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Nonequilibrium quasiclassical theory for Josephson structures
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We present a nonequilibrium quasiclassical formalism suitable for studying linear-response ac properties of
Josephson junctions. The nonequilibrium self-consistency equations are satisfied, to a very good accuracy,
already in zeroth iteration. We use the formalism to study ac Josephson effect in a ballistic superconducting
point contact. The real and imaginary parts of the ac linear conductance are calculated both andbttically
frequencies and numerically(at arbitrary frequengy They show strong temperature, frequency, and phase
dependences. Many anomalous properties appeardinear. We ascribe them to the presence of zero energy
bound states.
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[. INTRODUCTION quantum point contact with small biasing voltagelterna-
tively, nonperturbative Hamiltonian meth8dand nonequi-

Quasiclassical theories are proven to be powerful folibrium Green’s function method were developed. How-
studying superconducting systems. They have been used leyer, most of these theories are suitable only when the
many researchers to study the properties of superconductoapplied voltage is constant. An exception is Ref. 32, which
in the Meissnélror vortex stated;*as well as for surfaces®  studies a superconducting quantum point contact in the pres-
point contacts; 1% or grain boundaries between different ence of an ac voltage, but only in adiabatic regime. Thus, a
superconductors:™** The equilibrium quasiclassical theory theory capable of studying high transparency Josephson
was developed by Eilenberder and Larkin and junctions with an ac biasing voltage at arbitrary frequency is
OvchinnikoV® by integrating out irrelevant small scale de- still lacking.
grees of freedom from the Nambu-Gorkov Green’s function For equilibrium systems, the quasiclassical Green’s func-
formulation of BCS superconductivily. It was later gener- tions theory has provided a convenient tool to study Joseph-
alized to nonequilibrium by Eliashbéfyand Larkin and son structures with arbitrary transparency and roughness of
Ovchinnikov!® the junctions(see Ref. 13, and references theyeik gener-

A major development in the numerical calculations inalization of the formalism to the nonequilibrium case may
equilibrium quasiclassical theory was made after the introalso provide a powerful and convenient method to study ac
duction of Riccati transformation by Schopohl and MaKi.  properties of such structures. In this paper, we rewrite the
The transformation changes the Eilenberger equdfion®  theory of Refs. 21 and 22 in a form suitable for studying
a set of decoupled nonlinear differential equations, whichproperties of ageneralJosephson junction in the presence of
can be integrated easily. In nonequilibrium, the presence adin ac voltage at aarbitrary frequency. To the best of our
convolution integrals in the equations of motion for the knowledge, no such theory exists. We apply the theory to the
Green’s functions makes the formalism nontrivial. Neverthecase of a ballistic point contact between two conventional
less, a generalized version of the Schopohl-Maki transformafs-wave) superconductors. At low-frequencies, we find
tions for nonequilibrium systems has been suggested bglosed analytical expressions for the real and imaginary parts
Eschriget al 2% of the ac conductivity. They agree very well with the numeri-

Josephson junctions are important devices, not only dueal results, except where the low frequency expansion fails.
to their rich physical properties but also for many applica-Both quantities show strong temperature, frequency, and
tions, including sensitive magnetometét$! ultrafast phase dependences. We observe anomalous behavior when
switching device$? qubit prototypeg®?’ etc.; dc and ac the phase difference across the point contact approaches
properties of these junctions have been the subject of exteWe relate that to the presence of the zero energy bound
sive research®~3 Some of the investigations are based onstates.
the tunneling Hamiltonian approach,which provides a Section Il introduces the formalism and formulates it in a
good approximation when the transparency of the junction i$orm appropriate for studying Josephson systems. Section Il
small (e.g., tunnel junctions At large transparencies, which is devoted to calculation of ac current through a ballistic
is the case for superconducting point contacts or graimoint contact between twswave superconductors. The low-
boundary junctions, multiple Andreev reflectiod®AR)  frequency analytical results are given in Sec. lll A. The nu-
take place® The MAR theories work well when the biasing merical results, as well as a comparison with the analytical
voltage is large. At small biasing voltages, the number ofresults, are presented in Sec. Il B. Section IV summarizes
Andreev reflections grows<{A/eV, with A being the super- the main results. A detailed description of the theory and
conducting order paramejerNevertheless, the formalism notations is given in Appendices. Understanding the Appen-
was applied to the case of single-channel superconductingdices in great detail is not necessary for understanding the
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main body of the paper and for application of the theory toThis value indeed satisfies the self-consistency equation for
other problems. the homogeneous superconducfof. Eq. (23)]. To ensure
small perturbation requirement, one needB<w. Charge
neutrality condition in the bulk is also satisfied automatically
by using Eq.(3). This can be seen simply from the above
A convenient way to study nonequilibrium systems is togauge transformation argument, taking into account the neu-
use Keldysh Green’s function8The quasiclassical approxi- trality of the unperturbedequilibrium) system.
mation of the Keldysh formalism introduces retarded, ad- We now consider a Josephson junction with an equilib-

vanced, and Keldysh Green’s functiogs’, «=R,A,K. The rium phase differencep and an ac voltage/=Vocoswt

first two describe spectral distribution of the states of theACross the junction. Far away from the junction, we take the
system, while the latter has information about population ofPhase of the order parameter and the scalar potential on the
these states. They are alk2 matrices, and functions of the left (L) and right (R) sides to be¢r =+ ¢/2 and dg
Fermi velocity v, quasiparticle energy, positionr, and = *(Vo/2)cost, respectively. In general, the phase of the
time t. The exact definitions 0§ and their equations of order parameter is space dependent. Therefore, performing

: : ; : the above gauge transformation will produce a vector poten-
motion are given in Appendix Asee Egs(A2) and (A6)]. : a > L
The method we present here is a linear-response treatment il A= (C/26)V 86 (=] ac/jc,pu, Wherejis the ac current

- . . . ensity in the banks ang is the bulk critical current
g®. We consider a clean superconducting system in the aly y B, buik

sence of an external magnetic field. The coupling to the ele ensity, which invalidates our arguments. However, in most
. o ) . practical systems,,<j <j , Wherej is the Josephson
tromagnetic field is via the vector potential and scalar i ySteMJac=l =] c.buik e P

? : : . critical current density. The corrections to are there-
potential ®. As will become soon clear, working with a 4 HG)

. . T : . fore small andd(j/j ¢ pu)->° Thus, one can still use E¢B),
gauge in whichkA=0 simplifies the calculations significantly. d imati : d )
In such a gauged is the only perturbation applied to the as a very good approximation, even whiis space depen

hich K b I dent. This removes the necessity for an iterative procedure
system, which we t_a e to be small. . (the main obstacle in these types of calculatjansorder to
Let us first consider the case of a unifofivulk) super-

q We introd ¢ A self-consistently calculatéA, and satisfy charge neutrality
conductor. We introduce a gauge transformatee Appen- o qition (within the bulk.222 The equilibrium order pa-

dix A for detaily A—>A=e"'*’A. Under such a transforma- rameterA,, however, should be calculated self-consistently
tion, eb—ed —(1/2)3,6¢. (Throughout this paper we use ysing the common iterative methods; convergence of such
fi=kg=1.) We chooses¢ in such a way to exactly elimi- calculations is proven to be very good, especially when using
nate® from the gauge transformed dynamical equati®s.  the Matsubara techniqudé.

(A6)]. Thus, 8¢ should satisfy

Il. THE FORMALISM

A. Equilibrium solution

TZZeCI), (1) In equilibrium, the retarded and advanced Green’s func-
tions can be written in terms of the Riccati amplitudgs
andbg in a way very similar to the conventional method for

which is the well-known Josephson relatitinThe vector , :
the Matsubara Green’s functiols.

potential A is still zero after this gauge transformation, be-
cause V5¢=0 within the bulk. The gauge transformed wa «
equation of motion is therefore exactly the same as the equi- ge=s" 1—-aghg ' L 2ag ,
librium equation. As a resulid =A,, or A=Aqe'??, where ® 7 1+aghg ® 7 1+agbg
Ay is the equilibrium order parameter. This means that th%vhere
magnitude of the order parametgk)|, is independent o,
whereas its phase varies with via the Josephson relation + for a=R
. . . a=R,

(2). In other words, if the only perturbation to the system is S¥= (5)
through the time varying potentiab, ité;t only effect is to — for a=A.
change the phase of the order paraméter. . . . .

Th% abovpe simple observatiopn has a very important con--rh(.a subspnpt 0 Qenotes equmt')rlum.qua'ntltles. .gﬁe. Ric-
sequence in our linear-response formalism. One can write th%atl amplitudes satisty the following Riccati equatidfis:
original (gauge dependenorder parameter as

4

Ve-Vag=2ie“a—(ad)?A% +Aq,
A=Age' % ?~Ao(1+i6¢)=Ag+ A 2 :
08T Aa(LH109) = Ao 28, @ Ve VbE=2i e®bg— (b§)%Ae+ A%, ®

wheredA is the nonequilibrium linear-response correction to
the order parameter. In Fourier space, the Josephson relati
(1) becomesip=i2ed®(w)/w, which yields

wheree“=e+is*y, with e and » being the real and imagi-
?\'&ry parts of the quasiparticle energy, respectivelys the
quasiparticle damping, related to the inelastic lifetimef
- the quasiparticles byy=1/7.%* Note that the scalar potential

__ %50 & does not appear in the equilibrium equations. The bound-
OA(w) ® ed(w). © ary conditions are the bulk solutions of E®):
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¢/2, Vo/2 —0/2, —Vo/2 Po(e)®Q(€,w)=Py e+ Q(e,w),
—‘A—,—
_,—"' R A )
d-” ol P(€,0)®Qo(€)=P(€,0)Qo| €= 5 |. (11)
T T db, da, db

,.—‘z B To take the advantage of this property, we use linear expan-

e = sion. In other words, we assume that the perturbation to the

8a" 5 3b, , da system(i.e.. @) is so small that the linear expansion of the

Green'’s functions provides a good approximation to the ex-
FIG. 1. Two superconducting regions connected via an orificeact solution. All the differential equationd€Egs. (B2) and
The dashed line shows the quasiclassical trajectory. The arrows ifB4)] will then be linear in the time-varying parts, and Fou-

dicate the directions of integration. rier transformation will be straightforward: no complicated
convolution integrals arise.
Ag A% Let us introduce simplifying notations
%= Jersns " jersne ) .
ftzfigv Qo= =Qo(€x). (12

where Q= [Ay|>— (e%)?. The differential equationg6)
and the boundary conditior{§) can be obtained from their
counterparts in Matsubara formalisteee Ref. 13, for ex- e define linear-response Green's functions &g’ =g*
ample, by changingw,— —ie®, wherew, is the Matsubara —g0 , Wherego are the equilibrium Green'’s functions. Simi-
frequency. larly, we introduce small corrections to the Riccati ampli-

To calculate the Riccati amplitudes at other points, ondudesda“=a“—ay and sb“=b“—bg. The linear-response
should define quasiclassical trajectories as straight lines iGreen’s functions are then given in terms of the Riccati am-
the direction ofve (see Fig. 1 a§ andbj are obtained by plitudes by
integrating Eq(6) in the direction ofvg along the trajectory,
starting from the boundary conditioKig) at — . Forbf} and
aé, integrations are taken in the opposite direction. The fol-
lowing symmetries exist for the equilibrium functions:

sa*b§_+ sb*ag .,
b‘ga: —2s" a po a pa (13)
(14+ag, by, )(1+ag_bg_)

=—(bY)*,  by=—(ad*. ®) stamper_ ox—ob@g.a-
(1+ag.bg ) (1+ag_bg_)
It is therefore sufficient to calculate one of the sets of re-
tarded or advanced functions. for a=R,A.
In equilibrium, the Keldysh Green’s function is related to  We also define an anomalous Green's functiigyf by
the retarded and advanced ones by

8gK=6g"(F,—F )+ 69RF_—69°F,. (19
A R A
=(do—99)F, 9
9o =(do— o) ® Correspondingly, we introduce anomalous functiéag and

where sb* [see Egs.(B9) and (B10)], which are related to the
Green’s functions through

€
F=tan 10 sa%— sbXaR, b
P(ZT) (0 S =2 (16)
(1+ag, by, )(1+ag_bg_)

takes into account the thermal distribution of the quasiparti-

cles. Equilibrium current and charge densities are calculated sa¥a® + sbXaR
by Egs.(A17) and (A18), summing over all trajectories. SfX= 0~ o+ (17)
(1+af, by, )(1+ah_bh.)
B. Linear-response solution The differential equations describinga® and sb® (a
Generalization of the above Riccati transformation to=R,A,X) have general forms
nonequilibrium is discussed in Appendix B. The presence of
the ® operations[see Eq.(A8) for definition] makes the Vg-Véa“=A%sa*+B?,
calculations nontrivial. However, a significant simplification
arises when one side of the operation is an equilibrium —Vg- Vb*=A*sb*+B*, (18)
quantity (and therefore time/frequency independemore
specifically, in frequency space, we have with A’s andB’s given by*
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A*=2ie—Aj(ag, +ag ), to be constant on both sides of the contad g
=|Ale'Lr, with ¢ g=* ¢/2, whereg is the phase differ-
B*=6A+ag,a5_oA* —ied(ag, —aj_), (19  ence between the two sides. Hete,(R) denotes the left
(right) side of the contact.
Av=2ie—Ao(bZ, +by), We also takeSA to be constant on each side of the con-

tact, given by Eq(3). The scalar potentiab is taken to be
Bo=— A% — b2, bg_SA+ied(bg, —bg ), (20 D r=*(Vo/2)coswt on the left and right sides, respec-
tively, V, being the amplitude of the potential difference. It
for the retarded ¢ = R) and advancedd=A) functions, and s taken to be a real number and so small that the linear
expansion provides a good approximati@Vg<|Ag|,).

To find the current respondeof the system, we calculate
the current densityj, at the orifice, using Eq25), and then
integrate it over the are& of the orifice. In Fourier space,
~x s R A x I (w) can be a complex number. The real part of it describes

A=io—bg, Apt+ag Ag, the dissipation of the system, while its imaginary part gives
_ information about inductive or capacitive behavior of the
BX=bi, 6A—ap_sA* +ied(1+bf,aj ), (220  system. The linear admittance of the system is defined by
Y(w)=1(w)/Vy (=1/Z, whereZ is the impedance of the
contacj.

We proceed with the calculation of the current in two

Ne (e different ways. First, we find analytical results in the regime
SA(Vg)= ZJ de(V(ve ,v’F)5fK(v,’:)>er, (23)  of smallw andz. We then provide the results of full numeri-
T cal calculation and compare them with the analytical ones.

A'=io—af,Af+by_Aog,

BX=—al, sA* +b)_sA—ied(1+al, by ), (21)

for the anomalous onesE X). SA=A— Ay is given by Eq.
(3) and satisfies the self-consistency equation

whereV(Vvg, Vi) is the interaction potentiaN is the density
of states at the Fermi surface, aadthe energy cutoff. The A. Low-energy analytical results

bulk boundary conditions for the amplitudes are In the case of a point contact, it is not difficult to obtain

B Be analytical results. Since the superconductor is homogeneous
Sa=— — Sb=— — (24) everywhere except near the contact, the solution to the
a ~ . . .
A A« functions a and b at the contact is almost equal to

their bulk values. More specificallyaR(0)=aR(—x),
bR(0)=bR(+ =), etc. From now on, we drop the arguments
and just writeaR, bR, etc., keeping in mind that what we
mean is the values at the position of the contact. Substituting
these values in the corresponding equations, one can obtain
analytical expressions for the current. The exact expression

To assure stability of the integrations, E¢§8) should be
integrated along the trajectory in the directionvaffor saR,
8b”, and saX, but in the opposite direction fofbR, sa”,
and sbX (see Fig. 1 Having the Green’s functions, the non-
equilibrium correction to the current density is given by

eNg (< A is rather complicated and does not give any more insight
o= Tf de(VeTr{ 7369%1), (25  than the numerical results. It, however, can be significantly
Tf simplified in low-energy regime.
and the charge density is found from Here, we calculate the contact admittance in the regime

n,0<|Ag|,T (but, of coursew>eV,). Let us first introduce

1 (e ~ the following parametrization:
5p=eN,:<—2e<I)+Z de<Tr[5gK]>). 26) gp

e e“=|Aglcosy®, a=R,A, (27)
l1l. AC JOSEPHSON EFFECT IN A SUPERCONDUCTING where y* is a complex number. We therefore find“
POINT CONTACT =|Ag|siny#. This choice of notation significantly simplifies

the form ofay andbg. For instance, from EqZ7), taking the

A ballistic superconducting point contact is probably thephase of the order parameter to bep/2 (left side of the
simplest system that the method described here can be aPantacy, one finds

plied to. It brings extra simplicity because even the equilib-

rium solutions can be found non-self-consisteftNeverthe- A |ei $i2
less, the system shows rich and nontrivial physical behavior. aQ=——fp —=ie Y)=je 197, (28
Let us consider an orifice between two conventional —ie"+Q

(s-wave superconductoré-ig. 1), the dimension of which is R R - R
much smaller than the inelastic scattering length and cohe?’i:her_eﬁy 37 ;‘f}lz' Slmllarlﬁ/, b r;]as tﬁ be gaIClljéated(;)n
ence length of the superconductord<{l,=ver & e right side of the contadhere the phase is $/2) an

—ve/7|Ay|). We assume a perfect transparency at the conturns out to be exactly equal a{f In general, one can write

tact, although generalization to arbitrary transparency is o e gy
straightforward->??We take the equilibrium order parameter bo=ag=ie " °7. (29
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First note that ¥a%b%=1—e 25" yanishes asdy%

=6y*(€%)—0 (or asy$— ¢/2). Because of such expres-
sions in the denominators of Eg&l3) and (16), the most
important contribution to these equations must come from

points close tce= €y( ) for which 6y*<1. Here

ol 6)=|Adlcos) 30

PHYSICAL REVIEW B8, 054505 (2003

1 0f 1 1
8Y1YS  wt2iy € —wl2—in € +wl2t+in
iWQ(Z) s e 1) 5( , w) 3
T wt2iy 6+§+ €72/ 37

Substituting Eqs(35)—(37) into Eq.(31) and using Eq(15),
one can calculatégX and thereby the total current using Eq.
(25). Taking the integral ovee’ in Eq. (25), expanding the

(= ¢y are indeed the energies of the Andreev bound states iresulting hyperbolic tangents arousgl (to the first order in
the contact®) We can therefore focus only on these points.w/T<1), and keeping only the leading order terms, we find

Expanding the numerators of Eq4d.3) and (16) up to first

order in8y* (i.e., first order inw and ), we find

sar &Y 1 +( & ) 11
9 % sy 8y 120, ! sYR SR
P +,) 11
9= |57/~ 20, SR T A
eV 1 €p 1 €p 1
85g*=— + +i + —i
9w | 575~ (290 ' 57 T 20, ')5;/‘}
(31
where
B @
Q0(<l’>)—|Ao|S'”§- (32

Let us writee=eg+ €’ (€' <|Ag|). For ¢#0 (we will dis-
cuss thegp=0 case later one can write

w
a ’ el )
ovs 0, €' +is 7]_2). (33
Therefore,
1 P ) 5( +w> 34
~— —imws*S|l €' == |,
SyL % e + wl2 2

whereP gives the principal value integral when integrating
over €'. Because of symmetry, the principle value integrals

are negligible after integration. We therefore write

1
oys

~i 775“905( ¢ ig) . (35)
On the other hand,

1 ng( 1 1 )

oyioy? o € —wl2+is*y €' +wl2+is*y
im0 ) , o
~ ol € +E — 0| € 5| (36)

Similarly,

the admittance to be

03
2T

T 27

V(@)= w+2iy

€ . €0
secﬁﬁ +i eotanhz—_l_} ,
(39)

whereRy=2/e?vNgS is the normakSharvin resistance of
the point contact. Equatio(88) agrees with the result ob-
tained by Averin and Bard¥sin adiabatic regimé? The
guasiparticle conductance is given by the real part of Eg.
(39):

Q)RN

G(w) w0

Gy (0®+4799)T

€0
oeCHﬁ, (39

whereGy=1/Ry . Note that the right-hand side of E(B9)
vanishes aip=0. This, however, is the point at which the
linear expansior{33) fails. One therefore expects the terms
neglected in Eq(39) to dominateG(¢=0). Similarly, at
small T, Eq. (39) is exponentially smallexcept at¢= ).
Since in such a regimey/ T becomes large, the expansion of
the hyperbolic tangents in powers af/ T will be invalid.
Therefore, deviation from Eq39) at low T is expected. In
the following section, we will see such deviations in the
numerical results.

The imaginary part of the admittance is also important
because it provides information about the inductive or ca-
pacitive behavior of the junction. Note that@&t 0, the first
term in Eq.(38) vanishes but the second term survives. Thus,
unlike the conductance, Inf() does not vanish; it rather
stays finite and behaves purely inductively {/wL). Simi-
larly, near T=0, the second term in Eq:38) dominates,
resulting in a finite(again inductiveé Im(Y). One therefore
expects that the leading-order expansion provides a good ap-
proximation. The exception is @= m whereey=0 and thus
the second term in Eq38) vanishes. The higher-order terms
therefore play important role in such a case. In the following
section, we observe this behavior by comparing with the nu-
merical results.

B. Numerical results

We now present the results of our numerical calculation.
The value of|A,| is calculated directly from the BCS gap
equation®*

(40

€c d6 €
1=)\f —tanl‘(—),
20l Ve~ [Aol? 2T
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Numerical
— — Analytical L /

G, | | | Js

0 02 04 06 08 1 0 02 04 06 08 1
o/m o/m

—s

FIG. 4. () Linear conductancé as a function of the phase
difference aff=0.1, for different frequencies. (b) The same data
on logarithmic scale. The solid lines correspond to the analytical
results. Herdand in the figures that folloythe legend is common
between(a) and (b).

FIG. 2. Linear conductanc® (normalized toGy) as a function
of w, for $=37/4 atT=0.1. (0 and T as well as other energy
scales are normalized . .)

dicts zero conductance, therefore the small conductance in
Fig. 3(@ is completely due to the terms neglected in Eq.
(39). The second peak, however, appearsvat|Ay|~1.75

for =0 [Fig. 3@], and moves towarde=0 as¢— . It

where the dimensionless coupling constants chosen in  js easy to see that the peak is alwaysvat eo(¢), i.€., the
such a way to give\(—0 asT—T.. NearT=0, one finds  energy of the Andreev levels.

|Ag|~1.75T . All the energy scalesT(,w,eVy, 7, etc) are Figure 4 displays the conductanGeas a function of the
normalized toT.; and Y(w) to Gy. In all calculations, we phase difference across the contact for different frequencies.
take »=0.01 ande.= 20. It is clear from the figure tha® is strongly phase dependent.

Figure 2 compares the result of numerical calculation ofEspecially, it is sharply peaked close W= [for o
G at ¢=3w/4 with the analytical result obtained from Eq. =0.01, it is more than five orders of magnitude larger than
(39). As expected, the two curves overlap at low frequenciegs(4=0), see Fig. #4)]. The strong conductance can be
but deviate at larget. Around w=0, there exists a sharp attributed to the existence of zero energy Andreev bound
peak corresponding to the Lorentziandependence in Eq. states(ZBS) [i.e., e;(¢= m)=0]; they provide large density
(39. At larger frequencies, a second peak appears in thef states at zero energy. A comparison with the analytical
numerical curve which is absent in the analytical one. Theesults is shown, in logarithmic scale, in Figb# As ex-
peak clearly results from the higher-order contributionspected, the agreement between the two calculations at
which were neglected in derivation of E(88). Figure 3 =0.01 is good neaty=m, but they deviate ag—0. The
displays numericalG-w curves at different phase differ- curves, however, overlap less at higher frequencies. Espe-
ences. Atg= [Fig. 3(d)], the sharp peak ab=0 has the cjally, at =1 they show a completely different phase
largest value. At smaller phase differences, this peak begependence.
comes less pronounced and eventually disappeafs=a, The temperature dependence of the linear conductance is
as it should according to E¢39); the equation actually pre- presented in Fig. ). All the curves join atG=1 (or G

=Gy before normalizationas T—T.. This indeed is ex-

0.05 pected, because d@t=T. the superconductor becomes nor-

mal. It is clear from the figure that the conductance behaves
completely differently ath= 7 compared to other phase dif-
ferences. Aip= 7, the conductance grows with lowering the
0.005 | %
0l
Gy
d 1100 10
0
. . : . - 0
0 0.5 1 15 20 0.5 1 1.5 2

FIG. 5. (a) Linear conductance as a function of temperature for
different phase differences at=0.1. (b) The same data plotted in

FIG. 3. Linear conductance as a functionwfat T=0.1. The logarithmic scale. Solid lines are analytical results. Note that at
phase differences afe) ¢=0, (b) ¢= /2, (c) $=3w/4, and(d) =0, Eq.(39) givesG=0, therefore no analytical curve is shown in
d=1. the figure.

® (O]
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0.6 : : . — 100 — : : 50
e =0 V4 \
———p=m2 / e O S
—— ¢=3m4 // NN e e
04 Y 1 \ \\ ---------------
v N > S s S s & [T T =]
G // G 50 \‘ \\ =
d k& N - \
02 P 1 \\ \\\
// _— \\‘
B el | R . -
ey 1 ] A i o - 1 15 2
0 002 004 006 008 0.1 0 002 004 006 008 0.1 o
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FIG. 7. (a) The imaginary part of the admittance as a function of
o at T=0.1. (b) The same data multiplied by together with the
analytical(solid) curves.

FIG. 6. (8) Conductances as a function of damping ratg at
®»=0.005.(a) T=0.01, (b) T=0.5.

temperature and exhibits aTl/dependence in agreement and analytical curves is good at low frequencies. At higher
with Eq. (39). This type of 1T behavior also exists in the dc frequencies, all curves deviate from their analytical counter-
Josephson current gi=, and is associated with the cur- parts, as expected. Especially, for the case efr, the dis-
rent carried by the ZBS. Fo$=0,7/2, and 37/4, and at crepancy between the two curves is significant.
intermediate temperatures, the linear conductance behaves asTo understand this better, we have plottein(Y) versus
G~eTE°(¢)/T, in agreement with E¢(39). This form of sup-  the phase difference for different frequencies in Fig. 8.
pression resembles the t?ermal activation behaviGr ( The thin curves are plotted using E&8). For w=0.01 and
~e 2T} in tunnel junctions* At lower temperatures, how- 0.1, the curves overlap and agree quite well with the analyti-
ever, a deviation from such a behavior occurs. To examingal ones over a wide range @f. Near ¢=1r, the curves
this more carefully, and also to compare with the analyticakeparate and deviation from the analytical results become
results, we have plotted the same graph in logarithmic scalgore evident. At high frequencyw=2), on the other
in Fig. 5(b), adding to it the analytical curvesolid lines.  hand, the deviation already exists &=0 and increases
Except for the¢p=0 case[where Eq.(39) vanisheg the  as¢p— .
agreement between the numerical and analytical results at The temperature dependence of ¥( for different val-
intermediate temperatures is very good. At Idwon the  yes of the phase difference, is plotted in Fig. 9. All the curves
other hand, the numerical curves show saturation. The crosgneet at Imif) =0 asT—T,. The agreement with analytical
over temperature to the saturation regime is proportional t@esults is very good at higfi. At lower temperatures, the
€o(¢) and is almost independent ef (not shown in the =7 curve behaves completely differently than the other
figure). _ . _ curves and deviates significantly from the analytical curve.
Such a saturation does not occur in the analytical curveshis, as we mentioned before, is a result of the breakdown of

(naturally, was also not predicted in Ref)32nd is Clearly a  the small frequency expansion at low temperatures.
higher-order property. As we mentioned before, the leading-

order result of Eq(39) vanishes a3 — 0, therefore the only
remaining contribution will be the higher-order terms. To see
this explicitly, in Fig. 6, we have plotte@ versus» at a low . . .
frequency @=0.005) and for two different temperatures. . We have pre;ented a microscopic fqrmallsm for calculat_-
One immediately notices a significant difference in the Ing ac propertles of Josephson junctions. The met'hoq IS
dependence between the two cases. At FigFig. 6(b)], the based on linear-response treatment of the nonequilibrium
conductance follows 3 dependence in agreement with Eq.

(39. At T=0.01 [Fig. 6@], on the other hand, all three 6 —— T
curves show linear dependence pnwhich is obviously of I =<
higher order than /. Physically, the residual conductance is r 3 1
a result of the overlap of the midgap states, broadened by a 0 B \\:‘\:’i
finite », at zero energy. Increasingincreases the density of > I ]
states at zero energy and therefore the conductance. In real- £ i =er== m=00] N
ity, » is also temperature dependent ang-imave supercon- E I ]

IV. CONCLUSIONS

\
L ]
ductors, it vanishes @=0, and so doe&. -6 - \
Figure Ta) shows the frequency dependence of Y for : |
L []
|
1
[

different phase differences. Except for thhe= 7r curve, the
other curves seem to show awlform (inductive behavior T ‘ L ]
To see this more clearly, we have plottetnm(Y) as a func- 0 02 04 06 08 1
tion of w in Fig. 7(b). The first three curves are almost con- (])/TE

stant, confirming the 1/ dependence. The curve &t=,

on the other hand, exhibits a completely different behavior. FIG. 8. w Im(Y) as a function of phase difference for different
In Fig. 7(b), we also present the analytical curves corre-frequencies atT=0.1. The thin lines correspond to the low-
sponding to Eq(38). The agreement between the numericalfrequency analytical results.
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60 suitable for the present calculation method, is given in Ref.
22. The method proposed in this paper is also applicable to
40 il other systems such as grain boundary junctions between un-
conventional superconductors, which is the subject of a sepa-
Lo ] rate publicatiorr:
e
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T transformation.

FIG. 9. Im(Y) as a function of temperature for different phase
differences atw=0.1. The solid curves show the corresponding
analytical results.

APPENDIX A: QUASICLASSICAL KELDYSH GREEN'S
FUNCTIONS

. . , . o The quasiclassical Green’s functf8rg(ve,€;r,t) is a 2
quasiclassical Green'’s function theory of superconductivity. . ' .
. . . . “X 2 matrix, every element of which also a2 matrix, and
and uses a generalized form of the Riccati transformations, functi f the Fermi velocit inarticl
The self-consistency equation for the linear-response part Gt u'n'c ion o ? ermi velocityg, quasiparticie energy,
the order parameter, as well as the charge neutrality condRositionr, and timet. We represeng as
tion within the bulk, is satisfied to a very good approxima- ~R AK
tion, with no need for numerical iteration. - (99
We successfully applied the method to the case of a bal- 9= 0 g*
listic superconducting point contact and obtained nontrivial
results for linear conductivity of the junction both analyti- where the matricesz, §]A, @K are the quasiclassical re-
cally and numerically. We noticed strong temperature, fretarded, advanced, and Keldysh Green’s functions in Nambu-
quency, and phase dependences in the real and imaginaBorkov representation, respectively:
parts of the ac conductivity. In particular, we found the con-

: (A1)

ductance to be many orders of magnitude largegpatm . ghth fRA e gt fX
than at smaller phase differences. This is a result of the in- 977 =| grat  _grat] 9= gkt grr -
fluence of the zero energy bound states on the quasiparticle (A2)

conductance. The agreement between the analytical and nu- ) ) )
merical results is very good at low frequencies. The excepl € T-operation performs the following transformation
tions happen neap=0 for G, and¢ =7 for Im(Y), where + e Lk
the IeadFi)rl?g—order contributions vanish or b((aC()ame compa- O Ve, &r)=0(~Ve, —&r,D”. (A3)
rable to the neglected terms. The discrepancy becomes mohe frequency domain, it also changesto — w. The retarded
pronounced at lowl or high w, where the validity of the and advanced Green’s functions carry information about the
leading-order approximation becomes questionable. energy spectrum of the electronic states of the system, while
Experimentally, superconducting point contacts have beethe Keldysh ones have information about occupation of those
realized using techniques such as scanning tunnelingtates.

microscopy*> mechanically controllable break junctioffs*® The following symmetries hold for the Green’s functions:
superconductor—two dimensional electron gas— A R RE A
superconductor junctior$;*’ etc. Subgap structures were gh=—-g™, =", (A4)

observet® and nice measurements of transmission coeffi- d

cients of individual quantum channels were performed by

Scheeret al*® Unfortunately, phase-dependent measurement gk=gk* FRT = fK* (A5)

of the conductance is difficult and the only available déata ' '

the best of our knowledges those by Rifkin and Deavé?.  In frequency space, these gigd(w)=—gR(—w)*, etc.

They found a strongly phase-dependent conductance, in The equation of motion that describes the time evolution
qualitative agreement with our results. More experimentabf g is written as

research is necessary to confirm the predictions of the

present work. .. e e o

In this paper, we have only considered a contact with V- Vg- '(6_ EVF'A)T3_A+'eCDI’9 =0 (A®)
perfect transparency. The method, however, is general and @
applicable for arbitrary transparency. One only needs to takaccompanied by the normalization condition
into account appropriatée.g., Zaitsey boundary conditions Lo
at the contact. A solution to the Zaitsev boundary conditions, geg=1, (A7)
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where® andA are the scalar and vector potentials, respec-

tively, and [A,B]lo=A®B—-B®A, with

(A®B)(e,t) =20~ LA (e,t)B(e,t).  (AB)

The product(A8) is associative and satisfiedA©B)"=A"
®BT, but (A®B)*=B*® A*. We also have

e Ao
7-3: ~ ’ = ~ | (Ag)
0 7 0
where the 2 2 Pauli matrix7; andA are
- 1 0 . 0 A
7-3_ 0 _l 1 A_ AT 0 1 (Alo)

with A being the superconducting pairing potential. The con
stante in Eqg. (A6) is the absolute value of the electronic
charge and: is the speed of light. In equilibrium, E¢A6)
reduces to the Eilenberger equatiésee Ref. 13 for ex-
ample, by changinge—iw,, wherew, are the Matsubara
frequencies.

A gauge transformation is defined by the following simul-
taneous operations:

A el (X273} g=i(02)73, (A11)
1

P—P+ %at)(, (AlZ)
C

Grseil X273 goe (x12)73. (A14)

It therefore takes the phase of the order paraméteéo ¢
+x. In the discussion of Sec. Il, we have chosgn

=—5¢.

The Green’s functions can be used to calculate physical

guantities. The quasiparticle density of states is given by

N A ap A
N(e)= 7 (T 7s(G*~G"1), (A15)

where Ng is the density of state of electrons at the Fermi

surface and - - -) denotes averaging over-. The pairing
potential satisfies the following self-consistency relation:

A N €c ~
A(VF)=4—”_ de(V(ve VTR (V) (A16)

wherefK is the off-diagonal part 0§, andV/(vg ,vf) is the
interaction potential. Furthermore, the current density i
given by

. eN,: €c A A
j= Tj de(veTr{ 759¥1), (A17)

and the charge density by

S
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1 (e -~
—2ed+ 4 de(Tr[g"])

—ec

p=eNc . (Al9)

APPENDIX B: GENERALIZED RICCATI
TRANSFORMATION

Riccati transformatiorf8 are proven to be very useful
tools for numerical calculations of equilibrium properties of
superconducting systems. For nonequilibrium systems, how-
ever, the presence of the-operators makes the formalism
nontrivial. Nevertheless, a generalization of the standard
transformation to the nonequilibrium case is possible. It is
common to define Riccati amplitudes® and b*, where «
=R,A for the retarded and advanced Green’s functions, re-
spectively. They are related to the corresponding Green’s
functions by'22

g¥=s%1+a*®b% l®(1—a*®b?),
(B1)
fe=s¥(1+a*@b*) ®(2a%),
wheres® is defined in Eq(5). Here we define the inverse
operation byA @ A=A®A 1=1. EquationgB1) already
resemble their counterparts in the standard Matsubara
formalism?° It is straightforward to show that foA=0,
these functions satisfy Riccati-type equations given by

Ve-Va*=2iea®—a*@AT®a*+A+[ied,a%],,
(B2)
—Vg-Vb*=2ieb*—b*@A®b*+AT—[ied,b"], .

In equilibrium, the® -operation is replaced by a simple mul-
tiplication and these equations reduce to Hj.

It is also necessary to define other functiefsandbX,>3
which are related only to the Keldysh Green’s functih&

g“=2(1+aReb®) e (ak+aReb e b*)
®(1+a”®b” 1,

fk=2(1+aRfebR) e (akwa’—aRebX)
®(1+breat) 1, (B3)

and are governed by the following dynamical equations

—gaf—aRfeATeak+ake Ao b?

+[ied,aX],,

vg-VaX

—Vg-VbK=—5bf—bReAobK+bkeATea?
—[ied,bX], . (B4)

The functionsa® andb® are related, by the T-operatipgq.
(A3)], throughb®=a*" for «=R,A,K. In addition, the sym-
metries(A4) and (A5) require

at=—pR* akK=ak*. (B5)

One can show that Eq9B1)—(B4) satisfy the dynam-
ical equation (A6) together with the normalization
condition (A7).
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In equilibrium, Egs.(B1) reduce to Eqs(4), and Egs.
(B3) give

K_o ag+agbghy (86)
90 = ST afoR) (1 agb)
Ko apap —aghy E7)
" “(1+afbly(1+ahbh)
Satisfying Eq.(9), one finds
ay=(1+agbp)F, bS=—(1+agh})F.  (BY)

Linear-response equatioi$3) and (14) are obtained by
expanding Eq(B1) to the linear order. To obtain Eq&L6)
and (17), we expand Eq.(B3) to the linear order and
introduce

PHYSICAL REVIEW B 68, 054505 (2003

P

through Eq(15). We also defingda* and sb* in terms of the
linear respons&a® and sbX by

5tX
_ 5gXT

59%
(Sf Xt

89 = (B9)

oaf=saX(F,— F_ )+ saRbf_F_+sbraf, F,,

obX=6bX(F_— F,)— sbRaf_F_—sa"by, F, .
(B10)

Differential equations(18) then follow directly from Egs.
(B2) and (B4). It should finally be mentioned that th&'s

andB’s in Eq. (18) are related byA*= AT, Be=B".
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