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Shot noise in normal metal-d-wave superconducting junctions
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We present theoretical calculations and predictions for the shot noise in voltage-biased junctigns,of
superconductors and normal metal counterelectrodes. In the clean limit fdswithee superconductor the shot
noise vanishes at zero voltage because of resonant Andreev reflection by zero-energy surface bound states. We
examine the sensitivity of this resonance to impurity scattering. We report theoretical results for the magnetic
field dependence of the shot noise, as well as the fingerprints of subdorsirentd,, pairing channels.
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[. INTRODUCTION to the shot noise. We show that the resonant nature of the
Andreev reflection via the surface bound states in a clean
It is now widely accepted that the order parameter in thed,>_,2 superconductor can be used to extract additional in-
superconducting state of the cuprates Has ,» symmetry.  formation from the shot noise that cannot be obtained from
Several experiments, including tricrystal ring experiménts, conductance measurements alone. We discuss how the sur-
corner junction experimenfsand thec-axis scanning tunnel- face Andreev bound staté8BS’s) are broadened by impu-
ing microscopy(STM) probes of impurity state’,” have all  rity scattering. The impurity effect is reflected both in the
provided strong evidence for the broken reflection symmetryconductance, which is related to the local density of states at
of the d,2_,2 order parameter. the interface, and the shot noise, which reduceS+t®el
Experiments based on tunneling within taé plane are  when impurity scattering dominates the intrinsic width of the
another class of experiments that provide valuable informasurface ABS’s.
tion about the properties of the cuprates. Conductance mea- There are theoretical reasons to expect an additional, sub-
surements on planar or point contadty STM) normal  dominant pairing state, e.g. with or d,, symmetry, to be
metal—highT, superconducting junctions and on Josephsorpresent in equilibrium under favorable circumstart¥s!®
junctions(e.g., grain boundarie¢gprobe the electronic states The formation of surface states at the Fermi level, in combi-
of the cuprates near the surface or at the interface. In additionation with an attractive, subdominant pairing interaction,
to changes in the atomic-scale structure of the interface, thiavors a mixed-symmetry order parameter, e.g., a surface
dy2_y2 superconducting state is highly distorted by interfacephase withd,2_y2*is or dy2_,2*id,, symmetry. The sub-
scattering and disorder. The electronic spectrum is stronglgominant component is predicted to have a phase: of2
modified, and thed,>_,2 order parameter is in general sup- relative to the dominand,2_,> component and thus to ex-
pressed on the coherence length scale. In fact, a standahibit spontaneously broken time-reversal symmeitrysym-
feature of theab-plane conductance is a large zero-bias con-metry). The internal phase of the order parameter leads to a
ductance peakzBCP).5~8 Its sensitivity to impurity scatter-  shift of the bound state energies below the Fermi level, thus
ing and the splitting of the peak in a magnetic field agredowering the surface free energy and generating a spontane-
well with theoretical predictior’s'! of surface Andreev ous surface curreftt’
bound states with large spectral weight that provide a reso- The splitting of the Andreev states also leads to the pre-
nant channel for tunneling near zero bias. Normal scatteringdiction that the ZBCP should spontaneously split as a func-
of quasiparticles by the surface from a positive lobe of thetion of voltage? Such a splitting has been observed in Y-Ba-
dy2_,2 order parameter to a negative lobe, combined withCu-O YBCO near optimal doping?°However, in contrast to
Andreev reflection by the suddem phase shift(sign  the general consensus about the 2 pairing symmetry for
changeg, leads to a zero-energy bound st¥te"*In the case the bulk phase of the cuprates, the nature of the surface
of a speculaf110] surface all trajectories for quasiparticles phase, including the possibility of brokeh symmetry, is
are associated with a sign change of the order parameter, andsettled®2! In the following we also discuss the “finger-
thus the spectral weight of the Andreev states is very largeprints” of subdominant pairing that may be observable in the
In this paper we investigate theoretically the charge curshot noise.
rent through voltage-biased normal metal—-insulating- The theory of shot noise in mesoscopic, metallic systems
barrier-d-wave superconductdNIS) junctions subject to an has been used in several recent experiments to gain informa-
external magnetic field directed along thexis. We extend tion about tunneling in mesoscopic systems; see, e.g., the
the theory for the current fluctuations of conventional NISrecent review in Ref. 22. Earlier predictions for shot noise in
junctions by Khlug® to voltage-biased NIS junctions with d-wave NIS junctions were published by Zhu and Tiidt
unconventional pairing correlations, as well as the effects ofvas shown in a non-self-consistent calculation that for a
field-induced surface currents on the current fluctuations. Weleand-wave superconductor the Andreev resonance associ-
present calculations of both the mean charge current and treed with the surface Andreev bound states suppressed the
charge current fluctuations, which at zero temperature reducghot noise to zero. It was confirmed in Ref. 24 that this effect
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also holds when self-consistency of the order parameter iwhere the Nambu field operators, W (x)
taken into account. Recent theoretical work on noise in:(%(X),%(X),ﬂ(x),l//lr(x))", and ¥(x)=¥'(x) incor-
d-wave Superconductor-insulator-supercondut®8) junc-  porate particle-hole coherence of the superconducting state.
tions addresses the effects of surface disorder, interfacge yse the notation defined in Ref. 27 for the two-point
states, and magnetic fields on the multiple Andreev reflectiofnctions where®(t) is the Heaviside function{A,B}

in this system, which is an important mechanism for noise in- Ag+gAa and[A,B]=AB—BA. We also use the short-
voltage-biased Josephson junctiéné® hand notation= (x.t).

Here we report a detailed study of the shot noise and A compact formulation of the nonequilibrium equations is
specifically address physical conditions that are likelygptained in the Keldysh formulation in which the set of

present at an NIS interface. The shot noise is shown to bRIambu-matrix propagatoréR’A'K are grouped into axz2

particularly sensitive to the spectrum of surface states and tReIdysh matrix:
disorder. We present results for the magnetic field depen- '
dence of the shot noise and demonstrate the sensitivity of the R GK
results obtained for cleashwave superconductors to changes G(p.R:et) = f dre-i(P:r—en (

o &) @

in the low-energy electronic spectrum by equilibrium surface
currents and impurity scattering. We focus on fi&0] ori- . . Ki fth ¢
entation of an NIS interface to the cuprate superconductof! 'S MOSt convenient to work in terms of the center-of-mass

since for this orientation the influence of the Andreev boung?d relative coordinatesR=(x+x")/2=(Rt) and r=x
states is most pronounced. —x"=(r,7), and Fourier transform with the relative space

In Sec. Il we describe our model of the normal metal—and time coordinates. The quasiclassical propagators are then

unconventional superconductor contact, beginning with Aefined in terms otan integration of the full Keldysh-Nambu
brief review of the quasiclassical Green’s function techniquematrix propagatorG(p,R;e,t), over an energy shell that is
that we use to compute observables. We discuss the boun@mall compared with the Fermi energis(p—pg)|<e.
ary conditions for the nonequilibrium propagators, coherence<Eg,
amplitudes, and distribution functions and express these
boundary conditions in terms of generalized scattering am- . ) _ 1

; - : . 9(pr, ;R )=
plitudes. Explicit solutions are used to obtain results for the a

transport current and spectral density for current noise under ) ) ) ) .
nonequilibrium steady-state conditions. In Sec. Il we 1€ quasiclassical propagator is defined by dividing out the
present the results for the shot noise in voltage-biased N1¥/€ight of the quasiparticle pole in the spectral functian,
junctions withd-wave pairing symmetry for junctions with and by convention premultiplying by the matrik;=751.
disorder near the interface. We discuss the effects of magi/e denote a Nambu matrix with a caret, while Keldysh ma-
netic fields and screening currents and surface phase transiices are denoted with a ‘breve’. Thus, is the third Pauli
tions on the noise spectrum. Throughout the paper we useatrix in the particle-hole sector of Nambu space, anig 1
units for whichz=kg=1, and we choose the sign conven- the identity Keldysh matrix.
tion e=—|e|. For pure spin-singlet pairing considered here the quasi-
classical propagatorsg®*X, may be parametrized in
Il. THEORY AND INTERFACE MODEL particle-hole space by scalar amplitudes for the diagonal
(quasiparticle and off-diagonalCooper pair propagators,
To compute the average current and fluctuations of the
current we use the quasiclassical Green's function (gx fx)

AX_
X g

“dg, mG(pERY. (3

—&¢

method”?8and the Keldysh formalism to calculate nonequi- 9= (4)
librium properties. The relevant information about the spec-
trum of current-carrying states and their distribution func-whereX=(R,A,K). We consider the case where the diamag-
tions are contained in a set of nonequilibrium matrix Green’snetic coupling of the charge currents to the magnetic field
function: the retardedR), advanced A) and Keldysh K)  dominates the paramagnetic Zeeman coupling, in which case
propagators, g?*K(pg ,R;€,t), which are 44 matrix the spin degrees of freedom are inert. The components of the
propagators in the combined spin and particle-hole spacguasiclassical propagators are then defined in terms of spin
(Nambu space that depend on the Fermi momentupg,,  scalar diagonal propagatogs; andg”, and spin-singlet off-

the excitation energy, and space and time coordinat®, diagonal propagators* and fX. These components are not

andt. The quasiclassical propagators are related to the fulill independent, but are related by symmetries that follow

Nambu propagators: from the fermion anticommutation relatiofs.
For calculating the low-frequencyw<A, eV) conduc-
GR(x,x") = —i0(t—t"){{P(x), ﬁ(x')}% tance and noise in NIS tunnel junctions we need only time-

independent propagators. The steady-state nonequilibrium
N , . , — uasiclassical Keldysh-matrix propagator obeys a matrix
GAX) =IO —D{T(), FOY (D gandoon squation, propag Y
GR(x,x")=—i([¥(x), ¥(x')]), [e73—0—3, §]+ive-Vg=0, (5
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where 7=ed1 is the electrostatic potential andi=A pairing interactiop(cf. Ref. 19. The mec.hanism for pairing
+iimp represents the order parameter and impurity selfin the cuprates is not unsolved, and indeed there may be

energy. The transport equation is supplemented by the nof % P80 Bre.SsE RS & BRE B 8 SUEEE T o
malization conditiong?= — 721, (Refs. 29 and 30and by g P g prop

" | .__function of doping and disorder. For example, a relatively
boundary conditions connecting the propagators at the '”te%'imple two-channel model based on electronic coupling to

face. When there is no possibility for confusion, we do notyiterromagnetically correlated spinexcitations and  to
display the dependence gfand on (pg,R;€). Equation  phonons leads to dominadjz_,2 pairing over a wide range
(5) represents coupled equations for the retarded, advancegf doping, but with significant subdominant pairing interac-
. tions in all other symmetry channéf$These subdominant
[H®A, gRA]+ive- VERA=0, (6)  pairing channels are predicted to play an important role in
the local electronic structure of surface superconducting state
near an insulating barrier or other interfdcé?!
NRAK _ AKYA L aRSK _ SKaA | iy,  waK_ In this paper we consider the signatures of subdominant
HTG G R+ G727 =277 ive- V7 =0, @ pairing in the shot noise. For this purpose we assume the
where HRA= e7,— 5 — 3RA is defined in terms of the exci- dominant pairing channel hak._,» symmetry and consider
tation energy.e, the coupling to external fields,, and the Subdominant pairing in the or d,, pairing channels, i.e.,

self-energiesSRA. Similarly, the normalization condition )\Blg>)\BZg )\Alg' The Agq channel may also have an attrac-

and Keldysh propagators,

expands to tive eigenvalue for spin-fluctuation dominant pairing, but
this order parameter is suppressed on Hatt0] and[100]
gRA gRA=— 721, gRg"-g¥ g*=0. (8)  boundaries and is particularly sensitive to surface disorder,

so we do not consider this subdominant channel for NIS
The retarded and advanced functions determine the particlganctions.
hole coherence functions and spectral properties at the NIS Below the superconducting transition temperatuFe,
interface, while the KeldySh function contains additional the order parameter amp”tude is proportiona| to B’ig ba-
information on the nonequilibrium distribution of these gjg function, 7g, :\/E(f)i_f’;z/)- However, even a small at-
9

sfrates. The computat!on gfinvolves solving the qqasmla;- tractive subdominant eigenvalueg_ or A5, can at low
sical transport equations for the normal metal—insulating- 2g 1g

barrier—superconductor system together with a set of self€Mperature generate a transition to a state with a mixed

consistency equations for the impurity and pairing self-Symmetry, with an order parameter that acquires an addi-

energies and boundary conditions in the bulk reservoirs anfional component proportional to gge corresponding eigen-

at the interface. function, 78,5 = \/prpy or 17A19=1. Thus, in general we
write the order parameter as

A. Pairing model

The pairing correlations are described by the pairing self- A(Pe,R) = 2 AL (R) 7,(Pp). (11)

energy,A. In the leading ordefweak-coupling approxima-

tion, the Keldysh component vanishes and the retarded anthe gap equation separates into three self-consistency equa-
advanced self-energies are independent of energy. The resuliens for each relevant pairing channel,

ing self-consistency condition is the BCS gap equation,

e de
A +e de . Aa(R):)\a< 7’/cz(pF) J7 H fK(pF ,R;E) . (12)
A(DF,R)=<?\(DF,D'F) j, me(p{:,R;e) . (9 € o
Pr The solution of the transport equation and boundary con-

wherefK(pg ,R;€) is the off-diagonal quasiclassical Keldysh ditions lead to coupling between the componetg(R).

propagator. We consider spin-singlet superconductivity deJhe cutoff €. and pairing interaction),, are eliminated
rived from a pairing interaction of the form in favor of the instability temperature$,, , using the solu-

tion of the linearized gap equation\'=In(T/Te,)
, , + [(del2¢) tanh /2T). The overall phase of the order pa-
M(Pe . PF) = 2“ N aa(PF) 7a(PF), (100 rameter(11) can be eliminated for a NIS system, but the
relative phases between the different components that remain
where the sum is over the relevant irreducible repre-are determined by the minimum of the free energy. At suffi-
sentations of the crystal point groupDg.,, « ciently low temperature, the lowest-energy state ngarlf]
e{Ag(swave)B;4(dy2_y2—wave) Bog(dy,—wave), Ayq(g surface is always a mixed-symmetry phase with spontane-
—wave)}, and\, and n,(pg) are the corresponding eigen- ously brokenT symmetry, in which the subdominant order
values and eigenfunctions for pairing in channelThe rel-  parameter acquires a finite value with a relative phase of
evant channels are defined by the dominant attractive eigent /2.1 Consequently, we consider three possible order
values for each irreducible representation obtained fronparameters(l) pured,2_y2, (2) dy2_y2+is, and(3) dy2_y2
solutions of the linearized gap equation with the microscopictid,,. Caseq2) and(3) are illustrated in Fig. 1, where the
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pairing interaction parameters are chosen so that the ord@aramagnetic current originates from the Doppler splitting of
parameter in the bulk region is always putg .2, and the the ABS’s, which preferentially favors the paramagnetic re-
subdominant components are stable near the surface withinsponse from the bound stafe$he field scale in Eq(14) is
layer of the order of a few coherence lengths. Ho=®o/(m&\), where®,=c/2|e| is the flux quantum.

B. Magnetic field and screening currents C. Impurity self-energy

zero-bias conductance peaks observed in ab-plane tunneliggsorder. We include the leading-ordén UPgCimp, Where
sfpectgc;%%gpy is the splitting of th’e ZBCP for low magneticeimp is the mean free patheffects of disorder within the
fields.”"*"The energy of the ABS's is shifted away from the yqqe| of isotropic scattering of quasiparticles by impurities
Fermi level by screening currents. The origin of this effect IS(cf. Ref. 33. In this model the impurity self-energy is given

t_he coupling of.the quasiparticle current to _the superﬂowby the quasiparticle-impurity matrix and the average impu-
field generated in response to the magnetic field, rity concentrationp,

DA=Vg-Ps T3, (13 S imp(PE R €) = Nimpt (P&, P R €), (15

where the condensate flow field is given by the gauge- v - e .
invariant gradient of the phasg,= X[V — (e/c)A], where wheret(pg,pg ,R; €) satisfies a Bethe-Salpeter equation for

A is the vector potential. We include this coupling here inrepgatgd scgttering Of. quasiparticles by impurﬁfialéor isq-
order to investigate the sensitivity of the noise spectrum t&roplc impurity scattering defined by a scattering amplitude,

the spectral shift of the surface ABS's. Indeed as we showor thet-matrix equations for the retarded and advanced self-

below the shot noise is particularly sensitive to the Dopplerenergles have the solutions
shift of the zero-energy surface states.

The condensate flow fieldys, is calculated by solving A uo[ 1+ UoNE(GRA(Pe R €))p ]
Maxwell’s equation self-consistently with the surface cur- tRAR; €)= — — : >, (19
rent, supplemented with the boundary conditions for mag- 1-[uoNe(g™ (pF’R’E»pF]

netic fieldB—0 for the Meissner state far from the surface

andB— H., at the surface. For strong type-ll superconduct-and the Keldysh component is given by

ors, such as the cuprates, with a magnetic penetration length

N> &, the solution of Maxwell's equation to leading order KN ER<QK> A (17)
in the small parametef, /) is ps(z) =pse” ?* with F Pem

Psove Hex 1 (> . The scattering amplitudey,, defines thesswave scatter-

T. Hy Xfo dzjy(2), (14 ing phase shiftg,= arctanfNzup), while the impurity con-
centration and normal-state density of states define an energy

wherej,(z) is the paramagnetic part of the current flowing scalel’o=n;y,,/(7Ng). We use the more common param-

parallel to the interfacécomputed via Eq(31) below]. The etrization of the impurity scattering model in terms of the
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dimensionless scattering cross sections sin’ &, and the wherej=Tr[p J]is the expectation value of current operator.
pair breaking parametel; =T, sir? &, or equivalently the The observable noise is fpu_nd by evaluating the average of
mean-free path(n,=vg/2l. this operator over the statistical ensemble.

The impurity self-energy renormalizes the excitation In what follows we consider the effects of scattering by
spectrum Via,e—,z(R)ZG_ES(G,R), whereE? is the 75 pqmt |mpur|t|es_§ wave in the superconducting electrode
component ofiﬁnp. For a pured,2_,2 pairing state, the im- with d-waye p?]mng. For tTe steady—fstatﬁ conductance and
purity renormalization of the order parameter vanishes b)f# rent dn0|tseftt € staysttlca alv?_rag? ort't N n\olls;a reduces to
symmetry; the effects of pair-breaking are included through. ¢ Product of two-paint corretation functions. vertex correc-

. o ~'tions to the current-current correlator vanish in the above
the renormalized excitation spectrum. As a result the solutio

. : approximations, or originate from quantum interference ef-
of the gap equation shows a reduction of the order paramet ; ; .
; L . . ; ects or coupling to collective modes and thus are higher
amplitude with increasing pair breaking parameiér, For

mixed symmetry pairing, e.g., at the surface, and in the presl?:,[c‘ia err;?iolr?gig]rp tﬁ[a lC/POFSgSO :engtiQﬁ%lff;id.uhnirt?&]TCvuesbg_ﬂer
ence of field-induced screening currents, the pairing self- 9 J '

energy is, in general, nonvanishing and must be calculatefin the current noise(z;,ty,t4),

self-consistently with the renormalization of the excitation 1 2
e
spectrum. S==|——] lim fdzr szr 0, — 0, ) (i — 0
In general the self-energy also includes electron correla- 2 ( 2m*i) S U 192, ™ 92,) (97, ~ 9;)
tion effects generated by electron-electron and electron- T,—T,

phonon interactions. In what follows we consider a simpli- T1—r
fied model for the metallic electrodes in which the A ~ A ~

quasiparticles are governed by an effective one-electron XTH{G(T1raity 1) G (ry oty 1)}, (21
Hamiltorjian with a par.abolic band structure. Thus, the (?n|ywhereé2:éKi(éR_éA) are the particle<) and hole
electronic cc_)rrelatlons mcludec_] here are those that COI’_ltI_’Ibut(9>) correlation functions.

to the effective massn*, and give rise to superconductivity. — \yg separate out the momentum component parallel to the
In this caseyg=pe/m*, and the charge current carried by a jynction using the inverse Fourier transformation with re-

normal qua_siparticle i®ve=(e/m*)pg. Both _the current spect to the difference coordinate=ry;—r;,
and the noise spectrum are then calculated in this effective

one-electron theory, modified to include pairing correlations 5 d2p|| L

in the superconductor, effects of screening currents on the G(rqy,rp)= f—ze'pu'fHG(zl,zz,pH R, (22
surface excitation spectrum, and impurity scattering in both (27m)

electrodes. and assume that the dependencdpis slow on the scale of

the coherence length, i.e., locally planar; thus, we dRpit

_ _ o Near the junction, incident and scattered waves interfere on a
Physical properties, such as the local excitation spectrunycgle given by the inverse Fermi momentpe‘nl. We then

current response, and correlation functions, are expressed {ake the following ansat?:3*35which factors the propaga-

terms of the quasiclassical Green’s function. Here we argyr into rapidly oscillating incident and reflected waves with

interested in computing the charge current and the mean-fielg e numbers+ pe,, and slowly varying two-point enve-
fluctuations of the current for the NS junction. The junction lope functions z

current is an expectation value, in a nonequilibrium en-
semble(p), of the Heisenberg operator for the charge current,

D. Current and current-current correlations

e 1 . )

7'36(21,22): _2 CI/,LL(Zl122)elpFZ(V217M22)1 (23)

. —e UFz vu

I(r,t) = lim ——(V1— V) . . . .
Xo—xp 2 | wherez is the coordinate normal to the interface. The sum is

. . overdirectionindicesv and u which are+1 or —1, depend-
X[1(%) by (X)) — (X)) ¢ (X2)], (18 ing on the sign of the projection of the Fermi momentum on
Fluctuations of the current are related to the current-thezaXIS for |nC|d¢n(; or refﬂecfted ;/_vaveﬁsee Flg.tﬁz Wﬁer;h d
current correlation function, which is defined in terms of ¥ appears as an index of a function we use the shorthan
the operator, notation = for 1. The diagonalin the direction of index

spacé functions éw are related to Shelankov’s two-point

S(r.t, ) =KL+ n) +K(rt+ ), (19 quasiclassical Green’s functioffsIn the limits, z,—z,*0,
2 these components are related to the projection operators,
~ e . _ - -
K(rlatlrtl):(T> lim lim (V1 =V,)(V1—V,) . 1/, @
2m*i ri—ry X2 X1 FiCtt=ps=z|157—— (29
?2—>7(1 - 2 —1
X[l (Xa) thy (1) = ¥ (X0) h (X2) ] The functionsC,_ , are the prefactors of the rapidly oscil-
Ty ~ 'ty 5 lating carrier waves,~e*2PrZ  These amplitudes are
X[ (% X X X ,
[1(x2) v ( f) Vi) (X2 drones—slaved to the quasiclassical propagators and ulti-
—j(ry,tyj(ry,ty), (200  mately eliminated from the boundary conditions and observ-
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N\ ~, N ~
[rf ¥ x¥, X [r§ v5 x§ x% 1 <~ _ & d?
g1- 1, 71, Xy, Xy g2+ 2. %2 X5, X3 S(z;,t 1) =A— lim J' sz 2 ”
232 2m)?
X Tr{éjﬂﬁl 121, T !tl)a—3é;u
2 X(21,Z1,p)3t1 )73}, (27)
where A is the cross-sectional area of the junction—which is
the result previously obtained by Khidsfor conventional
w ~ N N4 ~ > NS junctions.
§,, Lo F7 x XX G, 1vf 5 xx kK1 NS

The spectral density of the noise is given by the Fourier
22 _ iwT H
FIG. 2. We label Green’s functions by an index 1 for the left transforTB .S(Z’t’w)d_..f dTZ S(Zét’T)’ V\{h'Ch {_c')r general
(norma) electrode and 2 for the riglisuperconductingelectrode, nonequilibrium conditions depends on time. Here we con-

and a direction index: which denotes the sign of the projection of sider the dc limit for the voltage-biased junction. This
the Fermi momentunps on the zaxis. The arrows on each line Stéady-state limitis independent of time, so we drop the time

indicates the direction opr. Also shown is the notation for the argument from here on. _ _ .
propagators, coherence amplitudes, and distribution functions. The drones, as well as the quasiclassical correlation func-

tions, C>(%;,z;)=CX+(CR-C*), are continuous and
ables such as the current noise. In particular, Zaitsev'single-valued fofz;=z,.%® Thus, we may take the limi,

boundary conditior® are derivedfor details see Ref. 3%y  —z,; the diagonal functions are proportional to the corre-
eliminating the drone amplitudes from a set of linear rela-sponding quasiclassical Green’s functions,

tions connecting the quasiclassical project@rs, and the

quasiclassical droneé,,(_v). This procedure transforms the lim €= (zl,zz):gV (Zl), (28)
linear boundary conditions expressed in terms of the set, 19—z 2m

{CW}, into a set of nonlinear boundary conditions for the
guasiclassical projectoréw, and consequently for the qua-

and we introduce the following notation for the drones,

siclassical Green’s functions. . d=_ . (z))

For the average current, the expectation value of the op- lim Cf(,y)(zl,zz)z % (29
erator in Eq.(18) can be expressed as -7 ™

o Thus, the current is written as
|(Zl;t1):8W lim J dzrlH(&zl_&zz) de
X2y | = —eN,:.A f m 21 14 Tr<U FZ’7\-3g|§>V7 (30)
XTr{GK(xl,x2)—3-3[éR(xl,x2)—GA(xl,xz)]}, o ) )
which is thez component of the more general quasiclassical
(29 result for the current density,

for the current flowing through the junction along thexis. q
When we insert the quasiclassical envelope expansions, Egs. j=—eN f —éTr(vF%ggK> (31)
(22) and (23), the derivatives produce a factgg,(v+ u) 4ri Pe?

=2ipgzd,,, and the current takes the form whereNg is the normal-state density of states at the Fermi

ie dzpH de level and
I(zl't):Ale'Tzlf 2np) 2n% S
A <"'>p,:_NF ﬁ(...)
xTH{75CY,(21,2,,p):€,1)}, (26) ((2m)°|v(pg)

where we nealect terms where the derivativ ¢ on Idenotesa Fermi surface average.
eré we neglect terms where the derivative act on quasi- Similarly, the local noise spectrum may be written as

classical Green’s functions since they are down by a factor
(Peé&o) ~* compared to the leading term above. Also note that

the termCR— CA drops out because the spectral current den- S=e’NgA f
sity is odd in energy to this order irpgé&o) 2.

When we insert the quasiclassical expressions, E283.
and (23), into the expression for the noise, E@®1), the

derivatives produce a factor ip(g,)2(v+u)(v+ ) where( .. .), denotes a Fermi surface average restricted to
=(2ipFZ)26;M5;w, where the indices withoutvith) a tilde  sgn(g-z) =v. Although the noise formula in Eq32) de-
belong to the firstsecond Green'’s function. Thus, to quasi- pends on the drones, they do not require independent calcu-

classical accuracy we obtain lation from their equations of motion, but are expressed in

de
167251

XTHvr§) 730, 73— Ay ) 7201y, 73)),, (32
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term; of t.h.e quasiclassical propa_ga_t(rree below. We note PR = RRllr’ Tse: Dﬁ/d, YeRh: rdA% ’ (37)
that in writing down Eq.(32), the limit o—0 was taken.
R _~R TR _~R TR _ AR
E. Interface boundary conditions Th=To/r,  thh=Duld,  the=rdAy, (38)
In order to compute the transport current and noi_se spec- TR=RR/r, tR=DR/d, t2=rdA%, (39)
trum we must solve transport equations for the quasiclassical
propagators and drones with appropriate boundary condi- = R f ~r “ ~r
tions describing the junction. Quasiclassical boundary condi- Mh=Ta/r, thy=D3/d, to.=rdAj. (40

tions describing partially transmitting interfaces between i i i )
conducting electrodes were derived by Zaiféevand 1he right-hand sides of Eq¢37)—(40) are defined in Egs.

KieselmanA’ for nonmagnetic junctions, and by Milis (D1)—(DS) of Ref. 38. Note that all quantities depend on
et al for magnetically active interfaces. Zaitsev and Kie- (r&jectory anglepe and energye, but not on spatial coordi-
selmann’s boundary conditions are a set of nonlinear equd!atesR since they are evaluated at the junction. The normal-
tions connecting the quasiclassical propagators for incominétate tunnel barrier transmission an_d reflection ampllt_udes
and outgoing trajectories at the interface. The material pad'® denoted! andr, respectlvel32/, while th? F)csorrespondlng
rameters entering these boundary conditions are the reflefrobabilities are denoted by=d” andR=r.

tion (R) and transmissioiD=1—7R) probabilities for qua- The effective transmission and reflection amplitudes, in-
siparticles when both electrodes are in their normal state€luding Andreev scattering, are denoted tfy, and rf,,
This formulation is valid for arbitrary transparency. while the corresponding probabilities are denoted gsand

The quasiclassical boundary conditions, when one ORSB. For examplesy, is the amplitude for reflection of a
both electrodes are superconducting, incorporate the effectmle on the left side of the junction, Wth’Q?e is the ampli-
of particle-hole coherence of the excitations in the supertude for reflection of an electron on the right side. Similarly,
conducting electrodes sl and the presence of additional chaﬁRe is the transmission amplitude for an electron from the

nels for reflection and transmission via branch conversiongnt side to the left side, including branch conversion into a
scattering between particlelike and holelike branches of expgle. All quantities with an overbar refer to excitations origi-
citations. A powerful method for handling the interplay be- nating from the right electrode.

tween these coherence effects and interface scattering was pe remaining amplitudes are the Andreev reflections

provided by Eschrig's reductidhof the Zaitsev-Kieselmann \yhich appear via the boundary conditions for the coherence
boundary  conditions using Shelankov's  projections,ctions
operators? and the Ricatti parametrization for the quasiclas-

sical propagator®~*! The boundary condition is expressed

R _TR R 7R TRTR
in terms of coherence functiong® andyR, and distribution fe=TT=ronYal + thny2d, “D
functions,x andx¥. The coherence functions have a natural R R R R .-R R
interpretation as local amplitudes for branch conversigh: Fen=I1=reev1l Ttcey2d, (42)
for h—e andyR for e—h. Below we express these bound- _
ary conditions in terms of generalized scattering amplitudes, TR =T8=TR ySr+t}.y7d, (43)
which in the clean limit are directly related to well-known
scattering amplitudes found in scattering theGr¥he con- TR=TR=TR ) Rr +18,Rd. (44)

siderations below are valid for general nonequilibrium situ-

ations, but the results presented below are limited to time- |, the Appendix we summarize the results for the Andreev
independent  states. ~ For nonstationary  states,  allefiection probabilities and scattering probabilities that enter
multiplications are replaced by time convolutions, which inhe Keldysh distribution functions in Tables Il and IIl. These

general prevents analytic computations. probabilities are expressed in terms of the normal-state bar-

We adopt the notation used in Ref. 38 for the coherencejg transmission and reflection probabilities and the coher-
amplitudes and distribution functions. The labeling for func-gnce amplitudes for particle and hole excitations.

tions defined on incoming and outgoing trajectories is also \we introduce the notation
indicated in Fig. 2. For the distribution functions, the bound-

ary conditions can be written as
_ _ |a)=( . (al=(1-ioya*), (45)
X =REeXs + Tooxs +(— T , (33 toye
oKk RK R K TRk which is convenient for evaluating observables. For example,
X1 =RnpXy + (= The) Xz + ThpXa (34 to calculate the charge current we need
X5=TeeXt +(— TEXL +TeeXs (35 Tr{#sla)(Bl}=2(1+ap*), (46)
X§=(—Tﬁe)XT+TEh7<f+T§h7<§, (36) where’the fac'tor 2 comes from the spin trace. Thg KeIdysh
Green’s functions at the junction can now be written in a
where the scattering amplitudes are defined as rather compact form,

054504-7
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TABLE |. Scattering amplitudes at a NIS junction. The common denominatdr=ig + R yRy®.

rBe=r(1+Y5R)iz M= (1+ Y57z Tee=r/Z Th=1/Z
rR=DyR/z ren=DYRZ TR=RR To=RR
tR=d/z R =d/z R=diz T —diz
the=rd %z teh=rd "Iz R=—rdyRz TR = —rdyRiz
aK AN —1r oKl R R KA R R|~
gl+_ 27T|Nl [Xllrhe><rhe|+xl7'l|71><71|7'1]! lZeNFAf dE(UFZ[X§(1+ Rﬁe_ R§9+7(1(1+ ReRh_ Rﬁh)
aK N e Ka R R |~ KIZR\ /<R
01 =— 27N, (X3 7| r g (ropl 7o+ X3 v (vl R TR. <K, =R =
' 2 Dmlrereln G on X (The= Teo + 32 (Teh—Th D (51
K -1 UK R IK~ | R\ R|~
g5 = —2miNg [ [Fhe)(Thel + X 7l v2)( 721 7], “ Explicit expressions for the effective scattering amplitudes

are given in Table | for the NIS junction. Equatidbl) is

—_— o~ valid for arbitrary stationary nonequilibrium situations, in-
aK in s Ka R ~ K R . . . . .

05+ = —2miN X5 7o T e (Far 71+ X5 ¥5)(¥5]1, cluding spatially dependent coherence and distribution func-
tions. Current conservation is guaranteed for self-consistent

where we introduced the denominatons;=|¢;|?, for i :
—1. ... 4with calculations.
L=1+9FrR,  Ga=1+95rR,, (48) F. Asymptotic boundary conditions
_ _ In the reservoir regions, far from the junction, the distri-
L=1+9xR =1+ (490  bution functions take equilibrium forms, shifted by the local
otential,
Note that all denominators of the scattering probabilities inp
Egs.(33)—(36) (;ee Table I .in the Append)xare cagcelklad Fi(x——,€)= tanh[ (e—eV)/(2T)],
by the denominatorsN;, in Egs. (47); e.g., RoN;
=(AI£)(£1112|7)=A1|Z|>=RE,. As a consequence, a Fo(Xx— +,€)= tanh[ €/(2T)]. (52)

common denominatotZ|?, enters all Keldysh propagators, 5
The hole distributions follow by symmetr;(e)=F(—e€).
Z=1+R(y5y8+ ¥R + DR+ 73R + ¥R y53R. We neglect processes where quasiparticles scattered at the
(500  junction are scattered back and impinge on the junction be-

fore they equilibrate. The above distribution functions then

rve as incoming distribution functions in the boundary
condition at the junction. We shall also assume that the trans-
6}Sarency of the junction is sufficiently smai<1, that the

This function also appears as the denominator of the retard
Green’s function. Thus, the zeroes Dfdetermine the local
spectrum of excitations, including interface bound states,

the junction. . o .
. . ' current flowing throught the systefwhich is proportional to
We note that the scattering amplitudes defined above d%) due to the applied voltage is small. Then, to lowest order

not exactly coincide with the ones obtained in scatterinqn D we can neglect the effect of the current on the order
theory. There are missing prefactors, which are hidden in thBarameter and write

matrices|a)(a| in Egs.(47), and in the distribution functions
xK andxX [e.g. in equilibriumxX=(1—|R|?) tanh €/2T)]. .
Inspection shows that our generalized scattering amplitudes %(pe,R;€)=[fR—fA] tanh==, (53)
can be interpreted as describing the scatterintpadlly de-

fined excitations at the junction, while the factors coming, vih is the local equilibrium form for the off-diagonal

from the _maf[rices and distribution fun_ctions give a Sp.eCtralKeldysh propagator. We note that these assumptions will be
renormalization due to Andreev reflection along the trajecto-

) . . valid also for high-transparency point contacts and for wide
;?ns ll:adlrr:gnu; Ctﬁ(;ng eclwr?gnir(')smc:)hrg mtt;;fat%%sgor;ﬁg;ma{_nctions with transport primarily through a high-
ample, w ge current | puted, - . ansparency pinhole, since the current in those cases are
izations can be absorbed into the scattering amplitudes . 2
. o X . reduced by the small conducting arda<wé&;, where &
which then coincide with results from scattering theory. - IT. is the superconducting coherence lenath
However, we retained the above definitions since they appeaEUJ dC Ith up t'u ! tgh interf di tg.b' tion f
naturally in the boundary condition for Green’s functions. tion n rer ese assumptions, the interface distribution func-
The above considerations are applicable to stationar})O Sare
states of two coupled superconductors driven out of equilib-

K_ K_ _ R|2
rium. For the special case in which the left electrode is in the xp=F1, xp=(1-|yY9)F,, (54)
normal state;f="%%=0. Using Eq.(46) we obtain the cur- = -
rent computed at the junction on the left side of the barrier: X1 =F1, %p=—(1-[yY*)F, (55
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where we drop the subscript 2 on coherence functions since Since the noise is expressed in termsgof=gK+ (§R
they are sup_erfluous for a NIS system. 'Ngeandig term_s -9" and d==d*=(dR-d"), we get terms from the
then cancel in Eq(51) by the general tilde symmetry, which Keldysh parts that depend explicitly on the distribution func-
relates any quantity to its partnerq as q(pg,R;e,t)=q  tions and purely spectral terms that do not contain any dis-
(—pe.R;— €,t)*. However, the\ andX¥ terms cancel only tribution functions. Thus, we separate the noise into two

at zero bias because particles and holes have opposite charg@ms,S=S*"+S%, where

G. Drone Green’s functions and noise S¥A(pe x=07;€) = 4[(1+ Rie— R +(1+ Rey— Rﬁh()gé)

To compute the noise in E¢32) we need to also compute

the drone amplitudeélv(_y). The relations connecting the SK(pg,x=0";¢)
drones to the quasiclassical propagators are the same equa-
tions used to obtain the nonlinear boundary condition con-

necting the quasiclassical propagatdys. and §,. .>*3° Kign =R =R.2 oKi2a/=R =R .2
Thus, we define the symmetric combination of Green’s func- ~(X2)"2(The= Ted) "~ (X2)“2(Tep— Thp)

tions on the two sidesi €1,2) of the interface as KK 41.R .R R.Rk12 _KuK4l.RTR
X1 X1 4 Rel fn T ed en |2~ X1 X2 4| fetha

= — (x{)?2[ 1+ R~ REJ?— (X)22[ 1+ R, — R 12

9is=0i+— 08—, (56)
and symmetric and antisymmetric combinations of drones as

RTRx% (2 KK R TRx RTRx% (2
+reclee +X1X24|rhethh_reeteh

~K K R+R RTRx (2 ~KgK RSTR
S . L 5 +X1X24(r chtea —Thnthe |~ X1 %2 4{ M enten
dis=di+—+di—, dig=di_—di_,. (57
’ RTR KyK4[fRTR* L TRTR
+rintam |2+ X5XE 4| Rt + togtan 2. (63

The necessary relations are then
The above results are valid for general nonequilibrium dis-
5 5 5 tribution. The distribution functions} andx can always be
dls:m[(l+R)gls_D923]! expressed as local equilibrium distributions plus anomalous
nonequilibrium distributions. Then the purely spectral terms,
SRA | are cancelled exactly by local equilibrium termsSf
that do not contain a Fermi function.

Equations(51) and (63), combined with Table | for the
reflection and transmission probabilities, are the central
equations needed for calculating the conductance and noise
spectrum for NIS junctions with disorder, unconventional
where the first two relations come from the boundary condipairing and interface screening currents. These formulas are
tion, and the last relation is derived by making use of theexpressed in a form that is closely related to the wave-
normalization condition for Green’s functiofisf. Egs.(29)  function-based scattering theory applicable to clean systems.
and(30) of Ref. 35. We note that we are content with solv- This connection is based on the identification between the
ing for the drones on the left side. Explicit expressions of thescattering amplitudes in the wave-function approach and the
drones can then be written down by using the Green’s funcretarded Ricatti amplitudey®, which, in the clean limit, re-
tion § written in terms of scattering amplitudes in Table I. duces to the local Andreev reflection amplitudéy. How-

. 1
dZS:ﬁ[Dgls_(l—‘rR)gZS]! (58

47Tiala: glsals_ QZSBZS )

The retarded and advanced drones are ever, the Ricatti representation for the propagators is more
general and is capable of incorporating the effects of disorder
d=—2mirR7;, dig=+2mirXs,, (590  and inelastic scattering. In our formulation, all observables
can then be expressed in terms of the generalized scattering
a;ea: +27-rir§ei, a/lxa: +27-rir§;i, (60) ampli_tudes collected in Table _I and in the_ tables in the Ap-
pendix. However, the generalized scattering amplitudes are
while Keldysh drones take the form only defined in terms of the quasiclassical Green’s functions,

through the Ricatti parametrization. We emphasize this fact
by keeping the superscrig® on all quantities defined in
terms of the retarded Green’s function.

_ WK, R . Rx | wK .Rx R KiRTRx  ~KiRx R
B=XiTed he TX1Thn Fen™ X2 teethe = X2 thn tehs

XS(rR 4R —io.B In summary, to compute the conductance and noise spec-

~K . 1\l ee ee y . . . . .

dfe=—2mi ) . K, R . Re ) , (61 trum in voltage-biased NIS junctions we solve the quasiclas-
—loyB X1 (FhntThn sical transport equation®) for § self-consistently with the

KR Re . gap equationle),_thet-matrix equat_ions{16) and(17), and
X1 (Fee=lee —ioyB the surface coupling to the screening curréis. 13 and
+io.B* —XK(rR (R 14). We then compute the effective reflection and transmis-
Y 1hheThh sion probabilities and distribution functions and use Egs.
where ioy is the Pauli matrix that describes spin-singlet(51) and (63) to calculate the conductance and the noise
pairing. spectrum.

afa= + 2
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IIl. CONDUCTANCE AND DIFFERENTIAL SHOT NOISE F

L

[N
=
T

In the following we use these results to calculate the con- 2
ductance and noise spectrum for NIS junctions witivave
superconductors. In the zero-temperature limit, &4) for
the current can be written as

[
< w
T T

w

R_dS/d(eV) at V=0

—
53
<

1 ro
eR,1I(V)=eV+Z—)f de(ve L R(PE) + R €,PF)
—ev

R dS/d(eV)

~RE€,pF) Dpp220- (64)

The corresponding zero-temperature shot noise, computed ¢ 5
z=0", from Eqgs.(63) and Table I, takes the form

2 (0
RaS(V) = 2_) fﬁevddUFz{ReRe(f:pF)[l_ RcF;e(f’pF)] % ' 0|.1 ' 0!2 ' 0!3 ' 0.4
eV/T,
R R
Rhe(€,Pr)L1 = Rhe(€.Pr)] FIG. 3. Zero-temperature differential shot noise as a function of
+2RE €,pr)REL(€,PF)})p. . 250- (65)  Vvoltage in the clean limit for several different external magnetic
fields. Inset: The field evolution of the zero-voltage differential shot
The normal-state junction resistance is given By!  noise. The transparency of the interfaceDg=0.1.
=2Ae’NeveD, where D=((cos)D(Pg))p..2-0 IS the

transportbarrier transparency; c@s-pr-Z=0 is the angle of  resonant enhancement of Andreev reflection by the surface
incidence measured relative to tzaxis. Note that in the bound state: around the bound state engegy0) within an
normal-state limit for the superconducting electrode, the Anenergy interval set by the bound state width,(pg)
dreev reflection probability vanisheﬁﬁe(e,pF)HO, the ef- =aD(pg)|Ao(pPr)|, the probability of Andreev reflection is
fective e—e reflection probability reduces t®RZ(e,ps)  enhanced to unityRR(e=0,pg)=1 independently of the
—R(pg), and the integrand of Eq64) vanishes. Thus, we smallness of the transparency and independently of the shape
recover Ohm’s law for the junction I-V characteristic. Simi- Of the order parameter near the junction. The numerical pref-
|ar|y, the shot noise in the NIN limit is proportionaj to actor a is due to the re_ductlon of the bound state width
(vER(PE)D(PE))yp,.. Which for small transparency corre- caused by the suppression of the order parameter near the

. . surface. It was computed for smdll in Ref. 46 and can be
sponds to the Schottky resuli=2el. For higher transpar- estimated to be approximately 1/4. As the Andreev reflection

?er]sctilltthe current noise is reduced compared to the Schottky\ahijity is enhanced to unity, the normal reflection prob-

. . - ability is reduced to zeroR}(e=0,pg)=0. The result of
The above expressions have in the clean limit the sam : e i
forms. as V\\//ell-k);powf]SIsc:tteri\rgg Itheory resdﬁé?_'mﬁ_g Zero noise av=0 then follows directly from Eq(65). The

. i ) suppression 0§S/JV to zero at zero voltage for zero field is
Equation(64) also agrees with calculations of spectral cur-,qpst under angle integration since the zero-energy bound

rent densities including impurity scattering and subdominangiae s dispersionless. The satellite peak will be located at a
pairing in Ref. 38. voltage of the ordewy(pg))p.~DoT/2. This noiseless

In the foIIowngjg we pr/es\,/ent gaégftfjlatlor)sl OL the ZET0" character of the zero-energy bound states in a clean system
temperature conductane#/dV and differential shot noise, - recently discussed in Refs. 23, 24, and 45.

9S/9V, and focus on effects of magnetic fields, impurity | 4 externally applied magnetic field, the screening cur-
scattering, and subdominant pairing. The exact angle depepants produce a Doppler shift of the spectrum. The bound
dence of the tunneling probability is not particularly impor- state resonance is shifted accordingly. The point of sup-
tant for our purposes; so we take it to have the form prepressed noise is then shifted to finite voltage and the peak in

dicted by an interfacé-function potential, #S/V is pushed to higher voltages linearly with increasing
magnetic field. These characteristics of the field evolution of
D(pg)=D cos' 6 66) the shot noise spectrum are shown in Fig. 3. The dispersion

P pysirt e’ of the Doppler-shifted ABS’s leads to nonzero differential

shot noise at all voltages. In particular, at zero voltage the
whereD; is the transparency for normal incidence. differential shot noise develops with increasing magnetic
field strength as shown in the inset of Fig. 3.
A. Pure d,2_,2 wave: Effects of a magnetic field

In zero external magnetic field, the angle resolved differ- B. dy2_y2 pairing with impurity scattering:
ential shot noise is suppressed to zero at zero voltage and has Andreev versus tunnel limits
a peak at ~D(pg)|Ao(pe)|, where Ao(pg)=Ag, (2 The sensitivity of the noise to changes in the low-energy

—) 7, (Pr) is the gap in the bulk. This result is due to the surface excitation spectrum implies that the resultsS(r)
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Born limit 6=10""

20

R 3S/d(eV)

n

—_
=

=& R“BS/B(eV) at V=0
o RnBI/BV at V=0

1
0.01
I/T,

1
0.2
eV/Tc

0.4

FIG. 4. (a) Differential shot noise for several different pair-
breaking parameters for scattering in the Born limit =10 *).
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FIG. 6. Scattering probabilities for different pair-breaking
strengths for tunneling ranging from the the Andreev liigsiolid
line curves to the tunnel limit(dashed-double-dotted curye3he
parameters corresponds to unitary scattering in Fig), &nd all

(b) The zero-voltage value of differential shot noise and conducyyopapilities were computed at an incidence angle of 45° relative to
tance as a function df. The squares and diamonds are the numeri-the interface normal. The resonance in the Andreev reflection prob-
cally computed results, while the lines are a guide to the eye. Th‘ébility Rio(€) at zero energydue to the bound statés broadened
junction transparency iB,=0.1. In the inset the zero-voltage value by impurity scattered and suppressed in the tunnel limit. The reso-
of the differential shot noise is plotted as a functioncofct. the  pance width in the Andreev limit is set by the transparency of the
text) in the Born limit[squares—same data as(in] and unitary  jnterface. Note that the sum of all probabilities is always equal to
limit [circles—same data as in tiil) Fig. 5]. one; cf. Eq.(67).

in cleand-wave superconductdrs®**°are strongly modified )

by disorder. Here we consider the effects of impurity scatter/€normalization in the Born limit, but is weakly modified in
ing on the noise spectrum. the unitary limit’" This is opposite to the situation in the

In Figs. 4 and 5 we plot the differential shot noise for bulk, where scattering in the unitary limit is more detrimen-

several pair-breaking parameteFs for scattering in both the @l t0 thed,z_,2 order parameter and produces a low-energy
Born (o<1) and the unitary limitgo=1), respectively. Im- Impurity band in the density of states. ,
purity renormalization leads to broadening of quasiparticle 'MPurity broadening of the surface ABS's reduces the

states that depends on the pair breaking paranigtand the resonant transmission in.the Andreev channel but opens up
scattering cross sectionr the single-particle tunneling channel. In Fig. 6 we plot the

The local self-energy at the interface is different from that"€flection and transmission probabilities for scattering in the

in the bulk because of the formation of surface bound stated!Nitary limit for several values of the pair breaking param-

In particular, the surface bound state has a large impuritFte”- With in_c_reaséngf, the reduction of the Andreev reflec-
tion probability Ry, [Fig. 6(b)] is accompanied by an in-

crease of the normal reflection probabilRf, [Fig. 6@&)] and

an increase of the transmission probabilities, both transmis-
sion without branch conversiofia(1—|3R|?) [Fig. 6(c)]

and transmission with branch conversidrf,(1—|7|?)
[Fig. 6(d)]. In particular, the transmission probabilities ac-
quire a resonance form, similar to that in the Andreev reflec-
tion channel.

Unitary limit =1

(b)

20

20

wn
T

—~ — T=0.04T, e .

2 — T=007T, | We note that probability is always conserved during scat-
3 — T=0.10T, tering at the interface; it can be checked that

10 I=0.16T, L 10

) R, + R+ TR [572) + TR(L- Y37 =1 (67)

The third and fourth terms, which describe single-particle
tunneling, are identically zero in the subgap region in the
absence of impurity scattering, but become increasingly im-
portant as the impurity renormalization increagsse Fig.
6). When the Andreev resonance is reduced and single-
particle tunneling becomes important, the differential shot
FIG. 5. The same as in Fig. 4 but for scattering in the unitarynoise at zero voltage becomes nonzero, as shown in Figs. 4
limit (o=1). and 5. This is in line with the phenomenological discussion

61 R 0S/3(eV) at V=0
&—© R IOV at V=0
| |

01 015
/T

c

1
0.05

|
0.2

02 (. 08
eV/l'c
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in Ref. 45. Thus, we find that the noise-less character of the
zero-energy surface bound state is quickly lost when intrinsic
broadening is present.

To quantitatively assess the importance of impurity scat- 2
tering in tunneling, the contribution to the width of the bound &
state from impurity broadening, which we denetg, has to ~
be compared to the contribution set by the transparency o
the interfacew,, introduced in the preceding section. The
width w; is related to the imaginary part of the impurity

dz 2+ is
Xy

dz 2+ id
Xy Xy

-

R Jl/oV

n

self—energy2§ near the surface. Unfortunately, a rigorous % %
analytic calculation ofv; in which the spatial dependence of g L g
the impurity self-energy and the order parameter are taker®. 4 ‘;=

into account has so far not been carried @aee, however,

the scaling analysis in Ref. #AVe estimate the width to be
w;=c|Im{35(e=0,z=0")}|, wherec is numerical factor
that corrects for the spatial dependence of the self-energies.
In the limit w;>w,, , which we call the tunnel limit, intrinsic FIG. 7. (a),(b) Conductance anéc),(d) differential shot noise
broadening is large and only single-particle tunneling is im-for an order parameter with asubdominant componexeft col-
portant. The Andreev reflection can then be neglected and tH&m" and ad,, subdominant componeftight column for several
shot noise for low transparency reduces to the Schottky forrfifferent interaction strengths. The barrier transparencyDis
S=2el and does not contain any new information that can-— 2:1,, @nd the system is in the Andreev limif £0.00T;, o
not be extracted from the current. On the other hand, in the' 1075,
limit w;<w,, which we call the Andreev limit, impurity
broadening is negligible, single-particle tunneling is sup-the bound states with angle, there is an additional mechanism
pressed and Andreev reflection is resonant. In this limit thef dispersion due to electron-hole dephasing, which appears
shot noise is nontrivial. In Figs. 4 and 5, the crossover beat nonzero energies when the order parameter has a spatial
tween these two regimes is displayed for impurity scatteringlependence(pair-breaking suppression near the surface

in the Born and unitary limits. It is clear that the impurity These mechanisms of dispersion of the bound state conspire
renormalization near the surface is much larger in the Borrio eliminate much of the structure one might otherwise ex-
limit compared to the unitary limit: the crossover appears forpect to observe in the shot noise near zero voltage. Never-
I'/T.~10"2 in the Born limit, which is two orders of mag- theless, for a clean superconductor, characteristic differences
nitudes smaller than in the unitary limit. However, if we plot can be seen iaS/dV for the cases of subdominasiandd,,

C

R,0S/9(eV) at V=0 as a function ofqzwi/<wb(pp)>pF,
with the numerically computed IE§(5=0,2=0*) and an
estimatec=1/3 in the Born limit andc=3 in the unitary
limit, we find that the crossover appears ngarl in both
limits, see inset of Fig. @).

order parameters.

In Fig. 7 we plot the conductance and differential shot
noise for several different interaction strengths in bothghe
andd,, subdominant channels. There is no difference in the
signatures of the two different subdominant components in

the conductance: in both treandd,, cases the zero-bias
conductance peak is split and appears at a finite voltage re-
lated to the size of the subdominant order parameter. On the

Finally, we consider the signatures of a surface phasether hand, in the shot noise, there is a double-peak structure
transition from an inhomogeneods:. . surface phase to a in both cases, with the high-voltage peak bigger than the
surface state with mixed symmetrg,2_,2+is or dy2_2 low-voltage peak for the-wave case, but with a reversal in
+idyy. In the clean limit the noise spectrum is sensitive tospectral weight between low- and high-voltage peaks for the
the change of the surface excitation spectrum induced by the,, case. This reversal reflects the difference in the disper-
subdominant pairing channel. When a complex order paransion of the bound states for the two different pairing chan-
eter develops near the surface, time-reversed partners of tinels, which affects the point of suppressed shot néése
twofold degenerate zero-energy bound states are shifted imell as the associated peak #%/9V). The shift to finite
opposite directions from the Fermi level. The positive energyoltage is larger and disperses less in $heave case, com-
bound state spectra for these mixed-symmetry phases apared to thed,, case.
shown in Fig. 1. A surface current and an associated sponta- Application of a magnetic field introduces additional dis-
neous magnetic field are generated. This symmetry breakingersion, and the angle integration leads to a reduction of the
can be detected in the conductance as a spontaneous splittisiguctures. For both types of order parameters, the double
of the zero-bias conductance peak, or as a spontaneous mageak evolves with increasing magnetic field strength into a
netic signal from the surface. single peak on a scald/Hg set by the size of the subdomi-

In the shot noise, for a clean system, we thus expect theant gapsee Fig. 83)].
point of vanishing noise to disperse with angle of incidence; As in the pured-wave case discussed in the preceding
in a similar way the Doppler shift changes the shot noisesection, impurity scattering broadens the bound state reso-
spectrum in an applied field. In addition to the dispersion ofnance and reduces the structure in the shot noise. Thus, with

C. dy2_2+is and dy2_y2+id,, symmetries

054504-12



SHOT NOISE IN NORMAL METAL-d-WAVE . . . PHYSICAL REVIEW B 68, 054504 (2003

10 ' : T I — 8 TABLE Il. The Andreev reflection probabilities. The
— I=0.00IT denominators are listed in Table Il1.
— T=0.0025T, |
ooy 16 Me=T1=[R(1+7575) Y1+ D(1+ 715 Y51/t
_ roort, | ren=TT=[R(1+7575) i+ D(1+ 75 ¥51/¢,
— I'=0.015T — ~ ~ ~ ~
z reaoor, he=T5=[R(L+ 97D Y5+ DL+ 759D 3 &
2 ik Ten=T5=[R(1+¥{¥D) Y5+ D1+ Y5701/ s
M:‘.
2 There are other sources of broadening of the surface/
| interface bound states that were not considered in this paper.
— In particular, it is clear that surface roughness will drive the
o I T S , L system towards the tunnel limit, because nonspecular scatter-

12 ing of quasiparticles to the nodes of the order parameter
broadens the bound states just as impurity scattering does.
FIG. 8. (a) Magnetic field dependence of differential shot noise | Nerefore, to extract information from shot noise it will be
for a dy ,o+is order parameter withT,,=0.05T,. Here I important to have a specularly reflecting junction, or tunnel
=0.001T, ando=10"*. (b) Differential shot noise as a function of from an STM tip directly into theab plane of a specular

pair-breaking parametdt in the Born limit (r=10"%). HereT.,  Portion of a superconductor surface.
=0.2T.. In both case®,=0.1. Under these circumstances, information about the super-

conductor properties can be deduced via the particular prop-

increasing pair-breaking parameter the two peaks in the sh@tties of the zero-energy surface bound states. The shot noise
noise merge into a single peak and, in the tunnel limit, then a purely d,>_,2-wave superconductor is suppressed
differential shot noise reduces to the conductance; searound low voltage and approaches zero in the clean limit.
Fig. 8b). The characteristic magnetic field dependence shown in Fig. 3
can then be used to test the theory. The zero-voltage shot

IV. DISCUSSION AND SUMMARY noise level changes according to the inset of Fig. 3, and the
atellite peak is linearly pushed out with increasing magnetic
ield strength. The double-peak structure shown in Fig. 7
erves as a fingerprint of the symmetry of the subdominant
airing channel.

; T 0.8
eV/T . eV/T .

In conclusion, shot noise can be a useful tool to extrac
detailed information about properties of junctions betwee
normal metals and unconventional superconductors. How-
ever, a necessary condition is that the system is in the ArP
dreey I.imit,wi <Wj, as shown in. Fig;. 4-6. This is_a rather ACKNOWLEDGMENTS
restrictive condition at present, since in most experiments the
zero-bias conductance peak is broadened by diso(see, We thank A. Vorontsov and M. Eschrig for valuable dis-
however, Ref. 48 cussions. This work was supported by the NSF, Grant No.

In several recent experimefts the density of states DMR 9972087, the Swedish Research Council, VR, and
around single impurities or inhomogeneities were mapped@TINT, The Swedish Foundation for International Coopera-
out by c-axis STM spectroscopy. The results are discussed ition in Research and Higher Education.
terms of low-energy states bound to a single-impurity scat-
tering in the unitary limit, in line with theoretical works in APPENDIX
Refs. 49-51. Thus, if impurities in the high- supercon-
ductors are indeed scattering in the unitary limit, we expect In this appendix we tabulate the Andreev reflection prob-
that the surface bound states will not be particularly broadabilities expressed in terms of the barrier reflection and trans-
ened, and tunneling in the Andreev limit should be possiblemission probabilities and coherence amplitudes for incoming
to achieve experimentally in a clean sample. The mean fregajectories in Table Il, and in Table Ill we summarize the
path corresponding tq<<1 in the unitary limit(for the pa- transmission and reflection probabilities that enter the
rameters in Fig. bis estimated to be of the order of tenths of boundary conditions for the distribution functions in Egs.
coherence lengths, which is achievable experimentally. (33)—(36).

TABLE Ill. Scattering probabilities fox® distribution functions in the stationary SIS junction setup.

Tan=DI1+ 5%/ £ The=RD[ 8- 75%]¢,/? Rnn=RI1+ 7554242 {1=1+RY5¥5+DYEY5
Tee=D|1+ Y7522/ Ten=RD| 7§~ 51425/ Ree=RI1+ ¥5751%1 L) {=1+RY5y5+D¥{ys
Thn=DI[1+ 555?251 The=RD[Y5 =81/ £l Thn=RI1+¥{Y5[%/| 251 {3=1+RY{YF+DY59f
Tee= DI 1+ ¥5HRI% 242 Ten=RD| Y5 — 711242 Toe=RIL+ Y5R1211 2412 L=1+RYHR+D VSR
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