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Properties of the ideal Ginzburg-Landau vortex lattice
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The magnetization curved (H) for ideal type-1l superconductors and the maximum, minimum, and saddle-
point magnetic fields of the vortex lattice are calculated from Ginzburg-Landau theory for the entire ranges of
applied magnetic field$l,;<H=<H_, or induction 0<B<u,H., and Ginzburg-Landau parameters'¥
< k=<1000. Results for the triangular and square flux-line lattices are compared with the results of the circular
cell approximation. The exact magnetic fi@¢x,y) and magnetizatioM (H, x) are compared with often used
approximate expressions, some of which deviate considerably or have limited validity. Useful limiting expres-
sions and analytical interpolation formulas are presented.
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[. INTRODUCTION the GL function and magnetic field are forced to have van-
ishing slope on this circular boundary, as the exact solution
Since Abrikosov'$ prediction of the flux-line lattice in has on the boundary of the Wigner-Seitz cell. This method
type-Il  superconductors from Ginzburg-LandayGL) Yields the exacH., and is expected to be best at low induc-
theory? several approximate formulas for the magnetizationtions B<B., where the flux lines are well separated. But
M=B/u,—H versus the applied magnetic fielt or aver-  surprisingly, the circular cell apprqximation gives very good
age inductiorB have been publishéf~"In these papers and Magnetization curves at @ (see Fig. 1 and even yields an
below, the basic situation is considered where a macroscop®*act value of the upper critical field.,. Some more exact
cally large, homogeneous and isotropic, long superconductdeSults of the CCM are listed below. Another methades a

is exposed to a uniform parallel field. In this ideal case similar circular symmetric GL order parameter and a linear

demagnetization effects, flux line pinning, and surface eﬁect§uperposition of _circular symmetric magnetic fields to obtain
may be disregarded, and thus the flux lines are straight Iine%xcfrl]leizt ﬁ?ﬁgffgm:;gﬂc(t'_'n’ Jr%yefiigl arlr?gtr?berifﬁ i:s eriodic
forming an ideal periodic lattice. These results are easily N princip . p2
extended to anisotropic superconduct@nghere an aniso- real trial functions for the squared GL functign(x,y)|* and

. . L . magnetic fieldB(x,y) and minimizes the resulting free-
tropic effective-mass tensor is introduced into the GL. thiory enegrgy functiona(l Wxilt)h respect to a finite number of Fourier

by defining an effective GL parameterthat depends on the coefficients. The same method was later appfied solve
orientation of the flux lines; this transformation works whenthe microscopic BCS-Gor’kov theory for the properties of
H is along a principal symmetry axis!'® Generalizations to  the FLL in the entire temperature intervas@ <T, where
geometries where demagnetization effects occur are possibig is the superconducting transition temperat(@& theory,
by the introduction of a demagnetizing factor, but this con-strictly speaking, applies only close ). Recently this
cept works only for homogeneous specimens with the shapeariational method was improv&tby keeping the same pe-
of an ellipsoid. In this case the flux lines in the bulk are still riodic trial functions but now solving the GL equations itera-
straight and form an ideal flux-line lattideLL). For other tively; this iteration works much faster and allows us to use
specimen shapes the FLL is distorted; i.e., the orientation anthany more Fourier coefficientenany thousands instead of
density of the FLL vary spatially and can be calculated onlyonly five in Ref. 15. | shall use this 2D iterative precision
numerically'*? method of Ref. 17 for the calculation of the FLLBt0. At
The aim of the present paper is to compare the widelyjow inductionsB<B,, this 2D method is supplemented by
used approximate expressions fdr(H,«) with the exact an iterative circular cell method presented in Appendix A.
value obtained numerically and to give useful general anaThis 1D method vyields accurate values df(«)

lytic interpolation formulas valid in the entire rangesldf  =H_, /H.,, which then can be used in interpolation formu-
andx where the FLL exists, nameli,;<H=<H., for Hor  las. For convenience, | introduce the reduced fiells
0<B=Bg,=uoH, and 14/2< k< for k, whereH(T) =B/B., andh=H/H.,, m=M/H_,, such that one ham
andH¢,(T) are the lower and upper critical fields ardis  =b—h, h;;<h<1, O<sb<1, and—h,;<=m=0.

the GL parameter. Interestingly, such general formulas have For completeness it should be mentioned that the isolated
not been published yet, and thus the accuracy of the comortex® and the FLL(Ref. 19 have also been computed
monly used expressions is not known, probably due to thérom BCS theory(valid at all temperaturesising the quasi-
difficulty of a numerical solution of the complex-valued GL classical Eilenberger theory based on energy-integrated
equations. Early numeritsused the circular cell method Green functions. This method was recently extended to com-
(CCM), which approximates the hexagonal unit cell of thepute the FLL structure and local density of states for
triangular FLL (or the quadratic unit cell of the square PLL s-wave’®~?! d-wave?'?? and chiralp-waveé® superconduct-

by a circle and the two-dimensionéD) solution by the 1D  ors. Very recently the GL methdtiwas generalized phenom-

rotationally symmetric solution inside this circular cell; both enologically to lower temperatures and to charged vortites.
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b 1—|412)2 v 2
! ' F=<m+ (.——A y +Bz>. (1)
ol Z 2 ik
0.8F ©=085 Here(---)=(1NV)[d® - - - means spatial averaging over the
I superconductor of volum¥. Introducing the supervelocity
‘ Q(r)=A—-Ve¢/k and the magnitudef(r)=|y| of (r)
_06p L 1. =f(r)exdie(r)] one may expresE as a functional of the
205, 13 real and gauge-invariant functionsindQ,
£ 2 S
0.4f - (1-%)2 (Vf)?
15 - 202 2
03 . F < 5 + 2 +f°Q°+(VXQ)°). 2
2 ’
0.2 s In the presence of vorticeQ(r) has to be chosen such that
01— A 3 VXQ has the appropriate singularities along the vortex
AN : : :
S R—— — cores; see, e.g., E(B4_) in Appgnd|x B.. _ _
0 01 02 03 04 0h5 06 07 08 09 1 In this paper | consider the ideal periodic FLL in a homo-
geneous(pin-free large superconductor in a uniform mag-
0.07F netic field H along z. In this 2D situation one hag
=f(x,y), Q=Q(x,y), andB=2B(x,y). Within GL theory
0.06 in reduced units the properties of this ideal FLL depend only
on two parameters: the GL parameieand the average in-
0.051 ductionB=(B(X,y)). The equilibrium magnetic fielti and
the magnetizatioM =B/ uy—H are obtained either from the
0047 definition H=gF/9B or, more elegantly, from the virial
g theorem discovered by Doria, Gubernatis, and Réiher,
0.03 which in reduced units reads
0.02r 2 4 2
fe— 1%+ 2B(X,
o 2 (xy)% 3
0.01f
Some of the properties of the FLL and all properties of the

0 0.01 0.02 0.08 h0.04 005 006 0.07

isolated flux line may be calculated in an elegant way by the
circular cell approximatioh!**4as described in Appendix A.

FIG. 1. Magnetization curves of the triangular FLL, which co- |n the circular cell method the hexagonal Wigner-Seitz cell
incide within line thickness with the results for the square FLL andaround each flux line is replaced by a circle with radRis
for the FLL obtained from the circular cell approximation; see Fig. gjnd same areaTR2=<DO/B if each flux line carries one

3 for the difference. Shown aite=H/H., vs b=B/B, (upper left
triangle and —m=—M/H, vs h (lower right trianglg. One has

m=b—h. The scales on all four axes are the same. The lower pane
shows an enlarged scale. The solid lines are the exact numerical
result of this paper. The dotted lines show the simple interpolation
Eq. (22), good fork<5 (upper pangl and the combined low- and

high-field limit, Eq.(23), good fork=1 (lower panel.

quantum of flux®,=h/2e=2.07x10 > Tm?. In reduced
units one hasbo=2m/x and R/\=R=(2b«?)? with b
=B/B.,. The boundary conditions on the CCM circte
=R aredf/dr=dB/dr=0. | find that the free energy of the
triangular FLL, F,,, and its magnetizatioM,, are repro-
duced by the CCM with high accuracy in the entire ranges of
k andB, 1\2< k<% and 0<b<1. In particular, the CCM

The GL results obtained here and in other work for constanfiot only yieldsH; (in the limit R—<) but it also repro-

B may easily be generalized to const&hby using standard
thermodynamics without the need for further numerics.

II. TRIANGULAR AND SQUARE FLUX-LINE LATTICES
AND THE CIRCULAR CELL METHOD

duces the exact upper critical figitl.,(«) and, in the special
case k=1/\/2, even the exact resulH(B)=constH,
=H.,=H,. These somewhat surprising features of this ap-
proximation are related to the facts th&t, and, in the case
x=1/\/2, even the entire curvd (B) areindependenof the
detailed arrangement of the flux lines; i.e., they are the same

Th_e _pr(_)p_erties of the FLL within GL theory are calculated for triangular and square or honeycomb FLL's and for any
by minimizing the GL free energy of the superconductorother arrangement of single- or multiple-quantum flux lines.

with respect to the complex GL functio#(r) and to the
vector potentialA(r) of the local magnetic field(r)=V

X A. In the usual reduced unts (length\, magnetic field
V2H,, and energy density.oH2, whereH, is the thermo-
dynamic critical field the spatially averaged free enerfigyf

the GL theory, referred to the Meissner staté=(1, B

=0), reads

Another surprising finding is that the virial theorem, E8),
works perfectly in the CCM. Figure 1 shows the magnetiza-
tion curvesM(H) and the equilibrium fieldH(B) of the
superconductor obtained by the CCM fere=0.85, 1, 1.2,
15,2, 3,5,7, 10, and 20.

In the limit b—0 the CCM yields the lower critical field
H.1, which with high accuracy is fitted by the formula

054506-2



PROPERTIES OF THE IDEAL GINZBURG-LANDAU . .. PHYSICAL REVIEW B8, 054506 (2003

Dy
,uoHcl=m[|n k+a(k)], 18f

. k=0851,1215,23,5,10, 200

Hoo INk+a(k)

T P

a(k)=a.+exgd —co—cink—cy(Ink)?]*xe, (4

with «,,=0.496 93, c,=0.41477,¢,=0.775, ¢,=0.1303,
and e<0.000 76. This expression yields @t 1/\/2 the cor-
rect value h,;=1 and for k>1 it has the limit «
=0.496 93. A simpler expression far(«), yielding anh.;
with an error still less than 1% and with the correct limits at
k=112 andxk>1, is

1+In2
2k—\2+2

The CCM in principle cannot yield properties related to
the different symmetries of the FLL or to its shear modulus,
and it cannot give the form factol&ourier coefficients of A4
the magnetic field3(x,y) that may be measured by neutron w7y 5|
scattering. These subtle properties can be computed by the !
2D method presented in Ref. 17 and Appendix B. This effec- , 8 1
tive numerical method expresses the smooth functions 0.8}
f(x,y)? andB(x,y) as 2D Fourier series and determines the
Fourier coefficients by iteration.

Figure 2 (top) shows the difference of the free-energy  04f

a(k)=0.5+ (49)

k=0.85,1,1.2,15,2,3,5, 10, 200

0.6f

densities of the triangulaiF,) and squareRs,) FLLs. This 0.2}
difference is proportional to the shear modulug of the 0.85 ,
triangular FLL (the shear modulus of the unstable square 0 02 04 0.6 08 1
FLL is negative within GL theoryby the relatioh’ b=B/B,,
C66:(3772/2)(qu_ Fir). (5 FIG. 2. Top: the difference of the free energy densities of the

triangular ) and squareKgy) FLLs in units,uoHﬁ, plotted vs
Note that this difference is very small, <QFsq  the reduced inductioh=B/B, for k=0.85, 1, 1.2, 1.5, 2, 3, 5, 10,
—Ftr)/(,uOHg)<O.0018. Even smallefoy 10 time$ is the  and 200. This difference equals (/3 =0.068 times the shear
difference between the free-energy densities of the CCMnodulusceg of the triangular FLL. Bottom: the very small differ-
(F¢o) and of the triangular FLL plotted in Fig. ottom. ence between the free energy densities of the circular cell method

One has 6 (Fe— Ftr)/(MoH§)<0-000 20. This result (Fco) and of the triangular FLL. Note that the top and bottom plots

shows that the CCM is an excellent approximation for the|°°k similar, but the scales of the ordinate differ by a factor of

global properties of the FLL. Both differences are largest for2Pout 10.

large « and have a maximum near=0.3. The findingF,

>F, means that the triangular FLL is stable for ail also atk—, since theren=M/H,—0. Therelative dif-

>1/y2. Note that fork=1/\2 one has exactlfFs,=F..  ferencesinsets in Fig. 3 are maximum ak> 1.

=F=0 for all b. The smallness of these differences explains why in Fig. 1
Figure 3(top) shows the difference between the magneti-the magnetization curves for all three casdég, Mg, and

zations M, of the square FLL andM;, of the triangular M. coincide within line thickness.

FLL. Again, this difference is small,—0.0008< — (Mg Figure 4 shows an examplé&€0.3, k=1.5) comparing

— My )/H=<0.000 14, and the relative difference has thethe spatial function§ andB of the triangular FLL with those

limits —0.018<(Mgy— My )/M(,<0.0095. Figure 3(bot-  obtained by the CCM. Shown are the cross sectifixs0)

tom) shows the difference between the magnetizafibyy =~ along the nearest-neighbor directianand f(0,y) perpen-

obtained by the CCMsee Fig. 1 and the exact valubl,, of  dicular to this, and (r) from the CCM, and similar profiles

the triangular lattice. Like with the free energy, this differ- of B(x,y); a is the vortex spacingg?®/\?=4/(y/3bx?). It

ence is again smaller by a factor of 10 than the differencés seen thatf(x,0) and f(r), and alsoB(x,0) and B(r),

between two lattice symmetries,—0.00016<—(M.. coincide closely; at loweb<0.3 the difference is smaller

—My)/H»=<0.00008 and —0.001K(M..—M)/ My, than the line thickness. The lower panels show some contour

<0.0017. The differences vanish exactly m&1/y2 and lines of f(x,y) andB(x,y) for the same example. Each cir-
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contours of f(r), f(x,y) contours of B(r), B(x,y)

of4b B/Bofe 0.8 1
- 2 FIG. 4. Comparison of the GL functiorfsand magnetic induc-
FIG. 3. Top: the difference between the magnetizativhg of tions B calculated for the triangular FLL and from the circular cell
the square FLL andl,, of the triangular FLL in unitd,,, plotted ~ 2PProximation for the example=0.3, x=1.5. Top: the cross sec-
vs the reduced inductiop=B/B_, for k=0.85, 1, 1.2, 1.5, 2, 3, 5, tions(x,0), B(x,0) along.the negrest.-nelghbor directiarf (0,y),
10, and 200. The inset shows the relative difference. Bottom: thg(o'y) along the_ perpendlcular d|rect|(_ynandf(r), B(r) from th?
difference between the magnetizatidh,, obtained by the CCM CCM. All B are in unitsB(0,0) of the triangular FLL. Small devia-

(see Fig. 1and the exact valudl,, of the triangular lattice. The UONS can be seen only close to the cell boundamyR, R/a
inset shows the relative difference. =3"%(2m)”"°=0.525. At lowerb the deviations are even smaller.

Bottom: contours of the sanx,y) and B(x,y). Exact periodic
cular contour of the CCM cuts the corresponding exact conSolution (solid lineg and circular cell approximationdashed
tour 12 times and is very close to it, except near the saddIgrcles. cutting each corresponding exact contour 12 times
points and the maxima dfor minima ofB. The solutions for

the square FLL deviate more from the circular cell solutions. Bsas—B : 1-b
The maximum, minimum, and saddle-point fields of the B, 0.14 x>—0.069 0

triangular FLL, Bya=B(0,0), Bmin=B(0,a/y3), andBg.q4

=B(a/2,0), depend o and k. B4y is only slightly above Bsad— Bmin (1-b)

the equilibrium fieldH, andBg,4 andB,,;, are close to each T *0-0526,%- ®)
other and lie somewhat below the average fieldB,,,, and

Bmin are shown in Fig. 3 of Ref. 17 as functions loffor ~ The factor of 0.069 in Eq946)—(8) is 0.5-0.5/3,=0.0688
several k=0.707 ... 5. In Fig. 5 the small differences where8,=1.1596 is the Abrikosov parameter of the trian-
Bmax—H, Bsag— B, andBg,q— Bn,in are plotted versub in gular FLL. Plots oB..(R) — Bp,in, WhereB..(R) is the field
units B., and multiplied by a function ok such that the value at the boundary of the circular cell in the CCM, look
curves for all=1/\/2 collapse ab— 1. One finds for alk similar to the plots ofBg,q— Bmin in Fig. 5 (lower panel,

nearb=1 since the valud_ .(R) lies approximately in the middle be-
B H 2 05 tween B,,i, and Bg,4; See Fig. 4. Since fok>1 andb
max H k“—0. 2 <1/k? the field in the vortex center equals, ,,=2H.;, one

Bc, ()'035“270.0692(1 b)*, © hasB,.x— H—H¢;, and thus the function plotted in Fig. 5
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0.01 Vo
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FIG. 5. Maximum fieldB .= bmaBc2 Minus applied fieldH,
saddle-point fieldBg,4=bs.Bc2 Minus inductionB, and Bg,4 mi-
nus minimum fieldB i, = bminBc2, for the triangular FLL, plotted
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FIG. 6. The magnetic field varianae={([B(x,y)—B]?) of the
triangular FLL fork=0.85, 1, 1.2, 1.5, 2, 3, 5, 7, 10, 20, 50, 100,
200 plotted in units 0B, as /o (x>—0.069) B, (solid lineg such
that the curves for allk collapse neab=1; cf. Eq. (10). The
dashed lines show the same functions divided by ) such that
they tend to a finite constant 0.172kat 1. All curves are plotted
vs b= B/Bg, to stretch them at smab values and show that
they go to zero linearly. The limits, Eq12), for k=5 andx=10
are depicted as dash-dotted straight lines. The upper frame 0.383
shows the approximatiofll).

For small inductiond<1 and largex one can use the
London approximatio, = B/(1+K?\?). For the appropri-

vs b=B/Bg, for x=0.85, 1, 1.2, 1.5, 2, 3, 5, 7, 10, 20, 50, 100, 46 cytoff at large magnitudeé~ ¢ 1=«/\ see Refs. 28

200. The solid lines show these small differences in uBits,
multiplied by appropriate functions of to obtain collapse of the

curves neab=1. The dashed lines show the same functions mul-

tiplied by factors (+b) 2 and (1—b) ! such that they tend to a
finite constant value nedr=1; cf. Egs.(6)—(8).

(upper panel for b—0 tends to the limit B,,—h) X «2
—hek?~3(In k+0.50); cf. Eq.(4).
The variance of the magnetic field is

o=([B(x,y)-B]>)=(B(x,y)>~B%= > B, (9

K#0
where By are the Fourier coefficients ofB(x,y)
=23 BkcosKr andK the vectors of the reciprocal lattice of
the FLL (Appendix B. Nearb= 1 the Abrikosov solution of
the linearized GL theory-?®yields for all x valueg’

D3 kY (1-Db)?

= . -4_ - 0
g 752 10 )\4 (KZ*O_OGQZ,

s—@—o 172i 10
"By  k?—0.069 (10

The functionsSandS/(1—b) are plotted in Fig. 6 versugh
for various . It can be seen that Eq10) is a rather good
approximation for the large range 02b<<1. At smallerb

and 29 and below. In the range 0.&3&b<1 the unity in
the denominator ofBx may be disregarded sinck?\?
= (47/\3)bk?=7.25%«%. Thus B drops out ando be-
comes independent &f (Ref. 27:

P2 0.383
0=00037%7, S=—7.

11

This often used formula corresponds to the upper axis in Fig.
6. One can see that this approximation is good only for very
large k=70 and only in the range df near the maximum of

o. At very small b<0.13k? both o(b) and S(vb) drop
linearly to zero wherb— 0. In this range the sum in E¢Q)

can be evaluated as an integral, yielding

_bk2®5 o2 1
Tgant SN 12

This approximation is good fok=5 and very smalb (b
<0.01k? for k=5, b<<0.04/k? for k=10); see the two
straight lines in Fig. 6. Fok=5 a good approximation, with
less than 5% error fromb=1 down to the valueb
~0.25/k*3 where the maximum of occurs, is

S= E{avo.l?zl;—;zb[u 1.211—/b)3]. (13
c2

the varianceo(b) has a maximum and then goes to zeroThis approximation is much better than the interpolation, Eq.

again atb=0.

(13) of Ref. 27.
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5 k=0851,121523,5,7,10,20,50, 100, 200

0 0.2 04 p 06 0.8 1

k=0.85,12,2, 3,5, 10, 20, 50, 200

(m ) ) P
06 07 08 09 1

04 05
b1/2

0 01 02 03
FIG. 7. Lower panel: the exact magnetizatighof the triangu-
lar FLL (solid lineg and the fit, Eq.(15) (solid lines with dotg
plotted for manyx values vsyb= B/B, to stretch the low-field
region. Shown is—M normalized to its maximum valull.; oc-
curring atb=0. The fit(15) is good for allx and not too smalb
>1/(4x%) +0.0005. Upper panel: the deviati@iM of the fit from
the exactM is very small whenb>0.5. The dotted lines in the
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k=0.85,1.2,2,3,5, 10, 20, 50, 200

~
SR

07 08 09 1

0 01 02
p13
FIG. 8. Exact magnetization of the triangular Fidolid lineg

and the logarithmic fit, Eq(19) (solid lines with dot§, plotted vs
b to stretch the region at smdll=B/B,. The dotted lines show
the London nearest-neighbor approximation, Ef). The dashed
lines show the London expression, E6), with the sum taken
over all shells up tay,,,,= 100 vortex spacings. Both London ap-
proximations are good fits at very lolwvand all .

91(x)=(1.133+ 1.926k>?5(2k?>—1)/(2k%), (15
with relative error|e;/m|<0.0013 forb>0.5 for the trian-
gular FLL. Formula(15) is a good approximation with rela-
tive error <1% for all « in the large range of fields
1/(4k?) +5x 10" *<b=<1; see Fig. 7.

The same expressiofl4) fits also them(b,«) of the

square FLL, with somewhat larger error if the same functions
f1(b), g1(«) are used rather than the optimally fitted ones.
For the differencem,—mg, see Fig. 3.

lower panel show the old London approximation, Etf).

Ill. MAGNETIZATION CURVES

This section presents analytic expressions which approxi-
mate the computed magnetizatiom=M/H.,=b—h (Fig.
1) as a function of the inductiob=B/B., or of the thermo- For completeness | mention here also the London
dynamic field h=H/H,. We distinguish approximations approximatiori which was supposed to be good in the “in-

B. Approximation for “intermediate fields”

working at high or low inductions.

A. Approximation for high inductions

The linearized GL theory yields for-1b<1 Abrikosov’s
B, solution™!!

1-b
C (2k2=1)Bpa+ 1"

where Ba={(wa)/{wp)?=1+3, exd K2, S(4m)] (Refs. 11
and 30 and Appendix Bis the Abrikosov paramete,
=1.1595953 B,=1.1803406) for the triangulaisquare
FLL. The linear magnetizatioma(b, «) is a good approxi-

m~mu= (14

mation in the range 0s5b=<1; see Fig. 1. This suggests the

following fit to the exactm:
m(b, x)=ma—(1—b)%exd f1(b)]gs(x) + €1,

f1(b)=2.50%—8.081+0.39, u=(1—b)%4,

termediate field rangeH . ;<H<H_, that exists only in su-
perconductors with extremely large Within London theory
the induction is(see Appendix B

CosKr

B(x,y)=B>, ———,
(%) ; 1+ K?2)\2

(16)

where the sum goes over &l vectors with length fronK
=0 to some cutoffiK~ ¢~ 1. Inserting this into the London
free-energy densityB(r)2+\2(V X B)?]/(2u,) and averag-
ing over the superconductor one gets

(B%2uy) B2 Bdy(d*k 1
F ; 1+K2\%  2uy  2mo) 472 K2\? (17
The integral fromkZ;~(Ky2)°~m?B/® t0 k~& 2
=27B., /P, equals (4r\?)tIn(y'/b) where y’ is some
constant and=B/B,, as above. This yields
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B OF B D, y D. General interpolation
~M=H- % T~ 9B %: 8777\7,uo In b’ All the approximations fom(b) andh(b) known so far,

including the above formulas, fit either the low- or high-field
-M 1 0.358 region. The formula$15) and(20) [or, better, Eq(C6) with
" Be - ﬁ'”T’ (18 the sum taken over three shélisave a small overlap for all
) ] x and thus, together, they fit the entire rangeld<1
with constanty=+y'/e=0.35% ... obtained by our fit to

: ) : [though the good fit of the low- data by the London expres-
the numericam(b) at «=200. This old London approxima- sjon (20) or (C6) is accidentdl

works only at largex=20 in the relatively small interval formuylas that approximate the numerically obtained magne-

1/(2k*)<b=0.01, i.e., at very lovb (but not too lowb). It tization in the entire range<0b<1. They should satisfy the
givesm=0 atb=y for all x. This fit is slightly improved by  five conditions

replacing In¢/b) by In(1—+y+ y/b), which gives the correct

m=0 atb=1. h(0)=he;, h'(0)=0,h(1)=1,h'(1)=1-p,
A much better fit in the spirit of this logarithmic approxi-
mation is(see Fig. 8 h'(1)=0, p=m'(1)=[2«*~1)Ba+1]"%, (21
_ 1-b with hg1(x) from Eq. (4). A simple expression that satisfies
M=z g fZ(b)}’ all these conditions is

f,(b)=0.357+2.89( — 1.58 1. (19) —m(b,k)=h—b=p(1—b)+(he;—p)(1—b)7, (22

This fit .iS good fork=3 (error <3%) and k=5 (error  ith (k) =(1—p)/(hey—p). Formula (22 approximates

<19%) in the large ranges (k1)/(10c>)<b<1 for k  the exact—m(b) well for k<2 with relative deviatior|e|

=3,...,200. These intervals of validity may also be eX- <394 for k=3 with —2%<e<6%, and fork=5 with

pressed as—M/H =—m/h;;<0.8 (0.89 for x<20 (k —1%<e<16%; see the dotted lines in Fig. 1, top.

=50). For largex, general interpolation formulas are more dif-

ficult to construct because of the nonanalytic limiting expres-
C. Approximation for low inductions sion, Eg.(20). One may, however, combine tma,,, from

All the above approximations do not describe the correcEd: (20) with the myg from Eq. (19) using a smooth transi-

vertical slope oM (H) atH=H_, or zero slope oH(B) and  tion at b~(2«?)"1, e.g., with weights +w and w= }

unity slope ofM(B)=B—H atB=0. This is achieved by +3tanj2.5(2bx*—1)] or, slightly better, w=3

the London approximation of pairwise interacting vortices+ serf{ 2(2bx?—1)], yielding

described in Appendix C. For very smélik1 one may ac-

count only for the nearest-neighbor shell of six vortices in m(b, k) = (1 —wW) Mgy +WMpgp- (23
the triangular FLL of spacing=c\. With h(b), Eq. (C8), o _ _
this yields for—m(b)=h(b)—b This interpolation between expressiofi®) and (20) works
well for 0<b<1 with relative errore|<2% for k=5 and
3\mc 19 47 —3.5%<e<2% for k=1; see the dotted lines in Fig. 1
—Mm=hg—b+——-e™ %1+ o — W} (bottom). Thus, m in the entire ranges ab and x may be
2K approximated by Eq.22) or Eq. (23).
1/2
o= 32(477/\/5) _ 20 IV. CONCLUSION
A bx?

The properties of the ideal periodic flux-line lattice in
Formula(20) correctly describes the steep diverging slope ofsuperconductors are calculated from Ginzburg-Landau
m(h)— or slopesn(b)’— 1 andh(b)’ —0 asb—0 andis  theory for the entire ranges of GL parameters/2k k<o
valid for 0O<b=<2.5/k? for k=7. Accidentally it also fits and inductions &b=B/B,,<1. The differences between
well m(b) for k<2 andb=0.2; see the dotted lines in Fig. the free energies and magnetizations of the triangular and
8. A smoother fit is obtained by the exact London expressiorsquare vortex lattices and the values obtained by the circular
(C6) if one or three neighbor shells are included in the sumcell approximation are investigated in detail. Approximate
But taking more terms in the sum improves the fit only atanalytical expressions are given for the variaod®, ) of
large k. Accounting for neighbors up te= 100 lattice spac- the periodic induction and for the magnetization(b, «).
ings aparfabout 5000 termsone gets a good approximation These limiting and interpolation formulas should replace pre-
to m and h for 0<b=<0.01(0.02, 0.0% if k=20 (k=7, k vious approximate expressions that have rather limited
=2); see Fig. 8. In the limitv—o the infinite sum(C6)  validity.

reproduced Eq(18); i.e., the dashed curves in Fig. 8 faer The numerical methods presented in the Appendixes, in
=50, 200 then will straighten and cut the aXs=0 atb principle, may be applied also to theories going beyond the
=v=0.358 ©?=0.60 in Fig. 7,b*=0.71 in Fig. 8. isotropic GL theory considered here.
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APPENDIX A: ISOLATED VORTEX AND CIRCULAR

and similar equations for skr; and co¥r;. The GL equa-
CELL METHOD

tions (A3) and(A4) thus may be written in the form of equa-
The calculation of the isolated flux line and of the FLL tions for the Fourier coefficientls anday :
within the circular cell method is a cylindrically symmetric N

problem. The free energy depends on the magnitude of the ¢ — 21 . 2 j SiNGr [ k2(2f— 3= Q) +f'/r ],
GL functionf(r) and on the magnetic inductid(r) (along Gtk N, =1
z) related to the vector potentigh(r) and supervelocity (A12)
Q(r) (along¢) by N
1 . 2 Z’ Kk
ax=—o>—=| ax+ — 2, sinKr;
Ar)’ r’ 1 KTKZ24+1| KN, £ '
s B @)L e
r r Kr N _
) 5 Kr cosKr —sinKr
In reduced units/2H.=uoHZ=\=1, the free energy of a x| 2 ag 2 —fQl|
flux line or of the circular cell with radiuR(wR?*=®,/B) n'=1
averaged over this cell and referred to the Meissner sfate ( (A13)
=1,B=0) reads These two equations may be used to obtainfthanday by
R[(1-12)2 (/)2 2rrd iteration, starting with appropriate initial values. The itera-
= :f ( ) n (") +2Q2+B(r)2 mrar ' tion becomes more stable and faster if the value of the pre-
“ Jo 2 K2 TR vious iteration step is added with a certain weight-(d)
(A2) <1, e.g.,c=0.6, according to the algorithm
with f"=df/dr. Minimizing the functional(A2) with re- fg—(1—c)fg+cFsi{f,Q}, (A14)
spect tof(r) and Q(r) we obtain the two GL equations,
which may be written in the form ag—(1—c)ax+cAdf,Q}, (A15)
eny 26 2ioc £33 , with the symbold={f,Q} andAy{f,Q} denoting the right-
Frt kit =ro(2f == Q™) + 1/, (A3) " hand sides of EqgA12) and(A13), respectively. Rapid con-
PP vergence is achieved by iterating E¢8.14) and (A15) al-
B'=f°Q=], (A4) ternately. The equilibrium magnetic field is then obtained
wherej=B' is the current density. In EGA3) a term«2f  [T0mM EQ.(3) and the magnetization from
was added on both sides to improve the convergence of the o (R fA_f2
iteration below. The boundary conditions are M = BR [ 5 +B2—B(r)?|rdr. (A16)
0

f(0)=1"(R)=j(0)=j"(R)=0. (A5)

At very large k and very smalb a large numbeN, of
grid pointsr; is needed to achieve high accurably>R/¢
=Rk=+/2/b. In this case the accuracy with a limited num-

An appropriate ansatz in terms of Fourier series is

M
f(r)= 2 fesinGr, G= m(2m-1) ’ (AB) ber of grid points may be improved by choosing a honequi-
=1 2R distant grid, e.g., r;=u? with equidistant u;=(i
—3)JRIN, . To use the orthogonality relations one then has
N } r n to expresd, B, andQ as Fourier series in the new variable
A(r)=n§=:1 agsinkr+ 3B, K=+, (A7) u=r2? and also write the two GL equations in terms of the
variable u, wusing, e.g., f'(r)=f"(u)/2u and f"(r)
—fn 2__ ¢ 3 i H
; _% SinKr +Kr cosKr . . f"(u)/4u“—f'(u)/4u®. This yields
(N= 2, a : - A9 Fr(u)= AU~ F+ 13+ Q%)+ f'lu,  (AL7)
N 1-r2R? B'(u)=2uf?Q (A18)
Q(r)= >, axsinKr— ———, (A9)
n=1 KT and the Fourier series
N 2 2\ M
Kr cosKr — (1+K“r<)sinKr m(2m—1
i(n=2> ax (r2 ) . (A10) f(u)y= >, fgsinGu, G=%, (A19)
n=1 m=1
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2

N ) u n
A(u)= D, agsinku+ =B, K=-—, (A20)
n=1 2 R
N 2 sinKu+ Ku cosKu
B(u)= >, ax > +B, (A2))
n=1 2u
N , 1—u4/R?
Q(u)=2 agsSinKu— ————, (A22)
n=1 KU
N Ku cosKu— (4+K?u?)sinKu
j(u=2> ay . (A29)

n=1 4U4
The equations for the new Fourier coefficients are
Nr

f——z—f1 42f+22 inG
G—G +4K Klg N_ri:]_sln Ui

><[4ui2;<2f(1—f2—Q2)+f’/ui]}, (A24)

N
1 2 2 -
aK—m aK+N—ri:1 SINKU;
N .
Ku;cosKu; —4sinKu;
x| > ag — '2 L 4u2Qf2 | |.
n'=1 u
(A25)

For better convergence a term4«?fg was added on both
sides of Eq.(A17) to yield Eq. (A24). The corresponding
iteration scheme using Eq#\14) and(A15) needs a smaller
weight ¢ and more iteration steps, but for largé/b it is

PHYSICAL REVIEW B8, 054506 (2003

ZXK
sSinKr .
K2

Q)= Qa(r)+ 2% by (B3)
Here Qa(X,y) is the supervelocity of the AbrikosdB., so-
lution, which satisfies

VX Q= B—cboZR 8,(r—R) |z, (B4)
where 8,(r) = 8(x) 8(y) is the 2D delta function. This rela-

tion shows thaQ, is the velocity field of a lattice of ideal
vortex lines but with zero average rotation. Close to each
vortex center one ha®@,(r)~zXr'/(2«r'?) and w(r)er’?
with r’=r—R. In principle QA(r) may be expressed as a
slowly converging Fourier series by integrating Eg4) us-

ing divQ=divQ,=0 as in Ref. 15. But it is more conve-
nient to takeQ, from the exact relation

VCK)AXE
2Kwp

Qa(r)=

where wa(X,Y) is the AbrikosovB,, solution given by the
rapidly converging serie1) with coefficients®3!

ag=—(—1)™ ™M Nexf —KZ S/(8)]

: (B5)

(B6)

for general lattice symmetry andaﬁz (= 1)V2exp
(—mA3)(¥*=m?+mn+n?) for the triangular lattice.
This wp is normalized to{wa(x,y))=1, which means that
E,Qaﬁ= 1 for any lattice symmetry. Another strange property
of the Abrikosov solution (B6) is that (Vwa/wa)?
—V2wpalwp=4m/S=const, although both terms diverge at
the vortex positions; this relation follows from Eq84) and
(B5) usingB=®,/S=2x/(«S). The useful formula(B5)

faster than the first scheme since it needs fewer grid pointghay be proved via the compleR., solution @a(X,y); it

N, to reach the same accuracy.

APPENDIX B: PERIODIC VORTEX LATTICE

The properties of the ideally periodic FLL within GL

means that ned, the third and fourth terms ik, Eq. (2),
are identical.

Approximate solutionss(r) andB(r) may be computed
by using a finite number of Fourier coefficierdg and by
and minimizing the free enerdy(B, x,ax ,bk) with respect

theory may be calculated by minimizing the GL free energyi, these coefficient However, a much faster and more

of the superconductor, Ed@2), with respect to appropriate
periodic trial functions, e.g., Fourier series with a large num-

ber of terms. For the smooth functien= f?(r) we write the
ansatz

w(r)=f2=; ak(1—cosKr), (B1)

with r=(x,y), K=(K,,K,). In all sums here and below the

term K=0 is excluded. For vortex positionR=R,,
=(mx;+nXx,, ny,) the reciprocal lattice vectors ark
=Knn=27/S)(my,, nX;+mx,) with S=x,;y,=®,/B
the unit cell area anth,n=0,+1,=2, . ... For thetriangu-
lar lattice one has,=x,/2, y,=x;+/3/2 and for the square
lattice x,=0, y,=X4. For supervelocityQ and inductionB

=V X Q=B(r)z we choose

B(r)=B+ >, bxcoskKr, (B2)
K

accurate solution methdfiis to iterate the two GL equations
6F/6w=0 and 6F/6Q=0 written in appropriate form.
Namely, the iteration is stable and converges rapidly if one
isolates a term € V2+const),Q) on the left-hand side
(LHS) and puts the remaining terms to the RHS as a kind of
“inhomogeneity” of such London-like equations, e.g.,

(—V?+2k?)0=2k*2o— 0’—0Q?—g), (B7)

(—V24+ ©)Qp=—wQa— (0~ )Qy, (B9)

with the abbreviationg)(r) = (V)% (4k’w), Qp=Q—Qa,,
VXQ,=B(r)—B, and w=(w)=Xyax. Equations(B7)
and (B8) introduced some “penetration depths” £2) ~ %2
=¢/\2 andw 2=\ w2 (in real unit3, which stabilize the
convergence of the iteration. Acting on the Fourier sedies
Eqg.(B1), andQ,, Eq.(B3), the Laplaciar¥V? yields a factor
—K?; this facilitates the inversion of Eq$B7) and (B8).
Using the orthonormality
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where §(x,y) is the 2D delta function. The solution for the
magnetic field of one isolated vortex B&=0 is

2{cosKr cosK'r)= Sxx s (B9)

(for K#0) one obtains from Eqs(Bl) and (B2) ax=

—2{w(r)cosKr) andby =2(B(r)cosKr ). The convergence B, (r)=(®o/2m\?)Ko(r/N). (C2

of the iteration is considerably improved by adding a third

equation which minimizes-, Eq. (2), with respect to the The modified Bessel function

amplitude ofw, i.e., dF/dw=0. This step gives the largest

decrease oF. The resulting three iteration equations for the d2k  coskr

parametersy, andby then read’ Ko(r/\)= f (C3)
27 N2+ K2

4xk*((0*+ wQ?— 2w +g)cosKr )

A= K2+ 2k2 - (B
ac=ac (0— wQ7~ g)l{w?), (B1D)
bK_—2<[(w w)I;.%(r)+p]cosKr> (B12)
K+ w
with (waQ)z Qxdwldy —Qydwldx and ¢

—(Vw)2/(4f< w)=(Vf)?% k? as above.

The solutionsw(r), B(r), andQ(r) are obtained by start-
ing, e.g., withax=(1—b)al andbx=0 and then iterating
the three equation®10), (B11), and(B12) by turns until the

has the derivativeKy(x)'=—K;(x) with the limits Ky(x

<1)=-Inx, K{(x<1)~1/, and forx>1 (Ref. 32
< [# [ 1 L9 225
0=\ 58 8x  128¢ 39723)

. . L 315 315 s
10~V 558 8x 1282 39723 (©4

For a periodic FLL one obtains the Fourier serig&,y),

Eg. (16), which may also be written as a sum over isolated
vortex fields,B(x,y)=2gxB,(r—R). Similarly, the free en-
ergy of the FLL may be written as a sum of vortex self-
energies ©oH., per unit length plus a double sum over all
interactions between two vortices. The average energy den-

coefficients do not change anymore. After typically 25 suchsity F, Eq. (17), then reads
triple steps, the solution stays constant to all 15 digits and the

GL equations are exactly satisfied. Since all terms in Egs.

(B10)—(B12) are smooth periodic functions of high accu-

racy is achieved by using a regular spatial 2D grid, e.qg.

X;=(i—1/2)x1 /N, (i=1, N,) and yi=(@
—12)y,1(2Ny) (j=1,... Ny, 2Ny~N,y,/x;) with con-
stant  weights x;/N, and y,/(2N,). These

N=N,N,=100-5000 grid points fill the rectangular basic

area G=x=x4, 0<y=y,/2, which is valid for any unit cell
with the shape of a parallelogram. Spatial averading )
then just means summirg terms and dividing byN.

Best accuracy is achieved by consideringkal|,, vectors
within a half circle|K | <Kmax, With K2 ,,~20N/S chosen
such that the number of thi,,, is slightly less than the

numberN of grid points. The high precision of this method

may be checked with the identi®(X,y)/B.=1— w(X,Y),
which is valid atx = 1/\/2 for all b. This relation is confirmed
with an error<10~°. The equilibrium fieldH or reversible
magnetizationM =B—H is computed from Doria’s virial
theorem, Eq(3).

APPENDIX C: LONDON THEORY

The modified London equation for a lattice of straight

vortex lines at regular positiorR=R,,,,, (Appendix B is

(1—x2v2>B<x,y>=@o; 8(r—Rmn), (C1)

F=BHq+ E Ko(R/N). (C5)

B®
A >\2
For the triangular vortex lattice we writB/\ =vc with ¢
=a/\=(4m/\3)Y4bk?) 12 (a=vortex spacing and v?
=m?+mn+n?=1,3,4,7,7,9. ... Taking the derivativeH

=JF/dB one obtains foh=H/H, with h;;=H/H,
3 vC
h=hc,+— > [Ko(ve)+ S Ka(ve) . (C6)

Here the sum is over=1,/3,2, . . . ;i.e., the number of six
flux lines per shell is already accounted for. Equatic®) is
still exact. It works forb<<1 (i.e., for nonoverlapping vortex
cores and for k>1.4 (i.e., when the long-range interaction
of vortices is purely magnetit). With the expansionéC4)
one obtains fox=wvc>1

3w

h~hg  +—— 5

2 47

8x 128
At very smallb, namely, forc=a/A>1, the sum may be
restricted to the nearest-neighbor shell, i.e., to the first term,
v=1, yielding

x| 1+ (C7)

K

3\/_ 19 47 }

+——e Y1+ —— —|.
h=~Me; 2,2 1+ g 1282

(C8)
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