f singde
2hgplo 0
3 rJrhOP Hmax
+— f r’2dr’R(r’)f sinadé.
ZhOP hop—r 0
(A9)

The integration ovep leads to the very simple expression

PHYSICAL REVIEW B 68, 054518 (2003

— 3 (hop-r 2
R(r)=— r'edr’R(r")
hgpt 0
. 3 J‘r+hop AR ,)[1 (r—r’)z}
r'dr’ R(r - .
4rhop) hop-r hop

(A10)

For r=hgp, there is only one contribution similar to the
second term in EqLA9), that is,

— 3 r+hop 2 Omax
R(r)=—3 r'=dr'R(r") sinfd 6o
2h3p) r—hop 0
3 Jr+hop AR ,)[1 (r—r’ 2}
=— r'dr’ R(r — .
4rhop)r—ngp hop
(A11)

Let us now focus on the integration of the screened LJ
potential contributing to EqAL):

Vi) = [ ar (e P e r)
R 4

h_op) @(hop_R)+4E
)12

g g 6
XJthopdr"’“')Hﬁ _(ﬁ)

~V¥(hon | dr'p<r'>(

; (A12)

with
R=|r—r’|. (A13)

Hereo ande stand foro j ande j, respectively. In this case
one can follow the same procedure as that utilized to calcu-
late the “coarse-grained density” terms. As before there are
three different domains of to be considered. At=0 the
Hartree potential reads

47 hop
VhJSCir=0>=hTVP'°<hop>f0 r'edr’p(r’)
OoP
12
g
(r,> (

For 0<r <hgp the integral over’ becomes

6
g

rI

+167T€f r'2dr’p(r’)
hop

(A14)
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hop—r
j r'dr'p(r’)
0
& (r—r’ r+hop
—|— +f r'dr’p(r’)
hOP hop*l’

r—r'\® Aed? (r+hop
1- + f r'dr'p(r’)
hop r hop—r

mhde
Vi () = 3—rV|OP(h0p)

r+r’ 6

hop

X

4

Finally, for r=hgp One gets

Trhép r+hg
3r VIOP(hOP)f
r—hg

=
hop

® 1
+f ]r’dr’p(r’)[—
r+hop 5

P
p(r’)

p

Vi %) =

X r'dr’ +

drea?
r

r—hop
)
10
o
=

o 10 1 o 4 o 4
r+r’ 2| \r=r’ r+r’
47760'2ff+hop dr' (1) 1 ( o )10

+ r'dr’p(r’)y =| | —

r Jr—hop P 5[ \hop

1 4

2

10
o ( 0')4 o
r+r’ hop r+r’

APPENDIX B: SIMPLE MODEL |

|

(A16)

Starting from Eqs(4.43 and(4.44), after imposing con-
tinuity of functions and derivatives one gets

4(ze—29)| p
pua=p41———§wilzv§, (B1)
and
dp(z2)|  4pc_ 2Bp
az | TTRWT T a B2

—Z(
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These conditions lead to

5
a=—-BW, (B3)
2
and
_SW 1_9W w 1 B4
2=z Woog=gWrlg 25/ B

Since for large slabs one expedi¢>4/B=3.7 A, thenz,
—29 would be larger than W/8, ensuringp(z,)<p./10,

which in turn would support the consistency of the adopted

law for the falloff and the definition of the thickness.

For the evaluation of the derivative one may use the rela-

tion
dvp(z) 1 dp(2)
dz 2\p(z) dz
Now, the integral of Eq(4.42 may be split into two parts,

o | [+ i

1 2
m_p(z)+2d4ﬂ_dz } ®6)
which leads to

(B5)

dz

1+In

_ Pc 2 S 8d 1
TATEW| m 2 BW] | *+8dape 1= 55 (-

(B7)

It is possible to verify that for the expected valued/dthere

is an important cancellation between terms carrying the

productBW. Hence, Eq(B7) may be reduced to

ﬁZ
L —+ 8d4pc) . (B8)

APPENDIX C: SIMPLE MODEL I
The evaluation of the normalization condition yields

[Re+ (1= BW]P T —[Rg— W]+

N=Q
bPe D(D +1)LP 3w

. (CD)

with Qp_1=2, Qp_,=2m, and Qp_3=4mx. In the case
D=1 the “sharp radius'Rg stands forz,. The parameteg
becomes

(i) for the planar geometry

B=5 (2

(i) for cylinders

B= (C3)

R R\2 1
L s (_S>__
W

N[ =

(iii) and for spheres
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1 R 1][(R)3 R\® 1 | 1 1 R
B:_+_S__ ) S| 4 e=eg+2mn, EeBBW(_2R3+BW)pc+ §+W—
2 W o3 \W W 2% 63
2
_ 1 1 R
v 3 6 v x| =—+d + W22 byl =+ -
12 | \W w 2% 63
3¢y 1 N Rs 5
et 3| y,+4 T w APl ©9
For instance, the ground-state energy for cylindric geomHere p, and Rg are functions ofe given by Egs.(4.1) and
etry reads (4.7), respectively.
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