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Effect of pinning on the vortex-lattice melting line in type-II superconductors
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The vortex-lattice melting line in three-dimensional type-II superconductors with pinning is derived by
equating the free energies of the vortex system in the solid and liquid phases. We account for the elastic and
pinning energies and the entropy change that originates from the disappearance of the phonon shear modes in
the liquid. The pinning is assumed to be caused by point defects and to be not too strong so that the melting
line lies inside the so-called bundle-pinning region. We show that the derived equation for the melting line is
equivalent to some Lindemann criterion, which however differs from that used previously. Estimating the
effect of pinning on the entropy jump at melting, we find the upper critical point of the melting line from the
condition that this jump vanishes. We also consider theH-T phase diagrams of type-II superconductors for
different strengths and types of pinning and analyze the two recently discussed scenarios how the melting line
and the order-disorder line merge.
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I. INTRODUCTION

In three-dimensional high-Tc superconductors with pin
ning, two phase transition lines are known to exist in t
magnetic fieldH-temperatureT plane:1–5 The line Hm(T)
where a quasiordered Bragg glass6,7 thermally melts into a
flux-line liquid, and the order-disorder transition lin
Hdis(T) separating the Bragg glass from an amorphous v
tex state. The melting is caused by thermal vibrations of
lattice, while the order-disorder transition is induced
quenched disorder in the vortex system. These two li
merge at some point in theH-T plane. Although both tran-
sitions are accompanied by a proliferation of dislocations
the vortex lattice, it was argued8 that the dislocation density
r is essentially different in these cases:r;a22 for melting,
and r;Ra

22 for the order-disorder transition. Herea is the
spacing between flux lines, andRa is the so-called positiona
correlation length9 within which the relative vortex displace
ments caused by the quenched disorder are of the ordera.
In fact, an intersection of these two different phase transit
lines occurs in this scenario, and the order-disorder line
minates at the intersection point while the melting line co
tinues for some distance to higherH, see Fig. 1. Within this
physical picture, the existence of the so-called slush pha10

can be naturally explained. Recent experiments11–15 for
YBaCuO seem to support this scenario. On the other ha
experimental data16–18for BSCCO strongly argue in favor o
a different scenario which was implied, e.g., in the Refs
and 5. In this second scenario, the dislocation densities
both lines coincide at the point where these lines merge,
in fact, one deals with only one phase transition line t
describes both the order-disorder transition at low temp
ture and the melting nearTc ~Fig. 1!.

Phase diagrams of superconductors with pinning refl
the competition of three characteristic energies:3 the elastic
energy, the pinning energy, and the energy of thermal fl
tuations. At melting, the cost in the elastic energy due to
proliferation of dislocations is mainly balanced by the e
tropy gain associated with thermal fluctuations, while t
0163-1829/2003/68~5!/054509~15!/$20.00 68 0545
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role of the pinning energy, as shown below, is determined
the parametera/Rc . HereRc is the transverse collective pin
ning length.9 On the other hand, at the order-disorder tran
tion, the balance of pinning energy and elastic energy is m
important, while the relative contribution of the entropy ga
is negligible at low temperatures and, according to the s
nario of Ref. 8, is determined by the ratioa/Ra near the
intersection point. Thus, if the intersection of the melting a
the order-disorder lines occurred sufficiently deep in

FIG. 1. SchematicT-H phase diagrams for the first~solid lines!
and for the second~dashed line! scenarios. In the first scenario th
melting line terminates at the so-called upper critical point (Tup,
Hup) which in general does not coincide with the intersection po
(Ti , Hi). In this case a slush phase~i.e., a vortex liquid with
smaller density of dislocations! can be observed. In the second sc
nario the order-disorder and the melting lines are manifestation
a unified phase transition line. Note that for both scenarios
vortex liquid and the amorphous vortex state are, in fact, one
the same phase, which has different viscosity at low and high t
peratures.~We do not discuss the ‘‘vortex glass transition’’ whic
may be not a true phase transition.!
©2003 The American Physical Society09-1
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bundle pinning region~so thatRc@a at this point!, the sce-
nario of Ref. 8 would lead to the conclusion that up to t
intersection point, one can find the melting line by neglect
the pinning, and the order-disorder line by neglecting
entropy gain. Just this approximation was used in our pa4

for analyzing the phase diagrams of superconductors. H
ever, our recent results19 point out that flux-line pinning can
affect the melting line near the intersection point since at
point, the ratioRc /a has decreased to several units for a
magnitude of the quenched disorder in the vortex latt
~even when the disorder is weak!. As to the second scenario
the three energies are all the same order of magnitude in
temperature region where the order-disorder transition gra
ally transforms into melting. Thus, whatever scenario occ
in reality, a detailed investigation of the effect of pinning o
the melting line is important to clarify the most intriguin
part of the phase diagram.

The effect of pinning by point defects on the melting lin
was observed both in BSCCO~Ref. 20! and in YBaCuO
~Refs. 21–23! crystals. It was discovered that an increase
the quenched disorder in the vortex lattice leads to a not
able shift of the intersection point to lower magnetic fiel
and simultaneously pushes the melting line in theT-H plane
slightly downwards, i.e., at a fixed temperature the approp
ate magnetic field of the melting,Hm(T), decreases. It is
important that the shift of the intersection point is essentia
more pronounced than the decrease ofHm(t) itself.

Some theoretical results on this subject were obtaine
Refs. 2, 5, and 24. Larkin and Vinokur24 started from the
assumption that for the vortex lattice with quenched disor
to melt, the temperature must match a characteristic ba
composed of the elastic energy,Eel , and the pinning energy
Epin . So they estimated the effect of pinning on the melti
line by considering the following balance of these three
ergies:

T5Epin1Eel , ~1!

where Epin and Eel were calculated in the so-called cag
model.1 But it follows from this equation that the meltin
line has to shiftupwardswhen the quenched disorder in
creases. Another approach was used in Ref. 2. To desc
the unified phase transition line, Giamarchi and Le Douss2

who implied the second scenario, put forward the followi
generalization of the Lindemann criterion:

utotal
2 5cL

2a2, ~2!

where cL is the Lindemann constant (cL;0.1–0.2), and
utotal;@2uT

21u2(a,0)#1/2 is the rms displacement of neigh
boring flux lines caused both by the thermal fluctuations a
by the quenched disorder in the lattice. HereuT is the mag-
nitude of the thermal fluctuations, whileu(a,0) describes the
mean relative displacement of neighboring flux lines cau
by the disorder. This criterion leads to the usual condition
the order-disorder transition1,3,4at low temperatures whenuT
is negligible, and it goes over to the well known Lindema
criterion for pure melting when the disorder disappea
Equation~2! results in a qualitatively correct dependence
the melting line on pinning by point defects. However, th
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reasonable criterion is only an interpolation formula betwe
the two limiting cases and has no serious justification. T
same is true for the criterion of Ref. 5. Radzyneret al.5 de-
scribed the unified phase transition line using the criterio

uT
21u2~a,0!5cL

2a2, ~3!

which practically coincides with Eq.~2!. Criterion ~3! is
equivalent to the following balance of energies:

T1Epin5Eel , ~4!

which evidently differs from Eq.~1!. In calculations of the
phase transition line, the energiesEpin andEel were estimated
in Ref. 5 in the framework of the cage model. But it r
mained unclear why the pinning energyEpin now enters into
Eq. ~4! with the opposite sign as compared to energy bala
~2! suggested by Larkin and Vinokur.24

In the present paper, in order to find and to justify a c
terion for the melting of the flux-line lattice with quenche
disorder, we start with the analysis of melting in the ide
lattice and show that three different approaches lead to
same dependenceHm(T). These approaches are: the Lind
mann criterion, the energy balance, and the rigorous
proach based on the Ginzburg-Landau~or on the London!
Hamiltonian. In the case of the lattice with quenched dis
der, we show that the pinning energy in the flux-line liquid
larger than the pinning energy in the Bragg glass. For t
reason, the difference of these pinning energies,Epin , has the
opposite sign as compared to Eq.~1!, and we arrive at an
equation similar to Eq.~4! but with an expression forEpin
that differs from the estimates previously published. Besi
this, we estimate the effect of pinning on the entropy gain
melting and find the upper critical point of the melting lin
from the condition that this gain vanishes. We also show t
the result forHm(T) based on this energy balance agre
with the result which can be derived from the Ginzbur
Landau Hamiltonian. Then, using theHm(T) obtained in the
framework of the second and the third approaches, we
how the Lindemann criterion should be modified to give t
same melting line. Interestingly, the presented energy
ance clarifies the difference between the first and the sec
scenarios. Finally, we present theT-H phase diagrams o
superconductors with two types of flux-line pinning by poi
defects and compare these diagrams for the two scenari

In this paper we consider only magnetic fields exceed
considerably the lower critical fieldHc1 and thus do not
distinguish between the magnetic fieldH and the magnetic
inductionB. Besides this, we deal only with uniaxial anis
tropic three-dimensional superconductors, neglecting co
pletely the decoupling of the superconducting layers. T
anisotropy is characterized by the parametere5lab /lc,1
wherelab and lc are the London penetration depth in th
planeab perpendicular to the anisotropy axis and along t
axis, respectively. The magnetic field is assumed to be
rected along the anisotropy axis. As to the quenched diso
in the flux-line lattice, we assume that it is caused by po
defects and is not too strong such that the melting line
entirely in the bundle pinning region.
9-2
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II. MELTING OF THE IDEAL VORTEX LATTICE

We begin with the analysis of melting in the ide
pinning-free vortex lattice and compare the results of vari
approaches.

A. Lindemann criterion

According to the well known Lindemann criterion, th
flux-line lattice melts when the magnitude of the therm
displacements of the lattice relative to its equilibrium po
tion, uT , reaches a certain fraction of the spacing betwe
the flux lines,a:

uT
25cL

2a2, ~5!

wherea5(F0 /H)1/2, F0 is the flux quantum, andcL is the
Lindemann constant. The magnitudeuT depends on the elas
tic moduli of the lattice25 and was calculated in many paper
see, e.g., Refs. 9 and 25–28. It can be represented in
form4

uT
2'j2

•tS Gi

12t2D 1/2

h21/2f ~h!, ~6!

where j(t) is the coherence length in theab plane, h
5H/Hc2(t), t5T/Tc , Hc2(t)5F0/2pj2 is the upper criti-
cal field, Gi is the Ginzburg number,

Gi5
1

2 S Tc

Hc
2ej0

3D 2

,

which characterizes the width of the fluctuation region
zero magnetic field,j0 andHc are the coherence length an
thermodynamic critical magnetic field of the superconduc
in the Ginzburg-Landau theory extrapolated toT50. For
definiteness, we implied in Eq.~6! and below thatj2(t)
5j2(0)/(12t2). @Hencej05j(0)/A2]. The complete ex-
pression for the functionf (h) was given in Ref. 28, but for
our further analysis it is sufficient to use a simplified form
this function4 in which the contribution containing the com
pression modulus of the vortex lattice,c11, is neglected:

f ~h!5
2bA

12h

@11~11 c̃!2#1/221

c̃~11 c̃!
, ~7!

with c̃50.5@bA(12h)#1/2 andbA51.16. Note that this for-
mula can be rewritten in the form

f ~h!5
f 1~h!

~12h!3/2
, ~8!

where the functionf 1(h) defined by this equality decrease
monotonically with increasingh, and its variation in the in-
terval 0,h,1 is not large:f 1(0)'2.34 andf 1(1)'1.78.
Thus, to a first approximation, this function can be cons
ered as a constant,f 1(h)' f 1;2.

Combining formulas~5!–~8!, we arrive at the equation fo
the normalized melting fieldhm(t)5Hm(t)/Hc2(t):
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hm
1/2 f 1~hm!

~12hm!3/2
52pcL

2 . ~9!

This equation agrees with those obtained earlier9,25–28 and
differs from them only in the form of the functionf 1(h)
since different authors used slightly different approximatio
for the elastic moduli or took into account the contributio
associated with the compression modulus of the vortex
tice.

When the normalized melting fieldhm(t) is small, hm
!1, it follows from Eq.~9! that

Hm~ t !

Hc2~0!
5S 2pcL

2

f 1~0!t D
2 ~12t2!2

Gi
. ~10!

This is a well-known result9,25–28that holds for temperature
nearTc ~but outside the fluctuation region in zero magne
field!, namely for

Gi!12t2!@ f 1~0!/2pcL
2#2Gi. ~11!

Note that for inequalities~11! to be fulfilled in a sufficiently
wide temperature interval, the Ginzburg number should
be too small. In the opposite limiting case,

12t2@@ f 1~1!/2pcL
2#2Gi, ~12!

the fieldhm is close to unity, and one obtains, from Eq.~9!,

12hm'S f 1~1!

2pcL
2D 2/3

t2/3S Gi

12t2D 1/3

, ~13!

or equivalently,

Hc2~ t !2Hm~ t !

Hc2~0!
'S f 1~1!

2pcL
2D 2/3

t2/3Gi1/3~12t2!2/3. ~14!

Note thatHc2(0)Gi1/3(12t2)2/3 is the width ~along theH
axis! of the fluctuation region in not too small magnet
fields,29–31 H@Gi Hc2(0), and for inequality ~12! to hold,
the Ginzburg number should not be too large.

B. Energy balance

At melting, proliferation of dislocations occurs in the vo
tex lattice. These dislocations create a network in the latt
and we consider a mean unit cell of this network compo
of edge and screw dislocations. The energies of these d
cations are of the order of

Eedge;c66a
2l i ,

Escrew;~c44c66!
1/2a2l' , ~15!

wherec66 and c44 are the shear and tilt moduli of the flux
line lattice, whilel i and l' are the dimensions of the cell i
the longitudinal and transverse directions toH, respectively.
Since at the melting these dimensions are of the order oa
~see below!, we have omitted the logarithmic factors ln(li /a),
ln(l' /a) in the above formulas for the dislocation energie
The shear and tilt moduli may be expressed as9,25
9-3
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c66'
«0

4a2 ~12h!2,

c44;
e2«0

a2 ~12h!, ~16!

whereh5H/Hc2(t), «05(F0/4plab)
2, and we have omit-

ted the logarithmic factor of type ln(a/j) in the tilt modulus
~this nonlocal modulus should be estimated at wave vectok
of the order ofl i

21 , l'
21). The factors containing (12h) take

into account the softening of the vortex lattice near
Hc2(t) line.32 Minimization of the elastic energy of the ce
at its fixed volume leads toEedge;Escrew, and hence gives
the relation betweenl i and l' :

l i; l'S c44

c66
D 1/2

. ~17!

Thus, up to a numerical factor, the elastic energy of the
location cell,Eel , equalsEscrew.

At melting, the cost in the elastic energy due to the p
liferation of the dislocation network is balanced by the e
tropy gain in the free energy of the flux-line lattice. We no
give a simple estimate of this gain: The vortex-lattice d
grees of freedom associated with shear undergo a ch
when the melting occurs. This change occurs for latt
modes with wave-lengths greater thanl i and l' . There are
l i

21l'
22 modes of this type in the unit volume of the lattic

and each of them contributes aboutT to the entropy gain.
Thus, up to a numerical factor, the gain per cell of the d
location network isT• l i

21l'
22

• l il'
2 ;T.

We now can write down the change of the free energy
cell at melting:

DF}C~c44c66!
1/2a2l'2T, ~18!

where some constantC is the ratio of the unknown numerica
factors inEel and in the entropy gain. Minimization of Eq
~18! with respect to the parameterl' leads to the conclusion
that this parameter should have the minimum possible va
It is clear that this value is of the order ofa in the lattice.
Then, taking into account thatDF50 at the melting, we
arrive at

C~c44c66!
1/2a32T50, ~19!

where this constantC may be slightly renormalized as com
pared to theC of Eq. ~18!. Inserting Eqs.~16! for the elastic
moduli and assuminglab(t)/j(t)5const, one finds the
equation for the melting linehm(t):

tS Gi

12t2D 1/2
hm

1/2

~12hm!3/2
5

ApC

4
. ~20!

As was noted earlier~see, e.g., Refs. 3 and 9!, formula
~10! for the melting line nearTc can be obtained from the
energy balance. Here we have taken into proper accoun
softening of the elastic moduli nearHc2(T), and now Eq.
~20! shows that not only formula~10! but also expression
~13! can be derived by this method. Moreover, if one uses
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approximation in which the functionf 1(h) is a constant,33

f 1(h)' f 1, and putC58ApcL
2/ f 1, Eqs. ~9! and ~20! com-

pletely coincide in the whole temperature interval.

C. Some exact results

Within the mean-field theory, when one neglects fluctu
tions of the superconducting order parameter, the mel
line Hm(T) coincides with theHc2(t) line. It is the fluctua-
tions that shiftHm(t) downwards in theH-T plane. As was
mentioned above, see Eq.~14!, the Lindemann criterion
shows that at sufficiently strong magnetic fields, the dista
between the melting line and the mean-fieldHc2(t) line is
comparable with the width of the fluctuation region. But th
the question arises about the applicability of this criteri
~and of the energy balance! for determiningHm in this region
of the magnetic fields since expressions~16! for the elastic
moduli were derived in the framework of the mean-fie
theory without accounting for the fluctuations. In this co
text, it should be noted that one cannot confine onesel
taking into account only the first fluctuation correction to t
elastic moduli~in the fluctuation amplitude! since inside the
fluctuation region the amplitude is large, and corrections
all orders are essential. In particular, the renormalized ela
moduli will vanish on a line which differs from the mean
field Hc2(t). However, simple considerations30,34 show that
at 12hm!1, strong fluctuations can only renormalize th
numerical factor in Eq.~13!, but the dependences ofHm on t
and on Gi remain unchanged. We now briefly outline the
considerations.

In dimensionless units the Ginzburg-Landau Hamilton
depends on the three parameters:t, H/Hc2(0) and the Gin-
zburg number Gi. As well known, the quadratic part~in the
order parameter! of this Hamiltonian looks like the Hamil-
tonian of a particle with double electron charge in a magne
field, and the energy spectrum of this particle is the so-ca
Landau levels. It is essential that in fieldsH@GiHc2(0), the
distance between these levels exceeds the width of the
tuation region. Thus, if one expands the order parameter
the eigenfunctions of the particle, only the modes of the
der parameter corresponding to the lowest Landau le
strongly fluctuate near the melting line, and one may ret
only these modes in the Hamiltonian to calculate the fluct
tion part of the free energy of a superconductor. It turns
that the Hamiltonian thus obtained depends on a single c
bination of the parameters. In our notations, this combinat
Q can be represented in the form

Q5
~12h!~12t2!1/3

t2/3Gi1/3h2/3
, ~21!

whereh5H/Hc2(t). Hence, in this region of the magnet
fields, the free energies of the vortex liquid,F liq , and the
vortex lattice,F lat , are also determined only by this comb
nation, and for the melting linehm(t) we arrive at the equa
tion

F liq~Q!5F lat~Q!. ~22!

The solution of this equation has the form
9-4
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Q5
~12hm!~12t2!1/3

t2/3Gi1/3hm
2/3

5C1 , ~23!

where C1 is some constant. Taking into account thathm
'1, from Eq.~23! we find

12hm'C1t2/3S Gi

12t2D 1/3

. ~24!

It is seen that up to a numerical factor, this expression ind
coincides with Eq.~13!.

The above consideration does not use any perturba
theory and therefore is exact, but it does not yield the c
stant C1. Using some variants of perturbation theory~see,
e.g., Ref. 35!, approximate expressions forF liq andF lat were
obtained in Refs. 36 and 37. On this basis, an equation
the melting line, which agrees with Eq.~23!, was derived in
these papers together with the appropriate constantC1.
Hikami et al.36 estimatedC1'7, while Li and Rosenstein37

who used a refined expression forF lat found C1'9.5.
A consideration similar to that presented above was a

applied to the Hamiltonian of the vortex system in the Lo
don approximation, see Ref. 38. In the region of the m
netic fields considered here,H@Hc1, one haslab@a, and
the Hamiltonian, as well as the free energy of the vor
system, are determined by a single combination of the ph
cal parameters:e«0a/T. Thus, the melting lineHm(T) is
found from the equation

e«0~T!a~Hm!

T
5C2 , ~25!

with some constantC2. In other words, the London approx
mation leads to Hm(t)}@ tlab

2 (t)#22. Putting lab(t)
5lab(0)(12t2)21/2 and taking into account the definitio
of Gi, we arrive at the formula

Hm~ t !

Hc2~0!
5

p

~2C2t !2

~12t2!2

Gi
, ~26!

which agrees with Eq.~10!.
To summarize, we have shown in this section that up

numerical factors, the three different approaches lead to
same dependencesof the vortex-lattice melting fieldHm on
the temperatureT and on the Ginzburg number Gi@Eqs.~10!
and~14!#. Thus, after obtaining these dependences, e.g., f
the energy balance, for the vortex lattice with pinning, o
can guess the true form of the Lindemann criterion for t
lattice. We shall use this procedure in Sec. III.

III. MELTING OF THE VORTEX LATTICE WITH
QUENCHED DISORDER

In this section we analyze the melting line of the vort
lattice with pinning assuming that the line is in the bund
pinning region ~where the transverse collective pinnin
lengthRc is greater thana). As it follows from the figures of
Sec. IV B, the melting line, as a rule, doesentirely lie in this
region, and only in the case of sufficiently strongdTc pin-
ning can it enter the single vortex pinning region.
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A. Energy balance

We now consider the influence of pinning by point defe
on the energy balance. The adjustment of the vortex sys
to the pinning potential decreases the total energy of
system, and the amount of this decrease is just of the orde
the pinning energy. It will be shown in this section that
melting, the pinning energy in the flux-lineliquid, Epin

liq , is
noticeablygreater than the pinning energy in the flux-lin
lattice ~Bragg glass!, Epin

lat . Thus, there is a gain in the fre
energy of the vortex system,Epin , associated with the pin
ning energy:Epin5Epin

liq 2Epin
lat ;Epin

liq . This gain adds to the
entropy gain, and Eq.~18! is modified as follows:

DF}C~c44c66!
1/2a2l'2TDS2Epin , ~27!

where the factorDS takes into account the effect of pinnin
on the entropy gain per dislocation cell.

In order to estimateEpin
lat , Epin

liq , andDS, it is necessary in
general to take into account the so-called therm
depinning9,39 since the thermal displacementuT is suffi-
ciently large at the melting,uT;cLa. However, to explain
the main ideas, we first carry out the estimates neglec
this depinning and then generalize the obtained results
taking it into account.

The pinning energy of the flux-linelattice without dislo-
cations, i.e., of the Bragg glass, in the volume equal to t
cell of the dislocation network,Epin

lat , can be estimated usin
the results of collective pinning theory9:

Epin
lat ;~Wlil'

2 !1/2u, ~28!

whereW5 f pin
2 nj2/a2, f pin is the mean elementary pinnin

force exerted by one point defect,n is the concentration of
the defects, and the expression (Wlil'

2 )1/2 is the mean pin-
ning force per cell. The displacementu[u( l',0);u(0,l i) is
the rms relative shift of two line elements in the vortex la
tice separated by a distancel' transverse to the magneti
field, or by l i along the field. This shift is caused by th
random point defects. The magnitude ofu can be expressed
in terms of the transverse collective pinning length,Rc , at
which the relative displacements of points in the lattice
of the order ofj. In particular, if the small bundle pinning
regime occurs, i.e.,Rc,lab , one has9

u2'
j2

11 ln~Rc
2/a2!

, ~29!

where we have used thatl';a. Note that according to Eq
~17!, the longitudinal dimensionl i is of the order ofea/(1
2h)1/2.

At melting, proliferation of dislocations occurs, and in th
liquid vortices can adjust themselves to the pinning poten
not only via their elastic deformations as in the Bragg gla
but also via the plastic vortex-lattice displacements genera
by dislocations. This additional adjustment mechanism
creases the pinning energy in the liquid. To estimate the p
ning energy per dislocation cell in the liquid,Epin

liq , it is nec-
essary to take into account that the displacements gene
by the dislocation network are essentially larger than the
9-5
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placements existing in the Bragg glass at the same temp
ture and magnetic field within the scalesl' , l i . Indeed, in
the lattice without dislocations, one hasu( l',0);u(0,l i)
5u,j @see Eq.~29!#, while in the liquid the dislocations
lead to displacements of abouta.j at the boundary of the
dislocation cell. It is also essential that the displaceme
caused by the dislocations within a scalel , l' , l i have a
different dependence onl than the elastic displacements
the Bragg glass. Then, we obtain the estimate:

Epin
liq ;~Wlil'

2 !1/2j. ~30!

Note that although the displacements generated by the d
cations are large and exceedj, we multiply the mean pin-
ning force per cell only byj in formula ~30! sincej is the
effective range of the elementary pinning forcef pin . It fol-
lows from Eqs. ~28!–~30! that Epin

liq /Epin
lat ;(j/u);@1

1 ln(Rc
2/a2)#1/2, i.e., Epin

liq noticeably exceedsEpin
lat in the

bundle pinning regime, and hence formula~30! gives the
estimate ofEpin in Eq. ~27!.

It is convenient to rewrite expression~30! in terms ofLc ,
the single-vortex collective pinning length, using th
relation,9 f pin

2 n'e4«0
2/Lc

3 . Then one arrives at the formul
for Epin :

Epin;e«0a@Dg0~ t !#3/2h1/4~12h!3/4, ~31!

where we have inserted the estimates forl' , l i , have taken
into account that the quantity«0}lab

22 should lead to an
additional factor 12h when h5H/Hc2(t) tends to unity,25

and have used the notation4

ej~ t !

Lc~ t !
[Dg0~ t ! ~32!

with ej(0)/Lc(0)5D. The functiong0(t) is given4 by

g0~ t !5~12t2!1/2 ~33!

for d l pinning, and by

g0~ t !5~12t2!21/6 ~34!

for dTc pinning. The parameterD is a measure of the pin
ning strength and is estimated as9 D'( j c / j 0)1/2 where j c is
the critical current density in the single vortex pinning r
gime and j 0 is the depairing current density, both taken
T50.

Let us now estimate the entropy term in the energy b
ance~27!. In Sec. II B we obtained the expressions for t
melting line of the ideal vortex lattice, assuming that t
main contribution to the entropy gain at melting is due
disappearance of the shear phonon modes in the liquid.
mechanism of this disappearance is the following: A sh
stress in the liquid generates the so-called Peach-Ko¨hler
forces40,41 exerted on dislocations; the dislocations begin
move, and their shifts relax the shear stress in the liquid
the vortex system with pinning a dislocation cannot move
the pinning force per dislocation cell, (Wlil'

2 )1/2, exceeds the
Peach-Ko¨hler forceac66uxyl i exerted on a dislocation seg
ment of lengthl i whereuxy is the shear deformation of th
05450
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vortex system in the plane normal to the magnetic fie
Thus, for relaxation of the shear stress to occur, the de
mationuxy must exceed the critical value

uxy
cr 5

~Wlil'
2 !1/2

ac66l i
;@Dg0~ t !#3/2h21/4~12h!23/4. ~35!

Here we again have inserted the relations used in deriv
Eq. ~31!. In the volume with dimensionsL' andL i , thermal
fluctuations generate shear deformationsuxy that can be es-
timated from

c66uxy
2 L iL'

2 ;T. ~36!

Hence, for largeL' andL i , when

L iL'
2 .@L iL'

2 #cr;
T

c66~uxy
cr !2

,

the deformations are less than the critical value; the re
ation of the shear stress in the liquid does not occur,
these modes do not contribute to the entropy gain~they do
not differ essentially from the appropriate modes in t
Bragg glass!. Then, applying the considerations of Sec. II
we obtain the factorDS in Eq. ~27!: DS512P(t,h), where

P~ t,h!5
l il'

2

@L iL'
2 #cr

;
@Dg0~ t !#3~12t2!1/2

t Gi1/2h
. ~37!

As is well known,9,39 thermal fluctuations of the vortex
lead to a smoothing of the pinning potential and there
affect the pinning. To estimate the effect of this thermal d
pinning on Epin and P(t,h), we use the recipe of Ref. 9
elaborated for the case of the flux-line lattice~see page 1214
in that paper!. Then an additional factorj/r p appears in Eq.
~30!, while the right hand side of Eq.~35! is multiplied by
(j/r p)2 wherer p5(j21uT

2)1/2 is the new effective range o
the pinning force when thermal fluctuations are allowed f
This modifies formulas~31! and ~37! as follows:

Epin;e«0a
@Dg0~ t !#3/2h1/4~12h!3/4

F11tS Gi

12t2D 1/2
f ~h!

h1/2 G 1/2,

~38!

P~ t,h!;
@Dg0~ t !#3~12t2!1/2

tGi1/2hF11tS Gi

12t2D 1/2
f ~h!

h1/2 G 2 ,

where we have used Eq.~6! for uT
2 .

Inserting formulas~38! into Eq. ~27!, expressingC as
8ApcL

2/ f 1 with a constant f1, and taking into account tha
DF50 at melting, we eventually find the equation for th
melting linehm(t):
9-6
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FT~ t !hm
1/2

~12hm!3/2
@12P~ t,hm!#1

A@Dg0~ t !#3/2hm
1/4

@~12hm!3/21FT~ t !hm
21/2#1/2

52pcL
2 , ~39!

where

P~ t,h!5
B@Dg0~ t !#3~12t2!1/2

t Gi1/2@h1/21FT~ t !~12h!23/2#2
, ~40!

A and B are some numerical factors, and we have used
notation

FT~ t !5 f 1tS Gi

12t2D 1/2

, ~41!

putting f 152 below. Equation~39! generalizes Eq.~20! ob-
tained in the case of the ideal lattice. Note that the facto
2P5DS in Eq. ~39! naturally explains the existence of th
upper critical point on the melting line. The temperaturetup
of this point can be obtained from the conditionDS50, or

P@ tup,hm~ tup!#51, ~42!

i.e., the entropy jump in the vortex system at melting va
ishes at this point.

Equation~39! is in agreement with the general conclusi
made in Ref. 4. Namely, it was stated4 that the phase dia
grams of various three dimensional superconductors w
point defects are determined only by the Ginzburg num
Gi, the parameterD characterizing the strength of pinning
and the functiong0(t) which is defined by the type of pin
ning. Other physical quantities@like Tc , Hc2(T), e, etc.#
either determine only scaling factors or do not appear exp
itly in the appropriate equations at all. In particular, the a
isotropy e is absorbed by the definitions of Gi andD and
does not enter in Eq.~39!.

B. Analysis of the equation

Figures 2 and 3 present the melting linesHm(t) obtained
numerically from Eq.~39! for different pinning strengthD.
Although the numerical factorsA and B have remained un
known in the above derivation of Eq.~39!, the figures show
that it is possible to chooseA15A/(2p)3/4 and B1
5B f1 /(2p)3/2 such that the calculated melting lines ha
the properties observed in experiments~see Introduction!. In
particular, we find that the upper critical point noticeab
shifts under the influence of pinning and tends toTc at rea-
sonable values ofD when A1 and B1 are not too small
(A1 , AB1;1). With increasingD the melting line shifts
downwards ifB1,A1

2, and this shift becomes small whenB1

does not differ too much fromA1
2. Of course, the choice o

A1 andB1 on the basis of these requirements is not uniq
Let us now analyze Eq.~39! in some limiting cases.

According to Sec. II, in temperature region~12! one has
12hm!1 for the melting line of the ideal vortex lattice. I
the parameterD is not too large, this property of the meltin
line remains true for the vortex lattice with pinning. B
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under the condition 12hm!1 the lowest Landau level ap
proximation is valid, and we can use the results of Appen
A where the effect of quenched disorder on the melting l
has been analyzed in the framework of an approach sim
to that of Sec. II C. On the other hand, puttinghm'1 in Eq.
~39!, we arrive at

Q23/2S 12
B f1@G~ t !#2

@11Q23/2#2D 1
AG~ t !Q23/4

@11Q23/2#1/2
52pcL

2 ,

~43!

whereQ3/25(12hm)3/2/FT(t) @compare with formula~21!#,
and

G~ t !5
@Dg0~ t !#3/2

@FT~ t !#1/2
5

@Dg0~ t !#3/2~12t2!1/4

~ f 1t !1/2Gi1/4
. ~44!

FIG. 2. The melting lineHm(t) for the vortex lattice with
quenched disorder, from Eq.~39!, for D/cL50, 0.4, 0.6, 0.8, 1, 1.2,
1.4, and 1.6 in the case ofd l pinning at Gi50.01 ~top! and at
Gi50.001 ~bottom!. Here A15A/(2p)3/451. The upper lineD
50 is the melting line of the ideal lattice,Hm

id(t). The dotted line
showsHc2(t)/Hc2(0)512t2.
9-7
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Equation~43! shows that the quantityQ on the melting line
depends ont only via the functionG(t). This conclusion
completely agrees with the exact result of Appendix A.

WhenD50 @i.e., G(t)50], Eq. ~43! gives the result for
the ideal vortex lattice,Q23/252pcL

2 ; see Eq.~13!. For non-
zeroD the functionG(t) decreases with the temperature.
the case ofdTc pinning one hasG(t)}t21/2, while G(t) is
proportional to (12t2)/At for d l pinning. Hence in the
equation for the melting line the role of terms associa
with pinning increaseswith decreasingt. It follows from
Eqs.~43! and~42! that at the upper critical point the functio
G(t) reaches a certain value, and condition~42! can be writ-
ten in the form:

AB f1G~ tup!5
1

2
1S 1

4
1~2pcL

2!2
B f1

A2 D 1/2

. ~45!

Interestingly, up to a numerical factor~and the factor@1
2hsv(t)#3/2 which we do not take into account here42! this
condition reduces to Eq.~32! of Ref. 4 for the intersection
point of the melting line with the order-disorder line. In pa
ticular, it follows from Eqs.~44! and~45! that tup, similarly

FIG. 3. As in Fig. 2, but fordTc pinning.
05450
d

to the temperature of the intersection point, depends on
and D only via the combinationD3/Gi1/2 of these param-
eters.

The so-called depinning line9 along whichuT'j, inter-
sects the melting line of the ideal lattice,Hm

id(t), at 12t2

;( f 1
2/2pcL

2)Gi, i.e., outside the temperature region defin
by Eq. ~12!. In the region 12t2!( f 1

2/2pcL
2)Gi, the depin-

ning is essential. In this depinning region, the termsTDS and
Epin in the energy balance~27! become relatively small, and
the melting line is close to that of the ideal lattice.

C. Lindemann criterion

We now rewrite Eq.~39! in the form of the Lindemann
criterion. As it follows from formulas~5! and ~9!, the factor
FT(t)hm

1/2/(12hm)3/2 in the first term of Eq.~39! is simply
2puT

2/a2 whereuT is described43 by Eq. ~6!. To rewrite the
second term in Eq.~39!, let us take into account the formul
for the averaged relative shift of two line elements in t
vortex lattice separated by a distanceR<Rc transverse to the
magnetic field44:

u2~R,0!

r p
2 'S ea

Lc

j2

r p
2D 3 11 ln~R2/a2!1eR/lab

~12h!3/2
. ~46!

@If the small bundle pinning regime occurs,Rc,lab , the last
term in this formula,eR/lab , is small and may be omitted.#
At R5Rc , one hasu(Rc,0)5r p . Insertingr p

25j21uT
2 and

expression~6! for uT in the relationship thus obtained, an
taking into account definition~32!, we arrive at

11 lnS Rc
2

a2 D 1e
Rc

lab

5S h~12h!

2pD2g0
2~ t ! D

3/2F11S Gi

12t2D 1/2 f 1t

h1/2~12h!3/2G 3

. ~47!

Simple manipulations using this formula show that the s
ond term in Eq.~39!, which tells the role of the pinning
energy in the energy balance, is

2pA1

r p
2

a2 F11 lnS Rc
2

a2 D 1
eRc

lab
G21/2

, ~48!

whereA15A/(2p)3/4. Since the factor containingRc can be
represented asu(a,0)/r p @using Eq.~46! at R5a and then at
R5Rc], we find one more form for the second term in E
~39!:

2pA1

r pu~a,0!

a2 . ~49!

As to the quantityP(t,h) given by Eq.~40!, it is expressed
as B1u2(a,0)/uT

2 whereB15B f1 /(2p)3/2. Thus Eq.~39! is
equivalent to the following criterion:

uT
22B1u2~a,0!1A1r pu~a,0!5cL

2a2, ~50!

which is true for the melting line in the bundle pinning r
gion. Equation~50! can be also rewritten in the form
9-8
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uT
22B1u2~a,0!1A1u2~a,0!F11 lnS Rc

2

a2 D 1
eRc

lab
G1/2

5cL
2a2.

~51!

Note that although criteria~2! and~3! are qualitatively close
to Eq. ~51!, they underestimate pinning at largeRc .

Equation ~50! @or ~51!# is valid when uT
2>B1u2(a,0)

since condition~42! for the upper critical point now has th
form

uT
25B1u2~a,0!. ~52!

Taking into account thatB1;1, this condition means that th
upper critical point, as a rule, lies in the bundle pinni
region. Indeed, if the melting line enters the single vor
pinning region before the upper critical point occurs, o
finds uT

2>B1r p
25B1(j21uT

2) at the boundary of this region
In other words, the melting line can intersect the boundary
the depinning region whereuT

2 is large. But in this region the
melting line practically coincides with that of the ideal lattic
~Sec. III B!; the latter can cross the boundary only in the ca
of dTc pinning at sufficiently largeD.19

IV. PHASE DIAGRAMS

A. First and the second scenarios

To gain some insight into the character of the mergenc
the melting line with the order-disorder line, let us consid
more closely the dependence of the free energy differe
between the liquid and the Bragg glass,DF, on the size of
the dislocation cell,l' . We shall consider only suchl' that
lie near the minimum possible size in the latticel'

min ( l'
min

;a). In evaluating the entropy gainTDS, the elastic energy
Eel and the pinning energyEpin , it is necessary to take into
account that the modulusc44 depends on the wave vectork.
According to Ref. 25, one hasc44(k;1/l')'c44(1/a)
•( l' /a)2 at l',lab /e, and hencel i} l'

2 ; see formula~17!.
Then we can writeDF in the form~we still neglect logarith-
mic factors!

DF}Eel~a! l̃'
2 2Epin~a! l̃'

2 1T@P~a! l̃'
4 21#, ~53!

where l̃'5 l' / l'
min , P(a) denotesP(t,hm) of Eq. ~39!, and

Eel(a) and Epin(a) are the elastic and the pinning energi
per dislocation cell atl'5 l'

min , which have been inserte
into formula ~27! to derive Eq.~39!. Equation~53! is valid
whenP(a) l̃'

4 21,0, otherwise the last term in this equatio
has to be omitted, and one has

DF}Eel~a! l̃'
2 2Epin~a! l̃'

2 ~54!

for l̃'
4 .1/P(a).

As was mentioned above, in Eq.~39! for Hm(t) @or
equivalently Tm(H)] the relative role of terms associate
with pinning increases with decreasingTm for both types of
pinning. WhenEpin(a) andP(a) are sufficiently small~i.e.,
for temperaturesTm nearTc), the functionDF( l̃') is mini-
mum at the lowest possible valuel̃'51 and then increase
05450
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with increasingl̃' @Fig. 4~a!#. This means that melting oc
curs atl̃'51 as in the ideal lattice. This conclusion has be
already used implicitly in deriving Eq.~39!. When the tem-
perature Tm decreases, and henceP(a) and the ratio
Epin(a)/Eel(a) increase, the pointl̃'5@1/P(a)#1/4 shifts to
smaller l̃' , and the slope ofDF in Eq. ~54! on l̃'

2 decreases.
Eventually, at the critical temperaturetup, one arrives at the
situation shown either in Fig. 4~c! or in Fig. 4~d! since the
energy balance for the meltingEel(a)2Epin(a)5Tm@1
2P(a)# leads toEel(a)2Epin(a)50 at this point. In the
case of Fig. 4~d! when the dependence ofDF on l̃'

2 has a

negative curvature atl̃'51, we conclude that this case
necessarily preceded by the situation shown in Fig. 4~b!,
which has to occur at some temperaturet i.tup whereP(a)
,1 andEpin(a),Eel(a). At this t i the size of the dislocation
cell, l' , sharply increases because the absolute minimum
DF now occurs at a largerl̃'.1. In other words, at this
temperature we find anintersectionof the melting line with
the order-disorder line. The abrupt increase ofl' also means
that the melting and the order-disorder transition cannot fo
a unified phase transition line. Thus, we arrive at the fi
scenario45 shown in Fig. 1. In the case of Fig. 4~c! two pos-
sibilities exist: Either at some temperaturet i.tup the situa-
tion shown in Fig. 4~b! occurs, and we again arrive at th
first scenario, or the functionDF( l̃')2DF(1) remains posi-
tive for all l̃' in the temperature intervaltup<t<1. In the
latter case we find that the mean size of the dislocation c
l' , cannot gradually change in the process of the reduc
of the entropy gain, and hence one hasl̃'51 down totup. In
this case, the melting line continuously transforms into
order-disorder line, and we arrive at the second scena
Moreover, sincetup is not a specific temperature forEpin(a)
or Eel(a), it is quite probable that the resultl̃'51 remains

FIG. 4. Schematic sketch of the functionDF( l̃'), Eqs.~53! and
~54!, for t.t i ~a!, t5t i ~b!, andt5tup @~c! or ~d!#. The parts of the
curves where Eqs.~53! and ~54! fail are indicated as dashed line

The breaks of the curves a and b occur at the pointsl̃'
4 51/P(a)

where Eq.~53! transforms into Eq.~54!.
9-9
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true also att,tup ~at least in the bundle pinning region!.
Then, att<tup the order-disorder line~which is now a part of
the unified phase transition line! is determined by the condi
tion

Eel~a!5Epin~a!. ~55!

As it follows from the results of Sec. III C, in the bund
pinning region condition~55! is equivalent to the Lindeman
criterion:

A1u2~a,0!F11 lnS Rc
2

a2 D 1
eRc

lab
G1/2

5cL
2a2. ~56!

If the order-disorder line enters the single vortex pinni
region, whereRc5a, condition~55! yields

A1u2~a,0!5cL
2a2. ~57!

~Note that the ratioea/lab is negligible.! In Appendix B
Eqs.~56! and ~57! are presented in an explicit form.

To calculate the order-disorder lineHdis(t) in the case of
the first scenario, we used the criterion4

u2~a,0!5cLD
2 a2, ~58!

wherecLD is some new Lindemann constant describing
order-disorder transition. It should be emphasized that
though Eq.~58! is similar to Eq.~57!, the Lindemann con-
stantcLD in Eq. ~58! is independent of the constantcL de-
fining the melting, while in the case of the second scena
Eq. ~57! leads to a relationship between the Lindemann c
stants defining the melting and the order-disorder lines~the
ratio of these constants isAA1). Criterion ~58! both in the
single vortex and in thebundle pinning46 regions were ana
lyzed in Ref. 4, allowing for a smoothing of the pinnin
potential by thermal fluctuations. The appropriate equati
in the explicit form are presented in Appendix B. For de
niteness, in the analysis below we shall choose the cons
cLD for the order-disorder line as equal to the constantcL for
the melting line.

B. Numerical results

Although in this paper we have not analyzed the ord
disorder line in detail, criteria~56!, ~57!, and~58! enable one
to evaluate the location of this line in theT-H plane for the
first and the second scenarios. In Figs. 5–8 we compare
T-H phase diagrams of type-II superconductors with diff
ent types of pinning for these two scenarios. In the constr
tion of the figures, we use the values of the Ginzburg num
Gi50.01 and 0.0001 which are typical for high-Tc supercon-
ductors, and we take into account the factor containing@1
2hsv(t)# that has been omitted in Sec. III.42 The complete
set of the appropriate equations is given in Appendix B.

In Figs. 5–8 we choose the constantsA1 and B1 so that
the following two requirements are satisfied: First, the pro
erties of Hm(t) observed in experiments are reproduce
namely, with increasingD the upper critical point clearly
shifts, while the downward shift of the melting line is sma
see Sec. III B. Second, the upper critical pointtup of the
melting line coincides with the intersection pointt i of this
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line with the order-disorder line~calculated within the first
scenario! at D50.7 for the case ofd l pinning. The latter
requirement is due to the following considerations: Acco
ing to Refs. 12 and 15, the coincidence oft i and tup is ob-
served in overdoped YBa2Cu3Oy crystals (y.6.92) for
which the upper critical point lies at sufficiently large ma
netic fields, and so the casehm;1 appears to occur there. A
it was mentioned in Sec. III B, in this caset i and tup depend
on Gi andD only via a single combination of these param
eters,D3/Gi1/2. Therefore, one may expect that if the coi
cidence of the upper critical point with the intersection po
occurs, it practically will not depend on the specific choice
D or Gi. In other words, the coincidence will approximate
occur for differentD, Gi, and types of pinning as long a
hi'1. Although hi is not too close to unity in Figs. 5–7
~top!, the data of these figures support this statement. As
might expect, the region of the coincidence is especia
wide in D for small Gi~Fig. 6!. Thus, we have introduced th
second requirement here in order to fit the phase diagr
calculated in the framework of the first scenario to the e

FIG. 5. The phase diagram in the case ofd l pinning, g0(t)
5(12t2)1/2. Here A150.66, B50.8A1

2, cL50.25, Gi50.01, and
D/cL50.8 ~top! or D/cL51.3 ~bottom!. The melting lineHm(t)
and the order-disorder lineHdis

(1)(t) for the first scenario are show
by solid lines, while the thick dotted line gives the order-disord
line Hdis

(2)(t) for the second scenario. The dashed line depicts
boundary of the single vortex pinning region,Hsv(t), Eq. ~B2! @the
thin-dashed line shows Eq.~B1!#. The dotted line is
Hc2(t)/Hc2(0)512t2. The upper critical point (Tup, Hup) is
marked by a dot and the intersection point (Ti , Hi) by a circle.
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perimental situation observed in the overdoped YBa2Cu3Oy
crystals.

The presented figures show that when the intersec
point is close to the upper critical point, both scenarios le
to qualitatively similar phase diagrams. However, when
strength of pinningD increases, and the intersection po
shifts towardTc , the coincidence of the points fails esp
cially for dTc pinning. In this case the first scenario leads
a noticeable extension of the melting line beyond the in
section point. Thus, if the first scenario really occurs, t
result possibly explains the experimental findings11–15 for
optimally doped YBa2Cu3Oy crystals (y'6.92) in which the
upper critical point lies at larger magnetic field than the
tersection point. Note also that in the case ofdTc pinning,
the melting line enters the single vortex pinning region n
Tc at n[(2p)3/2D3/Gi1/2 of the order of several units.4,19

In Figs. 5–8 we also show the boundary of the sin
vortex pinning region,Hsv(t). It should be noted that apa
from the well-known lower single vortex pinning region,9 an
upper region exists where this pinning occurs. The up
region of single-vortex pinning was discussed by Larkin a
Ovchinnikov47 in the context of the origin of the peak effe
in low-Tc superconductors. Without account of thermal flu
tuations, this region adjoins to theHc2(t) line and is caused
by the softening of the vortex lattice nearHc2(t). However,
this softening also leads to an increase ofuT , which reduces
the strength of pinning. As a result of these two oppos
tendencies, the upper region does not extend toTc and has
the shape of a ‘‘tongue.’’4 Interestingly, when the strength o

FIG. 6. As in Fig. 5, but for Gi50.0001.
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pinning increases, the upper and lower single-vortex pinn
regions can merge at low temperatures. This merging oc
for D>(4p)21/2; this value is independent of Gi and th
type of pinning since the merging starts atT50.

The authors of Ref. 5 argued that only the second scen
can explain the decrease ofHdis with the temperature tha
was observed in their experiments. However, the prese
figures show that the order-disorder line found from criteri
~58! ~the first scenario! can decrease or increase with tem
perature and even can be nonmonotonic. This depend
whether the line is in the single vortex pinning region or
the bundle pinning region and also on the Ginzburg numb
It should be noted that in contrast to Eq.~3! we take into
account only the displacement caused by the quenched
order and donot includeuT explicitly in the equation for the
order-disorder line, compare Eq.~58! with Eq. ~3!. However,
the thermal depinning~which depends onuT), the softening
of the elastic moduli, and the possibility that the orde
disorder line lies not only in the single vortex pinning regio
but also outside it, already produce the depicted variety
shapes ofHdis(t). Hence, even in the framework of the fir
scenario the presented results can explain the fact5 that the
order-disorder lines observed in experiments have vari
shapes.

Finally, we briefly discuss the case of low-Tc supercon-
ductors, which have a very small Ginzburg number. In t
case one hasD3/Gi1/2@1 even for weak pinning strengthD.
Since the temperaturesTi andTup are mainly determined by

FIG. 7. As in Fig. 5, but for the case ofdTc pinning, g0(t)
5(12t2)21/6. Top: D/cL50.8; bottom:D/cL51.12.
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this ratio of the parameters and increase when the ratio
creases, we find that in low-Tc superconductors these tem
peratures practically coincide withTc , and only the order-
disorder line can be observed.48 Interestingly, in this case the
order-disorder lines for the first and for the second scena
have the same functional dependences ont and on the pa-
rametersD, Gi @this follows from Eqs.~B5! and ~B8!#, and
moreover, they practically coincide with each other wh
A1

2'2pcL
2 .
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APPENDIX A: EFFECT OF DISORDER ON THE
MELTING LINE: ANALYSIS BEYOND PERTURBATION

THEORY

Assuming 12t!1, we shall consider the partition func
tion of the vortex system as a functional integral with t
Ginzburg-Landau Hamiltonian.30,34 In dimensionless units
this Hamiltonian has the form

HGL

T
5E dr @ u]zcu21u~2 i¹1A!cu21tucu2

123/2p Gi1/2tucu4#, ~A1!

FIG. 8. As in Fig. 7, but forD/cL51.15. The lower panel show
the same phase diagram nearTc on an enlarged scale.
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wherec is the order parameter;t5t21; the coordinatesx
andy are measured in units ofj0, andz in units of ej0 ; j0
is the zero-temperature coherence length in the Ginzb
Landau theory; the magnetic field isb52pj0

2H/F0 andA is
its vector potential;¹5(]x ,]y). Consider the melting line
hm(t) in the temperature region described by Eq.~12! in
which 12hm!1, and hence the lowest Landau level a
proximation is valid~see Sec. II C!. In this approximation the
second term of Eq.~A1! reduces to

bucu2. ~A2!

Pinning is introduced into thedimensionalGinzburg-Landau
Hamiltonian either via spatial disorder in the transition te
peratureTc1dTc(r ) (dTc pinning! or by spatial variation of
the effective massm1dm(r ) describing disorder in the
mean free pathl of quasiparticles (d l pinning!.9 Here m is
the effective mass in thex-y plane~since the magnetic field
is along thez axis!. Thus, with quenched disorder in th
vortex lattice, one should add to the dimensionless Ham
tonian ~A1! the term

w~r !ucu2, ~A3!

where

w~r !5
dTc~r !

Tc
~A4!

in the case ofdTc pinning, and

w~r !5
dm~r !

m
b'

dm~r !

m
utu ~A5!

in the case ofd l pinning. In Eq. ~A5! we have used the
relation

b5utuh ~A6!

that follows from the definitions ofb and h and puth51
since 12h!1 in the lowest Landau level approximation
For pinning by point defects, it is assumed in the collect
pinning theory9 that disorder indTc(r ) and indm(r ) is short
scale and described by a Gaussian distribution with z
mean value,̂ dTc(r )&5^dm(r )&50, and with the correla-
tion function49

^dTc~r !dTc~r 8!&

Tc
2

52pD3d~r2r 8! ~A7!

for dTc pinning, and

^dm~r !dm~r 8!&

m2
5

30p

7
D3d~r2r 8! ~A8!

for d l pinning. Here^•••& means disorder averaging. No
that in agreement with Ref. 4 and with Sec. III A of th
paper, Eqs.~A1!–~A8! again show that the phase diagram
of type-II superconductors with point defects depend only
D and Gi.

To proceed further, let us rescale the coordinates and
order parameterc similarly to Ref. 35:
9-12
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x̃5Abx, ~A9!

ỹ5Aby, ~A10!

z̃5z Gi1/6~ tb!1/3, ~A11!

c̃25c2Gi1/6t1/3b22/3, ~A12!

where x̃, ỹ, z̃, and c̃ are the new coordinates and ord
parameter. Beside this, to agree with the notation used in
main text of this paper, we putt5t221 below. Then, the
Hamiltonian~A1! transforms into

HGL

T
5E dr̃ @ u] z̃c̃u22Quc̃u2123/2puc̃u4#, ~A13!

where Q is defined by Eq.~21!. In the case of the idea
lattice, Eq.~23! for hm follows from this Hamiltonian, see
Sec. II C. In a lattice with quenched disorder, the additio
term from Eq.~A3! in the Hamiltonian has the form

w̃~ r̃ !uc̃u2, ~A14!

with ^w̃( r̃ )&50 and

^w̃~ r̃ !w̃~ r̃ 8!&5
2pD3

Gi1/2t
d~ r̃2 r̃ 8! ~A15!

in the case ofdTc pinning, and with

^w̃~ r̃ !w̃~ r̃ 8!&5
30pD3~12t2!2

7 Gi1/2t
d~ r̃2 r̃ 8! ~A16!

in the case ofd l pinning.
Up to numerical factors, the right hand sides of E

~A15! and~A16! coincide with the function@G(t)#2 defined
by Eq.~44!. Then, the free energies of the vortex liquid,F liq ,
and the vortex lattice,F lat , are determined byQ andG(t),
and along the melting linehm(t), one has:

F liq@Q,G~ t !#5F lat@Q,G~ t !#. ~A17!

Thus, on the melting line, the quantityQ is some function of
G(t). Note that the functional form of Eq.~43! agrees with
this conclusion, see Sec. III B.

APPENDIX B: EQUATIONS FOR CALCULATION OF THE
PHASE DIAGRAMS

In Sec. III, where we considered the melting line in t
bundle pinning region, the normalization factor containi
@12hsv(t)# was omitted.42 The origin of this factor is due to
the additional power of 12h in the shear modulusc66 as
compared with the tilt modulusc44, see Eqs.~16!. In the
single vortex pinning region where the shear modulus d
not play any role, the additional power should not manif
itself in physical properties. Therefore, if a physical quant
in the bundle pinning region contains a factor (12h)n

caused by this additional power, it is necessary to introdu
normalization factor@12hsv(t)#2n in this quantity to pro-
05450
he

l

.

s
t

a

vide its continuity at the boundary of the single vortex pi
ning regionhsv(t). ~Here n is some power.! Although the
effect of the factor@12hsv(t)#2n on the melting lineHm(t)
and on the order-disorder lineHdis(t) in the bundle pinning
regime is small, it essentially influences the boundary of
single vortex pinning region,Hsv(t), and the lineHdis(t)
inside this region. In this Appendix B, taking into accou
this factor,50 we compile the complete set of equations us
for the construction of Figs. 5–8.

The boundary of the single vortex pinning regionhsv(t)
5Hsv(t)/Hc2(t) is described by Eq.~19! of Ref. 4:

hsv
1/2~ t !1

FT~ t !

@12hsv~ t !#3/2
5~2p!1/2Dg0~ t !, ~B1!

where we have used the notation~41!. The boundary of the
upper single vortex pinning region, discussed in Sec. IV
can be obtained from the equation4

12h

12hsv~ t ! Fh1/21
FT~ t !

~12h!3/2G 2

52p@Dg0~ t !#2, ~B2!

which in addition reproduces the root of Eq.~B1!, i.e., it
yields the entire boundary of the single vortex pinning
gions. Inside this upper region the vortex lattice is in a st
where Rc5a and u(a,0)5r p , i.e., a borderline state be
tween the single vortex pinning and bundle pinning regim
occurs there.

Equation~39! for the melting line in the bundle pinning
region is rewritten as follows:

FT~ t !hm
1/2

~12hm!3/2
@12P~ t,hm!#1

A@Dg0~ t !#3/2hm
1/4@12hsv~ t !#3/4

@~12hm!3/21FT~ t !hm
21/2#1/2

52pcL
2 , ~B3!

with

P~ t,hm!5
B@Dg0~ t !#3~12t2!1/2@12hsv~ t !#

t Gi1/2Fhm
1/21

FT~ t !

~12hm!3/2G 2 . ~B4!

Equation ~B3! is valid in the intervaltup<t<1 where the
temperaturetup defines the position of the upper critical poi
of the melting line and is given by the condition~42!. Note
that in this paper we consider situations when the upper c
cal point lies in the bundle pinning region.

In the framework of thesecond scenariothe equation for
the order-disorder transition line~which is the continuation
of the melting line tot,tup) in the bundle pinning region
follows from criterion~56! as

A@Dg0~ t !#3/2hm
1/4@12hsv~ t !#3/4

@~12hm!3/21FT~ t !hm
21/2#1/2

52pcL
2 , ~B5!

i.e., the first term in Eq.~B3! disappears. If this order
disorder line enters the single vortex pinning regions, it
described by equations that result from criterion~57!. This
criterion reads in explicit form
9-13
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A1hsv
3/5~ t !hm

2/5F11
FT~ t !

hsv
1/2~12hm!3/2G52pcL

2 ~B6!

for the order-disorder line in thelower single vortex pinning
region, while in theuppersingle vortex pinning region one
finds

A1FT~ t !
hm

1/2

~12hm!3/2
1A1hm52pcL

2 . ~B7!

Here we have used thatu(a,0)5r p in the upper region.
In the framework of thefirst scenario, equations for the

order-disorder line follow from condition~58!.4 With the use
of our approximationf 152, Eq.~24! of Ref. 4 for the order-
disorder lineHdis(t) in the bundle pinning region can b
written in the form

hdis
1/2~12hdis!

3/25FT~ t !K6~ t !, ~B8!
.

l-

d

r-

.K

T.

ok
A.

w

e

K.

c

.
.

05450
wherehdis5Hdis(t)/Hc2(t),

K6~ t !5G1
2216@~G1

221!221#1/2, ~B9!

and

G15
p1/4G~ t !@12hsv~ t !#3/4

21/4cL

~B10!

with G(t) from Eq. ~44!. The order-disorder lineHdis(t) in
the single vortex pinning region is given by Eq.~22! of Ref.
4:

hdisF11
FT~ t !

~12hdis!
3/2@hsv~ t !#1/2G 5/2

52pcL
2S 2pcL

2

hsv~ t ! D
3/2

.

~B11!

Note that apart from the factorA1 Eq. ~B11! is equivalent to
Eq. ~B6!.
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