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Nonequilibrium quasiclassical theory for Josephson structures
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D-Wave Systems Inc., 320-1985 West Broadway, Vancouver BC, Canada V6J 4Y3

~Received 13 August 2002; revised manuscript received 20 December 2002; published 6 August 2003!

We present a nonequilibrium quasiclassical formalism suitable for studying linear-response ac properties of
Josephson junctions. The nonequilibrium self-consistency equations are satisfied, to a very good accuracy,
already in zeroth iteration. We use the formalism to study ac Josephson effect in a ballistic superconducting
point contact. The real and imaginary parts of the ac linear conductance are calculated both analytically~at low
frequencies! and numerically~at arbitrary frequency!. They show strong temperature, frequency, and phase
dependences. Many anomalous properties appear nearf5p. We ascribe them to the presence of zero energy
bound states.
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I. INTRODUCTION

Quasiclassical theories are proven to be powerful
studying superconducting systems. They have been use
many researchers to study the properties of supercondu
in the Meissner1 or vortex states,2–4 as well as for surfaces,5,6

point contacts,7–10 or grain boundaries between differe
superconductors.11–14 The equilibrium quasiclassical theor
was developed by Eilenberger15 and Larkin and
Ovchinnikov16 by integrating out irrelevant small scale d
grees of freedom from the Nambu-Gorkov Green’s funct
formulation of BCS superconductivity.17 It was later gener-
alized to nonequilibrium by Eliashberg18 and Larkin and
Ovchinnikov.19

A major development in the numerical calculations
equilibrium quasiclassical theory was made after the in
duction of Riccati transformation by Schopohl and Maki.2,20

The transformation changes the Eilenberger equations15 into
a set of decoupled nonlinear differential equations, wh
can be integrated easily. In nonequilibrium, the presence
convolution integrals in the equations of motion for t
Green’s functions makes the formalism nontrivial. Neverth
less, a generalized version of the Schopohl-Maki transfor
tions for nonequilibrium systems has been suggested
Eschriget al.21,22

Josephson junctions are important devices, not only
to their rich physical properties but also for many applic
tions, including sensitive magnetometers,23,24 ultrafast
switching devices,25 qubit prototypes,26,27 etc.; dc and ac
properties of these junctions have been the subject of ex
sive research.28–33 Some of the investigations are based
the tunneling Hamiltonian approach,34 which provides a
good approximation when the transparency of the junctio
small ~e.g., tunnel junctions!. At large transparencies, whic
is the case for superconducting point contacts or gr
boundary junctions, multiple Andreev reflections~MAR!
take place.35 The MAR theories work well when the biasin
voltage is large. At small biasing voltages, the number
Andreev reflections grows (;D/eV, with D being the super-
conducting order parameter!. Nevertheless, the formalism
was applied to the case of single-channel superconduc
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quantum point contact with small biasing voltage.31 Alterna-
tively, nonperturbative Hamiltonian method10 and nonequi-
librium Green’s function method33 were developed. How-
ever, most of these theories are suitable only when
applied voltage is constant. An exception is Ref. 32, wh
studies a superconducting quantum point contact in the p
ence of an ac voltage, but only in adiabatic regime. Thus
theory capable of studying high transparency Joseph
junctions with an ac biasing voltage at arbitrary frequency
still lacking.

For equilibrium systems, the quasiclassical Green’s fu
tions theory has provided a convenient tool to study Jose
son structures with arbitrary transparency and roughnes
the junctions~see Ref. 13, and references therein!. A gener-
alization of the formalism to the nonequilibrium case m
also provide a powerful and convenient method to study
properties of such structures. In this paper, we rewrite
theory of Refs. 21 and 22 in a form suitable for studyi
properties of ageneralJosephson junction in the presence
an ac voltage at anarbitrary frequency. To the best of ou
knowledge, no such theory exists. We apply the theory to
case of a ballistic point contact between two conventio
(s-wave! superconductors. At low-frequencies, we fin
closed analytical expressions for the real and imaginary p
of the ac conductivity. They agree very well with the nume
cal results, except where the low frequency expansion fa
Both quantities show strong temperature, frequency,
phase dependences. We observe anomalous behavior
the phase difference across the point contact approachep.
We relate that to the presence of the zero energy bo
states.

Section II introduces the formalism and formulates it in
form appropriate for studying Josephson systems. Sectio
is devoted to calculation of ac current through a ballis
point contact between twos-wave superconductors. The low
frequency analytical results are given in Sec. III A. The n
merical results, as well as a comparison with the analyt
results, are presented in Sec. III B. Section IV summari
the main results. A detailed description of the theory a
notations is given in Appendices. Understanding the App
dices in great detail is not necessary for understanding
©2003 The American Physical Society05-1
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main body of the paper and for application of the theory
other problems.

II. THE FORMALISM

A convenient way to study nonequilibrium systems is
use Keldysh Green’s functions.36 The quasiclassical approx
mation of the Keldysh formalism introduces retarded, a
vanced, and Keldysh Green’s functions:ĝa, a5R,A,K. The
first two describe spectral distribution of the states of
system, while the latter has information about population
these states. They are all 232 matrices, and functions of th
Fermi velocity vF , quasiparticle energye, position r , and
time t. The exact definitions ofĝa and their equations o
motion are given in Appendix A@see Eqs.~A2! and ~A6!#.
The method we present here is a linear-response treatme
ĝa. We consider a clean superconducting system in the
sence of an external magnetic field. The coupling to the e
tromagnetic field is via the vector potentialA and scalar
potential F. As will become soon clear, working with
gauge in whichA50 simplifies the calculations significantly
In such a gauge,F is the only perturbation applied to th
system, which we take to be small.

Let us first consider the case of a uniform~bulk! super-
conductor. We introduce a gauge transformation~see Appen-
dix A for details! D°D̃5e2 idfD. Under such a transforma
tion, eF°eF2(1/2)] tdf. ~Throughout this paper we us
\5kB51.! We choosedf in such a way to exactly elimi-
nateF from the gauge transformed dynamical equations@Eq.
~A6!#. Thus,df should satisfy

]df

]t
52eF, ~1!

which is the well-known Josephson relation.37 The vector
potentialA is still zero after this gauge transformation, b
cause“df50 within the bulk. The gauge transforme
equation of motion is therefore exactly the same as the e
librium equation. As a result,D̃5D0, or D5D0eidf, where
D0 is the equilibrium order parameter. This means that
magnitude of the order parameter,uDu, is independent ofF,
whereas its phase varies withF via the Josephson relatio
~1!. In other words, if the only perturbation to the system
through the time varying potentialF, its only effect is to
change the phase of the order parameter.38

The above simple observation has a very important c
sequence in our linear-response formalism. One can write
original ~gauge dependent! order parameter as

D5D0eidf'D0~11 idf!5D01dD, ~2!

wheredD is the nonequilibrium linear-response correction
the order parameter. In Fourier space, the Josephson rel
~1! becomesdf5 i2eF(v)/v, which yields

dD~v!52
2D0

v
eF~v!. ~3!
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This value indeed satisfies the self-consistency equation
the homogeneous superconductor@cf. Eq. ~23!#. To ensure
small perturbation requirement, one needseF!v. Charge
neutrality condition in the bulk is also satisfied automatica
by using Eq.~3!. This can be seen simply from the abov
gauge transformation argument, taking into account the n
trality of the unperturbed~equilibrium! system.

We now consider a Josephson junction with an equi
rium phase differencef and an ac voltageV5V0cosvt
across the junction. Far away from the junction, we take
phase of the order parameter and the scalar potential on
left ~L! and right ~R! sides to befR,L56f/2 and FR,L
56(V0/2)cosvt, respectively. In general, the phase of t
order parameter is space dependent. Therefore, perform
the above gauge transformation will produce a vector pot
tial A5(c/2e)“df (} j ac/ j c,bulk, wherej ac is the ac current
density in the banks andj c,bulk is the bulk critical current
density!, which invalidates our arguments. However, in mo
practical systems,j ac! j c! j c,bulk, where j c is the Josephson
critical current density. The corrections to Eq.~3! are there-
fore small andO( j c / j c,bulk).

39 Thus, one can still use Eq.~3!,
as a very good approximation, even whenD0 is space depen
dent. This removes the necessity for an iterative proced
~the main obstacle in these types of calculations! in order to
self-consistently calculatedD, and satisfy charge neutralit
condition ~within the bulk!.21,22 The equilibrium order pa-
rameterD0, however, should be calculated self-consisten
using the common iterative methods; convergence of s
calculations is proven to be very good, especially when us
the Matsubara technique.13

A. Equilibrium solution

In equilibrium, the retarded and advanced Green’s fu
tions can be written in terms of the Riccati amplitudesa0

a

andb0
a in a way very similar to the conventional method f

the Matsubara Green’s functions.13

g0
a5sa

12a0
ab0

a

11a0
ab0

a , f 0
a5sa

2a0
a

11a0
ab0

a , ~4!

where

sa5H 1 for a5R,

2 for a5A.
~5!

The subscript ‘‘0’’ denotes equilibrium quantities. The Ri
cati amplitudes satisfy the following Riccati equations:40

vF•“a0
a52i eaa0

a2~a0
a!2D0* 1D0 ,

2vF•“b0
a52i eab0

a2~b0
a!2D01D0* , ~6!

whereea5e1 isah, with e andh being the real and imagi
nary parts of the quasiparticle energy, respectively.h is the
quasiparticle damping, related to the inelastic lifetimet of
the quasiparticles byh51/t.41 Note that the scalar potentia
F does not appear in the equilibrium equations. The bou
ary conditions are the bulk solutions of Eq.~6!:
5-2
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a0
a5

D0

2 i ea1saVa , b0
a5

D0*

2 i ea1saVa , ~7!

where Va5AuD0u22(ea)2. The differential equations~6!
and the boundary conditions~7! can be obtained from thei
counterparts in Matsubara formalism~see Ref. 13, for ex-
ample!, by changingvn→2 i ea, wherevn is the Matsubara
frequency.

To calculate the Riccati amplitudes at other points, o
should define quasiclassical trajectories as straight line
the direction ofvF ~see Fig. 1!. a0

R and b0
A are obtained by

integrating Eq.~6! in the direction ofvF along the trajectory,
starting from the boundary conditions~7! at 2`. Forb0

R and
a0

A , integrations are taken in the opposite direction. The
lowing symmetries exist for the equilibrium functions:

a0
A52~b0

R!* , b0
A52~a0

R!* . ~8!

It is therefore sufficient to calculate one of the sets of
tarded or advanced functions.

In equilibrium, the Keldysh Green’s function is related
the retarded and advanced ones by

ĝ0
K5~ ĝ0

R2ĝ0
A!F, ~9!

where

F[tanhS e

2TD ~10!

takes into account the thermal distribution of the quasipa
cles. Equilibrium current and charge densities are calcula
by Eqs.~A17! and ~A18!, summing over all trajectories.

B. Linear-response solution

Generalization of the above Riccati transformation
nonequilibrium is discussed in Appendix B. The presence
the ^ operations@see Eq.~A8! for definition# makes the
calculations nontrivial. However, a significant simplificatio
arises when one side of thê operation is an equilibrium
quantity ~and therefore time/frequency independent!. More
specifically, in frequency space, we have

FIG. 1. Two superconducting regions connected via an orifi
The dashed line shows the quasiclassical trajectory. The arrow
dicate the directions of integration.
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P0~e! ^ Q~e,v!5P0S e1
v

2 DQ~e,v!,

P~e,v! ^ Q0~e!5P~e,v!Q0S e2
v

2 D . ~11!

To take the advantage of this property, we use linear exp
sion. In other words, we assume that the perturbation to
system~i.e.. F) is so small that the linear expansion of th
Green’s functions provides a good approximation to the
act solution. All the differential equations@Eqs. ~B2! and
~B4!# will then be linear in the time-varying parts, and Fo
rier transformation will be straightforward: no complicate
convolution integrals arise.

Let us introduce simplifying notations

e65e6
v

2
, Q065Q0~e6!. ~12!

We define linear-response Green’s functions asdĝa5ĝa

2ĝ0
a , whereĝ0

a are the equilibrium Green’s functions. Sim
larly, we introduce small corrections to the Riccati amp
tudesdaa5aa2a0

a anddba5ba2b0
a . The linear-response

Green’s functions are then given in terms of the Riccati a
plitudes by

dga522sa
daab02

a 1dbaa01
a

~11a01
a b01

a !~11a02
a b02

a !
, ~13!

d f a52sa
daa2dbaa01

a a02
a

~11a01
a b01

a !~11a02
a b02

a !
, ~14!

for a5R,A.
We also define an anomalous Green’s functiondĝX by

dĝK5dĝX~F12F2!1dĝRF22dĝAF1 . ~15!

Correspondingly, we introduce anomalous functionsdaX and
dbX @see Eqs.~B9! and ~B10!#, which are related to the
Green’s functions through

dgX52
daX2dbXa01

R b02
A

~11a01
R b01

R !~11a02
A b02

A !
, ~16!

d f X52
daXa02

A 1dbXa01
R

~11a01
R b01

R !~11a02
A b02

A !
. ~17!

The differential equations describingdaa and dba (a
5R,A,X) have general forms

vF•“daa5Aadaa1Ba,

2vF•“dba5Ãadba1B̃a, ~18!

with A’s andB’s given by40

.
in-
5-3
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Aa52i e2D0* ~a01
a 1a02

a !,

Ba5dD1a01
a a02

a dD* 2 ieF~a01
a 2a02

a !, ~19!

Ãa52i e2D0~b01
a 1b02

a !,

B̃a52dD* 2b01
a b02

a dD1 ieF~b01
a 2b02

a !, ~20!

for the retarded (a5R) and advanced (a5A) functions, and

AX5 iv2a01
R D0* 1b02

A D0 ,

BX52a01
R dD* 1b02

A dD2 ieF~11a01
R b02

A !, ~21!

ÃX5 iv2b01
R D01a02

A D0* ,

B̃X5b01
R dD2a02

A dD* 1 ieF~11b01
R a02

A !, ~22!

for the anomalous ones (a5X). dD[D2D0 is given by Eq.
~3! and satisfies the self-consistency equation

dD~vF!5
NF

4i E2ec

ec
de^V~vF ,vF8 !d f K~vF8 !&v

F8
, ~23!

whereV(vF ,vF8 ) is the interaction potential,NF is the density
of states at the Fermi surface, andec the energy cutoff. The
bulk boundary conditions for the amplitudes are

daa52
Ba

Aa , dba52
B̃a

Ãa
. ~24!

To assure stability of the integrations, Eqs.~18! should be
integrated along the trajectory in the direction ofvF for daR,
dbA, anddaX, but in the opposite direction fordbR, daA,
anddbX ~see Fig. 1!. Having the Green’s functions, the non
equilibrium correction to the current density is given by

d j5
eNF

4 E
2ec

ec
de^vFTr@ t̂3dĝK#&, ~25!

and the charge density is found from

dr5eNFS 22eF1
1

4E2ec

ec
de^Tr@dĝK#& D . ~26!

III. AC JOSEPHSON EFFECT IN A SUPERCONDUCTING
POINT CONTACT

A ballistic superconducting point contact is probably t
simplest system that the method described here can be
plied to. It brings extra simplicity because even the equil
rium solutions can be found non-self-consistently.7 Neverthe-
less, the system shows rich and nontrivial physical behav
Let us consider an orifice between two conventio
(s-wave! superconductors~Fig. 1!, the dimension of which is
much smaller than the inelastic scattering length and co
ence length of the superconductors (d! l t5vFt, j0
5vF /puD0u). We assume a perfect transparency at the c
tact, although generalization to arbitrary transparency
straightforward.13,22We take the equilibrium order paramet
05450
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to be constant on both sides of the contact,DL,R
5uD0ueifL,R, with fL,R56f/2, wheref is the phase differ-
ence between the two sides. Here,L ~R! denotes the left
~right! side of the contact.

We also takedD to be constant on each side of the co
tact, given by Eq.~3!. The scalar potentialF is taken to be
FL,R56(V0/2)cosvt on the left and right sides, respec
tively, V0 being the amplitude of the potential difference.
is taken to be a real number and so small that the lin
expansion provides a good approximation (eV0!uD0u,v).

To find the current responseI of the system, we calculate
the current densityd j z at the orifice, using Eq.~25!, and then
integrate it over the areaS of the orifice. In Fourier space
I (v) can be a complex number. The real part of it describ
the dissipation of the system, while its imaginary part giv
information about inductive or capacitive behavior of t
system. The linear admittance of the system is defined
Y(v)5I (v)/V0 (51/Z, where Z is the impedance of the
contact!.

We proceed with the calculation of the current in tw
different ways. First, we find analytical results in the regim
of smallv andh. We then provide the results of full numer
cal calculation and compare them with the analytical one

A. Low-energy analytical results

In the case of a point contact, it is not difficult to obta
analytical results. Since the superconductor is homogene
everywhere except near the contact, the solution to
functions a and b at the contact is almost equal t
their bulk values. More specifically,aR(0)5aR(2`),
bR(0)5bR(1`), etc. From now on, we drop the argumen
and just writeaR, bR, etc., keeping in mind that what w
mean is the values at the position of the contact. Substitu
these values in the corresponding equations, one can ob
analytical expressions for the current. The exact expres
is rather complicated and does not give any more insi
than the numerical results. It, however, can be significan
simplified in low-energy regime.

Here, we calculate the contact admittance in the reg
h,v!uD0u,T ~but, of course,v@eV0). Let us first introduce
the following parametrization:

ea5uD0ucosga, a5R,A, ~27!

where ga is a complex number. We therefore findVa

5uD0usinga. This choice of notation significantly simplifie
the form ofa0 andb0. For instance, from Eq.~7!, taking the
phase of the order parameter to be1f/2 ~left side of the
contact!, one finds

a0
R5

uD0ueif/2

2 i eR1VR
5 iei (f/22gR)5 ie2 idgR

, ~28!

wheredgR[gR2f/2. Similarly, b0
R has to be calculated on

the right side of the contact~where the phase is2f/2) and
turns out to be exactly equal toa0

R . In general, one can write

b0
a5a0

a5 ie2 isadga
. ~29!
5-4



-

om

s
ts

g
al

q.

nd

-

Eq.

e
s

of

e

nt
ca-

us,
r

ap-

s
ng
nu-

on.
p

NONEQUILIBRIUM QUASICLASSICAL THEORY FOR . . . PHYSICAL REVIEW B68, 054505 ~2003!
First note that 11a6
a b6

a 512e22isadg6
a

vanishes asdg6
a

[dga(e6
a )→0 ~or asg6

a →f/2). Because of such expres
sions in the denominators of Eqs.~13! and ~16!, the most
important contribution to these equations must come fr
points close toe5e0(f) for which dga!1. Here

e0~f!5uD0ucos
f

2
. ~30!

(6e0 are indeed the energies of the Andreev bound state
the contact.36! We can therefore focus only on these poin
Expanding the numerators of Eqs.~13! and ~16! up to first
order indga ~i.e., first order inv andh), we find

dgR5
eV

v F 1

dg1
R dg2

R 1S e0

2V0
2 i D S 1

dg1
R 2

1

dg2
R D G ,

dgA5
eV

v F 1

dg1
A dg2

A 1S e0

2V0
1 i D S 1

dg1
A 2

1

dg2
A D G ,

dgX5
eV

v F 1

dg1
R dg2

A 1S e0

2V0
1 i D 1

dg1
R 1S e0

2V0
2 i D 1

dg2
A G ,
~31!

where

V0~f!5uD0usin
f

2
. ~32!

Let us writee5e01e8 (e8!uD0u). For fÞ0 ~we will dis-
cuss thef50 case later!, one can write

dg6
a '2

1

V0
S e81 isah6

v

2 D . ~33!

Therefore,

1

dg6
a '2V0F P

e86v/2
2 ipsadS e86

v

2 D G , ~34!

whereP gives the principal value integral when integratin
over e8. Because of symmetry, the principle value integr
are negligible after integration. We therefore write

1

dg6
a ' ipsaV0dS e86

v

2 D . ~35!

On the other hand,

1

dg1
a dg2

a 5
V0

2

v S 1

e82v/21 isah
2

1

e81v/21 isah
D

'
ipsaV0

2

v FdS e81
v

2 D2dS e82
v

2 D G . ~36!

Similarly,
05450
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1

dg1
R dg2

A 5
V0

2

v12ih S 1

e82v/22 ih
2

1

e81v/21 ih
D

'
ipV0

2

v12ih FdS e81
v

2 D1dS e82
v

2 D G . ~37!

Substituting Eqs.~35!–~37! into Eq.~31! and using Eq.~15!,
one can calculatedgK and thereby the total current using E
~25!. Taking the integral overe8 in Eq. ~25!, expanding the
resulting hyperbolic tangents arounde0 ~to the first order in
v/T!1), and keeping only the leading order terms, we fi
the admittance to be

Y~v!5
p

vRN
FV0

2

2TS 2h

v12ih D sech2
e0

2T
1 i e0tanh

e0

2TG ,
~38!

whereRN52/e2vFNFS is the normal~Sharvin! resistance of
the point contact. Equation~38! agrees with the result ob
tained by Averin and Bardas32 in adiabatic regime.42 The
quasiparticle conductance is given by the real part of
~38!:

G~v!

GN
5

phV0
2

~v214h2!T
sech2

e0

2T
, ~39!

whereGN51/RN . Note that the right-hand side of Eq.~39!
vanishes atf50. This, however, is the point at which th
linear expansion~33! fails. One therefore expects the term
neglected in Eq.~39! to dominateG(f50). Similarly, at
small T, Eq. ~39! is exponentially small~except atf5p).
Since in such a regime,v/T becomes large, the expansion
the hyperbolic tangents in powers ofv/T will be invalid.
Therefore, deviation from Eq.~39! at low T is expected. In
the following section, we will see such deviations in th
numerical results.

The imaginary part of the admittance is also importa
because it provides information about the inductive or
pacitive behavior of the junction. Note that atf50, the first
term in Eq.~38! vanishes but the second term survives. Th
unlike the conductance, Im(Y) does not vanish; it rathe
stays finite and behaves purely inductively (;1/vL). Simi-
larly, near T50, the second term in Eq.~38! dominates,
resulting in a finite~again inductive! Im(Y). One therefore
expects that the leading-order expansion provides a good
proximation. The exception is atf5p wheree050 and thus
the second term in Eq.~38! vanishes. The higher-order term
therefore play important role in such a case. In the followi
section, we observe this behavior by comparing with the
merical results.

B. Numerical results

We now present the results of our numerical calculati
The value ofuD0u is calculated directly from the BCS ga
equation:34

15lE
uD0u

ec de

Ae22uD0u2
tanhS e

2TD , ~40!
5-5
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where the dimensionless coupling constantl is chosen in
such a way to giveD0→0 asT→Tc . NearT50, one finds
uD0u'1.75Tc . All the energy scales (T,e,v,eV0 ,h, etc.! are
normalized toTc and Y(v) to GN . In all calculations, we
takeh50.01 andec520.

Figure 2 compares the result of numerical calculation
G at f53p/4 with the analytical result obtained from Eq
~39!. As expected, the two curves overlap at low frequenc
but deviate at largerv. Around v50, there exists a shar
peak corresponding to the Lorentzianv dependence in Eq
~39!. At larger frequencies, a second peak appears in
numerical curve which is absent in the analytical one. T
peak clearly results from the higher-order contributio
which were neglected in derivation of Eq.~38!. Figure 3
displays numericalG-v curves at different phase differ
ences. Atf5p @Fig. 3~d!#, the sharp peak atv50 has the
largest value. At smaller phase differences, this peak
comes less pronounced and eventually disappears atf50,
as it should according to Eq.~39!; the equation actually pre

FIG. 2. Linear conductanceG ~normalized toGN) as a function
of v, for f53p/4 at T50.1. (v and T as well as other energy
scales are normalized toTc .)

FIG. 3. Linear conductance as a function ofv at T50.1. The
phase differences are~a! f50, ~b! f5p/2, ~c! f53p/4, and~d!
f5p.
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f

s

e
e
s

e-

dicts zero conductance, therefore the small conductanc
Fig. 3~a! is completely due to the terms neglected in E
~39!. The second peak, however, appears atv5uD0u'1.75
for f50 @Fig. 3~a!#, and moves towardsv50 asf→p. It
is easy to see that the peak is always atv5e0(f), i.e., the
energy of the Andreev levels.

Figure 4 displays the conductanceG as a function of the
phase difference across the contact for different frequenc
It is clear from the figure thatG is strongly phase dependen
Especially, it is sharply peaked close tof5p @for v
50.01, it is more than five orders of magnitude larger th
G(f50), see Fig. 4~b!#. The strong conductance can b
attributed to the existence of zero energy Andreev bou
states~ZBS! @i.e., e0(f5p)50]; they provide large density
of states at zero energy. A comparison with the analyti
results is shown, in logarithmic scale, in Fig. 4~b!. As ex-
pected, the agreement between the two calculations av
50.01 is good nearf5p, but they deviate asf→0. The
curves, however, overlap less at higher frequencies. E
cially, at v51 they show a completely different phas
dependence.

The temperature dependence of the linear conductanc
presented in Fig. 5~a!. All the curves join atG51 ~or G
5GN before normalization! as T→Tc . This indeed is ex-
pected, because atT5Tc the superconductor becomes no
mal. It is clear from the figure that the conductance beha
completely differently atf5p compared to other phase di
ferences. Atf5p, the conductance grows with lowering th

FIG. 4. ~a! Linear conductanceG as a function of the phase
difference atT50.1, for different frequenciesv. ~b! The same data
on logarithmic scale. The solid lines correspond to the analyt
results. Here~and in the figures that follow!, the legend is common
between~a! and ~b!.

FIG. 5. ~a! Linear conductance as a function of temperature
different phase differences atv50.1. ~b! The same data plotted in
logarithmic scale. Solid lines are analytical results. Note that af
50, Eq.~39! givesG50, therefore no analytical curve is shown
the figure.
5-6
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temperature and exhibits a 1/T dependence in agreeme
with Eq. ~39!. This type of 1/T behavior also exists in the d
Josephson current atf5p, and is associated with the cu
rent carried by the ZBS. Forf50,p/2, and 3p/4, and at
intermediate temperatures, the linear conductance behav
G;e2e0(f)/T, in agreement with Eq.~39!. This form of sup-
pression resembles the thermal activation behaviorG
;e2D/T) in tunnel junctions.34 At lower temperatures, how
ever, a deviation from such a behavior occurs. To exam
this more carefully, and also to compare with the analyti
results, we have plotted the same graph in logarithmic s
in Fig. 5~b!, adding to it the analytical curves~solid lines!.
Except for thef50 case@where Eq.~39! vanishes#, the
agreement between the numerical and analytical result
intermediate temperatures is very good. At lowT, on the
other hand, the numerical curves show saturation. The cr
over temperature to the saturation regime is proportiona
e0(f) and is almost independent ofv ~not shown in the
figure!.

Such a saturation does not occur in the analytical cur
~naturally, was also not predicted in Ref. 32!, and is clearly a
higher-order property. As we mentioned before, the leadi
order result of Eq.~39! vanishes asT→0, therefore the only
remaining contribution will be the higher-order terms. To s
this explicitly, in Fig. 6, we have plottedG versush at a low
frequency (v50.005) and for two different temperature
One immediately notices a significant difference in theh
dependence between the two cases. At highT @Fig. 6~b!#, the
conductance follows 1/h dependence in agreement with E
~39!. At T50.01 @Fig. 6~a!#, on the other hand, all thre
curves show linear dependence onh, which is obviously of
higher order than 1/h. Physically, the residual conductance
a result of the overlap of the midgap states, broadened
finite h, at zero energy. Increasingh increases the density o
states at zero energy and therefore the conductance. In
ity, h is also temperature dependent and ins-wave supercon-
ductors, it vanishes atT50, and so doesG.

Figure 7~a! shows the frequency dependence of Im(Y) for
different phase differences. Except for thef5p curve, the
other curves seem to show a 1/v form ~inductive behavior!.
To see this more clearly, we have plottedvIm(Y) as a func-
tion of v in Fig. 7~b!. The first three curves are almost co
stant, confirming the 1/v dependence. The curve atf5p,
on the other hand, exhibits a completely different behav
In Fig. 7~b!, we also present the analytical curves cor
sponding to Eq.~38!. The agreement between the numeric

FIG. 6. ~a! ConductanceG as a function of damping rateh at
v50.005. ~a! T50.01, ~b! T50.5.
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and analytical curves is good at low frequencies. At high
frequencies, all curves deviate from their analytical coun
parts, as expected. Especially, for the case off5p, the dis-
crepancy between the two curves is significant.

To understand this better, we have plottedvIm(Y) versus
the phase differencef for different frequencies in Fig. 8
The thin curves are plotted using Eq.~38!. For v50.01 and
0.1, the curves overlap and agree quite well with the anal
cal ones over a wide range off. Near f5p, the curves
separate and deviation from the analytical results beco
more evident. At high frequency (v52), on the other
hand, the deviation already exists atf50 and increases
asf→p.

The temperature dependence of Im(Y), for different val-
ues of the phase difference, is plotted in Fig. 9. All the curv
meet at Im(Y)50 asT→Tc . The agreement with analytica
results is very good at highT. At lower temperatures, the
f5p curve behaves completely differently than the oth
curves and deviates significantly from the analytical cur
This, as we mentioned before, is a result of the breakdow
the small frequency expansion at low temperatures.

IV. CONCLUSIONS

We have presented a microscopic formalism for calcu
ing ac properties of Josephson junctions. The method
based on linear-response treatment of the nonequilibr

FIG. 7. ~a! The imaginary part of the admittance as a function
v at T50.1. ~b! The same data multiplied byv together with the
analytical~solid! curves.

FIG. 8. v Im(Y) as a function of phase difference for differe
frequencies atT50.1. The thin lines correspond to the low
frequency analytical results.
5-7
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quasiclassical Green’s function theory of superconductiv
and uses a generalized form of the Riccati transformatio
The self-consistency equation for the linear-response pa
the order parameter, as well as the charge neutrality co
tion within the bulk, is satisfied to a very good approxim
tion, with no need for numerical iteration.

We successfully applied the method to the case of a
listic superconducting point contact and obtained nontriv
results for linear conductivity of the junction both analy
cally and numerically. We noticed strong temperature, f
quency, and phase dependences in the real and imag
parts of the ac conductivity. In particular, we found the co
ductance to be many orders of magnitude larger atf5p
than at smaller phase differences. This is a result of the
fluence of the zero energy bound states on the quasipar
conductance. The agreement between the analytical and
merical results is very good at low frequencies. The exc
tions happen nearf50 for G, andf5p for Im(Y), where
the leading-order contributions vanish or become com
rable to the neglected terms. The discrepancy becomes m
pronounced at lowT or high v, where the validity of the
leading-order approximation becomes questionable.

Experimentally, superconducting point contacts have b
realized using techniques such as scanning tunne
microscopy,43 mechanically controllable break junctions,44,45

superconductor–two dimensional electron ga
superconductor junctions,46,47 etc. Subgap structures wer
observed48 and nice measurements of transmission coe
cients of individual quantum channels were performed
Scheeret al.49 Unfortunately, phase-dependent measurem
of the conductance is difficult and the only available data~to
the best of our knowledge! is those by Rifkin and Deaver.50

They found a strongly phase-dependent conductance
qualitative agreement with our results. More experimen
research is necessary to confirm the predictions of
present work.

In this paper, we have only considered a contact w
perfect transparency. The method, however, is general
applicable for arbitrary transparency. One only needs to t
into account appropriate~e.g., Zaitsev! boundary conditions
at the contact. A solution to the Zaitsev boundary conditio

FIG. 9. Im(Y) as a function of temperature for different pha
differences atv50.1. The solid curves show the correspondi
analytical results.
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suitable for the present calculation method, is given in R
22. The method proposed in this paper is also applicabl
other systems such as grain boundary junctions between
conventional superconductors, which is the subject of a se
rate publication.51
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APPENDIX A: QUASICLASSICAL KELDYSH GREEN’S
FUNCTIONS

The quasiclassical Green’s function52 ğ(vF ,e;r ,t) is a 2
32 matrix, every element of which also a 232 matrix, and
a function of the Fermi velocityvF , quasiparticle energye,
position r , and timet. We representğ as

ğ5S ĝR ĝK

0 ĝAD , ~A1!

where the matricesĝR, ĝA, ĝK are the quasiclassical re
tarded, advanced, and Keldysh Green’s functions in Nam
Gorkov representation, respectively:

ĝR,A5S gR,A f R,A

f R,A† 2gR,A†D , ĝK5S gK f K

2 f K† gK†D .

~A2!

The †-operation performs the following transformation

O†~vF ,e;r ,t !5O~2vF ,2e;r ,t !* . ~A3!

In frequency domain, it also changesv to 2v. The retarded
and advanced Green’s functions carry information about
energy spectrum of the electronic states of the system, w
the Keldysh ones have information about occupation of th
states.

The following symmetries hold for the Green’s function

gA52gR* , f R†5 f A* , ~A4!

and

gK5gK* , f K†5 f K* . ~A5!

In frequency space, these givegA(v)52gR(2v)* , etc.
The equation of motion that describes the time evolut

of ğ is written as

vF•“ğ2F i S e2
e

c
vF•AD t̆32D̆1 ieF l̆ ,ğG

^

50̆ ~A6!

accompanied by the normalization condition

ğ^ ğ51̆, ~A7!
5-8
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whereF andA are the scalar and vector potentials, resp
tively, and @A,B# ^[A^ B2B^ A, with

~A^ B!~e,t !5ei /2(]e
A] t

B
2] t

A]e
B)A~e,t !B~e,t !. ~A8!

The product~A8! is associative and satisfies (A^ B)†5A†

^ B†, but (A^ B)* 5B* ^ A* . We also have

t̆35S t̂3 0

0 t̂3
D , D̆5S D̂ 0

0 D̂
D , ~A9!

where the 232 Pauli matrixt̂3 and D̂ are

t̂35S 1 0

0 21D , D̂5S 0 D

D† 0 D , ~A10!

with D being the superconducting pairing potential. The co
stant e in Eq. ~A6! is the absolute value of the electron
charge andc is the speed of light. In equilibrium, Eq.~A6!
reduces to the Eilenberger equation~see Ref. 13 for ex-
ample!, by changinge→ ivn , wherevn are the Matsubara
frequencies.

A gauge transformation is defined by the following simu
taneous operations:

D̆°ei (x/2)t̆3D̆e2 i (x/2)t̆3, ~A11!

F°F1
1

2e
] tx, ~A12!

A°A2
c

2e
“x, ~A13!

ğ°ei (x/2)t̆3^ ğ^ e2 i (x/2)t̆3. ~A14!

It therefore takes the phase of the order parameterf to f
1x. In the discussion of Sec. II, we have chosenx
52df.

The Green’s functions can be used to calculate phys
quantities. The quasiparticle density of states is given by

N~e!5
NF

4
^Tr@ t̂3~ ĝR2ĝA!#&, ~A15!

where NF is the density of state of electrons at the Fer
surface and̂ •••& denotes averaging overvF . The pairing
potential satisfies the following self-consistency relation:

D̂~vF!5
NF

4i E2ec

ec
de^V~vF ,vF8 ! f̂ K~vF8 !&v

F8
, ~A16!

where f̂ K is the off-diagonal part ofĝK, andV(vF ,vF8 ) is the
interaction potential. Furthermore, the current density
given by

j5
eNF

4 E
2ec

ec
de^vFTr@ t̂3ĝK#&, ~A17!

and the charge density by
05450
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r5eNFS 22eF1
1

4E2ec

ec
de^Tr@ ĝK#& D . ~A18!

APPENDIX B: GENERALIZED RICCATI
TRANSFORMATION

Riccati transformations20 are proven to be very usefu
tools for numerical calculations of equilibrium properties
superconducting systems. For nonequilibrium systems, h
ever, the presence of thê-operators makes the formalism
nontrivial. Nevertheless, a generalization of the stand
transformation to the nonequilibrium case is possible. It
common to define Riccati amplitudesaa and ba, wherea
5R,A for the retarded and advanced Green’s functions,
spectively. They are related to the corresponding Gree
functions by21,22

ga5sa~11aa
^ ba!21

^ ~12aa
^ ba!,

~B1!
f a5sa~11aa

^ ba!21
^ ~2aa!,

wheresa is defined in Eq.~5!. Here we define the invers
operation byA21

^ A5A^ A2151. Equations~B1! already
resemble their counterparts in the standard Matsub
formalism.20 It is straightforward to show that forA50,
these functions satisfy Riccati-type equations given by

vF•“aa52i eaa2aa
^ D†

^ aa1D1@ ieF,aa# ^ ,
~B2!

2vF•“ba52i eba2ba
^ D ^ ba1D†2@ ieF,ba# ^ .

In equilibrium, the^ -operation is replaced by a simple mu
tiplication and these equations reduce to Eq.~6!.

It is also necessary to define other functionsaK andbK,53

which are related only to the Keldysh Green’s functions,21,22

gK52~11aR
^ bR!21

^ ~aK1aR
^ bK

^ bA!

^ ~11aA
^ bA!21,

f K52~11aR
^ bR!21

^ ~aK
^ aA2aR

^ bK!

^ ~11bA
^ aA!21, ~B3!

and are governed by the following dynamical equations

vF•“aK52] ta
K2aR

^ D†
^ aK1aK

^ D ^ bA

1@ ieF,aK# ^ ,

2vF•“bK52] tb
K2bR

^ D ^ bK1bK
^ D†

^ aA

2@ ieF,bK# ^ . ~B4!

The functionsaa andba are related, by the †-operation@Eq.
~A3!#, throughba5aa† for a5R,A,K. In addition, the sym-
metries~A4! and ~A5! require

aA52bR* , aK5aK* . ~B5!

One can show that Eqs.~B1!–~B4! satisfy the dynam-
ical equation ~A6! together with the normalization
condition ~A7!.
5-9
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In equilibrium, Eqs.~B1! reduce to Eqs.~4!, and Eqs.
~B3! give

g0
K52

a0
K1a0

Rb0
Kb0

A

~11a0
Rb0

R!~11a0
Ab0

A!
, ~B6!

f 0
K52

a0
Ka0

A2a0
Rb0

K

~11a0
Rb0

R!~11a0
Ab0

A!
. ~B7!

Satisfying Eq.~9!, one finds

a0
K5~11a0

Rb0
A!F, b0

K52~11a0
Ab0

R!F. ~B8!

Linear-response equations~13! and ~14! are obtained by
expanding Eq.~B1! to the linear order. To obtain Eqs.~16!
and ~17!, we expand Eq.~B3! to the linear order and
introduce
ys

ow

-

B

s.

k,

05450
dĝX5S dgX d f X

d f X† 2dgX†D ~B9!

through Eq.~15!. We also definedaX anddbX in terms of the
linear responsedaK anddbK by

daK5daX~F12F2!1daRb02
A F21dbAa01

R F1 ,

dbK5dbX~F22F1!2dbRa02
A F22daAb01

R F1 .
~B10!

Differential equations~18! then follow directly from Eqs.
~B2! and ~B4!. It should finally be mentioned that theA’s
andB’s in Eq. ~18! are related byÃa5Aa†, B̃a5Ba†.
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