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Critical fluctuation conductivity in layered superconductors in a strong electric field
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The paraconductivity, originating from critical superconducting order-parameter fluctuations in the vicinity
of the critical temperature in a layered superconductor, is calculated in the frame of the self-consistent Hartree
approximation for an arbitrarily strong electric field and zero magnetic field. The paraconductivity diverges less
steep towards the critical temperature in the Hartree approximation than in the Gaussian one, and it shows a
distinctly enhanced variation with the electric field. Our results indicate that high electric fields can be effec-
tively used to suppress order-parameter fluctuations in high-temperature superconductors.
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[. INTRODUCTION acter of the time-dependent Ginzburg-Land@DGL) equa-
tion cannot be neglected for high densities of fluctuation
Due to their high critical temperature, small coherenceCooper pairs. Several works'8 have included the interac-
length, and quasi-two-dimensiongfjuasi-2D nature, the tion between superconducting fluctuations in the critical tran-
high-temperature superconductdidTSC’s) show a much sition region within different theoretical approaches. The
more pronounced and therefore experimentally accessible efimplest and most used one is the Hartree approximation
fect of thermodynamic fluctuations in the critical region of which treats self-consistently the quartic term in the
the normal-superconducting transition. In general, an enGinzburg-Landau free-energy expansion. In this way expres-
hancement of the conductivity, denoted paraconductivity, isions for the specific heat have been derived for ¥usind
observed in HTSC's abové, due to the presence of super- layered' superconductors under a magnetic field, based on
conducting fluctuations. Outside the critical region, in thethe functional integral approach. In the frame of the TDGL
absence of a magnetic field and for small electric fields, theéheory, Ullah and Dorséy computed the Nernst effect, ther-
paraconductivity can be explained in terms of themopower, and longitudinal and Hall conductivities in the
Aslamazov-Larkin theory of noninteracting, Gaussian fluc- linear-response approximation for a layered superconductor
tuations. The initial expressions for the paraconductivityin a magnetic field. Using the same relaxational dynamics of
have been extended for two-dimensional layered supercorthe TDGL approach, Dors&yprovided expressions for the
ductors, a situation very much resembling the crystal strucfluctuation conductivity in both the Ohmic and non-Ohmic
ture in the cuprates, by Lawrence and Donia¢towever, it  regimes for isotropic superconductors of arbitrary dimen-
was shown that the fluctuation conductivity may be calcu-sionality and in the absence of a magnetic field. More
lated in the linear-response approximation only for suffi-recently® the effects of critical superconducting fluctuations
ciently weak fields, when they do not perturb the fluctuationon the scaling of the linear ac conductivity(w), of a bulk
spectrunt Reasonably high values of the electric fi@ldan  superconductor slightly abovE, in zero applied magnetic
accelerate the fluctuating paired carriers to the depairing cufield have been investigated based on the dynamic
rent and, thus, suppress the lifetime of the fluctuations, leadenormalization-group method applied to the relaxational
ing to a deviation from Ohm’s law. In connection with the TDGL model of superconductivity, verifying explicitly the
low-temperature superconductors, the nonlinearity has beestaling hypothesisr(w,£) proposed originally by Fisher,
studied theoretically for the isotropic cdSeand also proved Fisher, and Hus& The essential features of the scaling and
experimentally on thin aluminum filnfsThe issue of the renormalization-group method have been also reviewed re-
non-Ohmic fluctuation conductivity for a clean layered su-cently by Larkin and Varlamol® A more sophisticated ap-
perconductor in an arbitrary electric field has been addressqatoach based on the renormalization procedure and diagram-
by Varlamov and Reggiaristarting from a microscopic ap- matic techniques has been developed for treating the non-
proach of Gor’ko¥ for dirty isotropic superconductors. Es- Gaussian superconducting fluctuations by Ikeda, Ohmi, and
sentially the same dependence on temperature and electifsunetd® and applied to the longitudinal conductivity,
field has been recenflyderived, together with generaliza- magnetizatiot® and Hall conductivity’ in the linear-
tions for the case of arbitrary dimension, based on the anaesponse approximation for a layered superconductor under
lytical derivation of the velocity distribution resulting from magnetic field.
the Boltzmann equation for the fluctuating Cooper pairs. In this paper we shall address the problem of the non-
The above-mentioned theories do not consider the inter©hmic behavior of the non-Gaussian fluctuation conductivity
actions between fluctuations, so that fluctuations can be déer a layered superconductor, a topic that, to our present
scribed by the Gaussian approximation. Thus, the quarti&nowledge, has not yet been treated in the literature. While
term in the Ginzburg-Landau free energy is neglected. Thishe nonlinear conductivity under arbitrarily strong electric
approximation is known to hold for temperature values noffield was derived for a layered systéffor Gaussian, non-
too close to the mean-field transition temperature, but iinteracting fluctuations, the effect of critical, strongly inter-
breaks down in the critical region, since the nonlinear characting fluctuations on the Ohmic and non-Ohmic conductiv-
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ity was investigatetf only for isotropic systems of arbitrary where the pair electric charge i,=2e and the order-
dimensionality, but not for the layered Lawrence-Doniachparameter relaxation raf&,, given by°=??
model. The latter, however, would be required for compari-

son to experimental data on, e.g., YJBapOq, . 53
The paper is organized as follows. In Sec. Il the TDGL 1“51:—2, 3)
equations are deduced for a layered superconducting system, 16mégkgT

with the explicit consideration of an arbitrarily strong elec-

tric field, oriented parallel to the layers. The fluctuation in-is related to the lifetime of metastable Cooper paits
teraction term is also included in this model, within the self- 78“®~ 7#/16kg(T—T,) through the relation I'g*
consistent Hartree approximation. Section Il presents the=2a7(ESS). As can be noticed, we define the relaxation rate
resulting equation solutions, obtained with the aid of thel“g1 as depending on the actual temperatiitewhile in
Green function techniqui@etailed in the AppendjxBy con-  many other works;'®? it is defined as a function of the
sidering in detail the necessary correction through the UVmean-field critical temperaturg,. Of course the difference
cutoff procedure, expressions for the fluctuation conductivityis negligible near the transition point, but one must recall that
and self-consistent equation for the renormalized reduceih the derivation of the GL equations from BCS the®ty*2°
temperature parameter are provided. Further, Sec. IV treathe temperature is usually approximated with the critical one,
the limit cases of the linear response approximation, the nowhile the reduced temperature Ti{,) is approximated with
cutoff limit, and also the isotropic 2D and 3D cases, recov{T—T,)/T,. The same happens while the TDGL equation is
ering thus the results of previous theories. In Sec. V applicasbtained for temperatures negg, as, for instance, in Refs.
tion of the model is illustrated by comparing the 23 and 26. In some more recent derivations of the TDGL
paraconductivity obtained in the present theory with that inequatior???’ however, the original appearance of these pa-
the Gaussian fluctuation approximation for various appliedtameters is preserved, so that the order-parameter relaxation
electric fields. A comparison between the fluctuation suprate is written as depending on the actual temperature. In this
pression effects of the electric and magnetic fields is alsenathematically somewhat stricter sense, one could therefore
illustrated. Finally, in Sec. VI, we summarize the main con-write the lifetime of the metastable Cooper pairs &%)

clusions emerging from our analysis. = 7h/16kgT IN(T/Ty).
The Langevin forceg,(x,t) introduced in Eq(2) in or-
IIl. TDGL EQUATION FOR ARBITRARY ELECTRIC der to model the thermodynamical fluctuations must satisfy
FIELD the fluctuation-dissipation theorem and ensure that the sys-

tem relaxes to the proper equilibrium distribution. This re-
For our purpose, we shall adopt the TDGL framework andquirement is fulfilled if the Langevin force&,(x,t) are cor-

treat the quartic term in the free-energy expansion within theelated by the Gaussian white-noise law
simple self-consistent Hartree approximation. The starting
point will be the Lawrence-Doniach expression of the
Ginzburg-LandauGL) free energy for a system of supercon- (gn(x,t)gz,(x’ ,t’))z2F51kBT5(x—x’)6(t—t’)
ducting planes separated by a distascevith a Josephson
coupling between the planes, in the absence of a magnetic
field,

Snnr
S 1

4

where §(x—x") is the two-dimensional delta function con-

cerning the in-plane coordinates. Since we are interested in
5 h? ) finding the conductivity for an arbitrary electric field, we

al | +%|V¢/n| cannot use the linear-response approximation, so we have to
explicitly include the electric field in the model. In order to

%2 b compute the in-plane fluctuation conductivity, we shall as-
+ —— v~ Unea|*+ §|l//n|4 , (1)  sume the fieldE along thex axis (wherex andy are the
2mcs in-plane coordinatgs generated by the scalar potential

=—EXx. In the chosen gauge, the current density operator

wherem andm, are effective Cooper pair masses in Hte along thex direction in thenth plane will be given by

plane and along the axis, respectively. The GL potential

a=age is parametrized b;a0=ﬁ2/2m§§ and e=In(T/Ty) e 7

~(T=To)/To, With Ty being the mean-field transition tem-  j(W= I—O[tﬁ;‘(X,t)ﬁxt//n(X,t)—wn(X,t)(?xt//:(X,t)],
perature and, the in-plane GL coherence length, extrapo- 2m

lated atT=0. The critical dynamics of the complex super- ®)
conducting order parametef,, in the nth plane will be
described by the gauge-invariant relaxational time-depende
Ginzburg-Landau equation

5P that after averaging with respect to the noise,

- (n) iegh .
<Jx >=__((?x_(?x’)<‘/’n(xat)$n(x at)>|x=x’- (6)
Jd € 0% 2m
Stz e =" ——Fh(x), ) _ S
oy, The time-dependent GL equatidB) is written

Iyt
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o, ol TExX #2 L0 el 'E 9 R
1 n_,=w»o =" I v 24 17 . X g
0 It i 7 n 2mV Yo t+ay, ry g 7 [?kx+ om +a; |Ry(k,t kg ,t")
h? ) = 8(ky—ky) S(t—t"), (12)
+ —2(2‘//n_ U1 Pn-1)+ b| ¢n| = Cn(X,1).
2mgs . .
where we have introduced the notation
(7)
As already mentioned, the quartic term in the thermodynami- ﬁzkz h 242
cal potential will be treated in the Hartree approximation, in a;=a+ m*‘ ", (1—cosgs). (13
8

the same sense as applied also in previous Wl
namely, by replacing the cubic terioh,| 24, in Eq. (7) with
b{|n|?) . In this way, the nonlinearity is decoupled, re-
sulting in a linear problem with a modifie@enormalizegl

GL potentialﬁ:a+ b<|¢n|2>, which implies a renormalized o (k’t)zf dt,f Ak Rkt K. ) Zo(KL Ky o).
reduced temperature 4 q a(kx Ky

Thus, the solution of Eq.10) will then be written

(14)

~ b
— 2
=g+ a_0<|¢n| ) ® The Green functiomRy(k,t;ky, ,t") is computed in the Ap-
o ) ) o pendix and given by EqA7), so that the relatioril4) for
The averagg|y,|°) is to be determined, in principle, self- the Fourier-transformed order parameter will be written, ac-

consistently together with the parameter cordingly,
In order to simplify the following computations, we shall
introduce the Fourier transform with respect to the two in- AT [72K3
plane coordinates and the layer index, respectively, through (K, = Foexp[ 0 X gk, }f dt’ 6(t—t")
the relations &E[ 6m
eoE 8
d’*k (m's d . . 72| ky+ ——[t—t’ )
1//n(x,t)=J ZJ Z—qt//q(k,t)e—lxke—lqns, aly X g [ ]
(277-) — ST xXexp —eO—E 6m
bolk)= [ XS syxnetens @ e
n
+aq| kyt+ ——[t—t ])
so that Eq.(7) becomes h
-1 eE , ,
—1i_eoro E i+ #2Kk2 2 X Lq kX—f—T[t—t 1.kt ) (15
0 gt i o 2m
> > One can notice that the solutigh5) fulfills causality, due to

ek, =Z4(k, D). (10) the retarded character of the Green functyfk,t; k) ,t"). It

(1—cosqs) e
can be also simplified further,

_|_
me
We have introduced the anisotropy parametet &o./&g

=ym/m., with &, the out-of-plane G_L coherencg length Pa(K,t) Fof drex;{ Ty
extrapolated af=0. The term{,(k,t) in Eq. (10) is the
Fourier transform according to the rul€8) of the noise

Tﬁz( eoET)Z
X

T T

22
function £,(x,t). One can directly verify that the following ﬁ 3 ( &ET _ )
correlation function holds: T 2am” }gq ot i ky, t=r). (16
(gq(k,t)gg,(k' 1)) = 2I‘51kBT(27r)35(k— k") Now, following Eq.(6), the current density can be written as
xs(g-q)s(t-t). (1D dk. s dy

Equation (10) may be solved using the Green function <Jx >_ - _ZFO B J f f 2 X fo dr
method, as done also by Tucker and Halp&ramd Dorse} "
in order to solve the relaxational TDGL equation with a ﬁ2k2 2,2
Langevin noise for isotropic superconductors. Our derivation X exp{ 'y 2( + W + ", [1—cosq s]) T
differs, however, by the fact that it is applied for a layered
superconductor and, also, through the differently chosen po- 2 2 202

) i , 7'fl eoET eOE
tential gauge. We denote thus B (k,t;k, ,t") the Green +—(kx+ + ) } (17)
function for the Eq(10), which satisfies m 2h 12m
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while the averaged density of fluctuating Coooper pairs isalso contributes to the fluctuation mode energy with the term

written, analogously, (A2y%Ims) (1 - cosqs), the inclusion of a momentum cutoff
in this direction is not necessary, since thaxis spectrum is
(P = 2T ok TJ dky f f”’s dqg already modulated through w/s<q<m/s. One can thus
n B _ w27 o perform the integral ovegg momentum in Eqs(17) and(18)
and get
~ RS 2P
xXexp —I'pl 2| a+ W+ e [1—cosgs] | 7 s dq 5242
—exg — 27 (1—cosqs)
9 2 202 —mls&T mS2
Th k eoET eoE 3
+ m xt 24 + 2m " | (18) 1 2F0ﬁ2y27' ZFOﬁzyZT
= gex — lo , (21
where we have taken into account expressib) for the ms’ ms’

Fourier-transformed noise correlation function and, also, re-
placed the notatiom; with its value(13).

Before proceeding further and solve the integrals ovtheV\rInOdAf'ﬁ?thSfil funct;o:g(x) toff b rformina the mo-
momentum variables in Eq$17) and (18), we must recall € shall therefore apply the cutolt by pe 0 g the mo

2
the inherent ultravioletUV) divergence of Ginzburg-Landau Mentum integral from Eq(17) for k <c&

where we used the identithy(x) = (1/2m) ™ _e*°S%dg for

theory, which is not valid on length scales less than the zero-
temperature coherence lengtf The short-wavelength fluc- d*k
tuations break down the “slow variation condition” for the szqé 2 (2m)2
superconducting order parameter, a central hypothesis of the

2

k,+

eyET)?
K2+ OT)

21

f
kxexp[ ZFOT

GL approach® This d|ff|cu_lty can be solved by applymg an T 1 \Cfo dkiCe- ok
UV cutoff to the fluctuation spectrum, a procedure intro- e 0% P
duced from the beginning in GL theaty. (2m)?
w _ 7'2
lll. SOLUTIONS WITH CONSIDERATION xﬁ de cospe ™ omeoEkeose/m
OF THE UV CUTOFF T
3/2

The classic&?®3? procedure is to suppress the short- _ o ToeE? 3,4m ma,
wavelength fluctuating modes through tm®mentum cutoff ﬁZ
condition

I'ym°eoE
k2<C§62, (19) f dw+/2 ZTFanwl ( 0 0 /2maO_W ,

where the dimensionless cutoff factis close to unity. Also (22)

a total energy cutoffwvas suggestetf 3> which eliminates

the most energetic fluctuations and not only those with shonivhere we introduced the new dimensionless variable

wavelengths, =#%2k?/2ma, and used the first-order modified Bessel func-
5 o > tion 1,(x)=(1/27) [T _d¢ cosee*“°%¢. The current density
k“+ €& “(e)<cép (20) (17) will be written eventually, after considering Eq1)

Heuristically, the adequacy of the total-energy cutoff can be2Nd (22) and introducing the new integration variable
justified on the grounds of the Gaussian GL approach by~ 28,00,
taking into account that the probability of each fluctuating

mode is controlled by its total energy’k?/2m+aqe, and V2E A a2
: 19 6 g, dul (e+2y°5/s7)u
not only by its momentur!® Very recently® it was sug- (e ﬁsg J’ 0( 2 )
gested that the physical meaning of the “total-energy” cutoff
follows from the uncertainty principle, which imposes a limit X @~ 4(meioE/16/3kgT) %’
to the confinement of the superconducting wave function. It
must be, however, mentioned that in the critical fluctuation uw 5
region, the two cutoff prescriptions almost coincide quanti- f dwywe" 1 8k TEU Wwl, (23
tatively, due to the low reduced-temperature vaiuavith
respect to the factoe. where we have also expressed the paramétgenda, with
For simplicity, in the following we shall apply the cutoff the aid of the in-plane coherence lengh
procedure in its classical forrf19) on thek-plane momen- In order to infer the fluctuation conductiviy=j/E, we

tum integrals in Eqs(17) and(18). If necessary, one can get shall use the fact that the function(x) consists only of odd
easily also the result that would Correspond to the “tOta'-argument powers and satisfies, name|y’ the |de|1ti(y()
energy” cutoff (20) by simply replacingc—c—z. Although = (x/2)[15(x) —1,(x)], so that we can finally write the para-
for the Lawrence-Doniach model theaxis momentumg  conductivity under the form
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(i.e., forc—x), the expression would be divergent. Replac-

ing c—c—¢ would in turn correspond to an energy cutoff
under the form(20). The self-consistent equatidB) for the

2 o .
o(e,E)= & dul u u2e— (s +1/2u-4(E/Eg) %’
' 16hs)o 0l 2

% jcdwwe*”"v |0( 2\/5 Euzm) paramete% will therefore be written
0 Eo
—IZ(Z\/§EU2\/W) (29 py T 4 wad | ru — (e +r1/2)u—4(E/Eg)%u3
Eg e= n_l_—o g o Ulg ? e
where we have introduced the notation c E
X fo dwe“WIO( 23 E—OUZ\/W), (29
4y*&5 (2§OC ? 16V3ksT -
r: = [
s? S 0 eéo where the factor
for the anisotropy parameterand the characteristic electric
field E,, re_spectively. Relatio_nS’ZS) can be expressed also _ 2 oK€Kk
as depending on microscopical parameters, like the Fermi e — (30
velocity v and the electronic interlayer hopping energy whs

By identifying the in-plane GL coherence lengihfrom the

microscopic derivation of the GL equation in the two- has b d by taking i h . f
dimensional case, one has in the clean ffhits, as been computed by taking into account the expression o

—[7£(3)/32] Y20 [ kg To, Which implies forT~T, the quartic term coefficierif, b= uox?e3%2/2m?, with « be-
ing the Ginzburg-Landau parametes \y/&.
K22 5 The above equatiof24) for the paraconductivity, together
Eo=641 / 6 B0 .nd r= 74(3) ‘J_ (26) with the self-consistent equatid@9), both valid for an arbi-
7¢(3) ehvg 8w K3T3' trary strong electric field and with the explicit inclusion of
the UV cutoff, are the main results of this paper. A short
where we have also used in the same approximaticesn ~comment would be useful regarding the application of the
limit and T~T,) the expression for the anisotropy parametercutoff procedure to thé integrals in Eqs(27) and (22). It
r from Ref. 37 as a function of the interlayer electron hop-could seem more appealing to apply the cutoff on the trans-
ping energyd. lated wave-vector magnitude, such a§(§+[kx
In an analogous manner as presented above for the currefit(e,E7/24) ]>< cggz, as was approximately done, al-
density, one can apply the cutoff procedure to the momenturthough in a different gauge, by Kajimura and Mikoshia,

integral in Eq.(18) and obtain while studying the paraconductivity in an arbitrary electric
field in the two-dimensional case. This would certainly sim-
d2k 52 e Er\2 plify the calculations and consequently the factors that de-
f exp[ — 2T g o— | K2+ | ket °_> } pend on the cutoff parameter but would not really corre-
K2<cgy? (2m)2 2m| Y 2h spond to the actual meaning of the UV cutoff, which is to
assure the slow variation condition for the order parameter
:e—Foe§E273/4m mag dee_ZTFOaOW by eliminating the rapidly oscillating modes in the Fourier
2mh2J)o expansion(9). It can be seen, for instance, that when the
o2 g dummy variabler grows towardsew, the component,
07 €t —— would have to approach oo in order to preserve the cutoff
xlo m 2maow), (27 condition in tranirl)ated form. It can bep, moreover, verified

that the “translated” cutoff would not give the correct result

so that the averaged density of Cooper pairs, @#8), be-  in the E=0 limit; namely, the third term in E¢(31) below
comes would be missing.

mkgT (=
2wh3s)o

L (n _ 2,3
{|ha(x,0)|?) = du|0(7)e (e+r/2)u—4(E/Eg)“u IV. LIMIT CASES

A. Linear-response limit

» fcdwe”‘”lo(Z\E Euz w), (28) It is worth comparing to previous results what E¢@4)
0 Eo and (29) become in the zero-field limiE=0. Taking into
account thatl 3(0)=1 andl,(0)=0 and using the integral
where we passed from to the variableu and used the no- form for the modified Bessel functioly(ru/2), one obtains
tation (25). One can easily prove that without the UV cutoff for the linear-response conductivity
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e o
e)|gcg=——| du(l—e CU—cue U
0(8)|E 0 16ﬁsfo ( )

r o
—ujexp —eu——u
2 2

X1y
g2 [ 1 1
160S| \GE+r) VGE+o(EHctn)
c(ct+e+r/2) a1
- , 1
[(c+e+r)(ct+e)]??

which is the Lawrence-Doniaétiormula for the fluctuation

conductivity of a layered superconductor, with the inclusion

of the UV cutoff. A formally identical expression was also
inferred by Carballeir@t al*> for Gaussian fluctuationg.e.,

with e=¢) in order to fit the HTSC paraconductivity in the
high-reduced-temperature region.

The integral in Eq(29) can also be easily performed in
the limit E=0, and it yields the relation

T 2MOK e gOkBT
e—In—=
To

f V(X+28)(X+e+T1)

Augr’e?Edks T VetctVatctr
= In ,

wh’s
(32

which matches the formula found by Mishonov and Pefiev,
with the only difference that in Ref. 28 the temperatiires
approximated withT in the logarithm prefactor. It can be
easily verified that Eq(32) is also coincident with an analo-
gous equation found previously by Ullah and DorSe{JD)

for the renormalized reduced temperataré one considers
the zero-magnetic-field limit in the UD formula. In this limit,

PHYSICAL REVIEW B 68, 054517 (2003

one is allowed to translate the integral variaklgso that
k,+ (egET/2h)—k,, and after performing the Poiss&nin-
tegrals, one obtains eventually for the fluctuation in-plane
conductivity in the presence of an arbitrary electric figld
without considering the UV cutoff, the simpler relation

2
~ e (- r - -
- _ —eu—(r/2)u—(E/Eg)u
o(e,E) 15’Sfo dulo(zu)e .
(33

Expression(33) is not new. In its form, it is essentially
similar to the ones found by Varlamov and Reggiaand
Mishonovet al? for the case of Gaussian fluctuations if one
neglects the difference which consists in the presence of the

renormalized parametérin Eq. (33) instead of the reduced
temperatures =In(T/Ty). It must be stated, however, that
Ref. 7, based on a microscopical approfdtefines an out-
of-plane coherence length larger by a factor\@ than the
commonly used one. Nevertheless, its result corresponds to
our Eq.(33) when expressed through Eq26) in the micro-
scopical parametens: andJ (the latter is denoted in Ref. 7
by w). Mishonovet al® signalize differences in one of their
intermediary results with respect to Refs. 8 and 7, but they
find the same dependence of the non-Ohmic conductivity on
the reduced temperatuseand the electric fieldE by solving

the Boltzmann equation for the velocity distribution of the
fluctuating Cooper pairs. Their formula differs mathemati-
cally from Eq.(33) only by the presence of two extra factors
before the integral: namely, the ratio betweeandb coher-
ence lengthgsince Ref. 9 takes into account also a general
in-plane anisotropyand the ratiol/T,, which in fact comes
artificially only if one writes the relaxation raté, with T,
instead ofT [see the comment after E)].

C. Isotropic limit

Results analogous to Eq&R4) and (29) for the isotropic
2D case can be easily derived by simply taking the limit

the sum over Landau levels transforms, with the aid of thes) =0 (or r—0) and identifying the interlayer distance
Euler-MacLaurin summation formula, to the integral from with the film thicknessl. We will have thus
Eq. (32) if one takes also into account that the cutoff used by

UD corresponds witlt=2.
We have thus shown that from our E¢24) and(29) one
can infer in the limitE—O the already known results for

conductivity and renormalized reduced temperature in the

Ohmic approximation.

B. No-cutoff limit

The cutoff procedure is crucial for calculating the aver-

aged fluctuating Cooper pairs density, since @@) yields a
divergent = integral when one performs the-momentum
integrals on the entirk plane.

The result(24) for the paraconductivity remains, however,
finite even if one removes the cutoff.e., for c—), al-

though it will give then a larger paraconductivity than in the
cutoff case, especially for higher reduced temperatuees (

=0.1). Turning back to Eq(17) with the cutoff removed,

oD (g E)

16ﬁdf duiPesu—4E/E)% f dww

Xe—UW

e £l o]

(34

T 2ugx’e fokBT

e—In—
wh°d

To
c E
><J dwe“WIO(Z\E E—uz\/W). (35
0 0

fmd ue—?:u—zt(E/EO)zu3
0
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Equations(34) and(35) differ from the analogous results Similarly to the 2D case, if one neglects the cutoff (
of Ref. 38 because there only an approximate form of the—cc), the term on the right-hand side of Eg0) becomes
cutoff procedure was applied, as we have already mentionedivergent, while Eq(39) takes the expression
at the end of Sec. Ill.

If one neglects the cutoff—), Eq. (35 becomes di-
vergent, while Eq(34) takes the already knowr**form (@0) 3 E)=

O-I"IO cu

e? fmduie—zu—(E/Eo)zu?’ (41)
32\mhé&do  Vu ’

2 % ~
(3. E)= 1o f dug (R (3
16hdJo already knowr®!* for Gaussian fluctuationg.e., with &
with the~specification that in Eq36) the renormalized pa- :8% the linear response limitd+0) but with the cutoft
rametere is present, instead of the reduced temperature reserved, Eq939) gn d(40) become
If, on the contrary, one preserves the cutoff but takes th& » =
linear response limE—0, Egs.(34) and (35) become

2 U(sD)(;)|E=0

~ e 1 1 c
(2D) - __ _ ~ ~ 1
o e)e-0=1grg 5 s+c (c+s)?| S _ € |Barctariycle) :%\/E - ~563’2 |
48mh &y Ve (e+c)? (e+c)?)
- T  2uok?€2E2kgT s+4c
5 Ino = PO T SoTe ] FTE 39) (42)
To mh?d & .
2,2
A formally identical expression to Eq37) is also to be ~_|nl:4f“0’< e°éokgT \/E—\/garctar{ \/E)
found in Ref. 35 for Gaussian fluctuationse., with = To wh? ) |
=¢), while Eq.(38) is implicitly contained in the results of (43

Ref. 28.

Results for the isotropic 3D case cannot be obtained b
just imposing the 3D conditioe— 0 (or r— =) to Egs.(24)
and(29), because these equations were calculated by assum-
ing that a cutoff in the direction is not necessary for layered V. RESULTS OF THE MODEL
superconductors. However, in the 3D case, a cutoff fokihe g renormalization procedure required for our present
momentum is as necessary as for kh@ndk, components. o its consists thus in using the reduced-temperature param-
The calculations can be performed according to the same (=, renormalized by solving Ed29), in the conductivit
scheme as for the layered case, and the results are presen?é‘a & Tt d oy 9 ’ o Y

: expression24). This procedure causes the critical tempera-
here for completeness: . X
ture to shift towards lower temperatures. In analogy with the
o - - Gaussian fluctuation case, we shall adopt as definition for the
fo duwte su—4EED critical temperaturd .(E) the vanishing of the reduced tem-
peratures =0. Thus, in the absence of an electric field we

E _ ~_
COS!‘(ZﬁE—uZ M) can use Eq(32) taken atT=T.(0) ande=0, so that one
0

Equation(42) matches thus formally the expression fotthd
or Gaussian fluctuationEE g).

e2
8’77ﬁ§0

o®P)(e,E)=

gets

E 2
23 £ Vi -

. E
sinh| 243 E" Vw In practice, one knows the actual critical temperaflig€0)
- E T | (39 =T, measured at very low electrical field, so that F4g)
(2\5 _UZ\/W) allows us to estimate the bare mean-field characteristic tem-
Eo peratureT,. Then, having the parametdr, one can use
Egs.(29) for any temperaturd and fieldE in order to find

X focdwwg’ze’“‘”

2gT.(0)

(44)

2.2 " - o~ o
;_mlzz'“o" € fokBTf due su—4(EEY® the actual renormalizeg( T,E) and, further, the conductivity
To w2h? 0 o(T,E).
In order to illustrate the main features of the Hartree ap-
sin 2\/§Eu2\/W proximation for the critical fluctuation model, we shall take
Eg as example a common material, like optimally doped

C
20— : o
X Jo dww!feet" E : YBa,Cu;04., . Typical values for the characteristic param-
2\/§ E—uz\/W eters are thers=1.17 nm for the interlayer distance,
0 =1.2 nm and§,.=0.14 nm for the zero-temperature in-

(40 plane and out-of-plane coherence lengths, respectively,
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FIG. 1. Resistivity in the Gaussian thedidotted curvesand in
the Hartree approximation for the interacting fluctuatiqsslid
curves for different values of the applied electric field. The follow-
ing parameters were used: interlayer distaseel.17 nm; zero-
temperature in-plane and out-of-plane coherence lengihs
=1.2 nm and&,.=0.14 nm, respectively; Ginzburg-Landau pa-

rameterx=70; and zero-field critical temperatuiig,=92 K. The . —
UV cutoff parameterc=1 was used. The arrow indicates the in- =1 in our model corresponds to limiting the sum on the Landau
levels at the index 112in the UD model (1:277568/@0 being the

creasing electric field direction. The inset illustrates the critical tem- o - . . .
perature shift introduced by the Hartree model if the mean-fiel educed magnetic fieldThe arrow indicates the increasing electric
and magnetic field direction.

transition temperatur&, were kept identical with the one in the
Gaussian approaci{® .

FIG. 2. Comparison between the transition broadening effect of
the electric(solid lineg and magnetiqdotted line$ field, respec-
tively, according to the renormalized Hartree approximation. The
same parameters as in Fig. 1 were used. The magnetic field effect
was calculated in the linear-respon@ero-electric-field limit ac-
cording to the UD mode(Ref. 13. The UV cutoff parametec

the transition. However, above the zero-field transition tem-

=70 for the Ginzburg-Landau parameter, ang=92 K for  perature, the paraconductivity in the Hartree model is always
the critical temperature under very small electric field. Wehigher than the one in the Gaussian approximation, due es-
also choose for convenience a linear temperature extrapolgentially to the critical temperature redefinition frofg to
tion for the normal-state resistivity which vanishesTat0  Tco- If one preserved instead the same mean-field transition
and has a typical valugy=284 1 cm atT=200 K. temperaturél’ozTgG) as in the Gaussian approximation, one

In Fig. 1 the results of the Hartree approximation for thecould then visualize the critical temperature shift introduced
critical fluctuations are compared to the ones obtained fronpy the Hartree approach, as shown in the inset of Fig. 1.
the Gaussian fluctuation theory. The zero-field critical tem-Equation(44) would give theriT ;= 86.894 K, and the para-
peratureT . in the Hartree model was considered identical toconductivity would be always lower than the one in the
the mean-field critical temperatufé® in the Gaussian ap- Gaussian approximation. _
proximation in order to have the zero-field transition at the ~For illustration, we also give in Fig2 a comparison be-
same temperature in both theories. This identification causd¥een the results of our model, applicable for layered super-
the mean-field transition temperatdFgin the Hartree model conductors in arbitrary electric fields in the absence of a

to shift upwards with respect f6,,. For our chosen param- Magnetic field, and the ones of the complementary model of
eters this shift was found to be Ullah and Dorsey? which treats in the same Hartree ap-

proximation the case of an arbitrary magnetic field in the
linear-responsézero-electric-fielgl limit. As one can easily
To=Teo=5.733 K, (45) notice, the same well-known “fan shape” transition broad-

ening, encountered when a magnetic field is applied, can be
while taking a cutoff parametec=1. The difference be- also predicted for the presence of a sufficiently strong elec-
tween the two temperatures depends on choice of the cutoffic field. We argue thus that high electric fields can be used
parameter; namely, it increases with thealue and becomes to suppress order-parameter fluctuations in HTSC's as effec-
divergent for no cutoff Tq/Tg—0o for c—x). It can be tively as a magnetic field.
noticed in Fig. 1 that the curves obtained in the Hartree ap- This comparison between the fluctuation suppression ef-
proximation are less steep than those in the Gaussian one afetts of the electric and magnetic fields could give also a
show a significantly broadened transition region in the presrough estimation on how broad the validity domain of our
ence of strong applied electric fields. In addition, we find thatmodel could be. It is known, for instance, that the renormal-
the paraconductivity in the renormalized model is more senized fluctuation modé? for layered superconductors can
sitive to the electric field, showing a more pronounced supsuccessfully fit the resistivity curves of YBCO and BSCCO
pression of the fluctuations at high fields in the lower part ofsingle crystals in magnetic fields up to about 10 T in a tem-

054517-8



CRITICAL FLUCTUATION CONDUCTIVITY IN . .. PHYSICAL REVIEW B 68, 054517 (2003

perature range that covers approximately the two superigoerimental investigations could be able to discern easily be-
thirds of the transition region. This extends from a few K in tween the applicability of this model in competition with the
lower fields up to more than 10 K in higher fields, measuredGaussian fluctuation approximation.

down from the resistivity onset point in zero fieftlThe

lowest third of the transition, where, experimentally, the re-

sistivity slope becomes steeper, is instead affected by flux ACKNOWLEDGMENTS

pinning effects and does not fit into GL theory. We can there- ) )
fore assume, based on the similarities illustrated in Fig. 2, 'S work was supported by the Austrian Fonds zur
that also in high electric fields the renormalized fluctuationrorderung der wissenschaftlichen Forschung. Stimulating
model based on the TDGL approach may have its validity ircorrespondence and discussions with R. lkeda and A.A.
a temperature range at least as broad as in the case wherY&lamov are also gratefully acknowledged.

magnetic field is applied. Since under high electric fields

(and, consequently, high current densitig®e pinning of the

self-field flux lines is overcome by the high Lorentz force, APPENDIX: GREEN FUNCTION
we can expect that the validity of the presented model might FOR THE TDGL EQUATION
extend for even lower temperatures.
In a few previous paperS;*° the non-Ohmic fluctuation Equation(12) can be solved easier for the Fourier trans-

conductivity in high electric fields was reported to be experi-form of the Green function with respect to time,
mentally proved by confronting the measured paraconductiv-

ity to the scaling laws predicted by Gaussian fluctuation

models*’ However, the_ broadening of _the temperature d_e- Rq(k,w;k)’(,t’)=f dth(k,t;k)f(,t/)eiw(tft’)’ (A1)
pendence of the resistive transition with respect to the in-

creasing electric field and the breaking of the mean-field

(Gaussiaintheory in the immediate vicinity of ., signalized
by Ref. 39, indicate that a renormaliz&tbn-Gaussianfluc-
tuation model, such as the one presented in this paper, might

which satisfies the equation

be more appropriate. From the experimental viewpoint, ap- eT-1E 4 K2K2
plying electric fields of a few hundreds V/cm on cuprates _iwral_ o0 =7 4 X +a, Rq(k,w;k)'( )
may, however, be not an easy task, since the dissipated h I, 2m
ower density would attain levels of the order of GW ¢ ,
P y = 8(ky—ky). (A2)

On the one hand, high electric fields are necessary in order to
put into evidence the non-Ohmic fluctuation conductivity,
while, on the other hand, they produce high dissipation angne finds for the differential equatiai2) the solution
can increase the sample temperature at values where nonlin-

earity is no longer discernable. In this connection, using

short Egrrent pulses at high current densitis few Rq(k, @Ky, ") =Aq(k,w;kj,t")

MAcm™“) seems to be a better alternative to the dc and ac

measurements. Al 723
X ex

X
6m

eoE

+<a1—iwrol>kX”,

VI. CONCLUSIONS
(A3)

In summary, we have treated in this paper the critical
fluctuation conductivity for a layered superconductor in zeroyhere the derivative of the coefficiety(k, w;k; ,t") must
magnetic field in the frame of the self-consistent Hartree apsatisfy
proximation for an arbitrary electric field magnitude. The
main results of our work are the formulé24) for the fluc-
tuation conductivity and29) for the renormalized reduced- IA,
temperature parameter. In both equations the UV cutoff of ~ — (k,w;ky,t")
the Ginzburg-Landau model was explicitly considered. In the X
linear-response limitE— 0), the corresponding expressions, il AL,
Egs.(31) and(32), reduce to the previous results of existing == Eex TeE
theories. Qualitatively, the temperature characteristics at dif- 0 0

h2ke
6m

+(a1—in05k4}

ferent electrical fields in the Hartree approximation turn out X 8(ky—Kky)

to be less steep than those in the Gaussian one; they show a

more pronounced suppression of the fluctuations at high Rl 1l o[ 7%k, ST
fields in the lower part of the transition and a higher para- T eO—Eex ~ eE| 6m +(ar—ioly Dk
conductivity above the zero-field transition temperature than

the Gaussian fluctuation model. All these features are quan- X S(ky—Ky).

titatively important for commonly used HTSC's, so that ex- (A4)

054517-9



I. PUICAAND W. LANG PHYSICAL REVIEW B 68, 054517 (2003

The solution for the coefficienfy(k,w;ky,t"), which re- dow _ )
mains nondivergent wheki,— —, is Rq(k,tiky ") = ZRq(k"";kQ tetet)
Al
=——0(k;—ky)
ﬁl" X X
Aqk,wiki) = —2 Bk~ ky) €oF
’ AT o[ A%(k3— k) ,
Ao [fiky® ) xexp —— | — ——+ai(kky)
Y i - 4 eoE 6m
><exp{ ooE | Bm +(ag—iwly )k ||,
(A5) dw h
X | —exp —io|t—t'+——(k,—k,
277 @ eoE( X X)
AN
where 6(ky —k,) is the Heaviside step function, so that the = ——0(k;—ky)
Fourier transform of the Green function will be &k
%ﬁro h2 (k= k)
xXexp) — | ———— +ay(ke—ky)
eoE 6m
AN Al [H2(KC—K.%) 0
Rq(k,w;k;,t’)Z ﬁa(k;—kx)ex E T A
0 0 X 6 t—t"+ —[ke—k]]. (A7)
eoE
+(a1—inal>(kx—k;>H. (A6) y
The form (A5) for the coefficientAy(k,w;k;) and, namely,

the presence of the Heaviside functiek,—k,) assures
that the Green functioRy(k, w;k, ,t") in Eq. (A6) does not
Now we can apply the inverse Fourier transform to regaindiverge and provides also the retarded character in A&,
the Green function depending on tirh@nd obtain i.e., Ry(k,t;k, ,t")=0 for t<t’.
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