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Critical fluctuation conductivity in layered superconductors in a strong electric field
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The paraconductivity, originating from critical superconducting order-parameter fluctuations in the vicinity
of the critical temperature in a layered superconductor, is calculated in the frame of the self-consistent Hartree
approximation for an arbitrarily strong electric field and zero magnetic field. The paraconductivity diverges less
steep towards the critical temperature in the Hartree approximation than in the Gaussian one, and it shows a
distinctly enhanced variation with the electric field. Our results indicate that high electric fields can be effec-
tively used to suppress order-parameter fluctuations in high-temperature superconductors.
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I. INTRODUCTION

Due to their high critical temperature, small coheren
length, and quasi-two-dimensional~quasi-2D! nature, the
high-temperature superconductors~HTSC’s! show a much
more pronounced and therefore experimentally accessibl
fect of thermodynamic fluctuations in the critical region
the normal-superconducting transition. In general, an
hancement of the conductivity, denoted paraconductivity
observed in HTSC’s aboveTc due to the presence of supe
conducting fluctuations. Outside the critical region, in t
absence of a magnetic field and for small electric fields,
paraconductivity can be explained in terms of t
Aslamazov-Larkin1 theory of noninteracting, Gaussian flu
tuations. The initial expressions for the paraconductiv
have been extended for two-dimensional layered super
ductors, a situation very much resembling the crystal str
ture in the cuprates, by Lawrence and Doniach.2 However, it
was shown that the fluctuation conductivity may be cal
lated in the linear-response approximation only for su
ciently weak fields, when they do not perturb the fluctuat
spectrum.3 Reasonably high values of the electric fieldE can
accelerate the fluctuating paired carriers to the depairing
rent and, thus, suppress the lifetime of the fluctuations, le
ing to a deviation from Ohm’s law. In connection with th
low-temperature superconductors, the nonlinearity has b
studied theoretically for the isotropic case4,5 and also proved
experimentally on thin aluminum films.6 The issue of the
non-Ohmic fluctuation conductivity for a clean layered s
perconductor in an arbitrary electric field has been addres
by Varlamov and Reggiani,7 starting from a microscopic ap
proach of Gor’kov8 for dirty isotropic superconductors. Es
sentially the same dependence on temperature and ele
field has been recently9 derived, together with generaliza
tions for the case of arbitrary dimension, based on the a
lytical derivation of the velocity distribution resulting from
the Boltzmann equation for the fluctuating Cooper pairs.

The above-mentioned theories do not consider the in
actions between fluctuations, so that fluctuations can be
scribed by the Gaussian approximation. Thus, the qua
term in the Ginzburg-Landau free energy is neglected. T
approximation is known to hold for temperature values
too close to the mean-field transition temperature, bu
breaks down in the critical region, since the nonlinear ch
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acter of the time-dependent Ginzburg-Landau~TDGL! equa-
tion cannot be neglected for high densities of fluctuat
Cooper pairs. Several works10–18 have included the interac
tion between superconducting fluctuations in the critical tr
sition region within different theoretical approaches. T
simplest and most used one is the Hartree approxima
which treats self-consistently the quartic term in t
Ginzburg-Landau free-energy expansion. In this way expr
sions for the specific heat have been derived for bulk10 and
layered11 superconductors under a magnetic field, based
the functional integral approach. In the frame of the TDG
theory, Ullah and Dorsey13 computed the Nernst effect, the
mopower, and longitudinal and Hall conductivities in th
linear-response approximation for a layered supercondu
in a magnetic field. Using the same relaxational dynamics
the TDGL approach, Dorsey14 provided expressions for th
fluctuation conductivity in both the Ohmic and non-Ohm
regimes for isotropic superconductors of arbitrary dime
sionality and in the absence of a magnetic field. Mo
recently18 the effects of critical superconducting fluctuatio
on the scaling of the linear ac conductivity,s(v), of a bulk
superconductor slightly aboveTc in zero applied magnetic
field have been investigated based on the dyna
renormalization-group method applied to the relaxatio
TDGL model of superconductivity, verifying explicitly the
scaling hypothesiss(v,j) proposed originally by Fisher
Fisher, and Huse.12 The essential features of the scaling a
renormalization-group method have been also reviewed
cently by Larkin and Varlamov.19 A more sophisticated ap
proach based on the renormalization procedure and diag
matic techniques has been developed for treating the n
Gaussian superconducting fluctuations by Ikeda, Ohmi,
Tsuneto15 and applied to the longitudinal conductivity
magnetization,16 and Hall conductivity17 in the linear-
response approximation for a layered superconductor un
magnetic field.

In this paper we shall address the problem of the n
Ohmic behavior of the non-Gaussian fluctuation conductiv
for a layered superconductor, a topic that, to our pres
knowledge, has not yet been treated in the literature. W
the nonlinear conductivity under arbitrarily strong elect
field was derived for a layered system7,9 for Gaussian, non-
interacting fluctuations, the effect of critical, strongly inte
acting fluctuations on the Ohmic and non-Ohmic conduc
©2003 The American Physical Society17-1
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I. PUICA AND W. LANG PHYSICAL REVIEW B 68, 054517 ~2003!
ity was investigated14 only for isotropic systems of arbitrar
dimensionality, but not for the layered Lawrence-Donia
model. The latter, however, would be required for compa
son to experimental data on, e.g., YBa2Cu3O61x .

The paper is organized as follows. In Sec. II the TDG
equations are deduced for a layered superconducting sys
with the explicit consideration of an arbitrarily strong ele
tric field, oriented parallel to the layers. The fluctuation
teraction term is also included in this model, within the se
consistent Hartree approximation. Section III presents
resulting equation solutions, obtained with the aid of t
Green function technique~detailed in the Appendix!. By con-
sidering in detail the necessary correction through the
cutoff procedure, expressions for the fluctuation conductiv
and self-consistent equation for the renormalized redu
temperature parameter are provided. Further, Sec. IV tr
the limit cases of the linear response approximation, the
cutoff limit, and also the isotropic 2D and 3D cases, rec
ering thus the results of previous theories. In Sec. V appl
tion of the model is illustrated by comparing th
paraconductivity obtained in the present theory with that
the Gaussian fluctuation approximation for various appl
electric fields. A comparison between the fluctuation s
pression effects of the electric and magnetic fields is a
illustrated. Finally, in Sec. VI, we summarize the main co
clusions emerging from our analysis.

II. TDGL EQUATION FOR ARBITRARY ELECTRIC
FIELD

For our purpose, we shall adopt the TDGL framework a
treat the quartic term in the free-energy expansion within
simple self-consistent Hartree approximation. The start
point will be the Lawrence-Doniach expression of t
Ginzburg-Landau~GL! free energy for a system of superco
ducting planes separated by a distances, with a Josephson
coupling between the planes, in the absence of a magn
field,

F5(
n
E d2xFaucnu21

\2

2m
u¹cnu2

1
\2

2mcs
2

ucn2cn11u21
b

2
ucnu4G , ~1!

wherem andmc are effective Cooper pair masses in theab
plane and along thec axis, respectively. The GL potentia
a5a0« is parametrized bya05\2/2mj0

2 and «5 ln(T/T0)
'(T2T0)/T0, with T0 being the mean-field transition tem
perature andj0 the in-plane GL coherence length, extrap
lated atT50. The critical dynamics of the complex supe
conducting order parametercn in the nth plane will be
described by the gauge-invariant relaxational time-depen
Ginzburg-Landau equation

G0
21S ]

]t
1 i

e0

\
w Dcn52

dF

dcn*
1zn~x,t !, ~2!
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where the pair electric charge ise052e and the order-
parameter relaxation rateG0, given by20–22

G0
215

p\3

16mj0
2kBT

, ~3!

is related to the lifetime of metastable Cooper pairs9,19

t (BCS)'p\/16kB(T2T0) through the relation G0
21

52at (BCS). As can be noticed, we define the relaxation ra
G0

21 as depending on the actual temperatureT, while in
many other works,3,19,23 it is defined as a function of the
mean-field critical temperatureT0. Of course the difference
is negligible near the transition point, but one must recall t
in the derivation of the GL equations from BCS theory,21,24,25

the temperature is usually approximated with the critical o
while the reduced temperature ln(T/T0) is approximated with
(T2T0)/T0. The same happens while the TDGL equation
obtained for temperatures nearT0, as, for instance, in Refs
23 and 26. In some more recent derivations of the TD
equation,22,27 however, the original appearance of these p
rameters is preserved, so that the order-parameter relax
rate is written as depending on the actual temperature. In
mathematically somewhat stricter sense, one could there
write the lifetime of the metastable Cooper pairs ast (BCS)

5p\/16kBT ln(T/T0).
The Langevin forceszn(x,t) introduced in Eq.~2! in or-

der to model the thermodynamical fluctuations must sat
the fluctuation-dissipation theorem and ensure that the
tem relaxes to the proper equilibrium distribution. This r
quirement is fulfilled if the Langevin forceszn(x,t) are cor-
related by the Gaussian white-noise law

^zn~x,t !zn8
* ~x8,t8!&52G0

21kBTd~x2x8!d~ t2t8!
dnn8

s
,

~4!

whered(x2x8) is the two-dimensional delta function con
cerning the in-plane coordinates. Since we are intereste
finding the conductivity for an arbitrary electric field, w
cannot use the linear-response approximation, so we hav
explicitly include the electric field in the model. In order t
compute the in-plane fluctuation conductivity, we shall a
sume the fieldE along thex axis ~where x and y are the
in-plane coordinates!, generated by the scalar potentialw
52Ex. In the chosen gauge, the current density opera
along thex direction in thenth plane will be given by

j x
(n)52

ie0\

2m
@cn* ~x,t !]xcn~x,t !2cn~x,t !]xcn* ~x,t !#,

~5!

so that after averaging with respect to the noise,

^ j x
(n)&52

ie0\

2m
~]x2]x8!^cn~x,t !cn* ~x8,t !&ux5x8 . ~6!

The time-dependent GL equation~2! is written
7-2
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G0
21 ]cn

]t
2 i

e0G0
21Ex

\
cn2

\2

2m
¹2cn1acn

1
\2

2mcs
2
~2cn2cn112cn21!1bucnu2cn5zn~x,t !.

~7!

As already mentioned, the quartic term in the thermodyna
cal potential will be treated in the Hartree approximation,
the same sense as applied also in previous works,13,20,28

namely, by replacing the cubic termbucnu2cn in Eq. ~7! with
b^ucnu2&cn . In this way, the nonlinearity is decoupled, r
sulting in a linear problem with a modified~renormalized!
GL potentialã5a1b^ucnu2&, which implies a renormalized
reduced temperature

«̃5«1
b

a0
^ucnu2&. ~8!

The averagê ucnu2& is to be determined, in principle, sel
consistently together with the parameter«̃.

In order to simplify the following computations, we sha
introduce the Fourier transform with respect to the two
plane coordinates and the layer index, respectively, thro
the relations

cn~x,t !5E d2k

~2p!2E2p/s

p/s dq

2p
cq~k,t !e2 ix•ke2 iqns,

cq~k,t !5E d2x(
n

scn~x,t !eix•keiqns, ~9!

so that Eq.~7! becomes

FG0
21 ]

]t
2

e0G0
21E

\

]

]kx

1
\2k2

2m
1ã

1
\2g2

ms2
~12cosqs!Gcq~k,t !5zq~k,t !. ~10!

We have introduced the anisotropy parameterg5j0c /j0

5Am/mc, with j0c the out-of-plane GL coherence leng
extrapolated atT50. The termzq(k,t) in Eq. ~10! is the
Fourier transform according to the rules~9! of the noise
function zn(x,t). One can directly verify that the following
correlation function holds:

^zq~k,t !zq8
* ~k8,t8!&52G0

21kBT~2p!3d~k2k8!

3d~q2q8!d~ t2t8!. ~11!

Equation ~10! may be solved using the Green functio
method, as done also by Tucker and Halperin29 and Dorsey14

in order to solve the relaxational TDGL equation with
Langevin noise for isotropic superconductors. Our derivat
differs, however, by the fact that it is applied for a layer
superconductor and, also, through the differently chosen
tential gauge. We denote thus byRq(k,t;kx8 ,t8) the Green
function for the Eq.~10!, which satisfies
05451
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FG0
21 ]

]t
2

e0G0
21E

\

]

]kx

1
\2kx

2

2m
1a1GRq~k,t;kx8 ,t8!

5d~kx2kx8!d~ t2t8!, ~12!

where we have introduced the notation

a1[ã1
\2ky

2

2m
1

\2g2

ms2
~12cosqs!. ~13!

Thus, the solution of Eq.~10! will then be written

cq~k,t !5E dt8E dkx8Rq~k,t;kx8 ,t8!zq~kx8 ,ky ,t8!.

~14!

The Green functionRq(k,t;kx8 ,t8) is computed in the Ap-
pendix and given by Eq.~A7!, so that the relation~14! for
the Fourier-transformed order parameter will be written,
cordingly,

cq~k,t !5G0expH \G0

e0E F\2kx
3

6m
1a1kxG J E dt8u~ t2t8!

3expH 2
\G0

e0E
F \2S kx1

e0E

\
@ t2t8# D 3

6m

1a1S kx1
e0E

\
@ t2t8# D G J

3zqS kx1
e0E

\
@ t2t8#,ky ,t8D . ~15!

One can notice that the solution~15! fulfills causality, due to
the retarded character of the Green functionRq(k,t;kx8 ,t8). It
can be also simplified further,

cq~k,t !5G0E
0

`

dt expH 2G0Fa1t1
t\2

2m S kx1
e0Et

2\ D 2

1
e0

2E2

24m
t3G J zqS kx1

e0Et

\
, ky , t2t D . ~16!

Now, following Eq.~6!, the current density can be written a

^ j x
(n)&52

e0\

m
2G0kBTE dkx

2p E dky

2p E
2p/s

p/s dq

2p
kxE

0

`

dt

3expH 2G0F2S ã1
\2ky

2

2m
1

\2g2

ms2
@12cosqs# D t

1
t\2

m S kx1
e0Et

2\ D 2

1
e0

2E2

12m
t3G J , ~17!
7-3
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while the averaged density of fluctuating Coooper pairs
written, analogously,

^ucnu2&52G0kBTE dkx

2p E dky

2p E
2p/s

p/s dq

2pE0

`

dt

3expH 2G0F2S ã1
\2ky

2

2m
1

\2g2

ms2
@12cosqs# D t

1
t\2

m S kx1
e0Et

2\ D 2

1
e0

2E2

12m
t3G J , ~18!

where we have taken into account expression~11! for the
Fourier-transformed noise correlation function and, also,
placed the notationa1 with its value~13!.

Before proceeding further and solve the integrals o
momentum variables in Eqs.~17! and ~18!, we must recall
the inherent ultraviolet~UV! divergence of Ginzburg-Landa
theory, which is not valid on length scales less than the ze
temperature coherence lengthj0. The short-wavelength fluc
tuations break down the ‘‘slow variation condition’’ for th
superconducting order parameter, a central hypothesis o
GL approach.30 This difficulty can be solved by applying a
UV cutoff to the fluctuation spectrum, a procedure intr
duced from the beginning in GL theory.31

III. SOLUTIONS WITH CONSIDERATION
OF THE UV CUTOFF

The classical4,28,32 procedure is to suppress the sho
wavelength fluctuating modes through themomentum cutof
condition

k2,cj0
22 , ~19!

where the dimensionless cutoff factorc is close to unity. Also
a total energy cutoffwas suggested,33–35 which eliminates
the most energetic fluctuations and not only those with sh
wavelengths,

k21j22~«!,cj0
22 . ~20!

Heuristically, the adequacy of the total-energy cutoff can
justified on the grounds of the Gaussian GL approach
taking into account that the probability of each fluctuati
mode is controlled by its total energy\2k2/2m1a0«, and
not only by its momentum.9,19 Very recently36 it was sug-
gested that the physical meaning of the ‘‘total-energy’’ cut
follows from the uncertainty principle, which imposes a lim
to the confinement of the superconducting wave function
must be, however, mentioned that in the critical fluctuat
region, the two cutoff prescriptions almost coincide quan
tatively, due to the low reduced-temperature value« with
respect to the factorc.

For simplicity, in the following we shall apply the cuto
procedure in its classical form~19! on thek-plane momen-
tum integrals in Eqs.~17! and~18!. If necessary, one can ge
easily also the result that would correspond to the ‘‘tot
energy’’ cutoff ~20! by simply replacingc→c2 «̃. Although
for the Lawrence-Doniach model thez-axis momentumq
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also contributes to the fluctuation mode energy with the te
(\2g2/ms2)(12cosqs), the inclusion of a momentum cutof
in this direction is not necessary, since thez-axis spectrum is
already modulated through2p/s<q<p/s. One can thus
perform the integral overq momentum in Eqs.~17! and~18!
and get

E
2p/s

p/s dq

2p
expF22G0t

\2g2

ms2
~12cosqs!G

5
1

s
expS 2

2G0\2g2t

ms2 D I 0S 2G0\2g2t

ms2 D , ~21!

where we used the identityI 0(x)5(1/2p)*2p
p ex cosudu for

the modified Bessel functionI 0(x).
We shall therefore apply the cutoff by performing the m

mentum integral from Eq.~17! for k2,cj0
22,

E
k2,cj0

22

d2k

~2p!2
kxexpH 22G0t

\2

2m Fky
21S kx1

e0Et

2\ D 2G J
5e2G0e0

2E2t3/4m
1

~2p!2E0

Acj0
21

dkk2e2tG0\2k2/m

3E
2p

p

dw coswe2G0t2\e0Ek cosw/m

52e2G0e0
2E2t3/4m

1

2p S ma0

\2 D 3/2

3E
0

c

dwA2we22tG0a0wI 1S G0t2e0E

m
A2ma0wD ,

~22!

where we introduced the new dimensionless variablew
5\2k2/2ma0 and used the first-order modified Bessel fun
tion I 1(x)5(1/2p)*2p

p dw coswex cosw. The current density
~17! will be written eventually, after considering Eqs.~21!
and ~22! and introducing the new integration variableu
52a0G0t,

j ~ «̃,E!5
ekBT

p\sj0
E

0

`

duI0S 2g2j0
2

s2
uD e2( «̃12g2j0

2/s2)u

3e24(pej0E/16A3kBT)2u3

3E
0

c

dwAwe2uwI 1S pej0

8kBT
Eu2AwD , ~23!

where we have also expressed the parametersG0 anda0 with
the aid of the in-plane coherence lengthj0.

In order to infer the fluctuation conductivitys5 j /E, we
shall use the fact that the functionI 1(x) consists only of odd
argument powers and satisfies, namely, the identityI 1(x)
5(x/2)@ I 0(x)2I 2(x)#, so that we can finally write the para
conductivity under the form
7-4
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s~«̃,E!5
e2

16\sE0

`

duI0S ru

2 Du2e2( «̃1r /2)u24(E/E0)2u3

3E
0

c

dwwe2uwF I 0S 2A3
E

E0
u2AwD

2I 2S 2A3
E

E0
u2AwD G , ~24!

where we have introduced the notation

r 5
4g2j0

2

s2
5S 2j0c

s D 2

and E05
16A3kBT

pej0
~25!

for the anisotropy parameterr and the characteristic electri
field E0, respectively. Relations~25! can be expressed als
as depending on microscopical parameters, like the Fe
velocity vF and the electronic interlayer hopping energyJ.
By identifying the in-plane GL coherence lengthj0 from the
microscopic derivation of the GL equation in the tw
dimensional case, one has in the clean limit19 j0
5@7z(3)/32#1/2\vF /pkBT0, which implies forT'T0

E0564A 6

7z~3!

kB
2T0

2

e\vF
and r 5

7z~3!

8p2

J2

kB
2T0

2
, ~26!

where we have also used in the same approximations~clean
limit and T'T0) the expression for the anisotropy parame
r from Ref. 37 as a function of the interlayer electron ho
ping energyJ.

In an analogous manner as presented above for the cu
density, one can apply the cutoff procedure to the momen
integral in Eq.~18! and obtain

E
k2,cj0

22

d2k

~2p!2
expH 22G0t

\2

2m Fky
21S kx1

e0Et

2\ D 2G J
5e2G0e0

2E2t3/4m
ma0

2p\2E0

c

dwe22tG0a0w

3I 0S G0t2e0E

m
A2ma0wD , ~27!

so that the averaged density of Cooper pairs, Eq.~18!, be-
comes

^ucn~x,t !u2&5
mkBT

2p\2s
E

0

`

duI0S ru

2 De2( «̃1r /2)u24(E/E0)2u3

3E
0

c

dwe2uwI 0S 2A3
E

E0
u2AwD , ~28!

where we passed fromt to the variableu and used the no
tation ~25!. One can easily prove that without the UV cuto
05451
i
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~i.e., for c→`), the expression would be divergent. Repla

ing c→c2 «̃ would in turn correspond to an energy cuto
under the form~20!. The self-consistent equation~8! for the

parameter«̃ will therefore be written

«̃5 ln
T

T0
1gTE

0

`

duI0S ru

2 De2( «̃1r /2)u24(E/E0)2u3

3E
0

c

dwe2uwI 0S 2A3
E

E0
u2AwD , ~29!

where the factor

g5
2m0k2e2j0

2kB

p\2s
~30!

has been computed by taking into account the expressio
the quartic term coefficient,30 b5m0k2e0

2\2/2m2, with k be-
ing the Ginzburg-Landau parameterk5l0 /j0.

The above equation~24! for the paraconductivity, togethe
with the self-consistent equation~29!, both valid for an arbi-
trary strong electric field and with the explicit inclusion o
the UV cutoff, are the main results of this paper. A sh
comment would be useful regarding the application of
cutoff procedure to thek integrals in Eqs.~27! and ~22!. It
could seem more appealing to apply the cutoff on the tra
lated wave-vector magnitude, such asky

21@kx

1(e0Et/2\)#2,cj0
22 , as was approximately done, a

though in a different gauge, by Kajimura and Mikoshiba38

while studying the paraconductivity in an arbitrary elect
field in the two-dimensional case. This would certainly sim
plify the calculations and consequently the factors that
pend on the cutoff parameterc, but would not really corre-
spond to the actual meaning of the UV cutoff, which is
assure the slow variation condition for the order parame
by eliminating the rapidly oscillating modes in the Fouri
expansion~9!. It can be seen, for instance, that when t
dummy variablet grows towards`, the componentkx
would have to approach2` in order to preserve the cutof
condition in translated form. It can be, moreover, verifi
that the ‘‘translated’’ cutoff would not give the correct resu
in the E50 limit; namely, the third term in Eq.~31! below
would be missing.

IV. LIMIT CASES

A. Linear-response limit

It is worth comparing to previous results what Eqs.~24!
and ~29! become in the zero-field limitE50. Taking into
account thatI 0(0)51 and I 2(0)50 and using the integra
form for the modified Bessel functionI 0(ru/2), one obtains
for the linear-response conductivity
7-5
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s~«̃ !uE505
e2

16\s
E

0

`

du~12e2cu2cue2cu!

3I 0S r

2
uD expS 2 «̃u2

r

2
uD

5
e2

16\sF 1

A«̃~ «̃1r !
2

1

A~ «̃1c!~ «̃1c1r !

2
c~c1 «̃1r /2!

@~c1 «̃1r !~c1 «̃ !#3/2G , ~31!

which is the Lawrence-Doniach2 formula for the fluctuation
conductivity of a layered superconductor, with the inclusi
of the UV cutoff. A formally identical expression was als
inferred by Carballeiraet al.35 for Gaussian fluctuations~i.e.,
with «̃5«) in order to fit the HTSC paraconductivity in th
high-reduced-temperature region.

The integral in Eq.~29! can also be easily performed i
the limit E50, and it yields the relation

«̃2 ln
T

T0

5
2m0k2e2j0

2kBT

p\2s
E

0

c dx

A~x1 «̃ !~x1 «̃1r !

5
4m0k2e2j0

2kBT

p\2s
ln
A«̃1c1A«̃1c1r

A«̃1A«̃1r
,

~32!

which matches the formula found by Mishonov and Pene28

with the only difference that in Ref. 28 the temperatureT is
approximated withT0 in the logarithm prefactor. It can b
easily verified that Eq.~32! is also coincident with an analo
gous equation found previously by Ullah and Dorsey13 ~UD!

for the renormalized reduced temperature«̃ if one considers
the zero-magnetic-field limit in the UD formula. In this limi
the sum over Landau levels transforms, with the aid of
Euler-MacLaurin summation formula, to the integral fro
Eq. ~32! if one takes also into account that the cutoff used
UD corresponds withc52.

We have thus shown that from our Eqs.~24! and~29! one
can infer in the limitE→0 the already known results fo
conductivity and renormalized reduced temperature in
Ohmic approximation.

B. No-cutoff limit

The cutoff procedure is crucial for calculating the ave
aged fluctuating Cooper pairs density, since Eq.~18! yields a
divergent t integral when one performs thek-momentum
integrals on the entirek plane.

The result~24! for the paraconductivity remains, howeve
finite even if one removes the cutoff~i.e., for c→`), al-
though it will give then a larger paraconductivity than in t
cutoff case, especially for higher reduced temperatures«
>0.1). Turning back to Eq.~17! with the cutoff removed,
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e
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one is allowed to translate the integral variablekx so that
kx1(e0Et/2\)→kx , and after performing the Poissonk in-
tegrals, one obtains eventually for the fluctuation in-pla
conductivity in the presence of an arbitrary electric fieldE,
without considering the UV cutoff, the simpler relation

s~«̃,E!5
e2

16\sE0

`

duI0S r

2
uDe2 «̃u2(r /2)u2(E/E0)2u3

.

~33!

Expression~33! is not new. In its form, it is essentially
similar to the ones found by Varlamov and Reggiani7 and
Mishonovet al.9 for the case of Gaussian fluctuations if on
neglects the difference which consists in the presence of
renormalized parameter«̃ in Eq. ~33! instead of the reduced
temperature«5 ln(T/T0). It must be stated, however, tha
Ref. 7, based on a microscopical approach,8 defines an out-
of-plane coherence length larger by a factor ofA2 than the
commonly used one. Nevertheless, its result correspond
our Eq.~33! when expressed through Eqs.~26! in the micro-
scopical parametersvF andJ ~the latter is denoted in Ref. 7
by w). Mishonovet al.9 signalize differences in one of the
intermediary results with respect to Refs. 8 and 7, but th
find the same dependence of the non-Ohmic conductivity
the reduced temperature« and the electric fieldE by solving
the Boltzmann equation for the velocity distribution of th
fluctuating Cooper pairs. Their formula differs mathema
cally from Eq.~33! only by the presence of two extra facto
before the integral: namely, the ratio betweena andb coher-
ence lengths~since Ref. 9 takes into account also a gene
in-plane anisotropy! and the ratioT/T0, which in fact comes
artificially only if one writes the relaxation rateG0 with T0
instead ofT @see the comment after Eq.~3!#.

C. Isotropic limit

Results analogous to Eqs.~24! and ~29! for the isotropic
2D case can be easily derived by simply taking the lim
j0c50 ~or r→0) and identifying the interlayer distances
with the film thicknessd. We will have thus

s (2D)~ «̃,E!

5
e2

16\dE0

`

duu2e2 «̃u24(E/E0)2u3E
0

c

dww

3e2uwF I 0S 2A3
E

E0
u2AwD2I 2S 2A3

E

E0
u2AwD G ,

~34!

«̃2 ln
T

T0
5

2m0k2e2j0
2kBT

p\2d
E

0

`

due2 «̃u24(E/E0)2u3

3E
0

c

dwe2uwI 0S 2A3
E

E0
u2AwD . ~35!
7-6
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Equations~34! and~35! differ from the analogous result
of Ref. 38 because there only an approximate form of
cutoff procedure was applied, as we have already mentio
at the end of Sec. III.

If one neglects the cutoff (c→`), Eq. ~35! becomes di-
vergent, while Eq.~34! takes the already known5,9,14 form

sno cut
(2D) ~ «̃,E!5

e2

16\dE0

`

due2 «̃u2(E/E0)2u3
, ~36!

with the specification that in Eq.~36! the renormalized pa
rameter«̃ is present, instead of the reduced temperature«.

If, on the contrary, one preserves the cutoff but takes
linear response limitE→0, Eqs.~34! and ~35! become

s (2D)~ «̃ !uE505
e2

16\d F1

«̃
2

1

«̃1c
2

c

~c1 «̃ !2G , ~37!

«̃2 ln
T

T0
5

2m0k2e2j0
2kBT

p\2d
ln

«̃1c

«̃
. ~38!

A formally identical expression to Eq.~37! is also to be
found in Ref. 35 for Gaussian fluctuations~i.e., with «̃
5«), while Eq.~38! is implicitly contained in the results o
Ref. 28.

Results for the isotropic 3D case cannot be obtained
just imposing the 3D conditions→0 ~or r→`) to Eqs.~24!
and~29!, because these equations were calculated by ass
ing that a cutoff in thez direction is not necessary for layere
superconductors. However, in the 3D case, a cutoff for thekz
momentum is as necessary as for thekx andky components.
The calculations can be performed according to the sa
scheme as for the layered case, and the results are pres
here for completeness:

s (3D)~ «̃,E!5
e2

8p\j0
E

0

`

duu2e2 «̃u24(E/E0)2u3

3E
0

c

dww3/2e2uwF coshS 2A3
E

E0
u2AwD

S 2A3
E

E0
u2AwD 2

2

sinhS 2A3
E

E0
u2AwD

S 2A3
E

E0
u2AwD 3 G , ~39!

«̃2 ln
T

T0
5

2m0k2e2j0kBT

p2\2 E
0

`

due2 «̃u24(E/E0)2u3

3E
0

c

dww1/2e2uw

sinhS 2A3
E

E0
u2AwD

2A3
E

E0
u2Aw

.

~40!
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Similarly to the 2D case, if one neglects the cutoffc
→`), the term on the right-hand side of Eq.~40! becomes
divergent, while Eq.~39! takes the expression

sno cut
(3D) ~ «̃,E!5

e2

32Ap\j0
E

0

`

du
1

Au
e2 «̃u2(E/E0)2u3

, ~41!

already known5,9,14 for Gaussian fluctuations~i.e., with «̃
5«).

In the linear response limit (E→0) but with the cutoff
preserved, Eqs.~39! and ~40! become

s (3D)~ «̃ !uE50

5
e2

48p\j0
F3 arctan~Ac/ «̃ !

A«̃
2

3«̃Ac

~ «̃1c!2
2

5c3/2

~ «̃1c!2G ,

~42!

«̃2 ln
T

T0
5

4m0k2e2j0kBT

p2\2 FAc2A«̃ arctanSAc

«̃
D G .

~43!

Equation~42! matches thus formally the expression found35

for Gaussian fluctuations («̃5«).

V. RESULTS OF THE MODEL

The renormalization procedure required for our pres
results consists thus in using the reduced-temperature pa
eter «̃, renormalized by solving Eq.~29!, in the conductivity
expression~24!. This procedure causes the critical tempe
ture to shift towards lower temperatures. In analogy with
Gaussian fluctuation case, we shall adopt as definition for
critical temperatureTc(E) the vanishing of the reduced tem
perature,«̃50. Thus, in the absence of an electric field w
can use Eq.~32! taken atT5Tc(0) and «̃50, so that one
gets

T05Tc~0!SAc

r
1A11

c

r D
2gTc(0)

. ~44!

In practice, one knows the actual critical temperatureTc(0)
[Tc0 measured at very low electrical field, so that Eq.~44!
allows us to estimate the bare mean-field characteristic t
peratureT0. Then, having the parameterT0, one can use
Eqs.~29! for any temperatureT and fieldE in order to find
the actual renormalized«̃(T,E) and, further, the conductivity
s(T,E).

In order to illustrate the main features of the Hartree a
proximation for the critical fluctuation model, we shall tak
as example a common material, like optimally dop
YBa2Cu3O61x . Typical values for the characteristic param
eters are thens51.17 nm for the interlayer distance,j0
51.2 nm andj0c50.14 nm for the zero-temperature in
plane and out-of-plane coherence lengths, respectivelyk
7-7
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570 for the Ginzburg-Landau parameter, andTc0592 K for
the critical temperature under very small electric field. W
also choose for convenience a linear temperature extrap
tion for the normal-state resistivity which vanishes atT50
and has a typical valuerN584 mV cm atT5200 K.

In Fig. 1 the results of the Hartree approximation for t
critical fluctuations are compared to the ones obtained fr
the Gaussian fluctuation theory. The zero-field critical te
peratureTc0 in the Hartree model was considered identical
the mean-field critical temperatureT0

(G) in the Gaussian ap
proximation in order to have the zero-field transition at t
same temperature in both theories. This identification cau
the mean-field transition temperatureT0 in the Hartree mode
to shift upwards with respect toTc0. For our chosen param
eters this shift was found to be

T02Tc055.733 K, ~45!

while taking a cutoff parameterc51. The difference be-
tween the two temperatures depends on choice of the cu
parameter; namely, it increases with thec value and become
divergent for no cutoff (T0 /Tc0→` for c→`). It can be
noticed in Fig. 1 that the curves obtained in the Hartree
proximation are less steep than those in the Gaussian one
show a significantly broadened transition region in the pr
ence of strong applied electric fields. In addition, we find t
the paraconductivity in the renormalized model is more s
sitive to the electric field, showing a more pronounced s
pression of the fluctuations at high fields in the lower part

FIG. 1. Resistivity in the Gaussian theory~dotted curves! and in
the Hartree approximation for the interacting fluctuations~solid
curves! for different values of the applied electric field. The follow
ing parameters were used: interlayer distances51.17 nm; zero-
temperature in-plane and out-of-plane coherence lengthsj0

51.2 nm andj0c50.14 nm, respectively; Ginzburg-Landau p
rameterk570; and zero-field critical temperatureTc0592 K. The
UV cutoff parameterc51 was used. The arrow indicates the i
creasing electric field direction. The inset illustrates the critical te
perature shift introduced by the Hartree model if the mean-fi
transition temperatureT0 were kept identical with the one in th
Gaussian approach,T0

(G) .
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the transition. However, above the zero-field transition te
perature, the paraconductivity in the Hartree model is alw
higher than the one in the Gaussian approximation, due
sentially to the critical temperature redefinition fromT0 to
Tc0. If one preserved instead the same mean-field transi
temperatureT05T0

(G) as in the Gaussian approximation, on
could then visualize the critical temperature shift introduc
by the Hartree approach, as shown in the inset of Fig
Equation~44! would give thenTc0586.894 K, and the para
conductivity would be always lower than the one in t
Gaussian approximation.

For illustration, we also give in Fig. 2 a comparison be-
tween the results of our model, applicable for layered sup
conductors in arbitrary electric fields in the absence o
magnetic field, and the ones of the complementary mode
Ullah and Dorsey,13 which treats in the same Hartree a
proximation the case of an arbitrary magnetic field in t
linear-response~zero-electric-field! limit. As one can easily
notice, the same well-known ‘‘fan shape’’ transition broa
ening, encountered when a magnetic field is applied, can
also predicted for the presence of a sufficiently strong e
tric field. We argue thus that high electric fields can be us
to suppress order-parameter fluctuations in HTSC’s as ef
tively as a magnetic field.

This comparison between the fluctuation suppression
fects of the electric and magnetic fields could give also
rough estimation on how broad the validity domain of o
model could be. It is known, for instance, that the renorm
ized fluctuation model15 for layered superconductors ca
successfully fit the resistivity curves of YBCO and BSCC
single crystals in magnetic fields up to about 10 T in a te

-
d

FIG. 2. Comparison between the transition broadening effec
the electric~solid lines! and magnetic~dotted lines! field, respec-
tively, according to the renormalized Hartree approximation. T
same parameters as in Fig. 1 were used. The magnetic field e
was calculated in the linear-response~zero-electric-field! limit ac-
cording to the UD model~Ref. 13!. The UV cutoff parameterc
51 in our model corresponds to limiting the sum on the Land
levels at the index 1/2h in the UD model (h52pj0

2B/F0 being the
reduced magnetic field!. The arrow indicates the increasing electr
and magnetic field direction.
7-8
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CRITICAL FLUCTUATION CONDUCTIVITY IN . . . PHYSICAL REVIEW B 68, 054517 ~2003!
perature range that covers approximately the two supe
thirds of the transition region. This extends from a few K
lower fields up to more than 10 K in higher fields, measu
down from the resistivity onset point in zero field.15 The
lowest third of the transition, where, experimentally, the
sistivity slope becomes steeper, is instead affected by
pinning effects and does not fit into GL theory. We can the
fore assume, based on the similarities illustrated in Fig
that also in high electric fields the renormalized fluctuat
model based on the TDGL approach may have its validity
a temperature range at least as broad as in the case wh
magnetic field is applied. Since under high electric fie
~and, consequently, high current densities! the pinning of the
self-field flux lines is overcome by the high Lorentz forc
we can expect that the validity of the presented model m
extend for even lower temperatures.

In a few previous papers,39,40 the non-Ohmic fluctuation
conductivity in high electric fields was reported to be expe
mentally proved by confronting the measured paraconduc
ity to the scaling laws predicted by Gaussian fluctuat
models.4,7 However, the broadening of the temperature d
pendence of the resistive transition with respect to the
creasing electric field and the breaking of the mean-fi
~Gaussian! theory in the immediate vicinity ofTc , signalized
by Ref. 39, indicate that a renormalized~non-Gaussian! fluc-
tuation model, such as the one presented in this paper, m
be more appropriate. From the experimental viewpoint,
plying electric fields of a few hundreds V/cm on cuprat
may, however, be not an easy task, since the dissip
power density would attain levels of the order of GW cm23.
On the one hand, high electric fields are necessary in ord
put into evidence the non-Ohmic fluctuation conductivi
while, on the other hand, they produce high dissipation
can increase the sample temperature at values where no
earity is no longer discernable. In this connection, us
short current pulses at high current densities~a few
MA cm22) seems to be a better alternative to the dc and
measurements.

VI. CONCLUSIONS

In summary, we have treated in this paper the criti
fluctuation conductivity for a layered superconductor in ze
magnetic field in the frame of the self-consistent Hartree
proximation for an arbitrary electric field magnitude. Th
main results of our work are the formulas~24! for the fluc-
tuation conductivity and~29! for the renormalized reduced
temperature parameter. In both equations the UV cutof
the Ginzburg-Landau model was explicitly considered. In
linear-response limit (E→0), the corresponding expression
Eqs.~31! and~32!, reduce to the previous results of existin
theories. Qualitatively, the temperature characteristics at
ferent electrical fields in the Hartree approximation turn o
to be less steep than those in the Gaussian one; they sh
more pronounced suppression of the fluctuations at h
fields in the lower part of the transition and a higher pa
conductivity above the zero-field transition temperature th
the Gaussian fluctuation model. All these features are qu
titatively important for commonly used HTSC’s, so that e
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perimental investigations could be able to discern easily
tween the applicability of this model in competition with th
Gaussian fluctuation approximation.
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APPENDIX: GREEN FUNCTION
FOR THE TDGL EQUATION

Equation~12! can be solved easier for the Fourier tran
form of the Green function with respect to time,

Rq~k,v;kx8 ,t8!5E dtRq~k,t;kx8 ,t8!eiv(t2t8), ~A1!

which satisfies the equation

F2 ivG0
212

e0G0
21E

\

]

]kx

1
\2kx

2

2m
1a1GRq~k,v;kx8 ,t8!

5d~kx2kx8!. ~A2!

One finds for the differential equation~A2! the solution

Rq~k,v;kx8 ,t8!5Aq~k,v;kx8 ,t8!

3expH \G0

e0E F\2kx
3

6m
1~a12 ivG0

21!kxG J ,

~A3!

where the derivative of the coefficientAq(k,v;kx8 ,t8) must
satisfy

]Aq

]kx
~k,v;kx8 ,t8!

52
\G0

e0E
expH 2

\G0

e0E F\2kx
3

6m
1~a12 ivG0

21!kxG J
3d~kx2kx8!

52
\G0

e0E
expH 2

\G0

e0E F\2kx8
3

6m
1~a12 ivG0

21!kx8G J
3d~kx2kx8!.

~A4!
7-9
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The solution for the coefficientAq(k,v;kx8 ,t8), which re-
mains nondivergent whenkx8→2`, is

Aq~k,v;kx8!5
\G0

e0E
u~kx82kx!

3expH 2
\G0

e0E F\kx8
3

6m
1~a12 ivG0

21!kx8G J ,

~A5!

whereu(kx82kx) is the Heaviside step function, so that th
Fourier transform of the Green function will be

Rq~k,v;kx8 ,t8!5
\G0

e0E
u~kx82kx!expH \G0

e0E F\2~kx
32kx8

3!

6m

1~a12 ivG0
21!~kx2kx8!GJ. ~A6!

Now we can apply the inverse Fourier transform to reg
the Green function depending on timet and obtain
a
n

-
Ja

-
co

v.

05451
n

Rq~k,t;kx8 ,t8!5E dv

2p
Rq~k,v;kx8 ,t8!e2 iv(t2t8)

5
\G0

e0E
u~kx82kx!

3expH \G0

e0E
F\2~kx

32kx8
3!

6m
1a1~kx2kx8!G J

3E dv

2p
expH 2 ivF t2t81

\

e0E
~kx2kx8!G J

5
\G0

e0E
u~kx82kx!

3expH \G0

e0E
F\2~kx

32kx8
3!

6m
1a1~kx2kx8!G J

3dS t2t81
\

e0E
@kx2kx8# D . ~A7!

The form ~A5! for the coefficientAq(k,v;kx8) and, namely,
the presence of the Heaviside functionu(kx82kx) assures
that the Green functionRq(k,v;kx8 ,t8) in Eq. ~A6! does not
diverge and provides also the retarded character in Eq.~A7!,
i.e., Rq(k,t;kx8 ,t8)50 for t,t8.
-
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