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Properties of the ideal Ginzburg-Landau vortex lattice

Ernst Helmut Brandt
Max-Planck-Institut fu¨r Metallforschung, D-70506 Stuttgart, Germany

~Received 20 March 2003; published 6 August 2003!

The magnetization curvesM (H) for ideal type-II superconductors and the maximum, minimum, and saddle-
point magnetic fields of the vortex lattice are calculated from Ginzburg-Landau theory for the entire ranges of
applied magnetic fieldsHc1<H<Hc2 or induction 0<B<m0Hc2 and Ginzburg-Landau parameters 221/2

<k<1000. Results for the triangular and square flux-line lattices are compared with the results of the circular
cell approximation. The exact magnetic fieldB(x,y) and magnetizationM (H,k) are compared with often used
approximate expressions, some of which deviate considerably or have limited validity. Useful limiting expres-
sions and analytical interpolation formulas are presented.
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I. INTRODUCTION

Since Abrikosov’s1 prediction of the flux-line lattice in
type-II superconductors from Ginzburg-Landau~GL!
theory,2 several approximate formulas for the magnetizat
M5B/m02H versus the applied magnetic fieldH or aver-
age inductionB have been published.1,3–7In these papers an
below, the basic situation is considered where a macrosc
cally large, homogeneous and isotropic, long supercondu
is exposed to a uniform parallel fieldH. In this ideal case
demagnetization effects, flux line pinning, and surface effe
may be disregarded, and thus the flux lines are straight l
forming an ideal periodic lattice. These results are ea
extended to anisotropic superconductors~where an aniso-
tropic effective-mass tensor is introduced into the GL theo!

by defining an effective GL parameterk̃ that depends on the
orientation of the flux lines; this transformation works wh
H is along a principal symmetry axis.8–10 Generalizations to
geometries where demagnetization effects occur are pos
by the introduction of a demagnetizing factor, but this co
cept works only for homogeneous specimens with the sh
of an ellipsoid. In this case the flux lines in the bulk are s
straight and form an ideal flux-line lattice~FLL!. For other
specimen shapes the FLL is distorted; i.e., the orientation
density of the FLL vary spatially and can be calculated o
numerically.11,12

The aim of the present paper is to compare the wid
used approximate expressions forM (H,k) with the exact
value obtained numerically and to give useful general a
lytic interpolation formulas valid in the entire ranges ofH
andk where the FLL exists, namely,Hc1<H<Hc2 for H or
0<B<Bc25m0Hc2 and 1/A2<k,` for k, whereHc1(T)
andHc2(T) are the lower and upper critical fields andk is
the GL parameter. Interestingly, such general formulas h
not been published yet, and thus the accuracy of the c
monly used expressions is not known, probably due to
difficulty of a numerical solution of the complex-valued G
equations. Early numerics13 used the circular cell metho
~CCM!, which approximates the hexagonal unit cell of t
triangular FLL~or the quadratic unit cell of the square FLL!
by a circle and the two-dimensional~2D! solution by the 1D
rotationally symmetric solution inside this circular cell; bo
0163-1829/2003/68~5!/054506~11!/$20.00 68 0545
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the GL function and magnetic field are forced to have va
ishing slope on this circular boundary, as the exact solut
has on the boundary of the Wigner-Seitz cell. This meth
yields the exactHc1 and is expected to be best at low indu
tions B!Bc2 where the flux lines are well separated. B
surprisingly, the circular cell approximation gives very go
magnetization curves at allB ~see Fig. 1! and even yields an
exact value of the upper critical fieldHc2. Some more exac
results of the CCM are listed below. Another method7 uses a
similar circular symmetric GL order parameter and a line
superposition of circular symmetric magnetic fields to obt
excellent approximateM (H,k); see also Ref. 14.

An in principle exact numerical method15 uses periodic
real trial functions for the squared GL functionuc(x,y)u2 and
magnetic fieldB(x,y) and minimizes the resulting free
energy functional with respect to a finite number of Four
coefficients. The same method was later applied16 to solve
the microscopic BCS-Gor’kov theory for the properties
the FLL in the entire temperature interval 0<T<Tc where
Tc is the superconducting transition temperature~GL theory,
strictly speaking, applies only close toTc). Recently this
variational method was improved17 by keeping the same pe
riodic trial functions but now solving the GL equations iter
tively; this iteration works much faster and allows us to u
many more Fourier coefficients~many thousands instead o
only five in Ref. 15!. I shall use this 2D iterative precisio
method of Ref. 17 for the calculation of the FLL atB.0. At
low inductionsB!Bc2 this 2D method is supplemented b
an iterative circular cell method presented in Appendix
This 1D method yields accurate values ofhc1(k)
5Hc1 /Hc2, which then can be used in interpolation form
las. For convenience, I introduce the reduced fieldsb
5B/Bc2 and h5H/Hc2 , m5M /Hc2, such that one hasm
5b2h, hc1<h<1, 0<b<1, and2hc1<m<0.

For completeness it should be mentioned that the isola
vortex18 and the FLL~Ref. 19! have also been compute
from BCS theory~valid at all temperatures! using the quasi-
classical Eilenberger theory based on energy-integra
Green functions. This method was recently extended to c
pute the FLL structure and local density of states
s-wave,19–21 d-wave,21,22 and chiralp-wave23 superconduct-
ors. Very recently the GL method17 was generalized phenom
enologically to lower temperatures and to charged vortice24
©2003 The American Physical Society06-1
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The GL results obtained here and in other work for const
B may easily be generalized to constantH by using standard
thermodynamics without the need for further numerics.

II. TRIANGULAR AND SQUARE FLUX-LINE LATTICES
AND THE CIRCULAR CELL METHOD

The properties of the FLL within GL theory are calculat
by minimizing the GL free energy of the superconduc
with respect to the complex GL functionc(r ) and to the
vector potentialA(r ) of the local magnetic fieldB(r )5¹
3A. In the usual reduced units1–7 ~lengthl, magnetic field
A2Hc , and energy densitym0Hc

2 , whereHc is the thermo-
dynamic critical field! the spatially averaged free energyF of
the GL theory, referred to the Meissner state (c51, B
50), reads

FIG. 1. Magnetization curves of the triangular FLL, which c
incide within line thickness with the results for the square FLL a
for the FLL obtained from the circular cell approximation; see F
3 for the difference. Shown areh5H/Hc2 vs b5B/Bc2 ~upper left
triangle! and 2m52M /Hc2 vs h ~lower right triangle!. One has
m5b2h. The scales on all four axes are the same. The lower p
shows an enlarged scale. The solid lines are the exact nume
result of this paper. The dotted lines show the simple interpolat
Eq. ~22!, good fork<5 ~upper panel!, and the combined low- and
high-field limit, Eq. ~23!, good fork>1 ~lower panel!.
05450
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F5 K ~12ucu2)2
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2ADcU2

1B2L . ~1!

Here^•••&5(1/V)*d3r ••• means spatial averaging over th
superconductor of volumeV. Introducing the supervelocity
Q(r )5A2¹w/k and the magnitudef (r )5ucu of c(r )
5 f (r )exp@iw(r )# one may expressF as a functional of the
real and gauge-invariant functionsf andQ,

F5 K ~12 f 2!2

2
1

~¹ f !2

k2 1 f 2Q21~¹3Q!2L . ~2!

In the presence of vorticesQ(r ) has to be chosen such th
¹3Q has the appropriate singularities along the vor
cores; see, e.g., Eq.~B4! in Appendix B.

In this paper I consider the ideal periodic FLL in a hom
geneous~pin-free! large superconductor in a uniform mag
netic field H along z. In this 2D situation one hasf
5 f (x,y), Q5Q(x,y), andB5 ẑB(x,y). Within GL theory
in reduced units the properties of this ideal FLL depend o
on two parameters: the GL parameterk and the average in
ductionB5^B(x,y)&. The equilibrium magnetic fieldH and
the magnetizationM5B/m02H are obtained either from the
definition H5]F/]B or, more elegantly, from the viria
theorem discovered by Doria, Gubernatis, and Raine25

which in reduced units reads

H5
^ f 22 f 412B~x,y!2&

2B
. ~3!

Some of the properties of the FLL and all properties of t
isolated flux line may be calculated in an elegant way by
circular cell approximation7,13,14as described in Appendix A
In the circular cell method the hexagonal Wigner-Seitz c
around each flux line is replaced by a circle with radiusR
and same areapR25F0 /B if each flux line carries one
quantum of fluxF05h/2e52.07310215 Tm2. In reduced
units one hasF052p/k and R/l5R5(2/bk2)1/2 with b
5B/Bc2. The boundary conditions on the CCM circler
5R ared f /dr5dB/dr50. I find that the free energy of the
triangular FLL, Ftr , and its magnetizationMtr are repro-
duced by the CCM with high accuracy in the entire ranges
k andB, 1/A2<k,` and 0<b,1. In particular, the CCM
not only yieldsHc1 ~in the limit R→`) but it also repro-
duces the exact upper critical fieldHc2(k) and, in the special
case k51/A2, even the exact resultH(B)5const5Hc
5Hc15Hc2. These somewhat surprising features of this a
proximation are related to the facts thatHc2 and, in the case
k51/A2, even the entire curveH(B) areindependentof the
detailed arrangement of the flux lines; i.e., they are the sa
for triangular and square or honeycomb FLL’s and for a
other arrangement of single- or multiple-quantum flux line
Another surprising finding is that the virial theorem, Eq.~3!,
works perfectly in the CCM. Figure 1 shows the magnetiz
tion curvesM (H) and the equilibrium fieldH(B) of the
superconductor obtained by the CCM fork50.85, 1, 1.2,
1.5, 2, 3, 5, 7, 10, and 20.

In the limit b→0 the CCM yields the lower critical field
Hc1, which with high accuracy is fitted by the formula

.
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PROPERTIES OF THE IDEAL GINZBURG-LANDAU . . . PHYSICAL REVIEW B68, 054506 ~2003!
m0Hc15
F0

4pl2 @ ln k1a~k!#,

hc15
Hc1

Hc2
5

ln k1a~k!

2k2 ,

a~k!5a`1exp@2c02c1ln k2c2~ ln k!2#6e, ~4!

with a`50.496 93, c050.414 77, c150.775, c250.1303,
ande<0.000 76. This expression yields atk51/A2 the cor-
rect value hc151 and for k@1 it has the limit a
50.496 93. A simpler expression fora(k), yielding anhc1
with an error still less than 1% and with the correct limits
k51/A2 andk@1, is

a~k!50.51
11 ln 2

2k2A212
. ~4a!

The CCM in principle cannot yield properties related
the different symmetries of the FLL or to its shear modul
and it cannot give the form factors~Fourier coefficients! of
the magnetic fieldB(x,y) that may be measured by neutro
scattering. These subtle properties can be computed by
2D method presented in Ref. 17 and Appendix B. This eff
tive numerical method expresses the smooth functi
f (x,y)2 andB(x,y) as 2D Fourier series and determines t
Fourier coefficients by iteration.

Figure 2 ~top! shows the difference of the free-energ
densities of the triangular (Ftr) and square (Fsq) FLL’s. This
difference is proportional to the shear modulusc66 of the
triangular FLL ~the shear modulus of the unstable squ
FLL is negative within GL theory! by the relation17

c665~3p2/2!~Fsq2Ftr !. ~5!

Note that this difference is very small, 0,(Fsq

2Ftr)/(m0Hc
2),0.0018. Even smaller~by 10 times! is the

difference between the free-energy densities of the C
(Fcc) and of the triangular FLL plotted in Fig. 2~bottom!.
One has 0,(Fcc2Ftr)/(m0Hc

2),0.000 20. This result
shows that the CCM is an excellent approximation for
global properties of the FLL. Both differences are largest
largek and have a maximum nearb'0.3. The findingFsq
.Ftr means that the triangular FLL is stable for allk
.1/A2. Note that fork51/A2 one has exactlyFsq5Fcc
5Ftr50 for all b.

Figure 3~top! shows the difference between the magne
zations Msq of the square FLL andMtr of the triangular
FLL. Again, this difference is small,20.0008,2(Msq
2Mtr)/Hc2<0.000 14, and the relative difference has t
limits 20.018,(Msq2Mtr)/Mtr<0.0095. Figure 3~bot-
tom! shows the difference between the magnetizationMcc
obtained by the CCM~see Fig. 1! and the exact valueMtr of
the triangular lattice. Like with the free energy, this diffe
ence is again smaller by a factor of 10 than the differe
between two lattice symmetries,20.000 16,2(Mcc
2Mtr)/Hc2<0.000 08 and 20.0011,(Mcc2Mtr)/Mtr

<0.0017. The differences vanish exactly atk51/A2 and
05450
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also atk→`, since therem5M /Hc2→0. The relative dif-
ferences~insets in Fig. 3! are maximum atk@1.

The smallness of these differences explains why in Fig
the magnetization curves for all three casesMtr , Msq , and
Mcc coincide within line thickness.

Figure 4 shows an example (b50.3, k51.5) comparing
the spatial functionsf andB of the triangular FLL with those
obtained by the CCM. Shown are the cross sectionsf (x,0)
along the nearest-neighbor directionx and f (0,y) perpen-
dicular to this, andf (r ) from the CCM, and similar profiles
of B(x,y); a is the vortex spacing,a2/l254p/(A3bk2). It
is seen thatf (x,0) and f (r ), and alsoB(x,0) and B(r ),
coincide closely; at lowerb,0.3 the difference is smalle
than the line thickness. The lower panels show some con
lines of f (x,y) andB(x,y) for the same example. Each ci

FIG. 2. Top: the difference of the free energy densities of
triangular (Ftr) and square (Fsq) FLLs in units m0Hc

2 , plotted vs
the reduced inductionb5B/Bc2 for k50.85, 1, 1.2, 1.5, 2, 3, 5, 10
and 200. This difference equals (2/3p2)50.068 times the shea
modulusc66 of the triangular FLL. Bottom: the very small differ
ence between the free energy densities of the circular cell me
(Fcc) and of the triangular FLL. Note that the top and bottom plo
look similar, but the scales of the ordinate differ by a factor
about 10.
6-3
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cular contour of the CCM cuts the corresponding exact c
tour 12 times and is very close to it, except near the sad
points and the maxima off or minima ofB. The solutions for
the square FLL deviate more from the circular cell solutio

The maximum, minimum, and saddle-point fields of t
triangular FLL,Bmax5B(0,0), Bmin5B(0,a/A3), andBsad
5B(a/2,0), depend onb andk. Bmax is only slightly above
the equilibrium fieldH, andBsad andBmin are close to each
other and lie somewhat below the average fieldB. Bmax and
Bmin are shown in Fig. 3 of Ref. 17 as functions ofb for
several k50.707 . . . 5. In Fig. 5 the small differences
Bmax2H, Bsad2B, andBsad2Bmin are plotted versusb in
units Bc2 and multiplied by a function ofk such that the
curves for allk>1/A2 collapse atb→1. One finds for allk
nearb51

Bmax2H

Bc2
'0.0351

k220.5

~k220.069!2~12b!2, ~6!

FIG. 3. Top: the difference between the magnetizationsMsq of
the square FLL andMtr of the triangular FLL in unitsHc2, plotted
vs the reduced inductionb5B/Bc2 for k50.85, 1, 1.2, 1.5, 2, 3, 5
10, and 200. The inset shows the relative difference. Bottom:
difference between the magnetizationMcc obtained by the CCM
~see Fig. 1! and the exact valueMtr of the triangular lattice. The
inset shows the relative difference.
05450
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. Bsad2B

Bc2
'20.146

12b

k220.069
, ~7!

Bsad2Bmin

Bc2
'0.0526

~12b!

k220.069
. ~8!

The factor of 0.069 in Eqs.~6!–~8! is 0.520.5/bA50.0688
wherebA51.1596 is the Abrikosov parameter of the tria
gular FLL. Plots ofBcc(R)2Bmin , whereBcc(R) is the field
value at the boundary of the circular cell in the CCM, loo
similar to the plots ofBsad2Bmin in Fig. 5 ~lower panel!,
since the valueBcc(R) lies approximately in the middle be
tween Bmin and Bsad; see Fig. 4. Since fork@1 and b
!1/k2 the field in the vortex center equalsBmax52Hc1, one
hasBmax2H→Hc1, and thus the function plotted in Fig.

e

FIG. 4. Comparison of the GL functionsf and magnetic induc-
tions B calculated for the triangular FLL and from the circular ce
approximation for the exampleb50.3, k51.5. Top: the cross sec
tions f (x,0), B(x,0) along the nearest-neighbor directionx, f (0,y),
B(0,y) along the perpendicular directiony, andf (r ), B(r ) from the
CCM. All B are in unitsB(0,0) of the triangular FLL. Small devia
tions can be seen only close to the cell boundaryr 5R, R/a
531/4(2p)21/250.525. At lowerb the deviations are even smalle
Bottom: contours of the samef (x,y) and B(x,y). Exact periodic
solution ~solid lines! and circular cell approximation~dashed
circles, cutting each corresponding exact contour 12 times!.
6-4
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~upper panel! for b→0 tends to the limit (bmax2h)3k2

→hc1k2' 1
2 (ln k10.50); cf. Eq.~4!.

The variance of the magnetic field is

s5^@B~x,y!2B#2&5^B~x,y!22B2&5 (
KÞ0

BK
2 , ~9!

where BK are the Fourier coefficients ofB(x,y)
5(KBKcosKr andK the vectors of the reciprocal lattice o
the FLL ~Appendix B!. Nearb51 the Abrikosov solution of
the linearized GL theory11,26 yields for all k values27

s57.52•1024
F0

2

l4

k4~12b!2

~k220.069!2 ,

S[
As

Bc2
50.172

12b

k220.069
. ~10!

The functionsSandS/(12b) are plotted in Fig. 6 versusAb
for variousk. It can be seen that Eq.~10! is a rather good
approximation for the large range 0.25,b,1. At smallerb
the variances(b) has a maximum and then goes to ze
again atb50.

FIG. 5. Maximum fieldBmax5bmaxBc2 minus applied fieldH,
saddle-point fieldBsad5bsadBc2 minus inductionB, andBsad mi-
nus minimum fieldBmin5bminBc2, for the triangular FLL, plotted
vs b5B/Bc2 for k50.85, 1, 1.2, 1.5, 2, 3, 5, 7, 10, 20, 50, 10
200. The solid lines show these small differences in unitsBc2,
multiplied by appropriate functions ofk to obtain collapse of the
curves nearb51. The dashed lines show the same functions m
tiplied by factors (12b)22 and (12b)21 such that they tend to a
finite constant value nearb51; cf. Eqs.~6!–~8!.
05450
For small inductionsb!1 and largek one can use the
London approximationBK5B/(11K2l2). For the appropri-
ate cutoff at large magnitudesK;j215k/l see Refs. 28
and 29 and below. In the range 0.13/k2!b!1 the unity in
the denominator ofBK may be disregarded sinceK2l2

>(4p/A3)bk257.255bk2. Thus B drops out ands be-
comes independent ofb ~Ref. 27!:

s50.003 71
F0

2

l4 , S5
0.383

k2 . ~11!

This often used formula corresponds to the upper axis in F
6. One can see that this approximation is good only for v
largek>70 and only in the range ofb near the maximum of
s. At very small b!0.13/k2 both s(b) and S(Ab) drop
linearly to zero whenb→0. In this range the sum in Eq.~9!
can be evaluated as an integral, yielding

s5
bk2

8p2

F0
2

l4 , S5Ab/2

k
. ~12!

This approximation is good fork>5 and very smallb (b
,0.01/k2 for k55, b,0.04/k2 for k>10); see the two
straight lines in Fig. 6. Fork>5 a good approximation, with
less than 5% error fromb51 down to the valueb
'0.25/k1.3 where the maximum ofs occurs, is

S[
As

Bc2
'0.172

12b

k2 @111.21~12Ab!3#. ~13!

This approximation is much better than the interpolation, E
~13! of Ref. 27.

l-

FIG. 6. The magnetic field variances5^@B(x,y)2B#2& of the
triangular FLL fork50.85, 1, 1.2, 1.5, 2, 3, 5, 7, 10, 20, 50, 10
200 plotted in units ofBc2 asAs(k220.069)/Bc2 ~solid lines! such
that the curves for allk collapse nearb51; cf. Eq. ~10!. The
dashed lines show the same functions divided by (12b) such that
they tend to a finite constant 0.172 atb51. All curves are plotted
vs Ab5AB/Bc2 to stretch them at smallb values and show tha
they go to zero linearly. The limits, Eq.~12!, for k55 andk510
are depicted as dash-dotted straight lines. The upper frame 0
shows the approximation~11!.
6-5
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III. MAGNETIZATION CURVES

This section presents analytic expressions which appr
mate the computed magnetizationm5M /Hc25b2h ~Fig.
1! as a function of the inductionb5B/Bc2 or of the thermo-
dynamic field h5H/Hc2. We distinguish approximation
working at high or low inductions.

A. Approximation for high inductions

The linearized GL theory yields for 12b!1 Abrikosov’s
Bc2 solution1,11

m'mA52
12b

~2k221!bA11
, ~14!

wherebA5^vA
2&/^vA&2511(m,nexp@Kmn

2 S/(4p)# ~Refs. 11
and 30 and Appendix B! is the Abrikosov parameter,bA
51.159 595 3 (bA51.180 340 6) for the triangular~square!
FLL. The linear magnetizationmA(b,k) is a good approxi-
mation in the range 0.5<b<1; see Fig. 1. This suggests th
following fit to the exactm:

m~b,k!5mA2~12b!2exp@ f 1~b!#g1~k!1e1 ,

f 1~b!52.50u228.08u10.39, u5~12b!0.41,

FIG. 7. Lower panel: the exact magnetizationM of the triangu-
lar FLL ~solid lines! and the fit, Eq.~15! ~solid lines with dots!,
plotted for manyk values vsAb5AB/Bc2 to stretch the low-field
region. Shown is2M normalized to its maximum valueHc1 oc-
curring atb50. The fit ~15! is good for allk and not too smallb
.1/(4k2)10.0005. Upper panel: the deviationdM of the fit from
the exactM is very small whenb.0.5. The dotted lines in the
lower panel show the old London approximation, Eq.~18!.
05450
i-

g1~k!5~1.13311.926/k2.25!~2k221!/~2k4!, ~15!

with relative errorue1 /mu,0.0013 forb.0.5 for the trian-
gular FLL. Formula~15! is a good approximation with rela
tive error ,1% for all k in the large range of fields
1/(4k2)1531024<b<1; see Fig. 7.

The same expression~14! fits also them(b,k) of the
square FLL, with somewhat larger error if the same functio
f 1(b), g1(k) are used rather than the optimally fitted one
For the differencemtr2msq see Fig. 3.

B. Approximation for ‘‘intermediate fields’’

For completeness I mention here also the Lond
approximation3 which was supposed to be good in the ‘‘in
termediate field range’’Hc1!H!Hc2 that exists only in su-
perconductors with extremely largek. Within London theory
the induction is~see Appendix B!

B~x,y!5B(
K

cosKr

11K2l2
, ~16!

where the sum goes over allK vectors with length fromK
50 to some cutoffK'j21. Inserting this into the London
free-energy density@B(r )21l2(¹3B)2#/(2m0) and averag-
ing over the superconductor one gets

F5(
K

~B2/2m0!

11K2l2 '
B2

2m0
1

BF0

2m0
E d2k

4p2

1

k2l2 . ~17!

The integral fromkmin
2 '(K10/2)2'p2B/F0 to kmax

2 'j22

52pBc2 /F0 equals (4pl2)21ln(g8/b) where g8 is some
constant andb5B/Bc2 as above. This yields

FIG. 8. Exact magnetization of the triangular FLL~solid lines!
and the logarithmic fit, Eq.~19! ~solid lines with dots!, plotted vs
b1/3 to stretch the region at smallb5B/Bc2. The dotted lines show
the London nearest-neighbor approximation, Eq.~20!. The dashed
lines show the London expression, Eq.~C6!, with the sum taken
over all shells up tonmax5100 vortex spacings. Both London ap
proximations are good fits at very lowb and allk.
6-6
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2M5H2
B

m0
5

]F

]B
2

B

m0
5

F0

8pl2m0
ln

g

b
,

2m5
2M

Bc2
5

1

4k2 ln
0.358

b
, ~18!

with constantg5g8/e50.3575 . . . obtained by our fit to
the numericalm(b) at k5200. This old London approxima
tion is shown in Fig. 7 as dotted lines. One sees that thi
works only at largek>20 in the relatively small interva
1/(2k2)<b<0.01, i.e., at very lowb ~but not too lowb). It
givesm50 atb5g for all k. This fit is slightly improved by
replacing ln(g/b) by ln(12g1g/b), which gives the correc
m50 at b51.

A much better fit in the spirit of this logarithmic approx
mation is~see Fig. 8!

2m5
1

4k2 lnF11
12b

b
f 2~b!G ,

f 2~b!50.35712.890b21.581b2. ~19!

This fit is good for k>3 ~error ,3%) and k>5 ~error
,1%) in the large ranges (lnk11)/(10k2)<b<1 for k
53, . . .,200. These intervals of validity may also be e
pressed as2M /Hc152m/hc1<0.8 ~0.85! for k<20 (k
>50).

C. Approximation for low inductions

All the above approximations do not describe the corr
vertical slope ofM (H) at H5Hc1 or zero slope ofH(B) and
unity slope ofM (B)5B2H at B50. This is achieved by
the London approximation of pairwise interacting vortic
described in Appendix C. For very smallb!1 one may ac-
count only for the nearest-neighbor shell of six vortices
the triangular FLL of spacinga5cl. With h(b), Eq. ~C8!,
this yields for2m(b)5h(b)2b

2m'hc12b1
3Apc

2k2
e2cF11

19

8c
2

47

128c2G ,
c5

a

l
5S 4p/A3

bk2 D 1/2

. ~20!

Formula~20! correctly describes the steep diverging slope
m(h)→` or slopesm(b)8→1 andh(b)8→0 asb→0 and is
valid for 0<b<2.5/k2 for k>7. Accidentally it also fits
well m(b) for k<2 andb<0.2; see the dotted lines in Fig
8. A smoother fit is obtained by the exact London express
~C6! if one or three neighbor shells are included in the su
But taking more terms in the sum improves the fit only
largek. Accounting for neighbors up ton5100 lattice spac-
ings apart~about 5000 terms! one gets a good approximatio
to m and h for 0<b<0.01 ~0.02, 0.05! if k>20 (k57, k
52); see Fig. 8. In the limitn→` the infinite sum~C6!
reproduced Eq.~18!; i.e., the dashed curves in Fig. 8 fork
550, 200 then will straighten and cut the axisM50 at b
5g50.358 (b1/250.60 in Fig. 7,b1/350.71 in Fig. 8!.
05450
fit

t

f

n
.
t

D. General interpolation

All the approximations form(b) andh(b) known so far,
including the above formulas, fit either the low- or high-fie
region. The formulas~15! and~20! @or, better, Eq.~C6! with
the sum taken over three shells# have a small overlap for al
k and thus, together, they fit the entire range 0<b<1
@though the good fit of the low-k data by the London expres
sion ~20! or ~C6! is accidental#.

For practical purposes one may construct interpolat
formulas that approximate the numerically obtained mag
tization in the entire range 0,b,1. They should satisfy the
five conditions

h~0!5hc1 , h8~0!50, h~1!51, h8~1!512p,

h9~1!50, p5m8~1!5@~2k221!bA11#21, ~21!

with hc1(k) from Eq. ~4!. A simple expression that satisfie
all these conditions is

2m~b,k!5h2b5p~12b!1~hc12p!~12b!h, ~22!

with h(k)5(12p)/(hc12p). Formula ~22! approximates
the exact2m(b) well for k<2 with relative deviationueu
,3%, for k53 with 22%,e,6%, and fork55 with
21%,e,16%; see the dotted lines in Fig. 1, top.

For largek, general interpolation formulas are more d
ficult to construct because of the nonanalytic limiting expr
sion, Eq.~20!. One may, however, combine themlow from
Eq. ~20! with the mhigh from Eq. ~19! using a smooth transi

tion at b'(2k2)21, e.g., with weights 12w and w5 1
2

1 1
2 tanh@2.5(2bk221)# or, slightly better, w5 1

2

1 1
2 erf@2(2bk221)#, yielding

m~b,k!5~12w!mlow1wmhigh. ~23!

This interpolation between expressions~19! and ~20! works
well for 0,b,1 with relative errorueu,2% for k>5 and
23.5%,e,2% for k>1; see the dotted lines in Fig.
~bottom!. Thus,m in the entire ranges ofb and k may be
approximated by Eq.~22! or Eq. ~23!.

IV. CONCLUSION

The properties of the ideal periodic flux-line lattice
superconductors are calculated from Ginzburg-Land
theory for the entire ranges of GL parameters, 1/A2<k,`
and inductions 0<b5B/Bc2,1. The differences betwee
the free energies and magnetizations of the triangular
square vortex lattices and the values obtained by the circ
cell approximation are investigated in detail. Approxima
analytical expressions are given for the variances(b,k) of
the periodic induction and for the magnetizationm(b,k).
These limiting and interpolation formulas should replace p
vious approximate expressions that have rather limi
validity.

The numerical methods presented in the Appendixes
principle, may be applied also to theories going beyond
isotropic GL theory considered here.
6-7
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APPENDIX A: ISOLATED VORTEX AND CIRCULAR
CELL METHOD

The calculation of the isolated flux line and of the FL
within the circular cell method is a cylindrically symmetr
problem. The free energy depends on the magnitude of
GL function f (r ) and on the magnetic inductionB(r ) ~along
z) related to the vector potentialA(r ) and supervelocity
Q(r ) ~alongw) by

B~r !5
~Ar !8

r
5

~Qr !8

r
, Q5A2

1

kr
. ~A1!

In reduced unitsA2Hc5m0Hc
25l51, the free energy of a

flux line or of the circular cell with radiusR(pR25F0 /B)
averaged over this cell and referred to the Meissner statf
51, B50) reads

Fcc5E
0

RF ~12 f 2!2

2
1

~ f 8!2

k2
1 f 2Q21B~r !2G2prdr

pR2 ,

~A2!

with f 85d f /dr. Minimizing the functional~A2! with re-
spect to f (r ) and Q(r ) we obtain the two GL equations
which may be written in the form

2 f 91k2f 5k2~2 f 2 f 32Q2f !1 f 8/r , ~A3!

B85 f 2Q5 j , ~A4!

where j 5B8 is the current density. In Eq.~A3! a termk2f
was added on both sides to improve the convergence o
iteration below. The boundary conditions are

f ~0!5 f 8~R!5 j ~0!5 j 8~R!50. ~A5!

An appropriate ansatz in terms of Fourier series is

f ~r !5 (
m51

M

f GsinGr, G5
p~2m21!

2R
, ~A6!

A~r !5 (
n51

N

aKsinKr 1
r

2
B, K5

pn

R
, ~A7!

B~r !5 (
n51

N

aK

sinKr 1Kr cosKr

r
1B, ~A8!

Q~r !5 (
n51

N

aKsinKr 2
12r 2/R2

kr
, ~A9!

j ~r !5 (
n51

N

aK

Kr cosKr 2~11K2r 2!sinKr

r 2 . ~A10!
05450
h

he

(

he

For the equidistant grid r i5( i 2 1/2)R/Nr , i
51,2, . . . ,Nr , one has the orthogonality relation

(
i 51

Nr

sinGrisinG8r i5
1

2
NrdGG8 ~A11!

and similar equations for sinKri and cosKri . The GL equa-
tions ~A3! and~A4! thus may be written in the form of equa
tions for the Fourier coefficientsf G andaK :

f G5
1

G21k2

2

Nr
(
i 51

Nr

sinGri@k2~2 f 2 f 32Q2f !1 f 8/r i #,

~A12!

aK5
1

K211 FaK1
2

Nr
(
i 51

Nr

sinKr i

3S (
n851

N

aK8

Kr cosKr 2sinKr

r 2 2 f 2QD G .

~A13!

These two equations may be used to obtain thef G andaK by
iteration, starting with appropriate initial values. The iter
tion becomes more stable and faster if the value of the p
vious iteration step is added with a certain weight (12c)
,1, e.g.,c50.6, according to the algorithm

f G←~12c! f G1cFG$ f ,Q%, ~A14!

aK←~12c!aK1cAK$ f ,Q%, ~A15!

with the symbolsFG$ f ,Q% andAK$ f ,Q% denoting the right-
hand sides of Eqs.~A12! and~A13!, respectively. Rapid con
vergence is achieved by iterating Eqs.~A14! and ~A15! al-
ternately. The equilibrium magnetic fieldH is then obtained
from Eq. ~3! and the magnetization from

M5
2

BRE0

RF f 42 f 2

2
1B22B~r !2G rdr . ~A16!

At very largek and very smallb a large numberNr of
grid pointsr i is needed to achieve high accuracy,Nr@R/j
5Rk5A2/b. In this case the accuracy with a limited num
ber of grid points may be improved by choosing a noneq
distant grid, e.g., r i5ui

2 with equidistant ui5( i
2 1

2 )AR/Nr . To use the orthogonality relations one then h
to expressf, B, andQ as Fourier series in the new variab
u5r 2 and also write the two GL equations in terms of t
variable u, using, e.g., f 8(r )5 f 8(u)/2u and f 9(r )
5 f 9(u)/4u22 f 8(u)/4u3. This yields

f 9~u!54u2k2~2 f 1 f 31Q2f !1 f 8/u, ~A17!

B8~u!52u f2Q ~A18!

and the Fourier series

f ~u!5 (
m51

M

f GsinGu, G5
p~2m21!

2R
, ~A19!
6-8
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A~u!5 (
n51

N

aKsinKu1
u2

2
B, K5

pn

R
, ~A20!

B~u!5 (
n51

N

aK

2 sinKu1Ku cosKu

2u2 1B, ~A21!

Q~u!5 (
n51

N

aKsinKu2
12u4/R2

ku2 , ~A22!

j ~u!5 (
n51

N

aK

Ku cosKu2~41K2u2!sinKu

4u4 . ~A23!

The equations for the new Fourier coefficients are

f G5
1

G214k2 F4k2f G1
2

Nr
(
i 51

Nr

sinGui

3@4ui
2k2f ~12 f 22Q2!1 f 8/ui #G , ~A24!

aK5
1

K211 FaK1
2

Nr
(
i 51

Nr

sinKui

3S (
n851

N

aK8

KuicosKui24sinKui

ui
2 24u2Q f2D G .

~A25!

For better convergence a term24k2f G was added on both
sides of Eq.~A17! to yield Eq. ~A24!. The corresponding
iteration scheme using Eqs.~A14! and~A15! needs a smalle
weight c and more iteration steps, but for largek2/b it is
faster than the first scheme since it needs fewer grid po
Nr to reach the same accuracy.

APPENDIX B: PERIODIC VORTEX LATTICE

The properties of the ideally periodic FLL within G
theory may be calculated by minimizing the GL free ener
of the superconductor, Eq.~2!, with respect to appropriate
periodic trial functions, e.g., Fourier series with a large nu
ber of terms. For the smooth functionv5 f 2(r ) we write the
ansatz

v~r !5 f 25(
K

aK~12cosKr !, ~B1!

with r5(x,y), K5(Kx ,Ky). In all sums here and below th
term K50 is excluded. For vortex positionsR5Rmn
5(mx11nx2 , ny2) the reciprocal lattice vectors areK
5Kmn5(2p/S)(my2 , nx11mx2) with S5x1y25F0 /B
the unit cell area andm,n50,61,62, . . . . For thetriangu-
lar lattice one hasx25x1/2, y25x1A3/2 and for the square
lattice x250, y25x1. For supervelocityQ and inductionB
5¹3Q5B(r ) ẑ we choose

B~r !5B1(
K

bKcosKr , ~B2!
05450
ts

y

-

Q„r …5QA~r !1(
K

bK

ẑÃK

K2
sinKr . ~B3!

HereQA(x,y) is the supervelocity of the AbrikosovBc2 so-
lution, which satisfies

¹3QA5FB2F0(
R

d2~rÀR!G ẑ, ~B4!

whered2(r )5d(x)d(y) is the 2D delta function. This rela
tion shows thatQA is the velocity field of a lattice of idea
vortex lines but with zero average rotation. Close to ea
vortex center one hasQA(r )' ẑÃr 8/(2kr 82) andv(r )}r 82

with r 8ÄrÀR. In principle QA(r ) may be expressed as
slowly converging Fourier series by integrating Eq.~B4! us-
ing divQ5div QA50 as in Ref. 15. But it is more conve
nient to takeQA from the exact relation

QA~r !5
¹vA3 ẑ

2kvA
, ~B5!

wherevA(x,y) is the AbrikosovBc2 solution given by the
rapidly converging series~B1! with coefficients30,31

aK
A52~21!m1mn1nexp@2Kmn

2 S/~8p!# ~B6!

for general lattice symmetry andaK
A52(21)n2

exp
(2pn2/A3)(n25m21mn1n2) for the triangular lattice.
This vA is normalized tô vA(x,y)&51, which means that
(K8 aK

A51 for any lattice symmetry. Another strange prope
of the Abrikosov solution ~B6! is that (¹vA /vA)2

2¹2vA /vA54p/S5const, although both terms diverge
the vortex positions; this relation follows from Eqs.~B4! and
~B5! using B5F0 /S52p/(kS). The useful formula~B5!
may be proved via the complexBc2 solution cA(x,y); it
means that nearBc2 the third and fourth terms inF, Eq. ~2!,
are identical.

Approximate solutionsv(r ) andB(r ) may be computed
by using a finite number of Fourier coefficientsaK and bK
and minimizing the free energyF(B,k,aK ,bK) with respect
to these coefficients.15 However, a much faster and mor
accurate solution method17 is to iterate the two GL equation
dF/dv50 and dF/dQ50 written in appropriate form.
Namely, the iteration is stable and converges rapidly if o
isolates a term (2¹21const)(v,Q) on the left-hand side
~LHS! and puts the remaining terms to the RHS as a kind
‘‘inhomogeneity’’ of such London-like equations, e.g.,

~2¹212k2!v52k2~2v2v22vQ22g!, ~B7!

~2¹21v̄ !Qb52vQA2~v2v̄ !Qb , ~B8!

with the abbreviationsg(r )5(¹v)2/(4k2v), Qb5QÀQA ,
¹3Qb5B(r )2B, and v̄5^v&5(K8 aK . Equations ~B7!
and ~B8! introduced some ‘‘penetration depths’’ (2k2)21/2

5j/A2 andv̄21/25l/v̄1/2 ~in real units!, which stabilize the
convergence of the iteration. Acting on the Fourier seriesv,
Eq. ~B1!, andQb , Eq. ~B3!, the Laplacian¹2 yields a factor
2K2; this facilitates the inversion of Eqs.~B7! and ~B8!.
Using the orthonormality
6-9
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2^cosKr cosK 8r &5dKK 8 ~B9!

~for KÞ0) one obtains from Eqs.~B1! and ~B2! aK5
22^v(r )cosKr & andbK52^B(r )cosKr &. The convergence
of the iteration is considerably improved by adding a th
equation which minimizesF, Eq. ~2!, with respect to the
amplitude ofv, i.e., ]F/]v̄50. This step gives the larges
decrease ofF. The resulting three iteration equations for t
parametersaK andbK then read17

aKª
4k2^~v21vQ222v1g!cosKr &

K212k2
, ~B10!

aKªaK•^v2vQ22g&/^v2&, ~B11!

bKª
22^@~v2v̄ !B~r !1p#cosKr &

K21v̄
, ~B12!

with p5(¹v3Q) ẑ5Qx]v/]y2Qy]v/]x and g
5(¹v)2/(4k2v)5(¹ f )2/k2 as above.

The solutionsv(r ), B„r …, andQ„r … are obtained by start
ing, e.g., withaK5(12b)aK

A and bK50 and then iterating
the three equations~B10!, ~B11!, and~B12! by turns until the
coefficients do not change anymore. After typically 25 su
triple steps, the solution stays constant to all 15 digits and
GL equations are exactly satisfied. Since all terms in E
~B10!–~B12! are smooth periodic functions ofr , high accu-
racy is achieved by using a regular spatial 2D grid, e
xi5( i 21/2)x1 /Nx ( i 51, . . . ,Nx) and yj5( j
21/2)y2 /(2Ny) ( j 51, . . . ,Ny , 2Ny'Nxy2 /x1) with con-
stant weights x1 /Nx and y2 /(2Ny). These
N5NxNy5100–5000 grid points fill the rectangular bas
area 0<x<x1 , 0<y<y2/2, which is valid for any unit cell
with the shape of a parallelogram. Spatial averaging^•••&
then just means summingN terms and dividing byN.

Best accuracy is achieved by considering allKmn vectors
within a half circleuKmnu<Kmax, with Kmax

2 '20N/S chosen
such that the number of theKmn is slightly less than the
numberN of grid points. The high precision of this metho
may be checked with the identityB(x,y)/Bc2512v(x,y),
which is valid atk51/A2 for all b. This relation is confirmed
with an error,1029. The equilibrium fieldH or reversible
magnetizationM5B2H is computed from Doria’s virial
theorem, Eq.~3!.

APPENDIX C: LONDON THEORY

The modified London equation for a lattice of straig
vortex lines at regular positionsRÄRmn ~Appendix B! is

~12l2¹2!B~x,y!5F0(
R

d~r2Rmn!, ~C1!
05450
h
e

s.

.,

whered(x,y) is the 2D delta function. The solution for th
magnetic field of one isolated vortex atR50 is

Bv~r !5~F0/2pl2!K0~r /l!. ~C2!

The modified Bessel function

K0~r /l!5E d2k

2p

coskr

l221k2
~C3!

has the derivativeK0(x)852K1(x) with the limits K0(x
!1)'2 ln x, K1(x!1)'1/x, and forx@1 ~Ref. 32!

K0~x!'Ap

2x
e2xS 12

1

8x
1

9

128x2 2
225

3972x3D ,

K1~x!'Ap

2x
e2xS 11

3

8x
2

15

128x2 1
315

3972x3D . ~C4!

For a periodic FLL one obtains the Fourier seriesB(x,y),
Eq. ~16!, which may also be written as a sum over isolat
vortex fields,B(x,y)5(RBv(r2R). Similarly, the free en-
ergy of the FLL may be written as a sum of vortex se
energies (F0Hc1 per unit length! plus a double sum over al
interactions between two vortices. The average energy d
sity F, Eq. ~17!, then reads

F5BHc11
BF0

4pl2m0
(
R

K0~R/l!. ~C5!

For the triangular vortex lattice we writeR/l5nc with c
5a/l5(4p/A3)1/2(bk2)21/2 (a5vortex spacing! and n2

5m21mn1n251,3,4,7,7,9, . . . . Taking the derivativeH
5]F/]B one obtains forh5H/Hc2 with hc15Hc1 /Hc2

h5hc11
3

k2 (
n

FK0~nc!1
nc

2
K1~nc!G . ~C6!

Here the sum is overn51,A3,2, . . . ; i.e., the number of six
flux lines per shell is already accounted for. Equation~C6! is
still exact. It works forb!1 ~i.e., for nonoverlapping vortex
cores! and for k.1.4 ~i.e., when the long-range interactio
of vortices is purely magnetic11,33!. With the expansions~C4!
one obtains forx5nc@1

h'hc11
3Ap

2k2 (
n

e2xAxF11
19

8x
2

47

128x2G . ~C7!

At very small b, namely, forc5a/l@1, the sum may be
restricted to the nearest-neighbor shell, i.e., to the first te
n51, yielding

h'hc11
3Apc

2k2
e2cF11

19

8c
2

47

128c2G . ~C8!
6-10
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