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Effect of pinning on the vortex-lattice melting line in type-Il superconductors
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The vortex-lattice melting line in three-dimensional type-ll superconductors with pinning is derived by
equating the free energies of the vortex system in the solid and liquid phases. We account for the elastic and
pinning energies and the entropy change that originates from the disappearance of the phonon shear modes in
the liquid. The pinning is assumed to be caused by point defects and to be not too strong so that the melting
line lies inside the so-called bundle-pinning region. We show that the derived equation for the melting line is
equivalent to some Lindemann criterion, which however differs from that used previously. Estimating the
effect of pinning on the entropy jump at melting, we find the upper critical point of the melting line from the
condition that this jump vanishes. We also consider th& phase diagrams of type-ll superconductors for
different strengths and types of pinning and analyze the two recently discussed scenarios how the melting line
and the order-disorder line merge.
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I. INTRODUCTION role of the pinning energy, as shown below, is determined by
the parametea/R.. HereR, is the transverse collective pin-

In three-dimensional higfiz superconductors with pin- ning length? On the other hand, at the order-disorder transi-
ning, two phase transition lines are known to exist in thetion, the balance of pinning energy and elastic energy is most
magnetic fieldH-temperatureT plane!= The line H,(T) important, while the relative contribution of the entropy gain
where a quasiordered Bragg gl&§shermally melts into a is negligible at low temperatures and, according to the sce-
flux-line liquid, and the order-disorder transition line nario of Ref. 8, is determined by the rat&@/R, near the
H4is(T) separating the Bragg glass from an amorphous vorintersection point. Thus, if the intersection of the melting and
tex state. The melting is caused by thermal vibrations of théhe order-disorder lines occurred sufficiently deep in the
lattice, while the order-disorder transition is induced by
guenched disorder in the vortex system. These two lines
merge at some point in thid-T plane. Although both tran-

sitions are accompanied by a proliferation of dislocations in
the vortex lattice, it was argudhat the dislocation density

p is essentially different in these casgs:a 2 for melting,
and p~R; ? for the order-disorder transition. Heeeis the
spacing between flux lines, afy, is the so-called positional
correlation lengtAwithin which the relative vortex displace- T
ments caused by the quenched disorder are of the order of
In fact, an intersection of these two different phase transition
lines occurs in this scenario, and the order-disorder line ter-
minates at the intersection point while the melting line con-
tinues for some distance to highldr see Fig. 1. Within this
physical picture, the existence of the so-called slush pAase
can be naturally explained. Recent experim&nts for
YBaCuO seem to support this scenario. On the other hand
experimental datd¥for BSCCO strongly argue in favor of

a different scenario which was implied, e.g., in the Refs. 2
and 5. In this second scenario, the dislocation densities for
both lines coincide at the point where these lines merge, an
in fact, one deals with only one phase transition line thai

describes both the order-disorder transition at low temperg-r” ).

ture and the melting nedr, (Fig. 1).
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FIG. 1. Schematid-H phase diagrams for the fir&olid lineg

d for the secon¢dashed ling scenarios. In the first scenario the
elting line terminates at the so-called upper critical poifif,(
up) Which in general does not coincide with the intersection point
In this case a slush phadee., a vortex liquid with
smaller density of dislocatiopgan be observed. In the second sce-

Phase diagrams of superconductors with pinning reflechario the order-disorder and the melting lines are manifestations of

the competition of three characteristic energi¢ke elastic

a unified phase transition line. Note that for both scenarios the

energy, the pinning energy, and the energy of thermal flucvortex liquid and the amorphous vortex state are, in fact, one and
tuations. At melting, the cost in the elastic energy due to thehe same phase, which has different viscosity at low and high tem-
proliferation of dislocations is mainly balanced by the en-peratures(We do not discuss the “vortex glass transition” which
tropy gain associated with thermal fluctuations, while themay be not a true phase transitipn.
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bundle pinning regioriso thatR.>a at this poinj, the sce- reasonable criterion is only an interpolation formula between
nario of Ref. 8 would lead to the conclusion that up to thethe two limiting cases and has no serious justification. The
intersection point, one can find the melting line by neglectingsame is true for the criterion of Ref. 5. Radzy®¢rl® de-

the pinning, and the order-disorder line by neglecting thescribed the unified phase transition line using the criterion,
entropy gain. Just this approximation was used in our faper

for analyzing the phase diagrams of superconductors. How- u$+ uz(a,O):cfaz, 3
ever, our recent resultSpoint out that flux-line pinning can

affect the melting line near the intersection point since at thisvhich practically coincides with Eq(2). Criterion (3) is
point, the ratioR;/a has decreased to several units for anyequivalent to the following balance of energies:

magnitude of the quenched disorder in the vortex lattice

(even when the disorder is weals to the second scenario, T+ Epin=Eel, (4)

the three energies are all the same order of magnitude in the

temperature region where the order-disorder transition graduyhich evidently differs from Eq(1). In calculations of the
ally transforms into melting. Thus, whatever scenario occurghase transition line, the energigs, andE, were estimated

in reality, a detailed investigation of the effect of pinning onin Ref. 5 in the framework of the cage model. But it re-
the melting line is important to clarify the most intriguing mained unclear why the pinning enerfy;, now enters into

part of the phase diagram. Eq. (4) with the opposite sign as compared to energy balance
The effect of pinning by point defects on the melting line (2) suggested by Larkin and Vinokéft.
was observed both in BSCC@Ref. 20 and in YBaCuO In the present paper, in order to find and to justify a cri-

(Refs. 21-2Bcrystals. It was discovered that an increase ofterion for the melting of the flux-line lattice with quenched
the quenched disorder in the vortex lattice leads to a noticedisorder, we start with the analysis of melting in the ideal
able shift of the intersection point to lower magnetic fields|attice and show that three different approaches lead to the
and simultaneously pushes the melting line in Thel plane same dependendem(T)_ These approaches are: the Linde-
slightly downwardsi.e., at a fixed temperature the appropri- mann criterion, the energy balance, and the rigorous ap-
ate magnetic field of the meltind](T), decreases. It is proach based on the Ginzburg-Landa@u on the London
important that the shift of the intersection point is essentiallyHamiltonian. In the case of the lattice with quenched disor-
more pronounced than the decreaséigf(t) itself. der, we show that the pinning energy in the flux-line liquid is
Some theoretical results on this subject were obtained ifarger than the pinning energy in the Bragg glass. For this
Refs. 2, 5, and 24. Larkin and VinoKdrstarted from the reason, the difference of these pinning enerdigg,, has the
assumption that for the vortex lattice with quenched disordeppposite sign as compared to Hd), and we arrive at an
to melt, the temperature must match a characteristic barriesquation similar to Eq(4) but with an expression fOE pin
composed of the elastic enerdy,, and the pinning energy, that differs from the estimates previously published. Besides
Epin- So they estimated the effect of pinning on the meltingthis, we estimate the effect of pinning on the entropy gain at
line by considering the following balance of these three enmelting and find the upper critical point of the melting line
ergies: from the condition that this gain vanishes. We also show that
the result forH,,(T) based on this energy balance agrees
T=EpintEa, 1) with the result which can be derived from the Ginzburg-
where E,;, and E¢ were calculated in the so-called cage Landau Hamiltonian. Then, using ti&,(T) obtained in the
model! But it follows from this equation that the melting framework of the second and the third approaches, we find
line has to shiftupwardswhen the quenched disorder in- NOW the Lindemann criterion should be modified to give the

creases. Another approach was used in Ref. 2. To descri@me melting line. Interestingly, the presented energy bal-
the unified phase transition line, Giamarchi and Le Dou&ssal,2nce clarifies the difference between the first and the second

who implied the second scenario, put forward the followingScenarios. Finally, we present tfleH phase diagrams of

generalization of the Lindemann criterion: superconductors with two types of flux-line pinning by point
defects and compare these diagrams for the two scenarios.
utzotaI: cfaz, 2 In this paper we consider only magnetic fields exceeding

considerably the lower critical fieldH.; and thus do not
where ¢, is the Lindemann constantc(~0.1-0.2), and distinguish between the magnetic figtiand the magnetic
Uit~ [2U%+u?(a,0)]Y2 is the rms displacement of neigh- induction B. Besides this, we deal only with uniaxial aniso-

total T

boring flux lines caused both by the thermal fluctuations andropic three-dimensional superconductors, neglecting com-
by the quenched disorder in the lattice. Hereis the mag-  pletely the decoupling of the superconducting layers. The
nitude of the thermal fluctuations, whilga,0) describes the anisotropy is characterized by the parameterh ;,/\.<1
mean relative displacement of neighboring flux lines causeavhere\ ,, and A\ are the London penetration depth in the
by the disorder. This criterion leads to the usual condition forplaneab perpendicular to the anisotropy axis and along this
the order-disorder transitidori* at low temperatures whan,  axis, respectively. The magnetic field is assumed to be di-
is negligible, and it goes over to the well known Lindemannrected along the anisotropy axis. As to the quenched disorder
criterion for pure melting when the disorder disappearsin the flux-line lattice, we assume that it is caused by point
Equation(2) results in a qualitatively correct dependence ofdefects and is not too strong such that the melting line lies
the melting line on pinning by point defects. However, thisentirely in the bundle pinning region.
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Il. MELTING OF THE IDEAL VORTEX LATTICE 172

t Gi
1-t2

h1/2 fl(hm) 2
We begin with the analysis of melting in the ideal

"Ly ©
pinning-free vortex lattice and compare the results of various "
approaches. This equation agrees with those obtained earfier’® and

differs from them only in the form of the functiofy(h)

since different authors used slightly different approximations

for the elastic moduli or took into account the contribution
According to the well known Lindemann criterion, the associated with the compression modulus of the vortex lat-

flux-line lattice melts when the magnitude of the thermalijce.

displacements of the lattice relative to its equilibrium posi-  when the normalized melting fielt(t) is small, hy,

tion, ur, reaches a certain fraction of the spacing between<1 it follows from Eq.(9) that

the flux lines,a:

A. Lindemann criterion

(10

Hu(h) [ 2mc? |2 (1-1t2)2
22l ) (1) ( ™ L) ( )

He(0) | F,(0)t Gi

wherea=(®,/H)" @, is the flux quantum, and, is the  Ths is a well-known resul?®?$that holds for temperatures
Lindemann constant. Ehe magnitude depends on the elas- nearT, (but outside the fluctuation region in zero magnetic
tic moduli of the latticé and was calculated in many papers; field), namely for

see, e.g., Refs. 9 and 25-28. It can be represented in the
form* Gi<1—t2<[f4(0)/27c?]2Gi. (1)

Gi |2 Note that for inequalitie$1l) to be fulfilled in a sufficiently
uz~£2.1 5 h=%2(h), (6)  wide temperature interval, the Ginzburg number should not
1- be too small. In the opposite limiting case,

where £(t) is the coherence length in thab plane, h 1— 121, (1)/27C212Gi 12
—HIH(t), t=T/T,, Hep(t) = Do/2me? is the upper criti- [fa()f2me G, 12
cal field, Gi is the Ginzburg number, the fieldh,, is close to unity, and one obtains, from E§),
1 T )2 f(\22 [ Gi |7
G|:_ —— , _ ~ — 213 _ —
2(H§6§3 L (2ch) e o 49

which characterizes the width of the fluctuation region inor equivalently,

zero magnetic fieldéy andH . are the coherence length and

thermodynamic critical magnetic field of the superconductor Heo(t) —H(t) f(1)\%3 e 923
in the Ginzburg-Landau theory extrapolated Te-0. For H,(0) 2'7TCE e ™ (4
definiteness, we implied in Eq6) and below thaté?(t)
= £2(0)/(1—1t2). [Hence&y=£(0)/\2]. The complete ex- Note thatH,(0)Gi"¥(1—t%)?" is the width (along theH
pression for the functiori(h) was given in Ref. 28, but for axis) of the fluctuation region in not too small magnetic
our further analysis it is sufficient to use a simplified form of fields?®~>* H>GiH,(0), and forinequality (12) to hold,
this functiorf in which the contribution containing the com- the Ginzburg number should not be too large.

pression modulus of the vortex lattiog,,, is neglected:

B. Energy balance

2B [1+(1+0)%]"-1 @ At melting, proliferation of dislocations occurs in the vor-

1-h c(1+¢) tex lattice. These dislocations create a network in the lattice,
and we consider a mean unit cell of this network composed

with ?:=0.5[,8A(1— h)]1’2 and8,=1.16. Note that this for- 0f edge and screw dislocations. The energies of these dislo-

f(h)=

mula can be rewritten in the form cations are of the order of
2
f.(h) Eedge™ Cesd”l |,
= e @ (cuag a2
( ) Escrew (C44C66) a IJ_1 (15)

where the functiorf,(h) defined by this equality decreases wherecgg andcy, are the shear and tilt moduli of the flux-
monotonically with increasing, and its variation in the in- line lattice, whilel| andl, are the dimensions of the cell in
terval 0<h<1 is not large:f,(0)=~2.34 andf,(1)~1.78. the longitudinal and transverse directionsHprespectively.

Thus, to a first approximation, this function can be consid-Since at the melting these dimensions are of the ordex of

ered as a constant;(h)~f;~2. (see below, we have omitted the logarithmic factorsl|ig),
Combining formulag5)—(8), we arrive at the equation for In(l, /a) in the above formulas for the dislocation energies.
the normalized melting fielth,(t) =H p(t)/Hy(t): The shear and tilt moduli may be expresseti?as
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€0 , approximation in which the functiofi;(h) is a constant?
Cos™~ 752(1 )% fi(h)=f,, and putC=8xc?/f,, Egs.(9) and (20) com-
pletely coincide in the whole temperature interval.
2

€ €&p
Cau ?(1— h), (16) C. Some exact results

Within the mean-field theory, when one neglects fluctua-
tions of the superconducting order parameter, the melting

. X line H,(T) coincides with theH,(t) line. It is the fluctua-
(this nonlocal modulus should be estimated at wave vektors,[ions that shiftH, (t) downwards in thed-T plane. As was

71 71 . .
of the order 0“” +1,7). The factors containing (1) take mentioned above, see E@l4), the Lindemann criterion

into account the softening of the vortex lattice near the o ‘o -
X LT X shows that at sufficiently strong magnetic fields, the distance
Heo(t) line3? Minimization of the elastic energy of the cell y g mag

{its fixed vol leads (6. . —E dh . between the melting line and the mean-field,(t) line is
at Its fixed volume 1eads &eqge Escrew, aNG NENCE QIVES comparable with the width of the fluctuation region. But then
the relation betweeh andl, :

the question arises about the applicability of this criterion
Casl V2 (and of the energy balanctr determiningH ,, in this region
'N'i(c_%

whereh=H/H(t), go=(Po/4m\4,)?, and we have omit-
ted the logarithmic factor of type la{¢) in the tilt modulus

(170  of the magnetic fields since expressidi$) for the elastic
moduli were derived in the framework of the mean-field
Thus, up to a numerical factor, the elastic energy of the distheory without accounting for the fluctuations. In this con-
location cell,Eyj, equalsEq ey text, it should be noted that one cannot confine oneself to
At melting, the cost in the elastic energy due to the pro-taking into account only the first fluctuation correction to the
liferation of the dislocation network is balanced by the en-€lastic moduli(in the fluctuation amplitudesince inside the
tropy gain in the free energy of the flux-line lattice. We now fluctuation region the amplitude is Iarge, and corrections of
give a simple estimate of this gain: The vortex-lattice de-all orders are essential. In particular, the renormalized elastic
grees of freedom associated with shear undergo a changeoduli will vanish on a line which differs from the mean-
when the melting occurs. This change occurs for latticdield Heo(t). However, simple consideratiofis show that
modes with wave-lengths greater thgrand|, . There are at 1—hy<1, strong fluctuations can only renormalize the
1j 112 modes of this type in the unit volume of the lattice, Numerical factor in Eq(13), but the dependences Hify, on t
and each of them contributes abdiito the entropy gain. and on Gl_remam unchanged. We now briefly outline these
Thus, up to a numerical factor, the gain per cell of the dis-considerations. . _ o
location network isT'If1I12~IHIf~T. In dimensionless units the Ginzburg-Landau Ham|ltpn|an
We now can write down the change of the free energy pef€Pends on the three parametdrs:/H,(0) and the Gin-
cell at melting: zburg number Gi. As_well kn_owr!, the quad_ratlc péart the_
order parametgrof this Hamiltonian looks like the Hamil-
AFxC(CyqqCee) V%%, — T, (18  tonian of a particle with double electron charge in a magnetic
, ) , field, and the energy spectrum of this particle is the so-called
where some constafitis the ratio of the unknown numerical | 5ndau levels. It is essential that in fields> GiH,(0), the

factors inE and in the entropy gain. Minimization of Eq. istance between these levels exceeds the width of the fluc-
(18) with respect to the parameter leads to the conclusion  y,ation region. Thus, if one expands the order parameter into
that this parameter should have the minimum possible valugpe eigenfunctions of the particle, only the modes of the or-
It is clear that this value is of the order afin the lattice. g parameter corresponding to the lowest Landau level
Then, taking into account thaiF=0 at the melting, we  stongly fluctuate near the melting line, and one may retain
arrive at only these modes in the Hamiltonian to calculate the fluctua-
ClCasCen) V23— T=0 (19 tion part of th_e frge energy of a superconductor. It.turns out
44~66 ’ that the Hamiltonian thus obtained depends on a single com-
where this constar® may be slightly renormalized as com- bination of the parameters. In our notations, this combination
pared to theC of Eq. (18). Inserting Eqs(16) for the elastic  Q can be represented in the form
moduli and assuming\,,(t)/£&(t)=const, one finds the

equation for the melting lind,(t): _ (1-h)(1-t*)*3 21)
o t23Gjl323
Gi |\ ni J7C

(200  whereh=H/H(t). Hence, in this region of the magnetic
fields, the free energies of the vortex liquig,, and the
vortex lattice,F,;, are also determined only by this combi-

As was noted earlie(see, e.g., Refs. 3 and,%ormula . ) . .
(10) for the melting Iinef neaﬁ'cgcan be obtainczzd from the hation, and for the melting linbi(t) we arrive at the equa-
tion

energy balance. Here we have taken into proper account the

softening of the elastic moduli ne&t.,(T), and now Eq. = —F 29
(20) shows that not only formul410) but also expression ia(Q)=Fia( Q). 22
(13) can be derived by this method. Moreover, if one uses th@he solution of this equation has the form

1-t?) (1-hp)% 4
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(1—hp)(1—t?)*3 A. Energy balance

Q= : =Cyq, (23
tZISGIlIShanB

We now consider the influence of pinning by point defects
. o on the energy balance. The adjustment of the vortex system
where C; is some constant. Taking into account th&f  to the pinning potential decreases the total energy of the

~1, from Eq.(23) we find system, and the amount of this decrease is just of the order of
T the pinning energy. It will be shown in this section that at
1—ho~ 23 Gi (24) melting, the pinning energy in the flux-lingquid, E'F')?n, is
mel 1—-t2) noticeablygreater than the pinning energy in the flux-line

; ; ; : ; pin-*
It is seen that up to a numerical factor, this expression indee nergy of the vortex systent,,, associated with the pin-

coincides with Eq(13). : = _plig ~ plat__lig ; ;

The above consideration does not use any perturbatiogllr:lgoenerg?/n' Eg';‘]a E'&E&Ei’g“msgi?iéggss f%ﬁngqu to the
theory and therefore is exact, but it does not yield the con- Py gain, '
stantC,. Using some variants of perturbation thedsee, AF%C(Cicr) 282l —TAS—E . 2
e.g., Ref. 35 approximate expressions B, andF ,, were *C(CarCeo) * pin @
obtained in Refs. 36 and 37. On this basis, an equation fowhere the factoAS takes into account the effect of pinning

the melting line, which agrees with ER3), was derived in  on the entropy gain per dislocation cell.

?ttice (Bragg glass E . Thus, there is a gain in the free

these papers together with the appropriate cons@nt In order to estimatcE',fiL, E',‘)?n, andAS, it is necessary in
Hikami et al®® estimatedC,~7, while Li and Rosensteth  general to take into account the so-called thermal
who used a refined expression o, found C;~9.5. depinning® since the thermal displacement; is suffi-

A consideration similar to that presented above was alsgiently large at the meltingy;~c_a. However, to explain
applied to the Hamiltonian of the vortex system in the Lon-the main ideas, we first carry out the estimates neglecting
don approximation, see Ref. 38. In the region of the magthis depinning and then generalize the obtained results by
netic fields considered herel>H.;, one has\,,>a, and taking it into account.
the Hamiltonian, as well as the free energy of the vortex The pinning energy of the flux-linkttice without dislo-
system, are determined by a single combination of the physieations i.e., of the Bragg glass, in the volume equal to the
cal parametersesoa/T. Thus, the melting lineH(T) is  cell of the dislocation networkE'® | can be estimated using

. pini
found from the equation the results of collective pinning thedty
eSO(T)Ta(Hm) ¢, 25 Epn— (W5, (28)

.  whereW=fZ né%a?, f, is the mean elementary pinning
with some constart,. In otherzword§,2 the London approxi- force exerted by one point defect,is the concentration of
mation Iead52 7tlc/)2Hm(t)oc[.t)\ab.(t)] - Putting Aap(t)  the defects, and the expressiow(12)¥2 is the mean pin-
=Aap(0)(1—1%) "7 and taking into account the definition ning force per cell. The displacememtu(l, ,0)~u(0/)) is
of Gi, we arrive at the formula the rms relative shift of two line elements in the vortex lat-
tice separated by a distante transverse to the magnetic

Him(t) ™ (1-t)? : ; sverse
= 5 B (26)  field, or byl along the field. This shift is caused by the
He2(0)  (2C1)°  Gi random point defects. The magnitudewéan be expressed
which agrees with Eq(10). in terms of the transverse collective pinning lend®, at

To summarize, we have shown in this section that up tgvhich the relative displqcements of points in the Iaf[ticg are
numerical factors, the three different approaches lead to thef the order of¢. In particular, if the small bundle pinning
same dependences the vortex-lattice melting fieldd,, on ~ F€gime occurs, i.eR.<\,p, one ha$
the temperatur@ and on the Ginzburg number @gs.(10) 5
and(14)]. Thus, after obtaining these dependences, e.g., from U2~ g (29)
the energy balance, for the vortex lattice with pinning, one 1+In(R§/a2) '

can guess the true form of the Lindemann criterion for this _
lattice. We shall use this procedure in Sec. IIl. where we have used that~a. Note that according to Eq.

(17),1/t2he longitudinal dimensioly is of the order ofea/(1
—h)*=

At melting, proliferation of dislocations occurs, and in the
liquid vortices can adjust themselves to the pinning potential

In this section we analyze the melting line of the vortexnot only via their elastic deformations as in the Bragg glass
lattice with pinning assuming that the line is in the bundlebut also via the plastic vortex-lattice displacements generated
pinning region (where the transverse collective pinning by dislocations. This additional adjustment mechanism in-
lengthR, is greater tham). As it follows from the figures of ~creases the pinning energy in the liquid. To estimate the pin-
Sec. IV B, the melting line, as a rule, doestirelylie in this  ning energy per dislocation cell in the liquiEi!d, it is nec-

IIl. MELTING OF THE VORTEX LATTICE WITH
QUENCHED DISORDER

pin»
region, and only in the case of sufficiently stroAg. pin-  essary to take into account that the displacements generated
ning can it enter the single vortex pinning region. by the dislocation network are essentially larger than the dis-
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placements existing in the Bragg glass at the same temperaertex system in the plane normal to the magnetic field.

ture and magnetic field within the scales, ||. Indeed, in  Thus, for relaxation of the shear stress to occur, the defor-

the lattice without dislocations, one hagl,,0)~u(0)) mationu,, must exceed the critical value

=u<¢ [see EQ.(29)], while in the liquid the dislocations

lead to displacements of aboat-¢ at the boundary of the (WlHlf)llz
; ; i ; ; cr

dislocation cell. It is also essential that the displacements Uy~ acd

caused by the dislocations within a scétel, , || have a 66!

different dependence dnthan the elastic displacements in

the Bragg glass. Then, we obtain the estimate:

~[Dgo(t)]**h ™ (1—h)"¥*%  (35)

Here we again have inserted the relations used in deriving
Eq. (31). In the volume with dimensions, andL, thermal
Eld  (wi12) V2. (30) fluctuations generate shear deformationg that can be es-
pin It timated from
Note that although the displacements generated by the dislo-
cations are large and exceéd we multiply the mean pin- Ceauiyl-n'—fNT- (36)
ning force per cell only by in formula (30) since¢ is the
effective range of the elementary pinlning forkg,. It fol- Hence, for large, andL, when
lows from Egs. (28)—(30) that E,;‘ﬁn/E";"}L~(§/u)~[1
+In(RYa®12 ie., Egl noticeably exceedsEs) in the
bundle pinning regime, and hence formul20) gives the LIILJ2_>[LHLJZ_]CrN—*
estimate ofE, in Eq. (27). Coel Usy)
It is convenient to rewrite expressi®g0) in terms ofL .,
the single-vortex collective pinning length, using thethe deformations are less than the critical value; the relax-

relation fﬁinn%e“sg/Lg. Then one arrives at the formula ation of the shear stress in the liquid does not occur, and
for Epin: these modes do not contribute to the entropy déiey do
not differ essentially from the appropriate modes in the
Epin~ €£0a[ Dgo(t)]¥*h"4(1—h)3", (31)  Bragg glass Then, applying the considerations of Sec. II B,

where we have inserted the estimateslfoy I, have taken we obtain the factoASin Eq. (27): AS=1-P(t,h), where

into account that the quan'[ityooc)\;b2 should lead to an

additional factor -h whenh=H/H(t) tends to unity> Bith) = iz N [Dgo(t)13(1—t%)2 3
and have used the notatfbn (th)= [L”Lf]cr t Git'2h ' (37)
€&(t)
L—(t)EDgo(t) (32) As is well known?3° thermal fluctuations of the vortex
¢ lead to a smoothing of the pinning potential and thereby
with €£(0)/L¢(0)=D. The functiongy(t) is giverf by affect the pinning. To estimate the effect of this thermal de-
o1 pinning on E,;, and P(t,h), we use the recipe of Ref. 9
Jo(t)=(1—-1t%) (33 elaborated for the case of the flux-line lattisee page 1214

in that papex. Then an additional factaf/r, appears in Eq.
(30), while the right hand side of Eq35) is multiplied by
Jo(t)=(1-1t?)~1° @34)  (&lrp)? wherer = (£2+u%)"is the new effective range of
the pinning force when thermal fluctuations are allowed for.
for 8T pinning. The parameteDd is a measure of the pin- This modifies formulag31) and(37) as follows:
ning strength and is estimated®d3~ (j./jo)Y? wherej is
the critical current density in the single vortex pinning re-
gime andj, is the depairing current density, both taken at
T=0.
Let us now estimate the entropy term in the energy bal-
ance(27). In Sec. 1IB we obtained the expressions for the

for &l pinning, and by

E o n[Dgo(t)]3/2hl/4(1_h)3/4
pin o . Gi 1/2f(h) 172
+t l_t2 h1/2

melting line of the ideal vortex lattice, assuming that the (38)
main contribution to the entropy gain at melting is due to [Dgo(t)]3(1—t%)*?
disappearance of the shear phonon modes in the liquid. The P(t,h)~ Gi llzf(h) 2>
mechanism of this disappearance is the following: A shear tGiYh| 1+t _1

stress in the liquid generates the so-called Peadhidfo —t2]  h'?

forced%*! exerted on dislocations; the dislocations begin to

move, and their shifts relax the shear stress in the liquid. Invhere we have used E¢) for u.

the vortex system with pinning a dislocation cannot move if Inserting formulas(38) into Eq. (27), expressingC as
the pinning force per dislocation cel\\(lj1?)*2 exceeds the 8\mc{/f; with a constant §, and taking into account that
Peach-Kaler forceacggu,yl| exerted on a dislocation seg- AF=0 at melting, we eventually find the equation for the
ment of lengthl | whereu,, is the shear deformation of the melting lineh,(t):
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I:T(t)h%z[l P(t,hy)] A[DQO(t)]g/Zhrlrf4 1 T e ' ' ' ' ' '
P L I e , + | -
(1—h,)32 T (1= hy) 32+ Fo(Dh Y212 o De=0 dpinning:
L “. H g,= (1-t9)
0.8f .. 2 0
=27-rcf, (39 ol 0.4 c =025 A=l |
where Gi=0.01
s 0.6 0.8 ’
B[Dgo(t)13(1—t?)12 z° o5 "
P(th)=——7; [ 1/20 [ “31212° 40z
t GV hY2+ Fo(t)(1—h) 323 04r 08
A andB are some numerical factors, and we have used the °3f 1
notation ozt 12
1.4
Gi |2 o1f 16
FT<t>=f1t( - 2) : (41) o
putting f,=2 below. Equatior(39) generalizes Eq.20) ob- 09} o o3 8l pinning:
tained in the case of the ideal lattice. Note that the factor 1 o= el = (1-2)172
—P=ASn Eq. (39 naturally explains the existence of the  %¢[ 2 0 025 At
upper critical point on the melting line. The temperatte o7t 0.4 H o= A=l
of this point can be obtained from the conditidis=0, or osl moe Gi = 0.001
s °
P[tupvhm(tup)]: 1, (42) I(C\" 0.5 0.6
i.e., the entropy jump in the vortex system at melting van-T o4}
ishes at this point. 0sl 0.8
Equation(39) is in agreement with the general conclusion ' )
made in Ref. 4. Namely, it was stafethat the phase dia- 02f 15
grams of various three dimensional superconductors with | 14
point defects are determined only by the Ginzburg number 1.6
Gi, the parameteD chargcte'rizing.the strength of pinni.ng, T s o oa or o5 o7 o8 oo “1
and the functiorgy(t) which is defined by the type of pin- t=TT

ning. Other physical quantitiedike T., H.(T), €, etcl
either determine only scaling factors or do not appear explic- FIG. 2. The melting lineHy(t) for the vortex lattice with
itly in the appropriate equations at all. In particular, the an-quenched disorder, from E(9), for D/c =0, 0.4, 0.6, 0.8, 1, 1.2,

isotropy € is absorbed by the definitions of Gi aftland 1.4, and 1.6 in the case afl pinning at Gi=0.01 (top) and at
does not enter in Eq39). Gi=0.001 (bottom. Here A;=A/(27)¥*=1. The upper lineD

=0 is the melting line of t?e ideal Iatticeii,ﬂ(t). The dotted line
B. Analysis of the equation showsHe(t)/Hez(0) =117
Figures 2 and 3 present the melting lingg(t) obtained
numerically from Eq.(39) for different pinning strengtlD.
Although the numerical factorA and B have remained un-
known in the above derivation of E¢R9), the figures show
that it is possible to chooseA;=A/(27)%* and B,
=Bf,/(27)%? such that the calculated melting lines have
the properties observed in experime(gse Introduction In
particular, we find that the upper critical point noticeably

under the condition +h,,<1 the lowest Landau level ap-
proximation is valid, and we can use the results of Appendix
A where the effect of quenched disorder on the melting line
has been analyzed in the framework of an approach similar
to that of Sec. Il C. On the other hand, puttihng~1 in Eq.
(39), we arrive at

shifts under the influence of pinning and tendsTtoat rea- o Bf,[G(1)]? AG(t)Q~ 34 ,
sonable values oD when A; and B; are not too small Q 1- 322 a1 2TCL,
(A1, VB1~1). With increasingD the melting line shifts [1+Q7% [1+Q]

downwards ifB;<AZ, and this shift becomes small whn (43

does not differ too much fromZ. Of course, the choice of
A, andB; on the basis of these requirements is not uniqueWhereQ¥?=(1—h.)¥%F(t) [compare with formula21)],
Let us now analyze Eq39) in some limiting cases. and
According to Sec. Il, in temperature regioh2) one has
1-h,<1 for the melting line of the ideal vortex lattice. If 3 a2 2\1/4
the parameteb is not too large, this property of the melting G(t)= [Dgo(H]™ [Dgo(H)]™(1—t%)
line remains true for the vortex lattice with pinning. But [F(t)]¥? (f,)Y°Git

(44)
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K —" - - - - - - y to the temperature of the intersection point, depends on Gi
ook §T_pinning: | and D only via the combinatiorD®/Gi'”? of these param-
Dic =0 e H g.= (1-3)8 eters. o . _
o8r o2 0 The so-called depinning lifealong whichuy~ ¢, inter-
o7k 0% 6=025 A=1]  sects the melting line of the ideal latticel/(t), at 1—t?
Gi = 0.01 ~(f2127rc?)Gi, i.e., outside the temperature region defined
g oer 0.6 " 1 by Eq.(12). In the region t?<(f2/2mwc?)Gi, the depin-
I° osf " 1 ning is essential. In this depinning region, the teffdsS and
T o4l Epin in the energy balanc€7) become relatively small, and
o the melting line is close to that of the ideal lattice.
0.3f -
o2k D | C. Lindemann criterion
oAl oo We now rewrite Eq(39) in the form of the Lindemann
LT criterion. As it follows from formulag5) and(9), the factor
0 - Fr(t)h?/(1—h,)%? in the first term of Eq(39) is simply
I~ ' ' ' ' ' ' ' 2mu?/a® whereuy is describetf by Eq. (6). To rewrite the
0-9F Ole =07, dT pimning: 1 second term in Eq39), let us take into account the formula
osl 03 T Hy, 9,=(1-5" | for the averaged relative shift of two line elements in the
04 c,=0.25, A =1 vortex lattice separated by a distarR& R, transverse to the
07t no o 1  magnetic field*
m i =0.001
S > 05 U2(R,0) |[ea £2\31+In(R¥a?)+ eR/\,y,
T 0.5r 1 r;2; ~ L_c E (1—h)3/2 (46)
T o4f |
0.6 [If the small bundle pinning regime occul®, <\, the last
03¢ 1 term in this formula,eR/\ 5, is small and may be omitteld.
02} “. | AtR=R, one hasu(R;0)=r,. Insertingrj=£*+u% and
ol .08 expression6) for uy in the relationship thus obtained, and
' 03 -\ taking into account definitio32), we arrive at
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1 2
=11 1+In R—;j pere
a )\ab

FIG. 3. As in Fig. 2, but for§T, pinning.

h(1—h) |33 Gi \¥2 gt 3
. . o = ——= 1+ . (47
Equation(43) shows that the quantit§) on the melting line )

2mDgy(t 1-t?)  pl21—h)32
depends ort only via the functionG(t). This conclusion ol oulati : his f la sh hat th
completely agrees with the exact result of Appendix A, S!MPlé manipulations using this formula show that the sec-

WhenD =0 [i.e., G(t)=0], Eq. (43 gives the result for ond term in Eq.(39), which tells the role of the pinning

the ideal vortex latticeQ ~3?=2mc? ; see Eq(13). Fornon- ~ Ner9y In the energy balance, is
zeroD the functionG(t) decreases with the temperature. In r2
the case of5T. pinning one hass(t)=t~ Y2 while G(t) is 2m7A—
proportional to (+t?)/yt for 8l pinning. Hence in the a
equation for the melting line the role of terms associatedyhereA,=A/(27)%* Since the factor containing, can be
with pinning increaseswith decreasingt. It follows from  represented as(a,0)/r, [using Eq.(46) atR=a and then at

Eqgs.(43) and(42) that at the upper critical point the function R=R ], we find one more form for the second term in Eq.
G(t) reaches a certain value, and condit{@@) can be writ-  (39):

ten in the form:

2
C
aZ

-1/2

eR.
: (48)

+ —
)\ab

1+In

rou(a,o

7TA]_ —az . (49)

1 Bfl 1/2
Z+(2WCE)2F) . (45)

J— 1
B1G(typ) = §+ As to the quantityP(t,h) given by Eq.(40), it is expressed

asB,u?(a,0)/u? whereB,=Bf,/(2m7)%2 Thus Eq.(39) is

Interestingly, up to a numerical factdqand the factor 1 equivalent to the following criterion:

—hg, (1) 12 which we do not take into account hé&fethis
condition reduces to Eq32) of Ref. 4 for the intersection
point of the melting line with the order-disorder line. In par- which is true for the melting line in the bundle pinning re-
ticular, it follows from Eqs.(44) and(45) thatt,,, similarly  gion. Equation(50) can be also rewritten in the form

u?—B,u?(a,0)+A;r,u(a,0)=c?a?, (50)

up:
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2

c €R.
aZ

1/2
+—| =c?a’ -
)\ab} -
(51)

Note that although criterié2) and(3) are qualitatively close
to Eq. (51), they underestimate pinning at largg.

Equation (50) [or (51)] is valid when u?=B,u?(a,0)
since condition(42) for the upper critical point now has the
form

1+In

uz—B,u?(a,0)+A,u%(a,0)

AF - AF(1)

u=B,u’(a,0). (52) <

Taking into account thaB;~ 1, this condition means that the ~.
upper critical point, as a rule, lies in the bundle pinning ~. .
region. Indeed, if the melting line enters the single vortex T e
pinning region before the upper critical point occurs, one i
finds u?=B,rj=B;(£2+u?) at the boundary of this region. 1
In other words, the melting line can intersect the boundary in
the depinning region whevuia-zr is large. But in this region the FIG. 4. Schematic sketch of the functiarr (T, ), Egs.(53) and
melting line practically coincides with that of the ideal lattice (54), for t>t; (a), t=t; (b), andt=t,, [(c) or (d)]. The parts of the
(Sec. Il B); the latter can cross the boundary only in the caseurves where Eqg53) and (54) fail are indicated as dashed lines.
of 8T, pinning at sufficiently largeD.*® The breaks of the curves a and b occur at the pdifits 1/P(a)
where Eq.(53) transforms into Eq(54).

IV. PHASE DIAGRAMS ~

with increasingl , [Fig. 4(@]. This means that melting oc-

_ o curs afl , =1 as in the ideal lattice. This conclusion has been
To gain some insight into the character of the mergence oélready used implicitly in deriving Eq39). When the tem-

the melting line with the order-disorder line, let us considerperature T,, decreases, and hende(a) and the ratio

more el e Sependence of e e et GTee, () ncreae, e pork, (P& s 1

the dislocation cell|, . We shall consider only sudh that
lie near the minimum possible size in the latticg" (1"
~a). In evaluating the entropy gaifA S, the elastic energy
Ee and the pinning energl,, it is necessary to take into

account that the modulws,, depends on the wave vector —P(a)] I(.aads t0E(a) ~Epin(@) =0 at this p0|g'c2. In the
According to Ref. 25, one hag.(k~1/1,)~c,(1/a) case of Fig. 4d) when the dependence afF on |{ has a

(I, /a)? atl, <\g/e, and hencéHoclf; see formula(17). negative curvature at, =1, we conclude that this case is
Then we can write\F in the form(we still neglect logarith- Necessarily preceded by the situation shown in Figp),4
mic factors which has to occur at some temperattjret,, where P(a)
<1 andE(a) <Eg(a). At thist; the size of the dislocation
AF=Eg(a)l?— Epin(a)TfﬂLT[P(a)Tf —-1], (53 celll,, sharply increases because the absolute minimum of
5 ' AF now occurs at a largef, >1. In other words, at this
wherel , =1, /™", P(a) denotesP(t,h,,) of Eq.(39), and temperature we find aimtersectionof the melting line with
Ee(@) andEy () are the elastic and the pinning energiesthe order-disorder line. The abrupt increasé ohlso means
per dislocation cell at, =1T", which have been inserted that the melting and the order-disorder transition cannot form
into formula (27) to derive Eq.(39). Equation(53) is valid  a unified phase transition line. Thus, we arrive at the first

—~ - A5 . . .
whenP(a)T4 —1<0, otherwise the last term in this equation SCenarié® shown in Fig. 1. In the case of Fig(¢} two pos-
has to be omitted. and one has sibilities exist: Either at some temperature-t,, the situa-

tion shown in Fig. 4b) occurs, and we again arrive at the
AFoEg(a)T2 — Egp(a)l? (54) firstscenario, or the functioAF (T, )~ AF(1) remains posi-
g tive for all |, in the temperature intervd|,<t<1. In the
for Ij>1/P(a). latter case we find that the mean size of the dislocation cell,
As was mentioned above, in Eq39) for H,(t) [or |, , cannot gradually change in the process of the reduction
equivalently Tr(H)] the relative role of terms associated of the entropy gain, and hence one fias-1 down tot,. In
with pinning increases with decreasifig, for both types of  thjs case, the melting line continuously transforms into the
pinning. WhenE;(a) andP(a) are sufficiently smalli.e.,  order-disorder line, and we arrive at the second scenario.
for temperatured ,, nearT.), the functionAF(T,) is mini-  Moreover, since,, is not a specific temperature f&i,(a)

mum at the lowest possible vallig =1 and then increases or E¢(a), it is quite probable that the result =1 remains

A. First and the second scenarios

smallerl, , and the slope oAF in Eq.(54) onT? decreases.
Eventually, at the critical temperatutg,, one arrives at the
situation shown either in Fig.(d) or in Fig. 4d) since the
energy balance for the meltinge(a) —Epn(@)=Tm[1
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true also att<t,, (at least in the bundle pinning regipn ! ST | ' ' ' ' ' "
Then, at<t,, the order-disorder linéwhich is now a part of 09F  tH, 8l pinninZg1:/2
the unified phase transition lines determined by the condi- o8l T He 9,=01-t)
tion ol Heo D/c = 0.8

Gi = 0.01
Ea(a)= Epin( a). (59 §N 0.8

As it follows from the results of Sec. Il C, in the bundle " o5}
pinning region conditior55) is equivalent to the Lindemann T o4
criterion:

0.3f
, g R, 12 - o2f -
Apu(a,0)|1+Inl |+ —| =c{a". (56) o1l
a )\ab )
. . . I 0
If the order-disorder line enters the single vortex pinning 1 e
region, whereR.=a, condition(55) yields T 8 pinning:
2 2.2 osk \\ T H g.=(1-t3)"2
Aju<(a,0)=cra“. (57 : ' W - D(; s
. . - . o7t ;Y e=1
(Note that the ratioea/\,;, is negligible) In Appendix B . / Gi = 0.01

(0)

Egs.(56) and(57) are presented in an explicit form. >
To calculate the order-disorder lirt¢y;(t) in the case of E"
the first scenario, we used the criteffon T

u?(a,00=c?pa?, (58

wherec p is some new Lindemann constant describing the
order-disorder transition. It should be emphasized that al- . . . .
though Eq.(58) is similar to Eq.(57), the Lindemann con- % o1 o0z 03 o4
stantc, p in Eq. (58) is independent of the constaat de-
fining the melting, while in the case of the second scenario . . e
Eq. (57) leads to a relationship between the Lindemann con- FIG'2 51;2 The phaie duagrafw n tzhe Cfse &f pinning, go(t)
- : o ; =(1-1t%)*2 HereA,=0.66, B=0.8A%, ¢, =0.25, G0.01, and
stants defining the melting and the order-disorder litibe D/c,=0.8 (top) or D/c,—1.3 (bottom. The melting lineH (1)
ratio of these constants igA,). Criterion (58) both in the Lo Lo ' m

; ) TS and the order-disorder lind{f(t) for the first scenario are shown
single vortex and in theundle plnnlné regions were ana- by solid lines, while the thick dotted line gives the order-disorder

lyzed in Ref. 4, allowing for a smoothing of the pinning jine H@)(t) for the second scenario. The dashed line depicts the

potential by thermal fluctuations. The appropriate equationgoyndary of the single vortex pinning regidt, (t), Eq. (82) [the
in the explicit form are presented in Appendix B. For defi- thin-dashed line shows Eq.(B1)]. The dotted line is

niteness, in the analysis below we shall choose the constapt ,(t)/H.,(0)=1—t2. The upper critical point Tupr Hup is

c,p for the order-disorder line as equal to the constarfor ~ marked by a dot and the intersection poifit ( H;) by a circle.
the melting line.

0.6 0.7 0.8 0.9 1

05
t=T/T
c

line with the order-disorder linécalculated within the first
scenarigp at D=0.7 for the case o®l pinning. The latter
Although in this paper we have not analyzed the order+equirement is due to the following considerations: Accord-
disorder line in detail, criterigs6), (57), and(58) enable one ing to Refs. 12 and 15, the coincidencetpfandt,, is ob-
to evaluate the location of this line in tlieH plane for the  served in overdoped YB&uO, crystals §>6.92) for
first and the second scenarios. In Figs. 5-8 we compare thghich the upper critical point lies at sufficiently large mag-
T-H phase diagrams of type-Il superconductors with differ-netic fields, and so the cakg~1 appears to occur there. As
ent types of pinning for these two scenarios. In the construcit was mentioned in Sec. Il B, in this caseandt,, depend
tion of the figures, we use the values of the Ginzburg numbeon Gi andD only via a single combination of these param-
Gi=0.01 and 0.0001 which are typical for high-supercon-  eters,D%/Gi*2. Therefore, one may expect that if the coin-
ductors, and we take into account the factor contaifiihg cidence of the upper critical point with the intersection point
—hg,(t)] that has been omitted in Sec. 1. The complete occurs, it practically will not depend on the specific choice of
set of the appropriate equations is given in Appendix B. D or Gi. In other words, the coincidence will approximately
In Figs. 5—-8 we choose the constahAts and B, so that  occur for differentD, Gi, and types of pinning as long as
the following two requirements are satisfied: First, the prop-h;~1. Althoughh; is not too close to unity in Figs. 5-7
erties of H,(t) observed in experiments are reproduced,(top), the data of these figures support this statement. As one
namely, with increasind the upper critical point clearly might expect, the region of the coincidence is especially
shifts, while the downward shift of the melting line is small, wide in D for small Gi(Fig. 6). Thus, we have introduced the
see Sec. llIB. Second, the upper critical potp of the  second requirement here in order to fit the phase diagrams
melting line coincides with the intersection pointof this  calculated in the framework of the first scenario to the ex-

B. Numerical results
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FIG. 6. As in Fig. 5, but for G0.0001. FIG. 7. As in Fig. 5, but for the case afT. pinning, go(t
c 0

=(1—-t%)~Y6 Top: D/c, =0.8; bottom:D/c, =1.12.

perimental situation observed in the overdoped YBa0,
crystals. pinning increases, the upper and lower single-vortex pinning

The presented figures show that when the intersectioregions can merge at low temperatures. This merging occurs
point is close to the upper critical point, both scenarios leador D= (4)~ Y2 this value is independent of Gi and the
to qualitatively similar phase diagrams. However, when theype of pinning since the merging startsTat 0.
strength of pinningD increases, and the intersection point  The authors of Ref. 5 argued that only the second scenario
shifts towardT., the coincidence of the points fails espe- can explain the decrease bify;; with the temperature that
cially for 6T, pinning. In this case the first scenario leads towas observed in their experiments. However, the presented
a noticeable extension of the melting line beyond the interfigures show that the order-disorder line found from criterion
section point. Thus, if the first scenario really occurs, this(58) (the first scenaripcan decrease or increase with tem-
result possibly explains the experimental findHg® for  perature and even can be nonmonotonic. This depends on
optimally doped YBaCu;O, crystals (/~6.92) in which the  whether the line is in the single vortex pinning region or in
upper critical point lies at larger magnetic field than the in-the bundle pinning region and also on the Ginzburg number.
tersection point. Note also that in the caseddf. pinning, It should be noted that in contrast to E®) we take into
the melting line enters the single vortex pinning region neamccount only the displacement caused by the quenched dis-
T, at v=(27)%?D3/Gi'? of the order of several unifs® order and daotincludeus; explicitly in the equation for the

In Figs. 5-8 we also show the boundary of the singleorder-disorder line, compare E@8) with Eq. (3). However,
vortex pinning regionHg,(t). It should be noted that apart the thermal depinningwhich depends ony), the softening
from the well-known lower single vortex pinning regidmn  of the elastic moduli, and the possibility that the order-
upper region exists where this pinning occurs. The uppedisorder line lies not only in the single vortex pinning region
region of single-vortex pinning was discussed by Larkin andbut also outside it, already produce the depicted variety of
OvchinnikoV* in the context of the origin of the peak effect shapes ofHgis(t). Hence, even in the framework of the first
in low-T, superconductors. Without account of thermal fluc-scenario the presented results can explain the thet the
tuations, this region adjoins to the.,(t) line and is caused order-disorder lines observed in experiments have various
by the softening of the vortex lattice neldg,(t). However, shapes.
this softening also leads to an increaseaigf which reduces Finally, we briefly discuss the case of loly- supercon-
the strength of pinning. As a result of these two oppositeductors, which have a very small Ginzburg number. In this
tendencies, the upper region does not extend@it@nd has case one haB® Gi¥>>1 even for weak pinning strengi.
the shape of a “tongue?Interestingly, when the strength of Since the temperaturds andT,, are mainly determined by
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where ¢ is the order parameter;=t—1; the coordinatex

oof . ) 8T _ pinning: andy are measured in units @, andz in units of e&y; &
o8k ‘; H, He, 9,=(1-)7" is the zero-temperature coherence length in the Ginzburg-
o7l ; Dic,=1.15 Landau theory; the magnetic fieldbs= 27T§SH/<I>0 andA is
N Gi=0.01 its vector potentialV=(dy,dy). Consider the melting line
S @ h(t) in the temperature region described by Ef2) in
E° e D which 1-h,<1, and hence the lowest Landau level ap-
I 04}

ESTC pinning: ‘

proximation is valid(see Sec. Il € In this approximation the
second term of Eq(Al) reduces to

b| . (A2)

Pinning is introduced into thdimensionalGinzburg-Landau
Hamiltonian either via spatial disorder in the transition tem-
peratureT .+ 6T¢(r) (6T pinning or by spatial variation of

0.16 2y the effective masan+ém(r) describing disorder in the
014 95=(1-6 mean free patt of quasiparticles § pinning.® Herem is
S Dic,=1.15 the effective mass in the-y plane(since the magnetic field

5 LS Hon Gi=0.01 = e is along thez axis). Thus, with quenched disorder in the

;% o1 NS ; vortex lattice, one should add to the dimensionless Hamil-

= o008 Hais e tonian (A1) the term
| e(N|¢l?, (A3)
0.041 ~ H R

NN where
0.021 \\\\ '
. . - ST(r)
Q c
0.7 08 o 0.9 1 o(r)= T (A4)
[ C
FIG. 8. As in Fig. 7, but foD/c, = 1.15. The lower panel shows in the case ol5T. pinning, and
the same phase diagram ndaron an enlarged scale.
_ om(r) _ om(r)
this ratio of the parameters and increase when the ratio in- e(r)= m - m |7 (AS)

creases, we find that in loW; superconductors these tem- o

peratures practically coincide witfi;, and only the order- in the case ofsl pinning. In Eq.(A5) we have used the

disorder line can be observédinterestingly, in this case the relation

order-disorder lines for the first and for the second scenarios

have the same functional dependencest amd on the pa- b=]r|h (AB)

rametersD, Gi [this follows from Egs.(B5) and (B8)], and  that follows from the definitions ob and h and puth=1

moreover, they practically coincide with each other whensince 1-h<1 in the lowest Landau level approximation.

Al~2mc]. For pinning by point defects, it is assumed in the collective

pinning theory that disorder in5T,(r) and iném(r) is short

scale and described by a Gaussian distribution with zero
value,%éTc(r»:(ﬁm(r)):O, and with the correla-

nctiorf

ACKNOWLEDGMENTS

This work was supported by the German Israeli Researcﬁ]oena]?u
Grant Agreemen{GIF) No G-705-50.14/01, by the Euro-

pean INTAS project 01-2282, and the ESF Vortex Pro- (8To(r)8Te(r"))

gramme. = =2xD38(r—r") (A7)
C
APPENDIX A: EFFECT OF DISORDER ON THE for 5T, pinning, and
MELTING LINE: ANALYSIS BEYOND PERTURBATION
THEORY om(r)ém(r’ 307
(m(r)sm( )>: D35(r—1") (A8)

Assuming -t<1, we shall consider the partition func- m? 7
tion of the vortex system as a functional integral with the
Ginzburg-Landau Hamiltoniat?3* In dimensionless units
this Hamiltonian has the form

for 8l pinning. Here(- - -) means disorder averaging. Note
that in agreement with Ref. 4 and with Sec. Il A of this
paper, Eqs(A1)—(A8) again show that the phase diagrams
of type-Il superconductors with point defects depend only on
D and Gi.

To proceed further, let us rescale the coordinates and the
order parametey similarly to Ref. 35:

H
et [ arllo+ -7+ Al

+ 257 GiYt| |41, (A1)
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%= bx (A9) vide its continuity at the boundary of the single vortex pin-
’ ning regionhg,(t). (Heren is some powey.Although the

- effect of the factof 1—hg,(t)] " on the melting lineH (1)
y=1by, (A10) and on the order-disorder lirtdg;s(t) in the bundle pinning
~ U613 regime is small, it essentially influences the boundary of the
2=z GimX(th)™, (A12) single vortex pinning regionHg,(t), and the lineH 4;4(t)

~ _ B inside this region. In this Appendix B, taking into account
= yPGiva 2, (Al2)  this factor’® we compile the complete set of equations used

where, v, z, and ¢ are the new coordinates and order 0" the construction of Figs. 5-8.

| : : . . The boundary of the single vortex pinning regibg,(t)
parameter. Beside this, to agree with the notation used in the d . i
main text of this paper, we put=t®>—1 below. Then, the = Hs(1)/Hep(1) is described by Eq19) of Ref. 4:

Hamiltonian(Al) transforms into F-(1)
124y 1 T _ 112
Hey e hg, (1) (1-ho ()] (27)7Dgp(t), (B1)
= | drlla - QUi+ 2%y, (AL3) |
where we have used the notati¢tl). The boundary of the

where Q is defined by Eq.21). In the case of the ideal Uupper single vortex pinning region, discussed in Sec. IVB,
lattice, Eq.(23) for h,, follows from this Hamiltonian, see can be obtained from the equatfon

Sec. IIC. In a lattice with quenched disorder, the additional 1-h En 12
term from Eq.(A3) in the Hamiltonian has the form - U2 7(t) —2a[Dgy(D]2  (B2)
e 1—hg, (1) (1-h)%?
o (D[, (AL4) e o
which in addition reproduces the root of E®1), i.e., it
with (¢(r))=0 and yields the entire boundary of the single vortex pinning re-
gions. Inside this upper region the vortex lattice is in a state
~ D% . ~, where R;.=a and u(a,0)=r, i.e., a borderline state be-
(p(r)e(r'))= mé(r—r ) (A15)  tween the single vortex pinning and bundle pinning regimes
occurs there.
in the case ofT. pinning, and with Equation(39) for the melting line in the bundle pinning

region is rewritten as follows:
~ e 30mD3(1-t7)%
(e(r)e(r )>=W5(r—f ) (Al6) Fr(t)h? A[Dgo(1)1¥?h¥ 41— hg, (1)1%

(1_ hm)3/2[1_ P(t’hm)]+ [(1_ hm)3/2+ FT(t)hr;]'/Z 1/2

in the case ofl pinning.
Up to numerical factors, the right hand sides of Eqs.  —p;c2, (B3)

(A15) and(A16) coincide with the functiof G(t)]? defined _

by Eqg.(44). Then, the free energies of the vortex liquitt, , with

and the vortex latticef|,;, are determined b and G(t),

and along the melting lind,(t), one has: P(th )= B[Dgo(t)]3(1—t2)1’2[1—hSUZ(t)]. B4)
Figl Q.G(1)]=Fiuf Q.G(1)]. (A17) {GiY4 hit uiTT(t))w]

Thus, on the melting line, the quantiy is some function of

G(t). Note that the functional form of Eq43) agrees with Equation(B3) is valid in the intervalt,;<t<1 where the
this conclusion, see Sec. IlI B. temperaturé,, defines the position of the upper critical point

of the melting line and is given by the conditi¢#2). Note
that in this paper we consider situations when the upper criti-
cal point lies in the bundle pinning region.

In the framework of thesecond scenarithe equation for

In Sec. lll, where we considered the melting line in thethe order-disorder transition lingvhich is the continuation
bundle pinning region, the normalization factor containingof the melting line tot<t,,) in the bundle pinning region
[1—h,(t)] was omitted!? The origin of this factor is due to follows from criterion(56) as
the additional power of  h in the shear modulusgg as

APPENDIX B: EQUATIONS FOR CALCULATION OF THE
PHASE DIAGRAMS

compared with the tilt modulus,,, see Eqs(16). In the A[Dgo(1)1¥?h¥ 41— hg,(1)1% )
single vortex pinning region where the shear modulus does [(1—h, )32+ F(t)h- Y212 =2mc, (BS)
m T m

not play any role, the additional power should not manifest

itself in physical properties. Therefore, if a physical quantityi.e., the first term in Eq.B3) disappears. If this order-
in the bundle pinning region contains a factor -(t)" disorder line enters the single vortex pinning regions, it is
caused by this additional power, it is necessary to introduce described by equations that result from criteri@7). This
normalization factof 1—hg,(t)] " in this quantity to pro- criterion reads in explicit form

054509-13
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Fr(t
p— 7(t)
hsz; (1_ hm)3/2
for the order-disorder line in thiewer single vortex pinning

region, while in theupper single vortex pinning region one
finds

AThS (DR =2mc  (BO)

1/2
m

(1_ hm)3/2

Here we have used thata,0)=r in the upper region.

In the framework of theirst scenarig equations for the
order-disorder line follow from conditiof68).* With the use
of our approximatiorf;=2, Eq.(24) of Ref. 4 for the order-
disorder lineHy;s(t) in the bundle pinning region can be
written in the form

A F(t) +Ahp=27c?. (B7)

h32(1—hgid) ¥?=F (DK (1), (B8)

PHYSICAL REVIEW B 68, 054509 (2003

wherehgis=Hgis(t)/Hca(1),
K. ()=Gi-1=[(G{-1)?~1]"2, (B9)
and
7G(D[1—hg, ()]
1= olAc,

with G(t) from Eq. (44). The order-disorder linél 4;5(t) in
the single vortex pinning region is given by E@2) of Ref.
hg, (1)

4:
5/2
= ZWCE(
(B11)

Note that apart from the factdx; Eq. (B11) is equivalent to
Eqg. (B6).

(B10)

Fr(t)

hais| 1+
"7 (1-hgi9¥Thg, (1)1

2\ 312
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