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Quantum interference in nestedd-wave superconductors: A real-space perspective
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We study the local density of states around potential scatteredsniave superconductors, and show that
quantum interference between impurity states is not negligible for experimentally relevant impurity concen-
trations. The two-impurity model is used as a paradigm to understand these effects analytically and in inter-
preting numerical solutions of the Bogoliubov—de Gennes equations on fully disordered systems. We focus
primarily on the globally particle-hole symmetric model which has been the subject of considerable contro-
versy, and give evidence that a zero-energy delta function exists in the density of states. The anomalous
spectral weight at zero energy is seen to arise from resonant impurity states belonging to a particular sublattice,
exactly as in the two-impurity version of this model. We discuss the implications of these findings for realistic
models of the cuprates. In particular, we show how apparently isolated impurity states can be observed in STM
experiments, despite long-range interference, due to averaging over a finite energy range within the impurity
band.
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[. INTRODUCTION T-matrix approximatiofSCTMA) which makes predictions
for macroscopic properties of disordered systems. The
Improvements in high-resolution scanning tunneling mi-SCTMA predicts, for example, a constant residual Fermi-
croscopy(STM) applied to superconductdrs have raised level density of quasiparticle statgs(0), which should
the prospect of obtaining completely different kinds of localdominate the low-energy transport over an energy rapge
information about the cuprate materials, which may bear onmeferred to as the “impurity bandwidth,” in analogy to simi-
the origins of the high-temperature superconductivity itselflar phenomena in semiconductors. Transport and thermody-
Interpretation of these experiments is understood to be a deliamic measurements on the cuprates appear to support quali-
cate matter, but until now has been undertaken at only theytively the predictions of this simple approach though there
naivest levels for want of theoretical tools for studying thegre lingering quantititative differences which require
local properties of strongly correlated systems. As an eXpesolution™® The SCTMA neglects “crossing diagrams” cor-
ample, one may consider the discovery of subgap impurityesponding to self-retracing scattering paths in real space,
resonan(ii? at low temperatures in the superconducting statg, attempts to go beyond the SCTMA have produced a
by STM:""while comparisons O.f STM dgta on disordered variety of strongly model-dependent results for the density of
E(I)?Ssrzcoa:‘c%08s?r?;gcgétzvaznlt?arwtzcgt]tee rsélrmpilr(?St ai(zs\lg?/?- states(DOS), many of which do not support the idea of an
13 . impurity band(constant DOS energy rangat all. In these
SUperCQndUCtéP were un_d erstoqd early on as begégégnly nonperturbative calculations, the asymptotic lig{D) may
approximately successiul, it was immediately prop vanish?°=?? saturate at a finite valuié,or divergé*~?° de-

that more complicatedbut still local) one-impurity Hamil- : o
tonians or STM tunneling matrix elements could resolve thé?€nding on the symmetry of the Hamiltoniar.” We also

discrepancies. Only recently has it been pointed out thafote ar_ecent s_emi-classical _treatment of extended in_1purities
quantum interference of impurity states might make it diffi- SUggesting a divergent density of states at the Fermi RBvel.
cult to observe true one-impurity properties at*&ft’ In or- In this paper, we perform simple, exact calculations of the
der for STM to fulfill its promise, it is vital to understand the interference of two impurities in a-wave superconductor,
extent to which long-range quantum interference due to disand compare to our numerical calculations for many-
order ostensibly influences local properties. impurity systems, in order to investigate the formation of the
The problem of low-energg-wave quasiparticle excita- impurity band. Spatial fluctuations in the local DOS, which
tions in the cuprates in the presence of disorder is still unrebecome quite complicated as a result of interference between
solved(for a review, see Ref. 28Traditionally, it has been impurities, contain information about both the SCTMA im-
assumed that the appropriate disorder potential is some rapurity band and about the quantum interference processes
dom distribution of short-rang@nd possibly magnetiscat-  responsible for weak-localization physics. For purposes of
terers. More recently, there has been a gradual recognitiothis paper, it is useful to make a distinction between quantum
that nanoscale spatial inhomogeneities are frequently, andterference associated with weak localization and local in-
possibly always, present in high-temperatureterference patterns seen, for example, in STM experiments.
superconductors®°but there is no consensus as to the ori-We restrict ourselves in this initial work to a half-filled, tight-
gin or appropriate model for these structures. In most currerttinding band with infinite potential scatterers. This model
theories, disorder is treated in the so-called self-consisteritas nesting symmetries which distinguish it from the cuprate
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superconductors, but is nevertheless interesting from twca) Zero—energy  (b)
points of view, that transparent analytical results for some peak
properties can be obtained, and that the character of the di 4

vergence of the density of states near half filling is

controversial® The two-impurity problem is the simplest

problem which includes the interference processes that lea

to the formation of the impurity band, as well as processes

that lead to weak localization. RN
Early work on the two-impurity problem in dwave su-

perconductor was numerical in nature and focused on the

local density of state@DOS), exhibiting unusual local in- FIG. 1. Schematic figure of the many-impurity D@8 in the

terference patterns which depended on the orientation of thgnitary limit of the half-filled band anb) in the unitary limit of a

vectorR separating the two impuriti€S.More recently, the  generic band. The plateau in the impurity band is characterized by a

relation to impurity band formation was discus¥eand pre- nearly constant density of stateg. The zero-energy suppression in

dictions were made for STM experimenfs.” assuming that  (b) is discussed in Refs. 21 and 27.

“sufficiently isolated” two impurity configurations could be

identified. In Ref. 17, the bound-state wave functions of the K and th de local LDOS patt t th
two-impurity system were identified and classified. By anal-Peax and he crude foca pattern at an energy near the

ogy with the molecule problem in quantum mechanics, ond?©2k may indeed qualitatively reflect one-impurity proper-
expects the single-impurity resonance energies to split as tHES: €9~ the strength of the one-impurity potentig| the
impurities are brought together, and that the wave function¥/idths of spectral features measured at any site will reflect
are formed from symmetric and antisymmetric combinationgh€ impurity bandwidthy characteristic of the disordered
of the isolated impurity wave functions. In fact, because ofSystem as a whole.

the particle-hole and fourfold rotational symmetries of the The second goal of this paper is to investigate the diver-
superconducting state, the situation is more complicatedjence in the total density of states in the completely nested
with the effective overlap depending d®. Indeed, it has model from a local point of view, applying what we can learn
been shown that for many pair configurations, the density oébout the two-impurity system. In contrast to the prediction
states does not consist of four well-defined resonattEs.  of a residualp(0) by the SCTMA, Ppin and Leé* (PL)

The interference between impurities persists up to largéound that, for an infinite scattering potential, the disorder-
impurity separations. In Ref. 17 it was noted that two impu-averaged density of states should diverge at the Fermi level
rities with R[|(110) could cause splittings comparable to the(taken to be the zero of energy hems p(w)~n;/w In*w
original resonance energy f& of many tens of lattice spac- wheren; is the density of impurities. The schematic picture
ings. The spatial LDOS maps are therefore very differenof the total DOS in this case is exhibited in Figal to be
from superposed single-impurity maps, and one may ask theontrasted with the more generic case expected in the ab-
question as to whether this distinction persists in the case afence of the nesting symmetry FigblL One surprising as-
many impurities. That is, is it to be expected at experimentapect of the PL result for th&-impurity T matrix is that it is
impurity concentrations that a resonance found by STM reessentiallyn; times the single-impurity result. Upon closer
ally corresponds to an isolated impurity whose LDOS is predinspection, however, their result is not directly tied to the
dictable within a simple one-impurity modél?Alterna-  one-impurity resonance at the Fermi level, but is the result of
tively, are interference effects omnipresent, destroyingnterference between distant impurities. Numerical calcula-
expected one-impurity resonances and leading to new, londgions showed that the divergence arises because of a global
range LDOS patterns which require a many-impurity inter-particle-hole symmetA/ which is particular to the tight-
pretation? If the latter scenario is realized, how can it be thabinding model at half filling. It was later shown that this
STM experiments seem to see such similar spectra on or neaesting leads to a diffusion modeproducing a positive
impurities embedded in very different local disorder environ-logarithmic correction to the DOS. This general structure of
ments? We resolve these questions below by arguing that ithe divergence has also been found by Chamon and Mudry
the generic case the individual many-impurity eigenstates arend> and numerical calculatiofs seem to confirm it, al-
highly distorted from mere superpositions of one-impuritythough in both cases the strength of the divergence could not
LDOS patterns, but that STM measurements tend to averadee verified. The situation is not settled, however, and other
over many such eigenstates, canceling some of the longecent field-theoretical approachéind a different form for
range effects of interference. Exceptions are very low energthe divergence which is reminiscent of the half-filled normal
states of thenested ewave superconductor, which experi- metal. The investigations of the two- and many-impurity
ence symmetry-driven level repulsion effects which prevenproblem presented here paint yet a different picture. While
such cancellations. These considerations lead to a picturdor reasons discussed in the teittis difficult to rule out the
where, with the exception of the zero-energy states, the localxistence of a continuous divergent contribution, we argue
impurity resonances appear homogeneously broadened tbat the strong divergence p(E—0) seen in previous nu-
any probe which averages over a macroscopic energy wirmerical work is actually indicative of a delta-function diver-
dow. This result has important consequences for the interpregence at the Fermi level. In the final stages of writing this
tation of STM spectra. It means that, while the position of awork, we became aware of a recent conserving weak-

Zero—energy
suppression

Impurity band
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localization calculatiof which came to the same conclu-

sion. Gor,w)=2 €GOk, w),

The paper is organized as follows: In Sec. Il A we derive :
expressions for the Green's functio®(r,») needed to wTo+(€— p) T3+ ATy
evaluate the two-impuritflr matrix. Asymptotic expressions =2 cogk,m)cogk,n) S :
for larger have been found previougf***5and our results, K o~ Ej
valid for smallw, are complementary. In Sec. 1l B we con- 2

centrate on the fully nested strong scattering model, evaluate -
the density of states for different impurity configurations, WhereEx= e+ Aj denote quasiparticle energiesjenotes
and show that there are three different classes of impurityd matrix in Nambu space, and the superscript denotes the
pair orientation. For two of these classes, the DOS divergeBare Green's function. Frequently, it is convenient to make
asw—0, while the DOS vanishes for the third. In all three the decomposition in terms of Nambu spinors,
cases, interference between impurities is substantial as it is in
Ref. 24, but ultimately the observed divergences arise from
local rather than nonlocal correlations. In Sec. Il we estab-
lish a connection between the zero-energy LDOS of the fully
nested disordered system and the zero-energy DOS of tHen ensemble oN short-range scattering potentials at a set of
one- and two-impurity problems. For the fully nested model,SitesR; introduces the perturbation
we find that, in a given configuration, only impurities on a
given sublattice contribute to the resonant weight at zero o
energy. The impurities in this class form a network with spa- Himp:vogl q)Ri T3®Ri’
tial separations equivalent to the resonant configurations in
the two-impurity case, and numerical scaling of the total spawhereV, is the strength of the impurity potential. Formally,
tially integrated DOS is shown to be consistent witfw)  there is an exact solution for the disordered Green function
~ (). in terms of the A X 2N many-impurity T matrix that reads

In Sec. IV, we summarize our conclusions and discuss the
less symmetric situation found in the cuprates. We argue that,
because the STM averages over many multi-impurity eigen-
states, the LDOS indeed appears to represent a set of nearly R
isolated impurity states with spectral features which are simi- X GO(Rj —r',w),
lar from impurity to impurity. On the other hand, we expect . . . o . L
the width of these local states in energy to be typically theVith i.j the position indices of the impurity sites, and
impurity bandwidth arising from the full disordered system.

3
Gor,0)= 2, GJ(r,0)7;.
=

N

G(r,r',0)=G%r—r",0)+ 2, G%r—R;,»)T(w)
T

:I\—: [1® ”;'0_ ;3V0éo(w)]_ll® ”;'3V0 ’

where the boldface variables indicate a matrix in spatial in-

II. TWO IMPURITIES IN A HALF-FILLED BAND . . . . - A
dices in the subspace of impurity sitdse., Goij(w)

A. Green's functions =G°(Ri—R;,w)] and the inverse is a matrix inverse. In the
The BCS Hamiltonian for a purd-wave singlet supercon- limit of a single impurity, theT matrix simplifies toT(w)
ductor in a tight-binding band can be written as =[Vy 73— G°%0,)]7 %, with G°(0,0)=G°(r=0,0). This

limit has been studied extensively.
In this work, we are particularly interested in the two-
Ho=, ®l[(e— )T+ A r]Dy, (1a  impurity T matrix with one impurity at the origirtfor sim-

° ; 6 )t Ama]Pi plicity) and the other a displacemeRt=(m,n) from the
origin. The two-impurityT matrix is a 4<X4 matrix which
satisfies

€= —2t(cosk,+ cosky), (1b)
. [Vel-6%0w)  -GRw) | “
T= . e 3
A= Ao(cosk,—cosk,), (10 -GR,w) Vo i3~ Go(0m)

Expressions for the local Green's functi€®(0,0) have
where q’l:(cllc—m) is a Nambu spinor, and; are the been derived in many places, but the nonlocal Green’s func-

Pauli matrices. Energies are measured relative to the centéion G°(R,w) is less well understood, although several
of the band, so a chemical potential @f=0 corresponds to asymptotic expressions have been fodghd:*® In the Ap-
half filling. The associated Green’s function is, in real spacependix, we derive expressions which are valid for the half-
a function of the relative coordinate=(m,n), wherer is filled band, and which become exact in the limit-0.
measured in units of the lattice constant andand n are We find that the local Green’s function for general com-
integers: plex  is
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. aw A2 . where 7 is given by
G%0,0)=— —In—=7y, (4)
2 2 A
. _,Im detT
wherea=N/(2mvrv,), N=4 is the number of nodes is 7(w)=tan Re deft (10

the Fermi velocityp , is the anomalous quasiparticle veloc-
ity | VikAy|, and the cutoffA is of orderA,. The expansionin and the determinant is over spatial and spin indices.
o for r=(m,n) depends on whethar and m are odd or We start with a discussion of two impurities belonging to
even. For thgeven,evepcase, we have one of the sublattices. The two impurities areRatand R,
~ R with R=R;—R,=(m,n)= (even,eveh or (odd,odd. The
Gor,0)—(—1)" ™I GY(0,w)+wCo(r) 7o, (5)  two-impurity T matrix defined in Eq.(3) is particularly

whereCy(r) is a real function of . We find similar leading- simple in this case:

order expressions fomg,n) = (odd,odd, - -
L1 —G(0.w)7g  GQ(R, )7
G%(m,n,w)— wCqy(r) 7o, (6) D GS(R,w)}o —Gg(O,w);o ,

while for (m,n) = (odd,even or (even,odgl, whereD = G2(0,w)?— G2(R, )?. Noting that
— Y0 ’ 0 ’ .

GO(m,n,w)—Cy(r) 7+ Cy(r) 73, 7)

whereC4(r) and C5(r) are real constants. This distinction detT= iz
between even and odd sites accounts for the oscillatory na-
ture of the wave functions for the special case in which the . .
Fermi wave vector is commensurate with the lattice. we keep the leading order terms@(R, ») asw—0, given
explicitly in Egs.(5) and(6), and find that det diverges as
B. Density of states for two impurities 0 72
[20Cy(R)Gy(0,w)] R=(even, evepn

In this section, we derive expressions for the density of  detT—
GJ(0,0) "4 R=(odd, odd

states for two impurities in a half-filled band. The discussion
focuses on the unitary limiVy— *co. The half-filled tight- i . ,
binding band possesses a particular global nestingnd (@nalytically continuingw to the real axis
symmetry® 7,G(k+Q,w) 7,= GOk, »), with Q= (m,).

Foi simplicity, we call this ther, sy_mmetry. Poteniiai §cat- Sp(w _>[
tering violates this symmetry, but in the case of infinite po-

tential, impurity sites are effectively removed from the lat- o
tice, and the symmetry is recovered for any disordeBecause of thg similarity of the approaches, we are able to
configuration. In real spacesee. e.g., Ref. 2@he 7, sym- ~ compare our findings with those of RRef. 24 in some

U wIn’(Alw)] R=(even, even

2 oin(Aw)] R=(odd odd. =

metry may be expressed as detail. Alt_hough the form of Eq(l_l) is suggestive qf t_he_
asymptotic result of PL for the disorder-averaged limit, its
;Zé(r,rr,w);_zzeiQ-(rfr’)é(r,rr,w)_ (8) origin is quite different. This difference is easier to see for

the (odd, odd impurity configuration: here the local Green’s
into the usual two interleaved sublattidelenotedA andB).

The phase factor on the right-hand side of EB).is +1 if r
andr’ belong to the same sublattice, and. otherwise.

The simplest quantity of interest is the quasiparticle den
sity of states,

GO(R,w) and the physics of the low-energy resonance is
essentially that of two noninteracting impurities. The total
weight of the resonance is therefore twice that of a single
impurity. For the(even, eveh case the situation is a little
more complicated, since the local and nonlocal terms are
nearly equal in magnitude; interference effects reduce the

plw)= 2 S(w—E,) spectral weight of the combined resonance to half that of two

n isolated resonances. In both cases the situation is quite dif-

_ ferent from Ref. 24 where the logarithmic divergence arises
=po(w)+ dp(w),

from averaging over all possible impurity separations using
whereE,, are the eigenvalues of the superconducting Hamilthe approximate fornG°(R,w)~ 1/R out to a cutoff~t/R.
tonian, po(w) is the DOS of the disorder-free system andThe PL result is inherently nonlocal.
dp(w) is the change induced by the impurities. The DOS is  Numerical calculations for two impurities with separation
related to the two-impuritff matrix defined in Eq(3) by the R=(2,2) are shown in Fig. 2. Fov,=10Q, four clearly
phase shifty(w):*° defined peaks are seen, corresponding to the level splitting of
the single-impurity resonances of the isolated impurities.
5p(w):£ ‘9_77 0 As shown in the inset, the peak positions scale strongly with
7w’ V,, and a single peak appears only whégr~10°t.
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calculations of the DOS shown in Fig. 3 demonstrate that
there is no remnant of the single-impuriédy— 0 divergence

for this orientation, and that the resonance energies scale
very little with Vy. In this case, it is the dominance of the
nonlocal terms which shifts the resonance to finite energy.

Ill. DISORDERED SYSTEM WITH GLOBAL
PARTICLE-HOLE SYMMETRY

In this section, we discuss the correspondence between
the two-impurity problem and the disorderddvave super-
conductor. There are two separate issues to be dealt with.
The first has to do with the nature of the divergencewat
=0 which occurs in the tight-binding model, while the sec-
ond has to do with the more general question of how the
impurity band evolves with impurity concentration. For these

FIG. 2. Change in the quasiparticle density of states arising frontalculations, we numerically diagonalize the mean-field

impurities separated bR=(2,2) as a function of energg/t for

Hamiltonian for a random distribution of impurities, under

scattering potentiaV/,=10°t. Inset: Scaling of the resonance peak the assumption of a homogeneous order parameter for a

energies as a function df,. The DOS forR=(2,0) is almost

identical. Energies are measured in units,acdndA,=0.1t.

finite-sizeL X L system with periodic boundaries. For a de-
tailed description of the method, we refer the reader to, e.g.,
Ref. 22. We retain the eigenenergiesand the eigenvectors

We continue now with the case where the impurities be-

long to different sublattices and are separatedRisy(even, u™(r)
odd). The two-impurity T matrix defined in Eq(3) is v(r)= )|
s 1 ~Go(0,@) 7o C1(R) 71+ C5(R) 73 The total quasiparticle density of states is justw)
D’ Cl(R);1+C3(R);3 —Gg(o,w);o =3,0(w—E,), and the single-spin tunneling LDOS is

with D' =G(0,0)?>— C4(R)2—C5(R)?. It follows easily that

(n) 2
. rw)= ut™(r)|“6(w—E,).
detT=D’'"? and that plr.w) ; WP )

The quasiparticle DOS appears in thermodynamic quantities
and is (for superconductojs symmetric in w: p(w)
=[dr[p(r,w)+p(r,—w)]. At low w, p(w) closely re-

A similar result holds foR= (odd, even. Physically, the fact sembles the spatially integrated tunneling DOS. Since there
that 5p vanishes at the Fermi level indicates that bound-statés no moment formationg=1 ando=| are equivalent.
energies must always arise at nonzero energies. Numerical The Green’s functiorG%(k,w) for the HamiltonianFig.

d A
Sp(w—0)x %((uzlnz) —0. (12

150

100

dp(w)

50

V,=100,000

0.034-

1
-0.04

!
-0.02

0
®

1(a)] (with w=0) has the special symmetry,G°(k
+Q,0)7,=G%k,w) whereQ=(,) is the antiferromag-
netic wave vector. The, symmetry is required ?® for the
divergence inp(w—0). We note that for a finite-size sys-
tem, this symmetry is only strictly satisfied whers even®’
For this reason, we restrict ourselves to evethroughout
this paper.

A. Divergence atw=0

The DOS for a large concentration=0.1 of strong scat-
tering impurities in ad-wave superconductor is shown in
Fig. 4. The figure is restricted to low energies, and shows
only the zero-energy peak at the Fermi level, and a small
portion of the impurity band. For comparison, tdevave
gap has an energ¥,=0.2 and the gap edge in the tunnel-
ing density of states is t4 For clarity, we often make a

FIG. 3. Change in the quasiparticle density of states for impu-distinction between states in the peak and states in the impu-

rities separated bR=(2,1) as a function of energy/t for scatter-
ing potential Vo=1CPt and A,=0.1t. Inset: Scaling of the reso-

nance peak position as a function\6§.

rity band, by which we mean states belonging to the DOS
plateau which is characterized by a constant density of states
po. In Fig. 4a), for example,pg~0.253 1.
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4(c). The peak height scales withfor L=<40 and saturates
2 at larger system sizes. The implication is that some care must
be taken in approaching thé&— o limit.

The unitary limit of the infinite system may be ap-
proached in two ways. First, one may consider taking
Iimvoéxlim,ﬁm so that the level spacing in the impurity
band is much less than the peak width. Second, one may
consider taking the limit —oo with Vg=0c. In the first ap-

0.5 proach, ther, symmetry is only strictly satisfied wheh

=, while in the second approach, the symmetry is rig-
0 orously satisfied for any even value lof For this reason, we
view the second approach to be preferable.

The limit Vy— oo for fixed L is illustrated in Fig. 4d). The
data are scaled by the impurity potential, and the general
trend is that asv, increases, a sharp peak developswat
=0. Furthermore, the peak scalespd® )~V F(wVy), im-

p(w)

=<}

6«"‘2 plying that
o3
4 ?j lim p(w)~8(w). (14
~ V0~>:>o
g
(o8

[\%3

Not surprisingly, the weight contained in the delta peak in
the Vo—oo limit scales withL, as shown in Fig. 5. Fon;
0 =0.1, this scaling is consistent with what we found in Fig.
4(c). Whenn;=0.2, on the other hand, the peak area satu-
rates whenL=40, which is not expected since the peak
width is still many orders of magnitude smaller than the
typical level spacing’, in the impurity band. To learn more
about the origin of this saturation we plot in the same figure
the scaling of the inverse participation ratio, defined by

FIG. 4. Total density of states fan,=0.1. () DOS for V,
=100 (solidline) andL = 60. Equatior( 13) is plotted for compari-
son(dashed ling (b) Scaling of the DOS withlV,. pp | (w) is again
plotted for comparison(c) Scaling of the DOS with.. (d) Scaling
of the DOS withV,, for Vo /t=100, 500, 1000, 5000, $p1C°, and
1% and L=60. A backgroundp,=0.23"! has been subtracted. S u™(r) 4+ oM (r)4]

The figure shows that the density of states is a peaked function 7 : :
whose width scales as\lf and whose height scales s, suggest- a(w)=2, 7 0(w—Ey).
ing that |il'n‘/oﬂwp(w)~5(w). All energies are in units of. n 2 [u(n)(ri)2+v(n)(ri)2]

I

In Fig. 4(a), the total DOS is shown for an impurity po- _d . .

tential Vo= 10Q corresponding to a strong scattering poten-%(“é) dsiﬁwaelz?;igﬁ-s afr?orl V;g\ég frlrjcr)]tcgc():glseWx&%co?r?osgltiigged

tial. The results are in quantitative agreement with earlier s ) . .

numerical worlke”32The PL result states. States which are |ntermed|ate between_local_lzed and
extended, for example, states with power-law tails, will scale
more slowly thanL 9. The localization length is typically

_ ni extracted from the crossover which occurs whier &
pril@)= |o|[IN?(Alw)+(m/2)?] (3 where£, is the localization length. As we see below, states in

the delta peak behave differently from those in the impurity

is also shown. Here, we take=1, first because this was the band, and we find that the peak area is correlated with the

cutoff used in previous numerical wotkand, second, be- localization properties of the impurity band. In Fig. 5, the

cause this gives a good fit to the numericsVat 10Q. It inverse participation ratio is averaged over states in a narrow

should be clear from Figs.(@ and 4b), however, that al- €nergy window adjacent tdut not including the delta peak.

though the fit is striking aV,=10Q, it is less so for other It is evident from the figure that fan;=0.2, a crossover to

values ofV/,. In our numerics, we find a smooth evolution of the localized regime occurs, and we can extract a localization

the low-energy peak as a function's§ and there is no value length § ~40. Remarkably, we find that the area of the

of V, beyond which the asymptotic behavior saturates. IrPeak appears to saturate whén~§ . This situation is

general,pp (w) does not appear to fit the data well, exceptanalogoos to one reported earlierdrwave superconductors

for certain special parameter sets. The shape of the peak BPSSessing no special symmetries. There, it was shown that

w=0 is modified by finite-size effects. There is a crossovelduantum interferencearising from “maximally crossed”

in behavior which occurs when the mean level spacing in théliagrams leads to a suppression of the DOS at the Fermi

impurity band 8, =1/(poL?) is comparable to the peak levef!over an energy scalé; = 1/(poét). [This situation is

width. Scaling of the DOS is shown fdry=25Q in Fig. illustrated in Fig. 1b).] In finite-size systems, the energy
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scale for the DOS suppression is actuallyand the scaling nodal direction and tails extending away from the impurities
of the suppression saturates when &, .2’ in the nodal directions. However, there is no obvious corre-

We note that the origins of the delta-peak divergence aréation between the degree of isolation and the appearance of
fundamentally different from those discussed in PL, wherea zero-energy resonance. Indeed, of the four strong reso-
the divergence arises from the cumulative effects of interfernances, only two are more than ten lattice sites from the
ence between a large number of distant impurities. Here theearest impurity. For 2% disord€s0 impurities, shown in
result appears to be a mesoscopic effect which survives bésig. 7, the situation is similar. Only a small fraction of im-
cause localization makes the effective system size finitepurities contributes to the zero-energy LDOS and, again, the
However, although the delta-peak result is different from earvisible resonances do not necessarily belong to the most iso-
lier predictions for a continuous divergence at the Fermiated impurities. At this higher impurity concentration, how-
level, it does not preclude the existence of an additional diever, a definite pattern in the LDOS is observable. Long tails
vergent term which is unobservable because of finite systemiong the (110) and (1) directions give the appearance of
size effects. In Ref. 27 a positive logarithmically divergenta network of impurities.
contribution to the DOS was found perturbatively, and is  Remarkably, we find that all impurities within the visible
consistent with our results at higher energies. Furthermore, if

T

we consider the effect of finite system size on the PL result 50

we find that the interference between distant impurities is cut
off by L and we should make the substitutiom
—max(,t/L) in pp_, implying a cutoff energyw.~t/L be-

low which the DOS saturates. By this estimate, the contribu-
tion to the plot in Fig. 4 is cut off beloww ~0.01%, sug-
gesting that the PL peak should be unobservable.

It is particularly instructive to consider the structure of the
delta-peak divergence in real space. Figure 6 shows the com-
bined local density of states from the eigenstates with energy
|E,|<10™°t which comprise the delta pedthese states are
well separated from all other eigenvalieBor a single im- s
purity (shown in the insetthe zero-energy resonance has a
fourfold spatial structure with bright lobes on sites adjacent
to the impurity along the antinod&l00) and (010) crystal

directions, and extended tails in the nod&l0) and (110)

directions, in agreement with many earlier calculatirisor

0.4% disordeften impuritie$, the situation is quite different; %
even at this relatively low concentration, there is significant
interference between impurities. We see four pronounced riG. 6. Local density of states for 0.4% concentration of impu-
zero-energy resonances, but the remaining six impuritiegties and|E,|<10 5t (four eigenvalues Impurity locations on
are—at best—only weakly visible. For each of the visiblesublatticeA are indicated with open circles, those on sublatfice
resonances, the LDOS has the superficial structure of thith filled circles, and the impurity potential &= 10°t. Inset: The
isolated impurity LDOS, with maxima appearing in the anti- inset shows a detail of the LDOS for a single impurity.
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FIG. 7. Local density of states for 2% concentration of impuri- ~ FIG. 8. Local density of states for 0.5% impurities axg

ties and|E,|<10 °t (20 eigenvalues Impurity locations on sub- =10t derived from a single eigenvalue wiff,=0.0358.
lattice A are indicated with open circles, those on sublatBosith
filled circles, and the impurity potential i,= 1CPt. metry for G° defined above still holds, it is clear that impu-

rity scattering processes for quasiparticles now involve in-

network in Fig. 7 belong to one sublattice, arbitrarily denotedcommensurate wave vectogsaway fromQ= (1, ), such
A, while the remaining impurities belong to tlBesublattice.  that the global constructive interference which leads to the
Similarly, in Fig. 6, all visible impurities belong to the B »=0 divergence in the DOS cannot occur, and we may ex-
sublattice. While this is reminiscent of the two-impurity pect the quasiparticle networks observed in Figs. 6 and 7 to
problem discussed in the previous section, it is also quitde blurred. The previous analysis raises some interesting
surprising. For the two-impurity problem, it was shown thatquestions about the formation of the impurity band in real
the zero-energy resonance is preserved when both impuritiepace. Is then>0 DOS plateau formed, as Figs. 6 and 7
inhabit the same sublattice, and it is destroyed otherwiseperhaps suggest, by summing over many impurities, some of
The natural extrapolation is that, for a random distribution ofwhich are resonant at a given energy and others not? This
many impurities, every impurity is expected to have somewould imply that, as energy was scanned in STM experi-
reasonably close neighbor belonging to the other sublatticenents, different impurities would “light up”—become
which contributes to the destruction of the zero-energy peakesonant—and turn off at different energies within the impu-
Clearly, this does not happen. Instead, in Fig. 7, the impuriity band, a scenario we refer to as “inhomogeneous broad-
ties belonging to the\ sublattice are dominant ai=0 for  ening” of the impurity resonances. Experimental datan-
reasons we do not completely understand at present. An aplicate instead that all impurities, regardless of local
parent consequence of this dominance is that the resonancesvironment, appear to be resonant all through the impurity
of impurities belonging to theB sublattice are shifted to band, so that each local spectral function is qualitatively
higher energies. We speculate, but cannot prove, that the sysimilar in position and width, and is “homogeneous broad-
tem in the thermodynamic limit will have “domains” of typi- ened.” In addition, there is some evidence from explicit Zn
cal size¢, in which eitherA or B impurities are resonant.  substitutio that the number of impurity resonances corre-

The observed networks are also reminiscent of an earliesponds closely to the number of Zn atoms introduced into the
proposat® in which impurities form networks from single- crystal, so that there are no atoms which do not light up. It is
impurity resonances which lead to a delocalization transitiorfor this reason that interpretations have typically been given
asw—0. Numerical scaling calculatioffsfor a finite impu-  in terms of one-impurity models. However, in the same ex-
rity potential (Vo= 10Q) did not find such a transition, how- periments the width of spectral features is roughly an order-
ever, nor does the present wadee below. In any case, we of-magnitude larger than those predicted by the simplest one-
emphasize that the sharply defined networks exhibited abovepurity models.
are a feature of Hamiltonians witly symmetry only, and not These apparent paradoxes can be resolved by recognizing
a general feature af-wave superconductors as suggested irthat the energy range probed by STM, although very small
Ref. 35. [O(1 meV)] in laboratory terms, is still large enough to
sample an essentially infinite number of eigenstates of the
macroscopic system. In Fig. 8 we show the LDOS derived
from a single eigenstat®at an energy which is in the impu-

We now turn our attention to the states in the “impurity rity band, but away from the zero-energy delta peak. Two
band” away fromw=0. Although formally the nesting sym- features of this figure stand out. First, as was the case at

B. Impurity band away from w=0
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501 2 o = a small energy window, as in Fig. 9, the system starts to look
o much more homogeneous, in the sense that all impurities
2 S contribute visible resonances with classic fourfold symmetry.
20t i g. The window width is small compared to the impurity band,
and we have checked that the pattern averaged in this way
remains roughly the same up to energies of the order of the
0.1 impurity band itself,y=0.25 for the parameter set of the
figure. Thus, it appears as if there is an important distinction
nlle between individual eigenstates which determine, for ex-
T Lo ample, localization properties, and averages over finite-
energy windows which determine the tunneling spectrum.
Finally, in order to solidify the connection between local
e and bulk properties of the disordered system, the energy de-
o i m an Lol pendence of the inverse participation ratio is plotted in Fig.
i un" o 10. For each impurity configuratiom(E,,) is calculated for
o all the eigenstates in the spectrum, and the aggregate is
i .. shown for 50 impurity configurations in the figure. There is a
0 10 20 30 20 50 clear distinction between states inside and outside &he
X position peak. States outside th& peak are clearly extendedhe
FIG. 9. Local density of states for 0.5% impurities axg Iocali_zation !ength is mgch Iarger than the system)simﬂ
—10Pt averaged over five eigenvalues in the energy inteial the distribution ofa(w) is relat|_vely narrow at a given en-
—0.03|<0.02. ergy. On the other hand, there is a broad distributioa(of)
in the § peak, indicating a mix of localized and extended
=0, only a fraction of the impurities contributes to any given States. The inset of Fig. 10 shows a histogram of the distri-
eigenstate. Second, the extended tails which were importaRtion that demonstrates that most of the spectral weight in
in the formation of the delta peak are blurred by the incom-the & peak comes from the extended tails of the resonances

mensurability between the lattice and the wave vectors corlFig- 7) and not from the highly visible localized resonances.

tained in the eigenstate. As we move further away frem
=0, this incommensurability becomes more pronounced and IV. CONCLUSIONS
the tails become increasingly blurred.

The inequivalency between impurities in Fig. 8 is surpris-  In this work we have studied the unitary limit of a disor-
ing not only because STM provides little evidence for such alered, half-filledd-wave superconductor with a tight-binding
picture, but also because the arguments about the formatidind. This model has a particular symmetry which is known
of networks fail wherw+ 0 (indeed, there is no visible net- to lead to a divergence in the density of states at the Fermi

work in the figur@. When one now averages the LDOS over level, although the particular form of the divergence is con-
troversial. We began with a discussion of the two-impurity

I . . 3 . , . s problem, which yields an analytical solution in the—0

: 3 limit. We found that, owing to the commensurability of the
nodal wave vectors and the tight-binding lattice, there is an
“even-odd” oscillation in the two-impurity density of states
14 in the unitary(infinite scattering potentialimit: only impu-

3 rity pairs on the same sublattice have a zero-energy diver-
gence in the DOS similar to the single-impurity divergence.
The origin of this divergence is quite different from that
reported earlief? which arises from the cumulative interfer-
ence of a large number of distant impurities. We then noted
that, for impurities located on different sublattices, the zero-
energy single-impurity resonance is shifted to higher ener-
gies as a result of interference, and broadened due to cou-

000 5———QH1 0 01 02 pling to thed-wave continuum. Based on this result alone, it

® is natural to assume that, in the many-impurity case, any

FIG. 10. Inverse participation ratia(w) for n,=0.1, Vo= 10° remngnt of Fhe.single—impurity peak will be obliterated since
on a 3030 lattice with 50 configurations. States in the impurity €aCh impurity is expected to have at least one reasonably
band for|E,| =t/V, have an approximately uniform spatial extent. N€&r neighbor which lies on the other sublattice. Surprisingly,
States with|E,|Vo=<t exhibit strong fluctuations in spatial extent. We found that this is not the case. Exact numerical studies of
Note that states wita(E,)=1 are confined to a single site, while finite-size systems show that unitary impurities actually form
states witha(E,,) ~ N1 have a uniform spatial distribution. Inset: A two interleaved networks on th& and B sublattices, one of
histogram of the distribution ai(w) for states in the zero-energy ~ Which contains spectral weight at=0, while the other does
function. Note the logarithmic horizontal axis. not.
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Away from w=0, the nesting symmetry is less definitive
since scattering wave vectors different fr@pe= (7, ) con- 9pq= 2 cod(ky)cos'(ky) > 2
tribute, and there can be no divergence in the DOS. In this K w”—Ej
sense, from a symmetry point of view, our conclusions in th'swherepzm,m—z, ... andg=n,n—2, . ... Weproceed by
regime are perhapgualitatively appropriate for real cuprate i ing the di . th de at/Z.m/2 d
materials. At finite energies, we find that quasiparticle eigen—mea.rIZIng € dispersion near the _noz € 2 Z’T; ) an
states are no longer commensurate with the lattice, networl&'ak'ng the coordinate transformatid®’= e +Ay, tang
connecting resonant states along the nodal directions are ~k’¢k:
smeared, and individual eigenstates consist of distorted im- )
purity resonances, which are inhomogeneously distributed. _« F”ﬂ( _Sing  cosd
When the LDOS is averaged over a small window in energy, “P9 op+ajq 27 Ay 2t
however, as in an STM experiment, the fourfold nature of the
one-impurity resonances is qualitatively recovered, and reso- g1 w;0+ E(cose}3+ sinfr;)
nances on individual impurity sites appear remarkably simi- X fo EPTATNdE 2_p2 :
lar, provided the impurities are not in immediate proximity. @
Although the resonance peak positions may be qualitativelyrhe prefactor isv=N/(2wvv,) whereN=4 is the number
related to the resonant energies of the underlying oneof nodesy is the Fermi velocityp , is the anomalous qua-
impurity model, the widths are very different, of order of the sjparticle velocity|V,A,|, and the cutoffA is of orderA,.
impurity bandwidth, given in the unitarity low-density limit The integrals oveE and 6 are easily done and
by Y= \/niAoEF.

These calculations suggest that the ability of one-impurity —a A
models of any kind to explain the details of local STM spec- Opg( @) = —+[a)Fp+q(w)P3qTO
tra in samples with percent level disorder is severely limited. 2P
We emphasize, however, that the results presented here are 3 - 1 -
for a special model with parameters inappropriate for direct +Fpiqia(@)(Phamat Ppgri)],
;::starlson tolthe_ cuprates. To substantiate this picture f%here P{Jq are constants given by the angular integrations,

ystems, it will be useful to compare local spectra on g

sites(e.g., impurity or nearest-neighbor sitesound differ-

(.L)7'0+ €k7'3+ Ale

9/sind cosh\P
Ay 2t

ent impurities using realistic bands and impurity potentials. A a
Numerical calculations to realize the large systems necessary Fa(w)= f EdJE _
to obtain the resolution required to reach definite answers to 0 E2— w?

these questions are in progress. 4 ) _
The constantslP{Jq vanish forj=1,3 whenp+qg=even and

vanish forj=0 whenp+qg=odd. The first few nonzero el-
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APPENDIX
The purpose of this Appendix is to derive expressions for pglz pglz _ i + i
the Green’s functionG(R,») with R=(m,n), which are 2A%  8t2
valid in thew— 0 limit. The starting point is Eq.2), and the
first step is to express Only even moments df ;(w) are needed:
n—1  2jr2(n—j 2n 2
cog k,m)=2""Lcodk, o= @A) +2 A
& 2(n-j) 2 —?
[rw2] m(m—j—1)! _
+5 Zl (—1)Jw(2005kx)m 2, Since we are interested in the leading-order behavior of
. G(R,w) we note that for small ,
where[ .. .] refers to the integer part of the argument. We 1 A2
focus on the half-filled caspg=0 and write Eq.(2) as the Folw)— =In—,
sum of terms of the form 2 —w?
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2n

an(w)_> 2n .

For R=(2m,2n), the leading-order contribution to

G(R,w) comes from the single term in the expansion con-

taining gog. TO second order i,

2

nem &Y

G(R,w)=—(—1) >

570+ @Co(R) 7o,
—w

(A1)

whereCy(R) is real and the sum of several terms. The larg-

est term contributing t&€(R) is of order

|

A
A,

a|o|

2(m+n)
16(m+n) )
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from which we estimate a range of validity
|w|SAe—{[A/AO)Z(m+”)/[16(m+n)]}_

For otherR, there is no single dominant term in the expan-
sion for the Green'’s function, and the leading-order behavior
comes from the sum over a large number of real nondiver-
gent terms. For our purposes, it is sufficient to note that when
R=(2m+1,2n+1), the sums take the form

G(R,w)=wCy(R) 7y, (A2)
and whenR=(2m+1,2n) or (2m,2n+1),
G(R,®)=Cy(R) 73+ C3(R) 73, (A3)

whereCy(R), C4(R), andC3(R) are real constants.
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