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Quantum interference in nestedd-wave superconductors: A real-space perspective
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We study the local density of states around potential scatterers ind-wave superconductors, and show that
quantum interference between impurity states is not negligible for experimentally relevant impurity concen-
trations. The two-impurity model is used as a paradigm to understand these effects analytically and in inter-
preting numerical solutions of the Bogoliubov–de Gennes equations on fully disordered systems. We focus
primarily on the globally particle-hole symmetric model which has been the subject of considerable contro-
versy, and give evidence that a zero-energy delta function exists in the density of states. The anomalous
spectral weight at zero energy is seen to arise from resonant impurity states belonging to a particular sublattice,
exactly as in the two-impurity version of this model. We discuss the implications of these findings for realistic
models of the cuprates. In particular, we show how apparently isolated impurity states can be observed in STM
experiments, despite long-range interference, due to averaging over a finite energy range within the impurity
band.
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I. INTRODUCTION

Improvements in high-resolution scanning tunneling m
croscopy~STM! applied to superconductors1–9 have raised
the prospect of obtaining completely different kinds of loc
information about the cuprate materials, which may bear
the origins of the high-temperature superconductivity its
Interpretation of these experiments is understood to be a
cate matter, but until now has been undertaken at only
naivest levels for want of theoretical tools for studying t
local properties of strongly correlated systems. As an
ample, one may consider the discovery of subgap impu
resonances at low temperatures in the superconducting
by STM:1–3 while comparisons of STM data on disorder
Bi2Sr2CaCu2O8 ~BSCCO-2212! with the simplest calcula-
tions of a single potential scatterer in ad-wave
superconductor10–12 were understood early on as being on
approximately successful, it was immediately proposed13–15

that more complicated~but still local! one-impurity Hamil-
tonians or STM tunneling matrix elements could resolve
discrepancies. Only recently has it been pointed out
quantum interference of impurity states might make it di
cult to observe true one-impurity properties at all.16,17 In or-
der for STM to fulfill its promise, it is vital to understand th
extent to which long-range quantum interference due to
order ostensibly influences local properties.

The problem of low-energyd-wave quasiparticle excita
tions in the cuprates in the presence of disorder is still un
solved~for a review, see Ref. 18!. Traditionally, it has been
assumed that the appropriate disorder potential is some
dom distribution of short-range~and possibly magnetic! scat-
terers. More recently, there has been a gradual recogn
that nanoscale spatial inhomogeneities are frequently,
possibly always, present in high-temperatu
superconductors,4,5,7,9but there is no consensus as to the o
gin or appropriate model for these structures. In most cur
theories, disorder is treated in the so-called self-consis
0163-1829/2003/68~5!/054501~11!/$20.00 68 0545
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T-matrix approximation~SCTMA! which makes predictions
for macroscopic properties of disordered systems. T
SCTMA predicts, for example, a constant residual Ferm
level density of quasiparticle statesr(0), which should
dominate the low-energy transport over an energy rangg
referred to as the ‘‘impurity bandwidth,’’ in analogy to sim
lar phenomena in semiconductors. Transport and thermo
namic measurements on the cuprates appear to support q
tatively the predictions of this simple approach though th
are lingering quantititative differences which requi
resolution.19 The SCTMA neglects ‘‘crossing diagrams’’ cor
responding to self-retracing scattering paths in real spa
and attempts to go beyond the SCTMA have produce
variety of strongly model-dependent results for the density
states~DOS!, many of which do not support the idea of a
impurity band~constant DOS energy range! at all. In these
nonperturbative calculations, the asymptotic limitr(0) may
vanish,20–22 saturate at a finite value,23 or diverge24–26 de-
pending on the symmetry of the Hamiltonian.27,28 We also
note a recent semi-classical treatment of extended impur
suggesting a divergent density of states at the Fermi lev29

In this paper, we perform simple, exact calculations of
interference of two impurities in ad-wave superconductor
and compare to our numerical calculations for man
impurity systems, in order to investigate the formation of t
impurity band. Spatial fluctuations in the local DOS, whi
become quite complicated as a result of interference betw
impurities, contain information about both the SCTMA im
purity band and about the quantum interference proce
responsible for weak-localization physics. For purposes
this paper, it is useful to make a distinction between quant
interference associated with weak localization and local
terference patterns seen, for example, in STM experime
We restrict ourselves in this initial work to a half-filled, tigh
binding band with infinite potential scatterers. This mod
has nesting symmetries which distinguish it from the cupr
©2003 The American Physical Society01-1
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superconductors, but is nevertheless interesting from
points of view, that transparent analytical results for so
properties can be obtained, and that the character of the
vergence of the density of states near half filling
controversial.18 The two-impurity problem is the simples
problem which includes the interference processes that
to the formation of the impurity band, as well as proces
that lead to weak localization.

Early work on the two-impurity problem in ad-wave su-
perconductor was numerical in nature and focused on
local density of states~LDOS!, exhibiting unusual local in-
terference patterns which depended on the orientation of
vectorR separating the two impurities.30 More recently, the
relation to impurity band formation was discussed31 and pre-
dictions were made for STM experiments,16,17 assuming that
‘‘sufficiently isolated’’ two impurity configurations could be
identified. In Ref. 17, the bound-state wave functions of
two-impurity system were identified and classified. By an
ogy with the molecule problem in quantum mechanics, o
expects the single-impurity resonance energies to split as
impurities are brought together, and that the wave functi
are formed from symmetric and antisymmetric combinatio
of the isolated impurity wave functions. In fact, because
the particle-hole and fourfold rotational symmetries of t
superconducting state, the situation is more complica
with the effective overlap depending onR. Indeed, it has
been shown that for many pair configurations, the density
states does not consist of four well-defined resonances.16,17

The interference between impurities persists up to la
impurity separations. In Ref. 17 it was noted that two imp
rities with Ri(110) could cause splittings comparable to t
original resonance energy forR of many tens of lattice spac
ings. The spatial LDOS maps are therefore very differ
from superposed single-impurity maps, and one may ask
question as to whether this distinction persists in the cas
many impurities. That is, is it to be expected at experimen
impurity concentrations that a resonance found by STM
ally corresponds to an isolated impurity whose LDOS is p
dictable within a simple one-impurity model?17 Alterna-
tively, are interference effects omnipresent, destroy
expected one-impurity resonances and leading to new, lo
range LDOS patterns which require a many-impurity int
pretation? If the latter scenario is realized, how can it be t
STM experiments seem to see such similar spectra on or
impurities embedded in very different local disorder enviro
ments? We resolve these questions below by arguing th
the generic case the individual many-impurity eigenstates
highly distorted from mere superpositions of one-impur
LDOS patterns, but that STM measurements tend to ave
over many such eigenstates, canceling some of the lo
range effects of interference. Exceptions are very low ene
states of thenested d-wave superconductor, which exper
ence symmetry-driven level repulsion effects which prev
such cancellations. These considerations lead to a pic
where, with the exception of the zero-energy states, the l
impurity resonances appear homogeneously broadene
any probe which averages over a macroscopic energy
dow. This result has important consequences for the inter
tation of STM spectra. It means that, while the position o
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peak and the crude local LDOS pattern at an energy nea
peak may indeed qualitatively reflect one-impurity prop
ties, e.g., the strength of the one-impurity potentialV0, the
widths of spectral features measured at any site will refl
the impurity bandwidthg characteristic of the disordere
system as a whole.

The second goal of this paper is to investigate the div
gence in the total density of states in the completely nes
model from a local point of view, applying what we can lea
about the two-impurity system. In contrast to the predicti
of a residualr(0) by the SCTMA, Pe´pin and Lee24 ~PL!
found that, for an infinite scattering potential, the disord
averaged density of states should diverge at the Fermi l
~taken to be the zero of energy here! as r(v)'ni /v ln2v
whereni is the density of impurities. The schematic pictu
of the total DOS in this case is exhibited in Fig. 1~a!, to be
contrasted with the more generic case expected in the
sence of the nesting symmetry Fig. 1~b!. One surprising as-
pect of the PL result for theN-impurity T matrix is that it is
essentiallyni times the single-impurity result. Upon close
inspection, however, their result is not directly tied to t
one-impurity resonance at the Fermi level, but is the resul
interference between distant impurities. Numerical calcu
tions showed that the divergence arises because of a g
particle-hole symmetry27 which is particular to the tight-
binding model at half filling. It was later shown that th
nesting leads to a diffusion mode28 producing a positive
logarithmic correction to the DOS. This general structure
the divergence has also been found by Chamon and Mu
and25 and numerical calculations32 seem to confirm it, al-
though in both cases the strength of the divergence could
be verified. The situation is not settled, however, and ot
recent field-theoretical approaches26 find a different form for
the divergence which is reminiscent of the half-filled norm
metal. The investigations of the two- and many-impur
problem presented here paint yet a different picture. Wh
~for reasons discussed in the text! it is difficult to rule out the
existence of a continuous divergent contribution, we arg
that the strong divergence inr(E→0) seen in previous nu
merical work is actually indicative of a delta-function dive
gence at the Fermi level. In the final stages of writing th
work, we became aware of a recent conserving we

FIG. 1. Schematic figure of the many-impurity DOS~a! in the
unitary limit of the half-filled band and~b! in the unitary limit of a
generic band. The plateau in the impurity band is characterized
nearly constant density of statesr0. The zero-energy suppression
~b! is discussed in Refs. 21 and 27.
1-2
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localization calculation33 which came to the same conclu
sion.

The paper is organized as follows: In Sec. II A we deri
expressions for the Green’s functionsĜ(r ,v) needed to
evaluate the two-impurityT matrix. Asymptotic expression
for larger have been found previously24,34,35and our results,
valid for smallv, are complementary. In Sec. II B we con
centrate on the fully nested strong scattering model, eval
the density of states for different impurity configuration
and show that there are three different classes of impu
pair orientation. For two of these classes, the DOS diver
asv→0, while the DOS vanishes for the third. In all thre
cases, interference between impurities is substantial as it
Ref. 24, but ultimately the observed divergences arise fr
local rather than nonlocal correlations. In Sec. III we est
lish a connection between the zero-energy LDOS of the fu
nested disordered system and the zero-energy DOS o
one- and two-impurity problems. For the fully nested mod
we find that, in a given configuration, only impurities on
given sublattice contribute to the resonant weight at z
energy. The impurities in this class form a network with sp
tial separations equivalent to the resonant configuration
the two-impurity case, and numerical scaling of the total s
tially integrated DOS is shown to be consistent withr(v)
;d(v).

In Sec. IV, we summarize our conclusions and discuss
less symmetric situation found in the cuprates. We argue t
because the STM averages over many multi-impurity eig
states, the LDOS indeed appears to represent a set of n
isolated impurity states with spectral features which are si
lar from impurity to impurity. On the other hand, we expe
the width of these local states in energy to be typically
impurity bandwidth arising from the full disordered system

II. TWO IMPURITIES IN A HALF-FILLED BAND

A. Green’s functions

The BCS Hamiltonian for a pured-wave singlet supercon
ductor in a tight-binding band can be written as

H05(
k

Fk
†@~ek2m!t̂31Dkt̂1#Fk , ~1a!

ek522t~coskx1cosky!, ~1b!

Dk5D0~coskx2cosky!, ~1c!

where Fk
†5(ck↓

† c2k↑) is a Nambu spinor, andt̂ i are the
Pauli matrices. Energies are measured relative to the ce
of the band, so a chemical potential ofm50 corresponds to
half filling. The associated Green’s function is, in real spa
a function of the relative coordinater5(m,n), where r is
measured in units of the lattice constant andm and n are
integers:
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Ĝ0~r ,v!5(
k

eik•rĜ0~k,v!,

5(
k

cos~kxm!cos~kyn!
vt̂01~ek2m!t̂31Dkt̂1

v22Ek
2

,

~2!

whereEk5Aek
21Dk

2 denote quasiparticle energies,ˆ denotes
a matrix in Nambu space, and the superscript denotes
bare Green’s function. Frequently, it is convenient to ma
the decomposition in terms of Nambu spinors,

Ĝ0~r ,v!5(
j 50

3

Gj
0~r ,v!t̂ j .

An ensemble ofN short-range scattering potentials at a set
sitesRi introduces the perturbation

Himp5V0(
i 51

N

FRi

† t̂3FRi
,

whereV0 is the strength of the impurity potential. Formall
there is an exact solution for the disordered Green func
in terms of the 2N32N many-impurityT matrix that reads

Ĝ~r ,r 8,v!5Ĝ0~r2r 8,v!1(
i , j

Ĝ0~r2Ri ,v!T̂i j ~v!

3Ĝ0~Rj2r 8,v!,

with i , j the position indices of the impurity sites, and

T̂5@1^ t̂02 t̂3V0Ĝ0~v!#211^ t̂3V0 ,

where the boldface variables indicate a matrix in spatial
dices in the subspace of impurity sites@i.e., Ĝ0

i j (v)
5Ĝ0(Ri2Rj ,v)] and the inverse is a matrix inverse. In th
limit of a single impurity, theT matrix simplifies toT̂(v)
5@V0

21t̂32Ĝ0(0,v)#21, with Ĝ0(0,v)[Ĝ0(r50,v). This
limit has been studied extensively.

In this work, we are particularly interested in the tw
impurity T matrix with one impurity at the origin~for sim-
plicity! and the other a displacementR5(m,n) from the
origin. The two-impurityT matrix is a 434 matrix which
satisfies

T̂5FV0
21t̂32Ĝ0~0,v! 2Ĝ0~R,v!

2Ĝ0~R,v! V0
21t̂32Ĝ0~0,v!

G21

. ~3!

Expressions for the local Green’s functionĜ0(0,v) have
been derived in many places, but the nonlocal Green’s fu
tion Ĝ0(R,v) is less well understood, although sever
asymptotic expressions have been found.24,34,35 In the Ap-
pendix, we derive expressions which are valid for the ha
filled band, and which become exact in the limitv→0.

We find that the local Green’s function for general com
plex v is
1-3
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Ĝ0~0,v!52
av

2
ln

L2

2v2
t̂0 , ~4!

wherea5N/(2pvFvD), N54 is the number of nodes,vF is
the Fermi velocity,vD is the anomalous quasiparticle velo
ity u¹kDku, and the cutoffL is of orderD0. The expansion in
v for r5(m,n) depends on whethern and m are odd or
even. For the~even,even! case, we have

Ĝ0~r ,v!→~21!n1m/2@G0
0~0,v!1vC0~r !#t̂0 , ~5!

whereC0(r ) is a real function ofr . We find similar leading-
order expressions for (m,n)5~odd,odd!,

Ĝ0~m,n,v!→vC0~r !t̂0 , ~6!

while for (m,n)5~odd,even! or ~even,odd!,

Ĝ0~m,n,v!→C1~r !t̂11C3~r !t̂3 , ~7!

whereC1(r ) and C3(r ) are real constants. This distinctio
between even and odd sites accounts for the oscillatory
ture of the wave functions for the special case in which
Fermi wave vector is commensurate with the lattice.

B. Density of states for two impurities

In this section, we derive expressions for the density
states for two impurities in a half-filled band. The discuss
focuses on the unitary limitV0→6`. The half-filled tight-
binding band possesses a particular global nes
symmetry28 t̂2Ĝ0(k1Q,v) t̂25Ĝ0(k,v), with Q5(p,p).
For simplicity, we call this thet2 symmetry. Potential scat
tering violates this symmetry, but in the case of infinite p
tential, impurity sites are effectively removed from the la
tice, and the symmetry is recovered for any disord
configuration. In real space~see. e.g., Ref. 26! the t2 sym-
metry may be expressed as

t̂2Ĝ~r ,r 8,v!t̂25eiQ•(r2r8)Ĝ~r ,r 8,v!. ~8!

It will be useful to decompose the square tight-binding latt
into the usual two interleaved sublattices~denotedA andB).
The phase factor on the right-hand side of Eq.~8! is 11 if r
and r 8 belong to the same sublattice, and21 otherwise.

The simplest quantity of interest is the quasiparticle d
sity of states,

r~v!5(
n

d~v2En!

5r0~v!1dr~v!,

whereEn are the eigenvalues of the superconducting Ham
tonian, r0(v) is the DOS of the disorder-free system a
dr(v) is the change induced by the impurities. The DOS
related to the two-impurityT matrix defined in Eq.~3! by the
phase shifth(v):36

dr~v!5
1

p

]h

]v
, ~9!
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whereh is given by

h~v!5tan21
Im detT̂

Re detT̂
~10!

and the determinant is over spatial and spin indices.
We start with a discussion of two impurities belonging

one of the sublattices. The two impurities are atR1 andR2
with R[R12R25(m,n)5 ~even,even! or ~odd,odd!. The
two-impurity T matrix defined in Eq.~3! is particularly
simple in this case:

T̂5
1

D F2G0
0~0,v!t̂0 G0

0~R,v!t̂0

G0
0~R,v!t̂0 2G0

0~0,v!t̂0
G ,

whereD5G0
0(0,v)22G0

0(R,v)2. Noting that

detT̂5
1

D2
,

we keep the leading order terms inG0(R,v) asv→0, given
explicitly in Eqs.~5! and~6!, and find that detT̂ diverges as

detT̂→H @2vC0~R!G0
0~0,v!#22 R5~even, even!,

G0
0~0,v!24 R5~odd, odd!

and ~analytically continuingv to the real axis!

dr~v!→H 1/@v ln2~L/v!# R5~even, even!,

2/@v ln2~L/v!# R5~odd, odd!.
~11!

Because of the similarity of the approaches, we are abl
compare our findings with those of PL~Ref. 24! in some
detail. Although the form of Eq.~11! is suggestive of the
asymptotic result of PL for the disorder-averaged limit,
origin is quite different. This difference is easier to see
the ~odd, odd! impurity configuration: here the local Green
function Ĝ0(0,v) is dominant over the nonlocal term
Ĝ0(R,v) and the physics of the low-energy resonance
essentially that of two noninteracting impurities. The to
weight of the resonance is therefore twice that of a sin
impurity. For the~even, even! case the situation is a little
more complicated, since the local and nonlocal terms
nearly equal in magnitude; interference effects reduce
spectral weight of the combined resonance to half that of
isolated resonances. In both cases the situation is quite
ferent from Ref. 24 where the logarithmic divergence aris
from averaging over all possible impurity separations us
the approximate formĜ0(R,v);1/R out to a cutoff;t/R.
The PL result is inherently nonlocal.

Numerical calculations for two impurities with separatio
R5(2,2) are shown in Fig. 2. ForV05100t, four clearly
defined peaks are seen, corresponding to the level splittin
the single-impurity resonances of the isolated impurities17

As shown in the inset, the peak positions scale strongly w
V0, and a single peak appears only whenV0;105t.
1-4
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We continue now with the case where the impurities
long to different sublattices and are separated byR5~even,
odd!. The two-impurityT matrix defined in Eq.~3! is

T̂5
1

D8
F 2G0

0~0,v!t̂0 C1~R!t̂11C3~R!t̂3

C1~R!t̂11C3~R!t̂3 2G0
0~0,v!t̂0

G
with D85G(0,v)22C1(R)22C3(R)2. It follows easily that
detT̂5D822 and that

dr~v→0!}
d

dv S v2ln
L

v D→0. ~12!

A similar result holds forR5~odd, even!. Physically, the fact
thatdr vanishes at the Fermi level indicates that bound-s
energies must always arise at nonzero energies. Nume

FIG. 2. Change in the quasiparticle density of states arising f
impurities separated byR5(2,2) as a function of energyv/t for
scattering potentialV05106t. Inset: Scaling of the resonance pe
energies as a function ofV0. The DOS forR5(2,0) is almost
identical. Energies are measured in units oft, andD050.1t.

FIG. 3. Change in the quasiparticle density of states for im
rities separated byR5(2,1) as a function of energyv/t for scatter-
ing potentialV05106t and D050.1t. Inset: Scaling of the reso
nance peak position as a function ofV0.
05450
-
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cal

calculations of the DOS shown in Fig. 3 demonstrate t
there is no remnant of the single-impurityv→0 divergence
for this orientation, and that the resonance energies s
very little with V0. In this case, it is the dominance of th
nonlocal terms which shifts the resonance to finite energ

III. DISORDERED SYSTEM WITH GLOBAL
PARTICLE-HOLE SYMMETRY

In this section, we discuss the correspondence betw
the two-impurity problem and the disorderedd-wave super-
conductor. There are two separate issues to be dealt w
The first has to do with the nature of the divergence atv
50 which occurs in the tight-binding model, while the se
ond has to do with the more general question of how
impurity band evolves with impurity concentration. For the
calculations, we numerically diagonalize the mean-fie
Hamiltonian for a random distribution of impurities, und
the assumption of a homogeneous order parameter fo
finite-sizeL3L system with periodic boundaries. For a d
tailed description of the method, we refer the reader to, e
Ref. 22. We retain the eigenenergiesEn and the eigenvectors

C (n)~r !5Fu(n)~r !

v (n)~r !
G .

The total quasiparticle density of states is justr(v)
5(nd(v2En), and the single-spin tunneling LDOS is

r~r ,v!5(
n

uu(n)~r !u2d~v2En!.

The quasiparticle DOS appears in thermodynamic quant
and is ~for superconductors! symmetric in v: r(v)
5*dr @r(r ,v)1r(r ,2v)#. At low v, r(v) closely re-
sembles the spatially integrated tunneling DOS. Since th
is no moment formation,s5↑ ands5↓ are equivalent.

The Green’s functionG0(k,v) for the Hamiltonian@Fig.
1~a!# ~with m50) has the special symmetryt̂2Ĝ0(k
1Q,v) t̂25G0(k,v) whereQ5(p,p) is the antiferromag-
netic wave vector. Thet2 symmetry is required27,28 for the
divergence inr(v→0). We note that for a finite-size sys
tem, this symmetry is only strictly satisfied whenL is even.37

For this reason, we restrict ourselves to evenL throughout
this paper.

A. Divergence atvÄ0

The DOS for a large concentrationni50.1 of strong scat-
tering impurities in ad-wave superconductor is shown i
Fig. 4. The figure is restricted to low energies, and sho
only the zero-energy peak at the Fermi level, and a sm
portion of the impurity band. For comparison, thed-wave
gap has an energyD050.2t and the gap edge in the tunne
ing density of states is 0.4t. For clarity, we often make a
distinction between states in the peak and states in the im
rity band, by which we mean states belonging to the D
plateau which is characterized by a constant density of st
r0. In Fig. 4~a!, for example,r0'0.25t21.

m

-
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In Fig. 4~a!, the total DOS is shown for an impurity po
tential V05100t corresponding to a strong scattering pote
tial. The results are in quantitative agreement with ear
numerical work.27,32 The PL result

rPL~v!'
ni

uvu@ ln2~L/v!1~p/2!2#
~13!

is also shown. Here, we takeL51, first because this was th
cutoff used in previous numerical work32 and, second, be
cause this gives a good fit to the numerics atV05100t. It
should be clear from Figs. 4~a! and 4~b!, however, that al-
though the fit is striking atV05100t, it is less so for other
values ofV0. In our numerics, we find a smooth evolution
the low-energy peak as a function ofV0 and there is no value
of V0 beyond which the asymptotic behavior saturates.
general,rPL(v) does not appear to fit the data well, exce
for certain special parameter sets. The shape of the pea
v50 is modified by finite-size effects. There is a crosso
in behavior which occurs when the mean level spacing in
impurity band dL51/(r0L2) is comparable to the pea
width. Scaling of the DOS is shown forV05250t in Fig.

FIG. 4. Total density of states forni50.1. ~a! DOS for V0

5100t ~solidline! andL560. Equation~ 13! is plotted for compari-
son~dashed line!. ~b! Scaling of the DOS withV0 . rPL(v) is again
plotted for comparison.~c! Scaling of the DOS withL. ~d! Scaling
of the DOS withV0 for V0 /t5100, 500, 1000, 5000, 104, 105, and
106 and L560. A backgroundr050.25t21 has been subtracted
The figure shows that the density of states is a peaked func
whose width scales as 1/V0 and whose height scales asV0, suggest-
ing that limV0→`r(v);d(v). All energies are in units oft.
05450
-
r

n
t
at

r
e

4~c!. The peak height scales withL for L&40 and saturates
at larger system sizes. The implication is that some care m
be taken in approaching theV0→` limit.

The unitary limit of the infinite system may be ap
proached in two ways. First, one may consider tak
limV0→`limL→` so that the level spacing in the impurit
band is much less than the peak width. Second, one
consider taking the limitL→` with V05`. In the first ap-
proach, thet2 symmetry is only strictly satisfied whenL
5`, while in the second approach, thet2 symmetry is rig-
orously satisfied for any even value ofL. For this reason, we
view the second approach to be preferable.

The limit V0→` for fixed L is illustrated in Fig. 4~d!. The
data are scaled by the impurity potential, and the gen
trend is that asV0 increases, a sharp peak develops atv
50. Furthermore, the peak scales asr(v)'V0F(vV0), im-
plying that

lim
V0→`

r~v!;d~v!. ~14!

Not surprisingly, the weight contained in the delta peak
the V0→` limit scales withL, as shown in Fig. 5. Forni
50.1, this scaling is consistent with what we found in F
4~c!. Whenni50.2, on the other hand, the peak area sa
rates whenL*40, which is not expected since the pe
width is still many orders of magnitude smaller than t
typical level spacingdL in the impurity band. To learn more
about the origin of this saturation we plot in the same figu
the scaling of the inverse participation ratio, defined by

a~v!5(
n

(
i

@u(n)~r i !
41v (n)~r i !

4#

S (
i

@u(n)~r i !
21v (n)~r i !

2# D 2 d~v2En!.

a(v) scales asL2d for wave functions which are extende
in d dimensions, and does not scale withL for localized
states. States which are intermediate between localized
extended, for example, states with power-law tails, will sc
more slowly thanL2d. The localization length is typically
extracted from the crossover which occurs whenL'jL
wherejL is the localization length. As we see below, states
the delta peak behave differently from those in the impur
band, and we find that the peak area is correlated with
localization properties of the impurity band. In Fig. 5, th
inverse participation ratio is averaged over states in a nar
energy window adjacent to~but not including! the delta peak.
It is evident from the figure that forni50.2, a crossover to
the localized regime occurs, and we can extract a localiza
length jL'40. Remarkably, we find that the area of thed
peak appears to saturate whenL.jL . This situation is
analogous to one reported earlier ind-wave superconductor
possessing no special symmetries. There, it was shown
quantum interference~arising from ‘‘maximally crossed’’
diagrams! leads to a suppression of the DOS at the Fe
level21 over an energy scaledjL

51/(r0jL
2). @This situation is

illustrated in Fig. 1~b!.# In finite-size systems, the energ

n
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FIG. 5. Scaling of the peak area and inver
participation ratio with system sizeL and V0

5106t. aavg is averaged over states with energi
1025t,En,0.03t. ~a! Scaling for ni50.1. ~b!
Scaling forni50.2. Solid lines are linear fits to
the data. For these curves,D050.5t.
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scale for the DOS suppression is actuallydL and the scaling
of the suppression saturates whenL.jL .27

We note that the origins of the delta-peak divergence
fundamentally different from those discussed in PL, wh
the divergence arises from the cumulative effects of inter
ence between a large number of distant impurities. Here
result appears to be a mesoscopic effect which survives
cause localization makes the effective system size fin
However, although the delta-peak result is different from e
lier predictions for a continuous divergence at the Fe
level, it does not preclude the existence of an additional
vergent term which is unobservable because of finite sys
size effects. In Ref. 27 a positive logarithmically diverge
contribution to the DOS was found perturbatively, and
consistent with our results at higher energies. Furthermor
we consider the effect of finite system size on the PL re
we find that the interference between distant impurities is
off by L and we should make the substitutionv
→max(v,t/L) in rPL , implying a cutoff energyvc't/L be-
low which the DOS saturates. By this estimate, the contri
tion to the plot in Fig. 4 is cut off belowvc'0.017t, sug-
gesting that the PL peak should be unobservable.

It is particularly instructive to consider the structure of t
delta-peak divergence in real space. Figure 6 shows the c
bined local density of states from the eigenstates with ene
uEnu,1025t which comprise the delta peak~these states ar
well separated from all other eigenvalues!. For a single im-
purity ~shown in the inset! the zero-energy resonance has
fourfold spatial structure with bright lobes on sites adjac
to the impurity along the antinodal~100! and ~010! crystal
directions, and extended tails in the nodal~110! and (11̄0)
directions, in agreement with many earlier calculations.11 For
0.4% disorder~ten impurities!, the situation is quite different
even at this relatively low concentration, there is significa
interference between impurities. We see four pronoun
zero-energy resonances, but the remaining six impuri
are—at best—only weakly visible. For each of the visib
resonances, the LDOS has the superficial structure of
isolated impurity LDOS, with maxima appearing in the an
05450
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nodal direction and tails extending away from the impurit
in the nodal directions. However, there is no obvious cor
lation between the degree of isolation and the appearanc
a zero-energy resonance. Indeed, of the four strong r
nances, only two are more than ten lattice sites from
nearest impurity. For 2% disorder~50 impurities!, shown in
Fig. 7, the situation is similar. Only a small fraction of im
purities contributes to the zero-energy LDOS and, again,
visible resonances do not necessarily belong to the most
lated impurities. At this higher impurity concentration, how
ever, a definite pattern in the LDOS is observable. Long t
along the (110) and (110̄) directions give the appearance
a network of impurities.

Remarkably, we find that all impurities within the visibl

FIG. 6. Local density of states for 0.4% concentration of imp
rities and uEnu,1025t ~four eigenvalues!. Impurity locations on
sublatticeA are indicated with open circles, those on sublatticeB
with filled circles, and the impurity potential isV05106t. Inset: The
inset shows a detail of the LDOS for a single impurity.
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network in Fig. 7 belong to one sublattice, arbitrarily deno
A, while the remaining impurities belong to theB sublattice.
Similarly, in Fig. 6, all visible impurities belong to the B
sublattice. While this is reminiscent of the two-impuri
problem discussed in the previous section, it is also q
surprising. For the two-impurity problem, it was shown th
the zero-energy resonance is preserved when both impu
inhabit the same sublattice, and it is destroyed otherw
The natural extrapolation is that, for a random distribution
many impurities, every impurity is expected to have so
reasonably close neighbor belonging to the other subla
which contributes to the destruction of the zero-energy pe
Clearly, this does not happen. Instead, in Fig. 7, the imp
ties belonging to theA sublattice are dominant atv50 for
reasons we do not completely understand at present. An
parent consequence of this dominance is that the resona
of impurities belonging to theB sublattice are shifted to
higher energies. We speculate, but cannot prove, that the
tem in the thermodynamic limit will have ‘‘domains’’ of typi
cal sizejL in which eitherA or B impurities are resonant.

The observed networks are also reminiscent of an ea
proposal35 in which impurities form networks from single
impurity resonances which lead to a delocalization transit
asv→0. Numerical scaling calculations32 for a finite impu-
rity potential (V05100t) did not find such a transition, how
ever, nor does the present work~see below!. In any case, we
emphasize that the sharply defined networks exhibited ab
are a feature of Hamiltonians witht2 symmetry only, and not
a general feature ofd-wave superconductors as suggested
Ref. 35.

B. Impurity band away from vÄ0

We now turn our attention to the states in the ‘‘impuri
band’’ away fromv50. Although formally the nesting sym

FIG. 7. Local density of states for 2% concentration of impu
ties anduEnu,1025t ~20 eigenvalues!. Impurity locations on sub-
lattice A are indicated with open circles, those on sublatticeB with
filled circles, and the impurity potential isV05106t.
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metry for G0 defined above still holds, it is clear that impu
rity scattering processes for quasiparticles now involve
commensurate wave vectorsq away fromQ5(p,p), such
that the global constructive interference which leads to
v50 divergence in the DOS cannot occur, and we may
pect the quasiparticle networks observed in Figs. 6 and
be blurred. The previous analysis raises some interes
questions about the formation of the impurity band in re
space. Is thev.0 DOS plateau formed, as Figs. 6 and
perhaps suggest, by summing over many impurities, som
which are resonant at a given energy and others not?
would imply that, as energy was scanned in STM expe
ments, different impurities would ‘‘light up’’—become
resonant—and turn off at different energies within the imp
rity band, a scenario we refer to as ‘‘inhomogeneous bro
ening’’ of the impurity resonances. Experimental data2,3 in-
dicate instead that all impurities, regardless of loc
environment, appear to be resonant all through the impu
band, so that each local spectral function is qualitativ
similar in position and width, and is ‘‘homogeneous broa
ened.’’ In addition, there is some evidence from explicit Z
substitution3 that the number of impurity resonances corr
sponds closely to the number of Zn atoms introduced into
crystal, so that there are no atoms which do not light up. I
for this reason that interpretations have typically been giv
in terms of one-impurity models. However, in the same e
periments the width of spectral features is roughly an ord
of-magnitude larger than those predicted by the simplest o
impurity models.

These apparent paradoxes can be resolved by recogn
that the energy range probed by STM, although very sm
@O(1 meV)# in laboratory terms, is still large enough t
sample an essentially infinite number of eigenstates of
macroscopic system. In Fig. 8 we show the LDOS deriv
from a single eigenstate38 at an energy which is in the impu
rity band, but away from the zero-energy delta peak. T
features of this figure stand out. First, as was the case av

FIG. 8. Local density of states for 0.5% impurities andV0

5106t derived from a single eigenvalue withEn50.0358t.
1-8
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QUANTUM INTERFERENCE IN NESTEDd-WAVE . . . PHYSICAL REVIEW B 68, 054501 ~2003!
50, only a fraction of the impurities contributes to any giv
eigenstate. Second, the extended tails which were impo
in the formation of the delta peak are blurred by the inco
mensurability between the lattice and the wave vectors c
tained in the eigenstate. As we move further away fromv
50, this incommensurability becomes more pronounced
the tails become increasingly blurred.

The inequivalency between impurities in Fig. 8 is surpr
ing not only because STM provides little evidence for suc
picture, but also because the arguments about the forma
of networks fail whenvÞ0 ~indeed, there is no visible net
work in the figure!. When one now averages the LDOS ov

FIG. 9. Local density of states for 0.5% impurities andV0

5106t averaged over five eigenvalues in the energy intervaluEn

20.03tu,0.02t.

FIG. 10. Inverse participation ratioa(v) for ni50.1, V05106

on a 30330 lattice with 50 configurations. States in the impur
band foruEnu*t/V0 have an approximately uniform spatial exten
States withuEnuV0&t exhibit strong fluctuations in spatial exten
Note that states witha(En)51 are confined to a single site, whil
states witha(En);N21 have a uniform spatial distribution. Inset:
histogram of the distribution ofa(v) for states in the zero-energyd
function. Note the logarithmic horizontal axis.
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a small energy window, as in Fig. 9, the system starts to lo
much more homogeneous, in the sense that all impuri
contribute visible resonances with classic fourfold symme
The window width is small compared to the impurity ban
and we have checked that the pattern averaged in this
remains roughly the same up to energies of the order of
impurity band itself,g.0.25t for the parameter set of th
figure. Thus, it appears as if there is an important distinct
between individual eigenstates which determine, for
ample, localization properties, and averages over fin
energy windows which determine the tunneling spectrum

Finally, in order to solidify the connection between loc
and bulk properties of the disordered system, the energy
pendence of the inverse participation ratio is plotted in F
10. For each impurity configuration,a(En) is calculated for
all the eigenstates in the spectrum, and the aggregat
shown for 50 impurity configurations in the figure. There is
clear distinction between states inside and outside thd
peak. States outside thed peak are clearly extended~the
localization length is much larger than the system size! and
the distribution ofa(v) is relatively narrow at a given en
ergy. On the other hand, there is a broad distribution ofa(v)
in the d peak, indicating a mix of localized and extende
states. The inset of Fig. 10 shows a histogram of the dis
bution that demonstrates that most of the spectral weigh
the d peak comes from the extended tails of the resonan
~Fig. 7! and not from the highly visible localized resonance

IV. CONCLUSIONS

In this work we have studied the unitary limit of a diso
dered, half-filledd-wave superconductor with a tight-bindin
band. This model has a particular symmetry which is kno
to lead to a divergence in the density of states at the Fe
level, although the particular form of the divergence is co
troversial. We began with a discussion of the two-impur
problem, which yields an analytical solution in thev→0
limit. We found that, owing to the commensurability of th
nodal wave vectors and the tight-binding lattice, there is
‘‘even-odd’’ oscillation in the two-impurity density of state
in the unitary~infinite scattering potential! limit: only impu-
rity pairs on the same sublattice have a zero-energy di
gence in the DOS similar to the single-impurity divergenc
The origin of this divergence is quite different from th
reported earlier,24 which arises from the cumulative interfe
ence of a large number of distant impurities. We then no
that, for impurities located on different sublattices, the ze
energy single-impurity resonance is shifted to higher en
gies as a result of interference, and broadened due to
pling to thed-wave continuum. Based on this result alone
is natural to assume that, in the many-impurity case,
remnant of the single-impurity peak will be obliterated sin
each impurity is expected to have at least one reason
near neighbor which lies on the other sublattice. Surprisin
we found that this is not the case. Exact numerical studie
finite-size systems show that unitary impurities actually fo
two interleaved networks on theA andB sublattices, one of
which contains spectral weight atv50, while the other does
not.
1-9
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W. A. ATKINSON, P. J. HIRSCHFELD, AND LINGYIN ZHU PHYSICAL REVIEW B68, 054501 ~2003!
Away from v50, the nesting symmetry is less definitiv
since scattering wave vectors different fromQ5(p,p) con-
tribute, and there can be no divergence in the DOS. In
sense, from a symmetry point of view, our conclusions in t
regime are perhapsqualitativelyappropriate for real cuprat
materials. At finite energies, we find that quasiparticle eig
states are no longer commensurate with the lattice, netw
connecting resonant states along the nodal directions
smeared, and individual eigenstates consist of distorted
purity resonances, which are inhomogeneously distribu
When the LDOS is averaged over a small window in ener
however, as in an STM experiment, the fourfold nature of
one-impurity resonances is qualitatively recovered, and re
nances on individual impurity sites appear remarkably si
lar, provided the impurities are not in immediate proximi
Although the resonance peak positions may be qualitativ
related to the resonant energies of the underlying o
impurity model, the widths are very different, of order of th
impurity bandwidth, given in the unitarity low-density lim
by g.AniD0EF.

These calculations suggest that the ability of one-impu
models of any kind to explain the details of local STM spe
tra in samples with percent level disorder is severely limit
We emphasize, however, that the results presented her
for a special model with parameters inappropriate for dir
comparison to the cuprates. To substantiate this picture
real systems, it will be useful to compare local spectra
sites~e.g., impurity or nearest-neighbor sites! around differ-
ent impurities using realistic bands and impurity potentia
Numerical calculations to realize the large systems neces
to obtain the resolution required to reach definite answer
these questions are in progress.
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APPENDIX

The purpose of this Appendix is to derive expressions
the Green’s functionG(R,v) with R5(m,n), which are
valid in thev→0 limit. The starting point is Eq.~2!, and the
first step is to express

cos~kxm!52m21cosmkx

1
1

2 (
j 51

[m/2]

~21! j
m~m2 j 21!!

j ! ~m22 j !!
~2coskx!

m22 j ,

where@ . . . # refers to the integer part of the argument. W
focus on the half-filled casem50 and write Eq.~2! as the
sum of terms of the form
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gpq5(
k

cosp~kx!cosq~ky!
vt̂01ekt̂31Dkt̂1

v22Ek
2

,

wherep5m,m22, . . . andq5n,n22, . . . . Weproceed by
linearizing the dispersion near the node at (p/2,p/2) and
making the coordinate transformationE25ek

21Dk
2 , tanu

5Dk /ek ,

gpq5
a

2p1qE0

2p du

2p S 2
sinu

D0
2

cosu

2t D qS sinu

D0
2

cosu

2t D p

3E
0

L

Ep1q11dE
vt̂01E~cosut̂31sinut̂1!

v22E2
.

The prefactor isa5N/(2pvFvD) whereN54 is the number
of nodes,vF is the Fermi velocity,vD is the anomalous qua
siparticle velocityu¹kDku, and the cutoffL is of orderD0.
The integrals overE andu are easily done and

gpq~v!5
2a

2p1q
@vFp1q~v!Ppq

0 t̂0

1Fp1q11~v!~Ppq
3 t̂31Ppq

1 t̂1!#,

where Ppq
j are constants given by the angular integratio

and

Fa~v!5E
0

L

EdE
Ea

E22v2
.

The constantsPpq
j vanish for j 51,3 whenp1q5even and

vanish for j 50 whenp1q5odd. The first few nonzero el
ements are

P00
0 51,

P10
1 52P01

1 5
1

2D0
,

P10
3 5P01

3 52
1

4t
,

P11
0 5P11

0 52
1

2D0
2

1
1

8t2
.

Only even moments ofFa(v) are needed:

F2n5 (
j 50

n21
v2 jL2(n2 j )

2~n2 j !
1

v2n

2
ln

L2

2v2
.

Since we are interested in the leading-order behavior
G(R,v) we note that for smallv ,

F0~v!→ 1

2
ln

L2

2v2
,

1-10
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F2n~v!→ L2n

2n
.

For R5(2m,2n), the leading-order contribution to
G(R,v) comes from the single term in the expansion co
taining g00. To second order inv,

G~R,v!52~21!n1m
av

2
ln

L2

2v2
t̂01vC0~R!t̂0 ,

~A1!

whereC0(R) is real and the sum of several terms. The la
est term contributing toC(R) is of order

auvu
16~m1n! S L

D0
D 2(m1n)
.

is

nd

C

.R
.

ki,

,

,

ys

,

05450
-

-

from which we estimate a range of validity

uvu&Le2$[L/D0)2(m1n)/[16(m1n)] %.

For otherR, there is no single dominant term in the expa
sion for the Green’s function, and the leading-order behav
comes from the sum over a large number of real nondiv
gent terms. For our purposes, it is sufficient to note that w
R5(2m11,2n11), the sums take the form

G~R,v!5vC0~R!t̂0 , ~A2!

and whenR5(2m11,2n) or (2m,2n11),

G~R,v!5C1~R!t̂11C3~R!t̂3 , ~A3!

whereC0(R), C1(R), andC3(R) are real constants.
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