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Shot noise in normal metal–d-wave superconducting junctions
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We present theoretical calculations and predictions for the shot noise in voltage-biased junctions ofdx22y2

superconductors and normal metal counterelectrodes. In the clean limit for thed-wave superconductor the shot
noise vanishes at zero voltage because of resonant Andreev reflection by zero-energy surface bound states. We
examine the sensitivity of this resonance to impurity scattering. We report theoretical results for the magnetic
field dependence of the shot noise, as well as the fingerprints of subdominants- anddxy pairing channels.
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I. INTRODUCTION

It is now widely accepted that the order parameter in
superconducting state of the cuprates hasdx22y2 symmetry.
Several experiments, including tricrystal ring experimen1

corner junction experiments,2 and thec-axis scanning tunnel
ing microscopy~STM! probes of impurity states,3–5 have all
provided strong evidence for the broken reflection symme
of the dx22y2 order parameter.

Experiments based on tunneling within theab plane are
another class of experiments that provide valuable inform
tion about the properties of the cuprates. Conductance m
surements on planar or point contact~by STM! normal
metal–high-Tc superconducting junctions and on Josephs
junctions~e.g., grain boundaries! probe the electronic state
of the cuprates near the surface or at the interface. In add
to changes in the atomic-scale structure of the interface,
dx22y2 superconducting state is highly distorted by interfa
scattering and disorder. The electronic spectrum is stron
modified, and thedx22y2 order parameter is in general su
pressed on the coherence length scale. In fact, a stan
feature of theab-plane conductance is a large zero-bias c
ductance peak~ZBCP!.6–8 Its sensitivity to impurity scatter-
ing and the splitting of the peak in a magnetic field ag
well with theoretical predictions9–11 of surface Andreev
bound states with large spectral weight that provide a re
nant channel for tunneling near zero bias. Normal scatte
of quasiparticles by the surface from a positive lobe of
dx22y2 order parameter to a negative lobe, combined w
Andreev reflection by the suddenp phase shift ~sign
change!, leads to a zero-energy bound state.12–14 In the case
of a specular@110# surface all trajectories for quasiparticle
are associated with a sign change of the order parameter
thus the spectral weight of the Andreev states is very lar

In this paper we investigate theoretically the charge c
rent through voltage-biased normal metal–insulatin
barrier–d-wave superconductor~NIS! junctions subject to an
external magnetic field directed along thec axis. We extend
the theory for the current fluctuations of conventional N
junctions by Khlus15 to voltage-biased NIS junctions wit
unconventional pairing correlations, as well as the effects
field-induced surface currents on the current fluctuations.
present calculations of both the mean charge current and
charge current fluctuations, which at zero temperature red
0163-1829/2003/68~5!/054504~14!/$20.00 68 0545
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to the shot noise. We show that the resonant nature of
Andreev reflection via the surface bound states in a cl
dx22y2 superconductor can be used to extract additional
formation from the shot noise that cannot be obtained fr
conductance measurements alone. We discuss how the
face Andreev bound states~ABS’s! are broadened by impu
rity scattering. The impurity effect is reflected both in th
conductance, which is related to the local density of state
the interface, and the shot noise, which reduces toS52eI
when impurity scattering dominates the intrinsic width of t
surface ABS’s.

There are theoretical reasons to expect an additional,
dominant pairing state, e.g. withs- or dxy symmetry, to be
present in equilibrium under favorable circumstances.9,16–19

The formation of surface states at the Fermi level, in com
nation with an attractive, subdominant pairing interactio
favors a mixed-symmetry order parameter, e.g., a surf
phase withdx22y26 is or dx22y26 idxy symmetry. The sub-
dominant component is predicted to have a phase of6p/2
relative to the dominantdx22y2 component and thus to ex
hibit spontaneously broken time-reversal symmetry (T sym-
metry!. The internal phase of the order parameter leads
shift of the bound state energies below the Fermi level, t
lowering the surface free energy and generating a spont
ous surface current.9,17

The splitting of the Andreev states also leads to the p
diction that the ZBCP should spontaneously split as a fu
tion of voltage.9 Such a splitting has been observed in Y-B
Cu-O YBCO near optimal doping.6,20However, in contrast to
the general consensus about thedx22y2 pairing symmetry for
the bulk phase of the cuprates, the nature of the surf
phase, including the possibility of brokenT symmetry, is
unsettled.10,21 In the following we also discuss the ‘‘finger
prints’’ of subdominant pairing that may be observable in t
shot noise.

The theory of shot noise in mesoscopic, metallic syste
has been used in several recent experiments to gain info
tion about tunneling in mesoscopic systems; see, e.g.,
recent review in Ref. 22. Earlier predictions for shot noise
d-wave NIS junctions were published by Zhu and Ting.23 It
was shown in a non-self-consistent calculation that fo
cleand-wave superconductor the Andreev resonance ass
ated with the surface Andreev bound states suppressed
shot noise to zero. It was confirmed in Ref. 24 that this eff
©2003 The American Physical Society04-1
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also holds when self-consistency of the order paramete
taken into account. Recent theoretical work on noise
d-wave Superconductor-insulator-superconductor~SIS! junc-
tions addresses the effects of surface disorder, inter
states, and magnetic fields on the multiple Andreev reflec
in this system, which is an important mechanism for noise
voltage-biased Josephson junctions.25,26

Here we report a detailed study of the shot noise a
specifically address physical conditions that are lik
present at an NIS interface. The shot noise is shown to
particularly sensitive to the spectrum of surface states an
disorder. We present results for the magnetic field dep
dence of the shot noise and demonstrate the sensitivity o
results obtained for cleand-wave superconductors to chang
in the low-energy electronic spectrum by equilibrium surfa
currents and impurity scattering. We focus on the@110# ori-
entation of an NIS interface to the cuprate superconduc
since for this orientation the influence of the Andreev bou
states is most pronounced.

In Sec. II we describe our model of the normal meta
unconventional superconductor contact, beginning with
brief review of the quasiclassical Green’s function techniq
that we use to compute observables. We discuss the bo
ary conditions for the nonequilibrium propagators, cohere
amplitudes, and distribution functions and express th
boundary conditions in terms of generalized scattering a
plitudes. Explicit solutions are used to obtain results for
transport current and spectral density for current noise un
nonequilibrium steady-state conditions. In Sec. III w
present the results for the shot noise in voltage-biased
junctions withd-wave pairing symmetry for junctions with
disorder near the interface. We discuss the effects of m
netic fields and screening currents and surface phase tr
tions on the noise spectrum. Throughout the paper we
units for which\5kB51, and we choose the sign conve
tion e52ueu.

II. THEORY AND INTERFACE MODEL

To compute the average current and fluctuations of
current we use the quasiclassical Green’s funct
method27,28and the Keldysh formalism to calculate noneq
librium properties. The relevant information about the sp
trum of current-carrying states and their distribution fun
tions are contained in a set of nonequilibrium matrix Gree
function: the retarded (R), advanced (A) and Keldysh (K)
propagators, ĝR,A,K(pF ,R;e,t), which are 434 matrix
propagators in the combined spin and particle-hole sp
~Nambu space!, that depend on the Fermi momentum,pF ,
the excitation energy,e, and space and time coordinates,R
and t. The quasiclassical propagators are related to the
Nambu propagators:

ĜR~x,x8!52 iQ~ t2t8!^$C~x!, C̄~x8!%&,

ĜA~x,x8!51 iQ~ t82t !^$C~x!, C̄~x8!%& ~1!

ĜK~x,x8!52 i ^@C~x!, C̄~x8!#&,
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where the Nambu field operators, C(x)
5„c↑(x),c↓(x),c↑

†(x),c↓
†(x)…tr, and C̄(x)5C†(x) incor-

porate particle-hole coherence of the superconducting s
We use the notation defined in Ref. 27 for the two-po
functions whereQ(t) is the Heaviside function,$A,B%
5AB1BA, and @A,B#5AB2BA. We also use the short
hand notationx5(x,t).

A compact formulation of the nonequilibrium equations
obtained in the Keldysh formulation in which the set
Nambu-matrix propagators,ĜR,A,K, are grouped into a 232
Keldysh matrix:

Ǧ~p,R;e,t !5 E dre2 i (p•r2et) S ĜR ĜK

0 ĜAD . ~2!

It is most convenient to work in terms of the center-of-ma
and relative coordinates,R5(x1x8)/25(R,t) and r 5x
2x85(r ,t), and Fourier transform with the relative spa
and time coordinates. The quasiclassical propagators are
defined in terms of an integration of the full Keldysh-Nam
matrix propagator,Ǧ(p,R;e,t), over an energy shell that i
small compared with the Fermi energy,uvF(p2pF)u,«c
!EF ,

ǧ~pF ,e;R,t !5
1

a E2«c

1«c
djp ť3Ǧ~p,e;R,t !. ~3!

The quasiclassical propagator is defined by dividing out
weight of the quasiparticle pole in the spectral function,a,
and by convention premultiplying by the matrix,ť35 t̂31̌.
We denote a Nambu matrix with a caret, while Keldysh m
trices are denoted with a ‘breve’. Thus,t̂3 is the third Pauli
matrix in the particle-hole sector of Nambu space, and 1ˇ is
the identity Keldysh matrix.

For pure spin-singlet pairing considered here the qu
classical propagators,ĝR,A,K, may be parametrized in
particle-hole space by scalar amplitudes for the diago
~quasiparticle! and off-diagonal~Cooper pair! propagators,

ĝX5S gX f X

f X gXD , ~4!

whereX5(R,A,K). We consider the case where the diama
netic coupling of the charge currents to the magnetic fi
dominates the paramagnetic Zeeman coupling, in which c
the spin degrees of freedom are inert. The components o
quasiclassical propagators are then defined in terms of
scalar diagonal propagators,gX andgX, and spin-singlet off-
diagonal propagators,f X and f X. These components are no
all independent, but are related by symmetries that foll
from the fermion anticommutation relations.27

For calculating the low-frequency~v!D, eV! conduc-
tance and noise in NIS tunnel junctions we need only tim
independent propagators. The steady-state nonequilibr
quasiclassical Keldysh-matrix propagator obeys a ma
transport equation,

@eť32 v̌2Š, ǧ#1 ivF•“ǧ50, ~5!
4-2
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where v̌5eF1̌ is the electrostatic potential andŠ5Ď

1Š imp represents the order parameter and impurity s
energy. The transport equation is supplemented by the
malization condition,ǧ252p21̌, ~Refs. 29 and 30! and by
boundary conditions connecting the propagators at the in
face. When there is no possibility for confusion, we do n
display the dependence ofǧ and Š on (pF ,R;e). Equation
~5! represents coupled equations for the retarded, advan

@ĤR,A, ĝR,A#1 ivF•“ĝR,A50, ~6!

and Keldysh propagators,

ĤRĝK2ĝKĤA1ĝRŜK2ŜKĝA1 ivF•“ĝK50, ~7!

where ĤR,A5et̂32 v̂2ŜR,A is defined in terms of the exci
tation energy,e, the coupling to external fields,v̂, and the
self-energies,ŜR,A. Similarly, the normalization condition
expands to

ĝR,A ĝR,A52p2 1̂, ĝR ĝK2ĝK ĝA50. ~8!

The retarded and advanced functions determine the part
hole coherence functions and spectral properties at the
interface, while the Keldysh function contains addition
information on the nonequilibrium distribution of thes
states. The computation ofǧ involves solving the quasiclas
sical transport equations for the normal metal–insulati
barrier–superconductor system together with a set of s
consistency equations for the impurity and pairing se
energies and boundary conditions in the bulk reservoirs
at the interface.

A. Pairing model

The pairing correlations are described by the pairing s
energy,Ď. In the leading order~weak-coupling! approxima-
tion, the Keldysh component vanishes and the retarded
advanced self-energies are independent of energy. The re
ing self-consistency condition is the BCS gap equation,

D̂~pF ,R!5K l~pF ,pF8 ! E
2ec

1ec de

4p i
f̂ K~pF8 ,R;e!L

p
F8

. ~9!

wheref̂ K(pF ,R;e) is the off-diagonal quasiclassical Keldys
propagator. We consider spin-singlet superconductivity
rived from a pairing interaction of the form

l~pF ,pF8 !5 (
a

laha~pF!ha~pF8 !, ~10!

where the sum is over the relevant irreducible rep
sentations of the crystal point group,D4h , a
P$A1g(swave)B1g(dx22y22wave),B2g(dxy2wave), A2g(g
2wave)%, andla andha(pF) are the corresponding eigen
values and eigenfunctions for pairing in channela. The rel-
evant channels are defined by the dominant attractive ei
values for each irreducible representation obtained fr
solutions of the linearized gap equation with the microsco
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pairing interaction~cf. Ref. 19!. The mechanism for pairing
in the cuprates is not unsolved, and indeed there may
more than one mechanism at work in the cuprates that
count for the wide range of superconducting properties a
function of doping and disorder. For example, a relative
simple two-channel model based on electronic coupling
antiferromagnetically correlated spinexcitations and
phonons leads to dominantdx22y2 pairing over a wide range
of doping, but with significant subdominant pairing intera
tions in all other symmetry channels.10 These subdominan
pairing channels are predicted to play an important role
the local electronic structure of surface superconducting s
near an insulating barrier or other interface.19,31

In this paper we consider the signatures of subdomin
pairing in the shot noise. For this purpose we assume
dominant pairing channel hasdx22y2 symmetry and conside
subdominant pairing in thes or dxy pairing channels, i.e.
lB1g

.lB2g
lA1g

. TheA2g channel may also have an attra
tive eigenvalue for spin-fluctuation dominant pairing, b
this order parameter is suppressed on both@110# and @100#
boundaries and is particularly sensitive to surface disor
so we do not consider this subdominant channel for N
junctions.

Below the superconducting transition temperature,Tc ,
the order parameter amplitude is proportional to theB1g ba-
sis function,hB1g

5A2(p̂x
22 p̂y

2). However, even a small at

tractive subdominant eigenvalue,lB2g
or lA1g

, can at low
temperature generate a transition to a state with a mi
symmetry, with an order parameter that acquires an a
tional component proportional to the corresponding eig
function, hB2g

5A2p̂xp̂y or hA1g
51.52 Thus, in general we

write the order parameter as

D~pF ,R!5 (
a

Da~R!ha~pF!. ~11!

The gap equation separates into three self-consistency e
tions for each relevant pairing channel,

Da~R!5laK ha~pF! E
2ec

ec de

4p i
f K~pF ,R;e!L

pF

. ~12!

The solution of the transport equation and boundary c
ditions lead to coupling between the components,Da(R).
The cutoff ec and pairing interaction,la , are eliminated
in favor of the instability temperatures,Tca , using the solu-
tion of the linearized gap equation,la

215 ln(T/Tca)
1 *(de/2e) tanh (e/2T). The overall phase of the order pa
rameter~11! can be eliminated for a NIS system, but th
relative phases between the different components that rem
are determined by the minimum of the free energy. At su
ciently low temperature, the lowest-energy state near a@110#
surface is always a mixed-symmetry phase with sponta
ously brokenT symmetry, in which the subdominant orde
parameter acquires a finite value with a relative phase
6p/2.17,9 Consequently, we consider three possible or
parameters:~1! puredx22y2, ~2! dx22y21 is, and~3! dx22y2

1 idxy . Cases~2! and~3! are illustrated in Fig. 1, where th
4-3
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FIG. 1. Mixed-symmetry order parameters
a @110# specular surface. The relative phase b
tween thedx22y2 and subdominantdxy or s com-
ponents is6p/2. The insets show the surfac
bound state spectrum for these mixed-symme
phases. The calculations were carried out in t
clean limit with G50.001Tc and s51024 ~see
text! at a temperatureT50.05Tc .
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pairing interaction parameters are chosen so that the o
parameter in the bulk region is always puredx22y2, and the
subdominant components are stable near the surface wit
layer of the order of a few coherence lengths.

B. Magnetic field and screening currents

One of the key features of the ABS interpretation of t
zero-bias conductance peaks observed in ab-plane tunn
spectroscopy is the splitting of the ZBCP for low magne
fields.8,20,32The energy of the ABS’s is shifted away from th
Fermi level by screening currents. The origin of this effec
the coupling of the quasiparticle current to the superfl
field generated in response to the magnetic field,

v̌A5vF•ps ť3 , ~13!

where the condensate flow field is given by the gau
invariant gradient of the phase,ps5

1
2 @“q2(e/c)A#, where

A is the vector potential. We include this coupling here
order to investigate the sensitivity of the noise spectrum
the spectral shift of the surface ABS’s. Indeed as we sh
below the shot noise is particularly sensitive to the Dopp
shift of the zero-energy surface states.

The condensate flow field,ps , is calculated by solving
Maxwell’s equation self-consistently with the surface cu
rent, supplemented with the boundary conditions for m
netic fieldB→0 for the Meissner state far from the surfa
andB→Hext at the surface. For strong type-II supercondu
ors, such as the cuprates, with a magnetic penetration le
l@j0, the solution of Maxwell’s equation to leading ord
in the small parameterj0 /l is ps(z)5ps0e2z/l with

ps0vF

Tc
5

Hext

H0
2

1

l E
0

`

dz jp~z!, ~14!

where j p(z) is the paramagnetic part of the current flowin
parallel to the interface@computed via Eq.~31! below#. The
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paramagnetic current originates from the Doppler splitting
the ABS’s, which preferentially favors the paramagnetic
sponse from the bound states.9 The field scale in Eq.~14! is
H05F0 /(pj0l), whereF05c/2ueu is the flux quantum.

C. Impurity self-energy

The anisotropic order parameter@Eq. ~11!# is sensitive to
disorder. We include the leading-order~in 1/PF, imp , where
, imp is the mean free path! effects of disorder within the
model of isotropic scattering of quasiparticles by impuriti
~cf. Ref. 33!. In this model the impurity self-energy is give
by the quasiparticle-impurityt matrix and the average impu
rity concentration,nimp ,

Š imp~pF ,R;e!5nimp ť~pF ,pF ,R;e!, ~15!

where ť (pF ,pF8 ,R;e) satisfies a Bethe-Salpeter equation f
repeated scattering of quasiparticles by impurities.33 For iso-
tropic impurity scattering defined by a scattering amplitud
u0, thet-matrix equations for the retarded and advanced s
energies have the solutions

t̂ R,A~R;e!5
u0@ 1̂1u0NF^ĝR,A~pF ,R;e!&pF

#

1̂2@u0NF^ĝR,A~pF ,R;e!&pF
#2

, ~16!

and the Keldysh component is given by

t̂ K5NFt̂R^ĝK&pF
t̂A. ~17!

The scattering amplitude,u0, defines thes-wave scatter-
ing phase shift,d05arctan(pNFu0), while the impurity con-
centration and normal-state density of states define an en
scaleG05nimp /(pNF). We use the more common param
etrization of the impurity scattering model in terms of th
4-4



on

b
g

tio
e

re
el
te

on

ela
o
li
e

tro
nl
u
.
a

tiv
n
th

ot

um
d
a
fie
on
n
n

n
o

r.
e of

by
e
and
s to
c-
ve
ef-
her
er

the
e-

n a

-
ith
-

is

on

and

t

,

l-

ulti-
rv-

SHOT NOISE IN NORMAL METAL–d-WAVE . . . PHYSICAL REVIEW B 68, 054504 ~2003!
dimensionless scattering cross section,s5 sin2 d0, and the
pair breaking parameter,G5G0 sin2 d0, or equivalently the
mean-free path,, imp5vF/2G.

The impurity self-energy renormalizes the excitati
spectrum via,e→ ẽ(R)5e2S3

R(e,R), whereS3
R is the t̂3

component ofŜ imp
R . For a puredx22y2 pairing state, the im-

purity renormalization of the order parameter vanishes
symmetry; the effects of pair-breaking are included throu
the renormalized excitation spectrum. As a result the solu
of the gap equation shows a reduction of the order param
amplitude with increasing pair breaking parameter,G. For
mixed symmetry pairing, e.g., at the surface, and in the p
ence of field-induced screening currents, the pairing s
energy is, in general, nonvanishing and must be calcula
self-consistently with the renormalization of the excitati
spectrum.

In general the self-energy also includes electron corr
tion effects generated by electron-electron and electr
phonon interactions. In what follows we consider a simp
fied model for the metallic electrodes in which th
quasiparticles are governed by an effective one-elec
Hamiltonian with a parabolic band structure. Thus, the o
electronic correlations included here are those that contrib
to the effective mass,m* , and give rise to superconductivity
In this case,vF5pF /m* , and the charge current carried by
normal quasiparticle isevF5(e/m* )pF . Both the current
and the noise spectrum are then calculated in this effec
one-electron theory, modified to include pairing correlatio
in the superconductor, effects of screening currents on
surface excitation spectrum, and impurity scattering in b
electrodes.

D. Current and current-current correlations

Physical properties, such as the local excitation spectr
current response, and correlation functions, are expresse
terms of the quasiclassical Green’s function. Here we
interested in computing the charge current and the mean-
fluctuations of the current for the NS junction. The juncti
current is an expectation value, in a nonequilibrium e
semble~r!, of the Heisenberg operator for the charge curre

J~r1 ,t1!5 lim
x2→x1

2e

2m* i
~¹12¹2!

3@c↑
†~x2!c↑~x1!2c↓

†~x1!c↓~x2!#, ~18!

Fluctuations of the current are related to the curre
current correlation function, which is defined in terms
the operator,

S~r ,t,t![K~r ,t,t1t!1K~r ,t1t,t !, ~19!

K~r1 ,t1 , t̃ 1!5S e

2m* i
D 2

lim
r1→r1
˜

lim
x2→x1
x̃2→ x̃1

~¹12¹2!~¹̃12¹̃2!

3@c↑
†~x2!c↑~x1!2c↓

†~x1!c↓~x2!#

3@c↑
†~ x̃2!c↑~ x̃1!2c↓

†~ x̃1!c↓~ x̃2!#

2j ~r1 ,t1!j ~r1 , t̃ 1!, ~20!
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wherej5Tr@r J# is the expectation value of current operato
The observable noise is found by evaluating the averag
this operator over the statistical ensemble.

In what follows we consider the effects of scattering
point impurities (s wave! in the superconducting electrod
with d-wave pairing. For the steady-state conductance
current noise the statistical average for the noise reduce
the product of two-point correlation functions. Vertex corre
tions to the current-current correlator vanish in the abo
approximations, or originate from quantum interference
fects or coupling to collective modes and thus are hig
order in 1/pF, imp or 1/pFj0 and neglected here. Thus, aft
integration over the cross section of the junction,A, we ob-
tain the current noise,S(z1 ,t1 , t̃ 1),

S5
1

2 S e

2m* i
D 2

lim
r2→r1
r̃2→ r̃1
r̃1→r1

E d2r 1i E d2r̃ 1i~]z1
2]z2

!~]z1̃
2]z2̃

!

3Tr$Ĝ,~ r̃1 ,r2 ; t̃ 1 ,t1!Ĝ.~r1 , r̃2 ;t1 , t̃ 1!%, ~21!

where Ĝ:5ĜK6(ĜR2ĜA) are the particle~,! and hole
~.! correlation functions.

We separate out the momentum component parallel to
junction using the inverse Fourier transformation with r
spect to the difference coordinater i5r1i2r2i ,

Ǧ~r1 ,r2!5 E d2pi

~2p!2
eipi•r iǦ~z1 ,z2 ,pi ,Ri!, ~22!

and assume that the dependence onRi is slow on the scale of
the coherence length, i.e., locally planar; thus, we omitRi .
Near the junction, incident and scattered waves interfere o
scale given by the inverse Fermi momentumpF

21 . We then
make the following ansatz,15,34,35which factors the propaga
tor into rapidly oscillating incident and reflected waves w
wave numbers,6pFz , and slowly varying two-point enve
lope functions,

ť3Ǧ~z1 ,z2!5
1

vFz
(
nm

Čnm~z1 ,z2!eipFz(nz12mz2), ~23!

wherez is the coordinate normal to the interface. The sum
overdirection indicesn andm which are11 or 21, depend-
ing on the sign of the projection of the Fermi momentum
the z axis for incident or reflected waves~see Fig. 2!. When
n appears as an index of a function we use the shorth
notation6 for 61. The diagonal~in the direction of index
space! functions Čnn are related to Shelankov’s two-poin
quasiclassical Green’s functions.36 In the limits, z2→z160,
these components are related to the projection operators

7 iČ11
22

5 p̌75
1

2 S 1̌7
ǧ

2 ip D . ~24!

The functionsČn(2n) are the prefactors of the rapidly osci
lating carrier waves,;e62ipFzz. These amplitudes are
drones—slaved to the quasiclassical propagators and
mately eliminated from the boundary conditions and obse
4-5
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ables such as the current noise. In particular, Zaitse
boundary conditions34 are derived~for details see Ref. 35! by
eliminating the drone amplitudes from a set of linear re
tions connecting the quasiclassical projectorsČnn and the
quasiclassical dronesČn(2n) . This procedure transforms th
linear boundary conditions expressed in terms of the

$Čnm%, into a set of nonlinear boundary conditions for t
quasiclassical projectors,Čnn , and consequently for the qua
siclassical Green’s functions.

For the average current, the expectation value of the
erator in Eq.~18! can be expressed as

I ~z1 ,t1!5
e

8m*
lim

x2→x1

E d2r 1i~]z12]z2!

3Tr$ĜK~x1 ,x2!2 t̂3@ĜR~x1 ,x2!2ĜA~x1 ,x2!#%,

~25!

for the current flowing through the junction along thezaxis.
When we insert the quasiclassical envelope expansions,
~22! and ~23!, the derivatives produce a factoripFz(n1m)
52ipFzdnm , and the current takes the form

I ~z1 ,t !5Aie

2
lim

z2→z1

E d2pi

~2p!2 E de

2p (
n

n

3Tr$t3Ĉnn
K ~z1 ,z2 ,pi ;e,t !%, ~26!

where we neglect terms where the derivative act on qu
classical Green’s functions since they are down by a fa
(pFj0)21 compared to the leading term above. Also note t
the termĈR2ĈA drops out because the spectral current d
sity is odd in energy to this order in (pFj0)21.

When we insert the quasiclassical expressions, Eqs.~22!
and ~23!, into the expression for the noise, Eq.~21!, the
derivatives produce a factor (ipFz)

2( ñ1m)(n1m̃)
5(2ipFz)

2dñmdm̃n , where the indices without~with! a tilde
belong to the first~second! Green’s function. Thus, to quas
classical accuracy we obtain

FIG. 2. We label Green’s functions by an index 1 for the l
~normal! electrode and 2 for the right~superconducting! electrode,
and a direction index6 which denotes the sign of the projection
the Fermi momentumpF on the zaxis. The arrows on each lin
indicates the direction ofpF . Also shown is the notation for the
propagators, coherence amplitudes, and distribution functions.
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S~z1 ,t1 , t̃ 1!5Ae2

2
lim

z̃1→z1

E d2pi

~2p!2 (
nm

nm

3Tr$Ĉnm
, ~ z̃1 ,z1 ,pi ; t̃ 1 ,t1!t̂3Ĉmn

.

3~z1 ,z̃1 ,pi ;t1 , t̃ 1!t̂3%, ~27!

whereA is the cross-sectional area of the junction—which
the result previously obtained by Khlus15 for conventional
NS junctions.

The spectral density of the noise is given by the Four
transform,22 S(z,t,v)5 * dteivtS(z,t,t), which for general
nonequilibrium conditions depends on time. Here we co
sider the dc limit for the voltage-biased junction. Th
steady-state limit is independent of time, so we drop the ti
argument from here on.

The drones, as well as the quasiclassical correlation fu
tions, Ĉnn

: ( z̃1 ,z1)5ĈK6(ĈR2ĈA), are continuous and
single-valued forz̃15z1.35 Thus, we may take the limitz̃1
→z1; the diagonal functions are proportional to the cor
sponding quasiclassical Green’s functions,

lim
z2→z1

Ĉnn
: ~z1 ,z2!5

ĝn
:~z1!

2p
, ~28!

and we introduce the following notation for the drones,

lim
z2→z1

Ĉn(2n)
: ~z1 ,z2!5

d̂n(2n)
: ~z1!

2p
. ~29!

Thus, the current is written as

I 52eNFA E de

4p i (
n561

n Tr^vFzt̂3ĝn
K&n , ~30!

which is thez component of the more general quasiclassi
result for the current density,

j52eNF E de

4p i
Tr^vFt̂3ĝK&pF

, ~31!

whereNF is the normal-state density of states at the Fe
level and

^•••&pF
5NF

21 E d2pF

~~2p!3uv~pF!u
~••• !

denotes a Fermi surface average.
Similarly, the local noise spectrum may be written as

S5e2NFA E de

16p2 (
n561

3Tr^vFz~ ĝn
,t̂3ĝn

.t̂32d̂n(2n)
, t̂3d̂(2n)n

. t̂3!&n , ~32!

where^ . . . &n denotes a Fermi surface average restricted
sgn(pF• ẑ)5n. Although the noise formula in Eq.~32! de-
pends on the drones, they do not require independent ca
lation from their equations of motion, but are expressed
4-6
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terms of the quasiclassical propagators~see below!. We note
that in writing down Eq.~32!, the limit v→0 was taken.

E. Interface boundary conditions

In order to compute the transport current and noise sp
trum we must solve transport equations for the quasiclass
propagators and drones with appropriate boundary co
tions describing the junction. Quasiclassical boundary con
tions describing partially transmitting interfaces betwe
conducting electrodes were derived by Zaitsev34 and
Kieselmann37 for nonmagnetic junctions, and by Millis
et al.35 for magnetically active interfaces. Zaitsev and Ki
selmann’s boundary conditions are a set of nonlinear eq
tions connecting the quasiclassical propagators for incom
and outgoing trajectories at the interface. The material
rameters entering these boundary conditions are the re
tion ~R! and transmission~D512R! probabilities for qua-
siparticles when both electrodes are in their normal sta
This formulation is valid for arbitrary transparency.

The quasiclassical boundary conditions, when one
both electrodes are superconducting, incorporate the eff
of particle-hole coherence of the excitations in the sup
conducting electrodes sl and the presence of additional c
nels for reflection and transmission via branch convers
scattering between particlelike and holelike branches of
citations. A powerful method for handling the interplay b
tween these coherence effects and interface scattering
provided by Eschrig’s reduction38 of the Zaitsev-Kieselmann
boundary conditions using Shelankov’s projecti
operators36 and the Ricatti parametrization for the quasicla
sical propagators.39–41 The boundary condition is expresse
in terms of coherence functions,gR andg̃R, and distribution
functions,xK andx̃K. The coherence functions have a natu
interpretation as local amplitudes for branch conversion:gR

for h→e and g̃R for e→h. Below we express these boun
ary conditions in terms of generalized scattering amplitud
which in the clean limit are directly related to well-know
scattering amplitudes found in scattering theory.22 The con-
siderations below are valid for general nonequilibrium si
ations, but the results presented below are limited to tim
independent states. For nonstationary states,
multiplications are replaced by time convolutions, which
general prevents analytic computations.

We adopt the notation used in Ref. 38 for the cohere
amplitudes and distribution functions. The labeling for fun
tions defined on incoming and outgoing trajectories is a
indicated in Fig. 2. For the distribution functions, the boun
ary conditions can be written as

X1
K5Ree

R x1
K1T̄ee

R x2
K1~2T̄eh

R !x̃2
K , ~33!

X̃1
K5Rhh

R x̃1
K1~2T̄he

R !x2
K1T̄hh

R x̃2
K , ~34!

X2
K5Tee

R x1
K1~2Teh

R !x̃1
K1 r̄ ee

R x2
K , ~35!

X̃2
K5~2The

R !x1
K1Thh

R x̃1
K1 r̄ hh

R x̃2
K , ~36!

where the scattering amplitudes are defined as
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r ee
R 5R1l

R /r , t̄ ee
R 5D1l

R /d, t̄ eh
R 5rdA1l

R , ~37!

r hh
R 5 r̃ 1l

R /r , t̄ hh
R 5D̃1l

R /d, t̄ he
R 5rdÃ1l

R , ~38!

r̄ ee
R 5R2l

R /r , tee
R 5D2l

R /d, teh
R 5rdA2l

R , ~39!

r̄ hh
R 5 r̃ 2l

R /r , thh
R 5D̃2l

R /d, the
R 5rdÃ2l

R . ~40!

The right-hand sides of Eqs.~37!–~40! are defined in Eqs.
~D1!–~D5! of Ref. 38. Note that all quantities depend o
trajectory anglepF and energye, but not on spatial coordi-
natesR since they are evaluated at the junction. The norm
state tunnel barrier transmission and reflection amplitu
are denotedd and r, respectively, while the correspondin
probabilities are denoted byD5d2 andR5r 2.53

The effective transmission and reflection amplitudes,
cluding Andreev scattering, are denoted bytab

R and r ab
R ,

while the corresponding probabilities are denoted asTab
R and

Rab
R . For example,r hh

R is the amplitude for reflection of a
hole on the left side of the junction, whiler̄ ee

R is the ampli-
tude for reflection of an electron on the right side. Similar
t̄ he

R is the transmission amplitude for an electron from t
right side to the left side, including branch conversion into
hole. All quantities with an overbar refer to excitations orig
nating from the right electrode.

The remaining amplitudes are the Andreev reflectio
which appear via the boundary conditions for the cohere
functions,

r he
R 5G̃1

R5r hh
R g̃1

Rr 1 t̄ hh
R g̃2

Rd, ~41!

r eh
R 5G1

R5r ee
R g1

Rr 1 t̄ ee
R g2

Rd, ~42!

r̄ he
R 5G̃2

R5 r̄ hh
R g̃2

Rr 1thh
R g̃1

Rd, ~43!

r̄ eh
R 5G2

R5 r̄ ee
R g2

Rr 1tee
R g1

Rd. ~44!

In the Appendix we summarize the results for the Andre
reflection probabilities and scattering probabilities that en
the Keldysh distribution functions in Tables II and III. Thes
probabilities are expressed in terms of the normal-state
rier transmission and reflection probabilities and the coh
ence amplitudes for particle and hole excitations.

We introduce the notation

ua&5S 1

2 isya
D , ^au5~12 isya* !, ~45!

which is convenient for evaluating observables. For exam
to calculate the charge current we need

Tr$t̂3ua&^bu%52~11ab* !, ~46!

where the factor 2 comes from the spin trace. The Keld
Green’s functions at the junction can now be written in
rather compact form,
4-7
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TABLE I. Scattering amplitudes at a NIS junction. The common denominator isZ511RgRg̃R.

r ee
R 5r (11gRg̃R)/Z rhh

R 5r (11gRg̃R)/Z r̄ ee
R 5r /Z r̄hh

R 5r /Z

r he
R 5Dg̃R/Z r eh

R 5DgR/Z r̄ he
R 5Rg̃R r̄ eh

R 5RgR

tee
R 5d/Z thh

R 5d/Z t̄ ee
R 5d/Z t̄hh

R 5d/Z

the
R 5rdg̃R/Z teh

R 5rdgR/Z t̄ he
R 52rdg̃R/Z t̄eh

R 52rdgR/Z
i
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ĝ11
K 522p iN1

21@x1
Kur he

R &^r he
R u1X̃1

Kt̂1ug1
R&^g1

Ru t̂1#,

ĝ12
K 522p iN2

21@ x̃1
Kt̂1ur eh

R &^r eh
R u t̂11X1

Kug̃1
R&^g̃1

Ru#,

ĝ22
K 522p iN3

21@x2
Ku r̄ he

R &^ r̄ he
R u1X̃2

Kt̂1ug2
R&^g2

Ru t̂1#,
~47!

ĝ21
K 522p iN4

21@ x̃2
Kt̂1u r̄ eh

R &^ r̄ eh
R u t̂11X2

Kug̃2
R&^g̃2

Ru#,

where we introduced the denominators,Ni5uz i u2, for i
51, . . . ,4 with

z1511g1
Rr he

R , z3511g2
Rr̄ he

R , ~48!

z2511g̃1
Rr eh

R , z4511g̃2
Rr̄ eh

R . ~49!

Note that all denominators of the scattering probabilities
Eqs.~33!–~36! ~see Table III in the Appendix! are cancelled
by the denominators,Ni , in Eqs. ~47!; e.g., Ree

R N1
21

5(A/z1)(z1 /uZu2)5A/uZu25Ree
R8 . As a consequence,

common denominator,uZu2, enters all Keldysh propagators

Z511R~g2
Rg̃2

R1g1
Rg̃1

R!1D~g2
Rg̃1

R1g̃2
Rg1

R!1g1
Rg̃1

Rg2
Rg̃2

R.
~50!

This function also appears as the denominator of the reta
Green’s function. Thus, the zeroes ofZ determine the loca
spectrum of excitations, including interface bound states
the junction.

We note that the scattering amplitudes defined above
not exactly coincide with the ones obtained in scatter
theory. There are missing prefactors, which are hidden in
matricesua&^au in Eqs.~47!, and in the distribution functions
xK and x̃K @e.g. in equilibrium,xK5(12ugRu2) tanh (e/2T)].
Inspection shows that our generalized scattering amplitu
can be interpreted as describing the scattering oflocally de-
fined excitations at the junction, while the factors comi
from the matrices and distribution functions give a spec
renormalization due to Andreev reflection along the trajec
ries leading up to~and away from! the interface. For ex-
ample, when a charge current is computed, these renor
izations can be absorbed into the scattering amplitud
which then coincide with results from scattering theo
However, we retained the above definitions since they app
naturally in the boundary condition for Green’s functions.

The above considerations are applicable to station
states of two coupled superconductors driven out of equ
rium. For the special case in which the left electrode is in
normal state,g1

R5g̃1
R50. Using Eq.~46! we obtain the cur-

rent computed at the junction on the left side of the barr
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I 5eNFA E de^vFz@x1
K~11Rhe

R 2Ree
R !1 x̃1

K~11Reh
R 2Rhh

R !

1x2
K~ T̄he

R 2T̄ee
R !1 x̃2

K~ T̄eh
R 2T̄hh

R !#&pF
. ~51!

Explicit expressions for the effective scattering amplitud
are given in Table I for the NIS junction. Equation~51! is
valid for arbitrary stationary nonequilibrium situations, in
cluding spatially dependent coherence and distribution fu
tions. Current conservation is guaranteed for self-consis
calculations.

F. Asymptotic boundary conditions

In the reservoir regions, far from the junction, the dist
bution functions take equilibrium forms, shifted by the loc
potential,

F1~x→2`,e!5 tanh@~e2eV!/~2T!#,

F2~x→1`,e!5 tanh@e/~2T!#. ~52!

The hole distributions follow by symmetry,F̃(e)5F(2e).
We neglect processes where quasiparticles scattered a
junction are scattered back and impinge on the junction
fore they equilibrate. The above distribution functions th
serve as incoming distribution functions in the bounda
condition at the junction. We shall also assume that the tra
parency of the junction is sufficiently small,D!1, that the
current flowing throught the system~which is proportional to
D) due to the applied voltage is small. Then, to lowest or
in D we can neglect the effect of the current on the ord
parameter and write

f K~pF ,R;e!5@ f R2 f A# tanh
e

2T
, ~53!

which is the local equilibrium form for the off-diagona
Keldysh propagator. We note that these assumptions wil
valid also for high-transparency point contacts and for w
junctions with transport primarily through a high
transparency pinhole, since the current in those cases
reduced by the small conducting areaA!pj0

2, where j0

5vF /Tc is the superconducting coherence length.
Under these assumptions, the interface distribution fu

tions are

x1
K5F1 , x2

K5~12ugRu2!F2 , ~54!

x̃1
K5F̃1 , x̃2

K52~12ug̃Ru2!F2 , ~55!
4-8
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where we drop the subscript 2 on coherence functions s
they are superfluous for a NIS system. Thex2

K and x̃2
K terms

then cancel in Eq.~51! by the general tilde symmetry, whic
relates any quantityq̃ to its partnerq as q̃(pF ,R;e,t)5q
(2pF ,R;2e,t)* . However, thex1

K andx̃1
K terms cancel only

at zero bias because particles and holes have opposite ch

G. Drone Green’s functions and noise

To compute the noise in Eq.~32! we need to also comput
the drone amplitudesďn(2n) . The relations connecting th
drones to the quasiclassical propagators are the same e
tions used to obtain the nonlinear boundary condition c
necting the quasiclassical propagatorsǧ16 and ǧ26 .34,35

Thus, we define the symmetric combination of Green’s fu
tions on the two sides (i 51,2) of the interface as

ǧis5ǧi 12ǧi 2 , ~56!

and symmetric and antisymmetric combinations of drone

ďis5ďi 121ďi 21 , ďia5ďi 122ďi 21 . ~57!

The necessary relations are then

ď1s5
1

2AR @~11R!ǧ1s2Dǧ2s#,

ď2s5
1

2AR @Dǧ1s2~11R!ǧ2s#, ~58!

4p i ď1a5ǧ1sď1s2ǧ2sď2s ,

where the first two relations come from the boundary con
tion, and the last relation is derived by making use of
normalization condition for Green’s functions@cf. Eqs.~29!
and~30! of Ref. 35#. We note that we are content with solv
ing for the drones on the left side. Explicit expressions of
drones can then be written down by using the Green’s fu
tion ǧ written in terms of scattering amplitudes in Table
The retarded and advanced drones are

d̂1s
R 522p ir ee

R t̂3 , d̂1s
A 512p ir ee

R* t̂3 , ~59!

d̂1a
R 512p ir ee

R 1̂, d̂1a
A 512p ir ee

R* 1̂, ~60!

while Keldysh drones take the form

B5x1
Kr ee

R r he
R* 1 x̃1

Kr hh
R* r eh

R 2x2
K t̄ ee

R t̄ he
R* 2 x̃2

K t̄ hh
R* t̄ eh

R ,

d̂1s
K 522p i S x1

K~r ee
R 1r ee

R* ! 2 isyB

2 isyB* x̃1
K~r hh

R 1r hh
R* !

D , ~61!

d̂1a
K 512p i S x1

K~r ee
R 2r ee

R* ! 2 isyB

1 isyB* 2 x̃1
K~r hh

R 2r hh
R* !

D .

where isy is the Pauli matrix that describes spin-sing
pairing.
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Since the noise is expressed in terms ofĝ:5ĝK6(ĝR

2ĝA) and d̂:5d̂K6(d̂R2d̂A), we get terms from the
Keldysh parts that depend explicitly on the distribution fun
tions and purely spectral terms that do not contain any
tribution functions. Thus, we separate the noise into t
terms,S5SR-A1SK, where

SR2A~pF ,x502;e!54@~11Rhe
R 2Ree

R !1~11Reh
R 2Rhh

R !#,
~62!

SK~pF ,x502;e!

52~x1
K!22@11Rhe

R 2Ree
R #22~ x̃1

K!22@11Reh
R 2Rhh

R #2

2~x2
K!22~ T̄he

R 2T̄ee
R !22~ x̃2

K!22~ T̄eh
R 2T̄hh

R !2

1x1
Kx̃1

K4ur he
R r hh

R* 1r ee
R r eh

R* u22x1
Kx2

K4ur he
R t̄ he

R*

1r ee
R t̄ ee

R* u21x1
Kx̃2

K4ur he
R t̄ hh

R* 2r ee
R t̄ eh

R* u2

1 x̃1
Kx2

K4ur eh
R t̄ ee

R* 2r hh
R t̄ he

R* u22 x̃1
Kx̃2

K4ur eh
R t̄ eh

R*

1r hh
R t̄ hh

R* u21x2
Kx̃2

K4u t̄ he
R t̄ hh

R* 1 t̄ ee
R t̄ eh

R* u2. ~63!

The above results are valid for general nonequilibrium d
tribution. The distribution functionsxi

K andx̃i
K can always be

expressed as local equilibrium distributions plus anomal
nonequilibrium distributions. Then the purely spectral term
SR-A, are cancelled exactly by local equilibrium terms inSK

that do not contain a Fermi function.
Equations~51! and ~63!, combined with Table I for the

reflection and transmission probabilities, are the cen
equations needed for calculating the conductance and n
spectrum for NIS junctions with disorder, unconvention
pairing and interface screening currents. These formulas
expressed in a form that is closely related to the wa
function-based scattering theory applicable to clean syste
This connection is based on the identification between
scattering amplitudes in the wave-function approach and
retarded Ricatti amplitude,gR, which, in the clean limit, re-
duces to the local Andreev reflection amplitude,v/u. How-
ever, the Ricatti representation for the propagators is m
general and is capable of incorporating the effects of disor
and inelastic scattering. In our formulation, all observab
can then be expressed in terms of the generalized scatte
amplitudes collected in Table I and in the tables in the A
pendix. However, the generalized scattering amplitudes
only defined in terms of the quasiclassical Green’s functio
through the Ricatti parametrization. We emphasize this f
by keeping the superscriptR on all quantities defined in
terms of the retarded Green’s function.

In summary, to compute the conductance and noise s
trum in voltage-biased NIS junctions we solve the quasicl
sical transport equations~5! for ǧ self-consistently with the
gap equations~12!, the t-matrix equations~16! and~17!, and
the surface coupling to the screening current,~Eqs. 13 and
14!. We then compute the effective reflection and transm
sion probabilities and distribution functions and use E
~51! and ~63! to calculate the conductance and the no
spectrum.
4-9
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III. CONDUCTANCE AND DIFFERENTIAL SHOT NOISE

In the following we use these results to calculate the c
ductance and noise spectrum for NIS junctions withd-wave
superconductors. In the zero-temperature limit, Eq.~51! for
the current can be written as

eRnI ~V!5eV1
1

D E
2eV

0

de^vFz@R~pF!1Rhe
R ~e,pF!

2Ree
R ~e,pF!#&pF• ẑ.0 . ~64!

The corresponding zero-temperature shot noise, compute
z502, from Eqs.~63! and Table I, takes the form

RnS~V!5
2

D E
2eV

0

de^vFz$Ree
R ~e,pF!@12Ree

R ~e,pF!#

1Rhe
R ~e,pF!@12Rhe

R ~e,pF!#

12Ree
R ~e,pF!Rhe

R ~e,pF!%&pF• ẑ.0 . ~65!

The normal-state junction resistance is given byRn
21

52Ae2NFvFD, where D[^(cosu)D(pF)&pF• ẑ.0 is the

transportbarrier transparency; cosu5p̂F•z>̂0 is the angle of
incidence measured relative to thezaxis. Note that in the
normal-state limit for the superconducting electrode, the A
dreev reflection probability vanishes,Rhe

R (e,pF)→0, the ef-
fective e→e reflection probability reduces toRee

R (e,pF)
→R(pF), and the integrand of Eq.~64! vanishes. Thus, we
recover Ohm’s law for the junction I-V characteristic. Sim
larly, the shot noise in the NIN limit is proportional t
^vFzR(pF)D(pF)&pF

, which for small transparency corre

sponds to the Schottky resultS52eI. For higher transpar-
ency the current noise is reduced compared to the Scho
result.

The above expressions have in the clean limit the sa
forms as well-known scattering theory results.13,22–24,42–45

Equation~64! also agrees with calculations of spectral cu
rent densities including impurity scattering and subdomin
pairing in Ref. 38.

In the following we present calculations of the zer
temperature conductance]I /]V and differential shot noise
]S/]V, and focus on effects of magnetic fields, impur
scattering, and subdominant pairing. The exact angle de
dence of the tunneling probability is not particularly impo
tant for our purposes; so we take it to have the form p
dicted by an interfaced-function potential,

D~pF!5D0

cos2 u

12D0 sin2 u
, ~66!

whereD0 is the transparency for normal incidence.

A. Pure dx2Ày2 wave: Effects of a magnetic field

In zero external magnetic field, the angle resolved diff
ential shot noise is suppressed to zero at zero voltage and
a peak at ;D(pF)uD0(pF)u, where D0(pF)5DB1g

(z

→`)hB1g
(pF) is the gap in the bulk. This result is due to th
05450
-

at

-

ky

e

-
t

n-

-

-
as

resonant enhancement of Andreev reflection by the sur
bound state: around the bound state energy~e50! within an
energy interval set by the bound state widthwb(pF)
5aD(pF)uD0(pF)u, the probability of Andreev reflection is
enhanced to unityRhe

R (e50,pF)51 independently of the
smallness of the transparency and independently of the s
of the order parameter near the junction. The numerical p
actor a is due to the reduction of the bound state wid
caused by the suppression of the order parameter nea
surface. It was computed for smallD in Ref. 46 and can be
estimated to be approximately 1/4. As the Andreev reflect
probability is enhanced to unity, the normal reflection pro
ability is reduced to zero,Ree

R (e50,pF)50. The result of
zero noise atV50 then follows directly from Eq.~65!. The
suppression of]S/]V to zero at zero voltage for zero field i
robust under angle integration since the zero-energy bo
state is dispersionless. The satellite peak will be located
voltage of the order̂ wb(pF)&pF

'D0Tc/2p. This noiseless
character of the zero-energy bound states in a clean sy
was recently discussed in Refs. 23, 24, and 45.

In an externally applied magnetic field, the screening c
rents produce a Doppler shift of the spectrum. The bou
state resonance is shifted accordingly. The point of s
pressed noise is then shifted to finite voltage and the pea
]S/]V is pushed to higher voltages linearly with increasi
magnetic field. These characteristics of the field evolution
the shot noise spectrum are shown in Fig. 3. The disper
of the Doppler-shifted ABS’s leads to nonzero different
shot noise at all voltages. In particular, at zero voltage
differential shot noise develops with increasing magne
field strength as shown in the inset of Fig. 3.

B. dx2Ày2 pairing with impurity scattering:
Andreev versus tunnel limits

The sensitivity of the noise to changes in the low-ene
surface excitation spectrum implies that the results forS(V)

FIG. 3. Zero-temperature differential shot noise as a function
voltage in the clean limit for several different external magne
fields. Inset: The field evolution of the zero-voltage differential sh
noise. The transparency of the interface isD050.1.
4-10



te

or

cl

a
te
ri

n
e
n-
rgy

he
up

he
the
m-
-
-

is-

c-
ec-

at-

cle
he
im-

gle-
ot
s. 4

ion

r-

uc
er
Th
e

ar

g

e to
rob-

so-
the
l to

SHOT NOISE IN NORMAL METAL–d-WAVE . . . PHYSICAL REVIEW B 68, 054504 ~2003!
in cleand-wave superconductors23,24,45are strongly modified
by disorder. Here we consider the effects of impurity scat
ing on the noise spectrum.

In Figs. 4 and 5 we plot the differential shot noise f
several pair-breaking parameters,G, for scattering in both the
Born ~s!1! and the unitary limits~s51!, respectively. Im-
purity renormalization leads to broadening of quasiparti
states that depends on the pair breaking parameter,G, and the
scattering cross section,s.

The local self-energy at the interface is different from th
in the bulk because of the formation of surface bound sta
In particular, the surface bound state has a large impu

FIG. 4. ~a! Differential shot noise for several different pai
breaking parametersG for scattering in the Born limit (s51024).
~b! The zero-voltage value of differential shot noise and cond
tance as a function ofG. The squares and diamonds are the num
cally computed results, while the lines are a guide to the eye.
junction transparency isD050.1. In the inset the zero-voltage valu
of the differential shot noise is plotted as a function ofq ~cf. the
text! in the Born limit @squares—same data as in~b!# and unitary
limit @circles—same data as in the~b! Fig. 5#.

FIG. 5. The same as in Fig. 4 but for scattering in the unit
limit ~s51!.
05450
r-

e

t
s.
ty

renormalization in the Born limit, but is weakly modified i
the unitary limit.47 This is opposite to the situation in th
bulk, where scattering in the unitary limit is more detrime
tal to thedx22y2 order parameter and produces a low-ene
impurity band in the density of states.

Impurity broadening of the surface ABS’s reduces t
resonant transmission in the Andreev channel but opens
the single-particle tunneling channel. In Fig. 6 we plot t
reflection and transmission probabilities for scattering in
unitary limit for several values of the pair breaking para
eter. With increasingG, the reduction of the Andreev reflec
tion probability Rhe

R @Fig. 6~b!# is accompanied by an in
crease of the normal reflection probabilityRee

R @Fig. 6~a!# and
an increase of the transmission probabilities, both transm
sion without branch conversionTee

R (12ug̃Ru2) @Fig. 6~c!#
and transmission with branch conversionThe

R (12ugRu2)
@Fig. 6~d!#. In particular, the transmission probabilities a
quire a resonance form, similar to that in the Andreev refl
tion channel.

We note that probability is always conserved during sc
tering at the interface; it can be checked that

Ree
R 1Rhe

R 1Tee
R ~12ug̃Ru2!1The

R ~12ugRu2!51. ~67!

The third and fourth terms, which describe single-parti
tunneling, are identically zero in the subgap region in t
absence of impurity scattering, but become increasingly
portant as the impurity renormalization increases~see Fig.
6!. When the Andreev resonance is reduced and sin
particle tunneling becomes important, the differential sh
noise at zero voltage becomes nonzero, as shown in Fig
and 5. This is in line with the phenomenological discuss

-
i-
e

y

FIG. 6. Scattering probabilities for different pair-breakin
strengths for tunneling ranging from the the Andreev limit~solid
line curves! to the tunnel limit~dashed-double-dotted curves!. The
parameters corresponds to unitary scattering in Fig. 5~a!, and all
probabilities were computed at an incidence angle of 45° relativ
the interface normal. The resonance in the Andreev reflection p
ability Rhe(e) at zero energy~due to the bound state! is broadened
by impurity scattered and suppressed in the tunnel limit. The re
nance width in the Andreev limit is set by the transparency of
interface. Note that the sum of all probabilities is always equa
one; cf. Eq.~67!.
4-11
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TOMAS LÖFWANDER, MIKAEL FOGELSTRÖM, AND J. A. SAULS PHYSICAL REVIEW B68, 054504 ~2003!
in Ref. 45. Thus, we find that the noise-less character of
zero-energy surface bound state is quickly lost when intrin
broadening is present.

To quantitatively assess the importance of impurity sc
tering in tunneling, the contribution to the width of the bou
state from impurity broadening, which we denotewi , has to
be compared to the contribution set by the transparenc
the interface,wb , introduced in the preceding section. Th
width wi is related to the imaginary part of the impuri
self-energyS3

R near the surface. Unfortunately, a rigoro
analytic calculation ofwi in which the spatial dependence
the impurity self-energy and the order parameter are ta
into account has so far not been carried out~see, however,
the scaling analysis in Ref. 47!. We estimate the width to be
wi5cuIm$S3

R(e50,z501)%u, where c is numerical factor
that corrects for the spatial dependence of the self-energ
In the limit wi@wb , which we call the tunnel limit, intrinsic
broadening is large and only single-particle tunneling is i
portant. The Andreev reflection can then be neglected and
shot noise for low transparency reduces to the Schottky f
S52eI and does not contain any new information that ca
not be extracted from the current. On the other hand, in
limit wi!wb , which we call the Andreev limit, impurity
broadening is negligible, single-particle tunneling is su
pressed and Andreev reflection is resonant. In this limit
shot noise is nontrivial. In Figs. 4 and 5, the crossover
tween these two regimes is displayed for impurity scatter
in the Born and unitary limits. It is clear that the impuri
renormalization near the surface is much larger in the B
limit compared to the unitary limit: the crossover appears
G/Tc;1023 in the Born limit, which is two orders of mag
nitudes smaller than in the unitary limit. However, if we pl
Rn]S/](eV) at V50 as a function ofq5wi /^wb(pF)&pF

,

with the numerically computed ImS3
R(e50,z501) and an

estimatec51/3 in the Born limit andc53 in the unitary
limit, we find that the crossover appears nearq;1 in both
limits, see inset of Fig. 4~b!.

C. dx2Ày2¿ is and dx2Ày2¿ idxy symmetries

Finally, we consider the signatures of a surface ph
transition from an inhomogeneousdx22y2 surface phase to a
surface state with mixed symmetry:dx22y21 is or dx22y2

1 idxy . In the clean limit the noise spectrum is sensitive
the change of the surface excitation spectrum induced by
subdominant pairing channel. When a complex order par
eter develops near the surface, time-reversed partners o
twofold degenerate zero-energy bound states are shifte
opposite directions from the Fermi level. The positive ene
bound state spectra for these mixed-symmetry phases
shown in Fig. 1. A surface current and an associated spo
neous magnetic field are generated. This symmetry brea
can be detected in the conductance as a spontaneous sp
of the zero-bias conductance peak, or as a spontaneous
netic signal from the surface.

In the shot noise, for a clean system, we thus expect
point of vanishing noise to disperse with angle of inciden
in a similar way the Doppler shift changes the shot no
spectrum in an applied field. In addition to the dispersion
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the bound states with angle, there is an additional mechan
of dispersion due to electron-hole dephasing, which appe
at nonzero energies when the order parameter has a sp
dependence~pair-breaking suppression near the surfac!.
These mechanisms of dispersion of the bound state cons
to eliminate much of the structure one might otherwise
pect to observe in the shot noise near zero voltage. Ne
theless, for a clean superconductor, characteristic differen
can be seen in]S/]V for the cases of subdominants anddxy
order parameters.

In Fig. 7 we plot the conductance and differential sh
noise for several different interaction strengths in both ths
anddxy subdominant channels. There is no difference in
signatures of the two different subdominant components
the conductance: in both thes and dxy cases the zero-bia
conductance peak is split and appears at a finite voltage
lated to the size of the subdominant order parameter. On
other hand, in the shot noise, there is a double-peak struc
in both cases, with the high-voltage peak bigger than
low-voltage peak for thes-wave case, but with a reversal i
spectral weight between low- and high-voltage peaks for
dxy case. This reversal reflects the difference in the disp
sion of the bound states for the two different pairing cha
nels, which affects the point of suppressed shot noise~as
well as the associated peak in]S/]V). The shift to finite
voltage is larger and disperses less in thes-wave case, com-
pared to thedxy case.

Application of a magnetic field introduces additional di
persion, and the angle integration leads to a reduction of
structures. For both types of order parameters, the do
peak evolves with increasing magnetic field strength int
single peak on a scaleH/H0 set by the size of the subdom
nant gap@see Fig. 8~a!#.

As in the pured-wave case discussed in the precedi
section, impurity scattering broadens the bound state re
nance and reduces the structure in the shot noise. Thus,

FIG. 7. ~a!,~b! Conductance and~c!,~d! differential shot noise
for an order parameter with ans subdominant component~left col-
umn! and adxy subdominant component~right column! for several
different interaction strengths. The barrier transparency isD0

50.1, and the system is in the Andreev limit (G50.001Tc , s
51024).
4-12
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SHOT NOISE IN NORMAL METAL–d-WAVE . . . PHYSICAL REVIEW B 68, 054504 ~2003!
increasing pair-breaking parameter the two peaks in the
noise merge into a single peak and, in the tunnel limit,
differential shot noise reduces to the conductance;
Fig. 8~b!.

IV. DISCUSSION AND SUMMARY

In conclusion, shot noise can be a useful tool to extr
detailed information about properties of junctions betwe
normal metals and unconventional superconductors. H
ever, a necessary condition is that the system is in the
dreev limit, wi!wb , as shown in Figs. 4-6. This is a rath
restrictive condition at present, since in most experiments
zero-bias conductance peak is broadened by disorder,~see,
however, Ref. 48!.

In several recent experiments3–5 the density of states
around single impurities or inhomogeneities were map
out byc-axis STM spectroscopy. The results are discusse
terms of low-energy states bound to a single-impurity sc
tering in the unitary limit, in line with theoretical works in
Refs. 49–51. Thus, if impurities in the high-Tc supercon-
ductors are indeed scattering in the unitary limit, we exp
that the surface bound states will not be particularly bro
ened, and tunneling in the Andreev limit should be possi
to achieve experimentally in a clean sample. The mean
path corresponding toq!1 in the unitary limit~for the pa-
rameters in Fig. 5! is estimated to be of the order of tenths
coherence lengths, which is achievable experimentally.

FIG. 8. ~a! Magnetic field dependence of differential shot noi
for a dx22y21 is order parameter withTc250.05Tc . Here G
50.001Tc ands51024. ~b! Differential shot noise as a function o
pair-breaking parameterG in the Born limit (s51024). HereTc2

50.2Tc . In both casesD050.1.
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There are other sources of broadening of the surfa
interface bound states that were not considered in this pa
In particular, it is clear that surface roughness will drive t
system towards the tunnel limit, because nonspecular sca
ing of quasiparticles to the nodes of the order parame
broadens the bound states just as impurity scattering d
Therefore, to extract information from shot noise it will b
important to have a specularly reflecting junction, or tunn
from an STM tip directly into theab plane of a specular
portion of a superconductor surface.

Under these circumstances, information about the su
conductor properties can be deduced via the particular p
erties of the zero-energy surface bound states. The shot n
in a purely dx22y2-wave superconductor is suppress
around low voltage and approaches zero in the clean lim
The characteristic magnetic field dependence shown in Fi
can then be used to test the theory. The zero-voltage
noise level changes according to the inset of Fig. 3, and
satellite peak is linearly pushed out with increasing magn
field strength. The double-peak structure shown in Fig
serves as a fingerprint of the symmetry of the subdomin
pairing channel.
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APPENDIX

In this appendix we tabulate the Andreev reflection pro
abilities expressed in terms of the barrier reflection and tra
mission probabilities and coherence amplitudes for incom
trajectories in Table II, and in Table III we summarize th
transmission and reflection probabilities that enter
boundary conditions for the distribution functions in Eq
~33!–~36!.

TABLE II. The Andreev reflection probabilities. The
denominators are listed in Table III.

r he5G̃1
R5@R(11g̃2

Rg2
R)g̃1

R1D(11g̃1
Rg2

R)g̃2
R#/z1

r eh5G1
R5@R(11g2

Rg̃2
R)g1

R1D(11g1
Rg̃2

R)g2
R#/z2

r̄ he5G̃2
R5@R(11g1

Rg̃1
R)g̃2

R1D(11g̃2
Rg1

R)g̃1
R#/z3

r̄ eh5G2
R5@R(11g1

Rg̃1
R)g2

R1D(11g2
Rg̃1

R)g1
R#/z4
TABLE III. Scattering probabilities forxK distribution functions in the stationary SIS junction setup.

T̄hh5Du11g̃1
Rg2

Ru2/uz1u2 T̄he5RDug̃1
R2g̃2

Ru2/uz1u2 Rhh5Ru11g̃2
Rg2

Ru2/uz1u2 z1511Rg2
Rg̃2

R1Dg̃1
Rg2

R

T̄ee5Du11g1
Rg̃2

Ru2/uz2u2 T̄eh5RDug1
R2g2

Ru2/uz2u2 Ree5Ru11g2
Rg̃2

Ru2/uz2u2 z2511Rg2
Rg̃2

R1Dg1
Rg̃2

R

Thh5Du11g̃2
Rg1

Ru2/uz3u2 The5RDug̃2
R2g̃1

Ru2/uz3u2 r̄ hh5Ru11g1
Rg̃1

Ru2/uz3u2 z3511Rg1
Rg̃1

R1Dg̃2
Rg1

R

Tee5Du11g2
Rg̃1

Ru2/uz4u2 Teh5RDug2
R2g1

Ru2/uz4u2
r̄ ee5Ru11g1

Rg̃1
Ru2/uz4u2 z4511Rg1

Rg̃1
R1Dg2

Rg̃1
R
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34A.V. Zaı̆tsev, Zh. Éksp. Teor. Fiz.86, 1742 ~1984! @Sov. Phys.

JETP59, 1015~1984!#.
35A. Millis, D. Rainer, and J.A. Sauls, Phys. Rev. B38, 4504

~1988!.
36A. Shelankov, J. Low Temp. Phys.60, 29 ~1985!.
37G. Kieselmann, Phys. Rev. B35, 6762~1987!.
38M. Eschrig, Phys. Rev. B61, 9061~2000!.
39Y. Nagato, K. Nagai, and J. Hara, J. Low Temp. Phys.93, 33

~1993!.
40M. Eschrig, J.A. Sauls, and D. Rainer, Phys. Rev. B60, 10 447

~1999!.
41N. Schopohl and K. Maki, Physica B204, 214 ~1995!.
42G.E. Blonder, M. Tinkham, and T.M. Klapwidjk, Phys. Rev. B25,

4515 ~1982!.
43M.P. Anantram and S. Datta, Phys. Rev. B53, 16 390~1996!.
44J.P. Hessling, V.S. Shumeiko, Y.M. Galperin, and G. Wendin, E

rophys. Lett.34, 49 ~1996!.
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