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The theory of magnetoquantum oscillations in a two-dimensi@@) metal with overlapping 2D and 1D
energy bands, admitting multiple sets of closed and open orbits and a multisheet Fermi surface, is elaborated
on. A system of coupled nonlinear equations for the chemical potential and magnetization oscillations is
obtained in a level and harmonic representation. In the framework of a parametrical solution the resulting wave
form of oscillation patterns, due to various fundamental frequencies interconnected through chemical potential
oscillations, is calculated at any temperature and strength of reservoirs of magnetically unperturbed back-
ground states. Analytical expressions for renormalized Fourier harmonics of fundamental and combination
frequenciegsatellites of the higher frequency and its harmonare obtained dependent on the strength of the
reservoir. The criterion of validity of these expressions as solutions of nonlinear equations is discussed. The
symmetrization effect of the oscillation wave form is found in a multiband electron system without a reservoir
of background states. It can be enhanced by the presence of a reservoir. The symmetrization effect is reflected
via the nonstandard behavior of second harmonics: nonmonotonic temperature—magnetic-field dependence and
disappearance at certain temperatures and magnetic f@&dend harmonics zeno€ffects of this kind can
also be revealed in heterostructures with external reservoirs of background states.
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. INTRODUCTION recently observed in uranium dipnictide USRef. 10 and
layered perovskite superconductosBu0,, **"*?both having
The phenomenon of magnetic quantum oscillations ofylindrical Fermi surfacessimilar to 2D metals Combina-
magnetization and magnetoresistafide Haas—van Alphen tion frequencies have been also detected in multiband
(dHvA)] and [Shubnikov—de HaatSdH) effectd is widely  quantum-well heterostructure of InGaAk.
utilized in establishing Fermi surfaces of metalEhe most In this work we will develop a theory of chemical poten-
important properties of metals, specific heat, electrocondugial and magnetization oscillations in multiband 2D metals
tivity, superconductivity, charge, spin density waves, etc., ar¢aving both closed and open Fermi surface sheets, the ex-
determined by the details of their Fermi surface topologypressions obtained being applicable at arbitrary temperature.
Strongly anisotropic metaisuch as recently synthesized or- The presence of a reservoir of electrons situated on magneti-
ganic conductofs) having relatively simple quasi-two- cally unperturbed background stafssich as in open Fermi
dimensional(2D) Fermi surfaces could be used as modelsurface sheets and on impurity and defect leyglbbandg
crystals for checking various theoretical approaches descrilwill greatly influence the entire pattern of magnetic quantum
ing magnetic quantum oscillations. In addition to the Fermipscillations. We will consider in detail an electron system
surface, the energy bands overlapping and the relative disp@onsisting of two 2D bands and one 1D band which serves as
sition of band edges also play an important role in influencq reservoir of background states. Under strong quantizing
ing magnetic oscillation properties of metals. Generallymagnetic field the 2D bands provide closed electron orbits
magnetic quantum oscillations in multiband 2D metals, adand 1D bands provide open on@sectronlike or holelikg It
mitting multiple fundamental frequencies, are strongly inter-will be shown that due to the presence of reservoir states the
connected by the chemical potential oscillations. This resultgffect of symmetrization of oscillations takes place: the wave
in the appearance of combination frequencies. A theoreticgbrm of oscillations will be symmetrized even at ultralow
analysis of such magnetization oscillations in 2D metals withtemperature as in one closé2D) and one operi1D) band
two energy bands, providing sets of closed orbits of electronsodel considered in Ref. 14. The Fourier spectrum will be
under high quantizing magnetic field, was undertaken by Al-greatly influenced by the strength of the reservoir of back-
exandrov and BratkovsRy and Nakand.Their initial analy-  ground states. It will be characterized by the nonstandard
sis was constrained by numerical calculations at zero temronmonotonic temperature dependence of second harmonics
perature. Later the analytical expressions for Fourieffor electron systems with moderate reservoir strength. It will
harmonics of combination frequencies were obtained in ame shown that at certain temperature/magnetic field the sec-
approximation of relatively high temperatirand for a  ond(even harmonics may traverse the zero valwich is
model of two 2D bands with equal mass the theory has beethe manifestation of the symmetrization effect on magnetic
extended to zero temperatifr®ecently Kishigi and Hase- quantum oscillation's). A stronger Fourier spectrum of com-
gawa have numerically analyzed the expressions for dHv/Aination frequencies is revealed at weaker strengths of the
oscillations in two 2D band electron systems applicable ateservoir due to the stronger chemical potential oscillations.
any temperatur@.The combination frequencies have beenThe symmetrization effect will also take place in a multiband
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electron system without reservoir. These effects under higt
guantizing magnetic fields will also take place in systems
other than metal 2D electron systems, for example, in het-
erostructures with external reservoir of background states.
In Sec. Il we will generalize the system of basic nonlinear
equations for chemical potential and magnetization oscilla-
tions for multiband metals in the framework of level and
harmonic approachegleveloped in detail for one 2D band «"
and one 1D band in Refs. 16 and)1%he model of multi-
band structure with two 2D bands and one 1D band will be
elaborated and the strength of reservoir of background state
presented by a transfer parameter calculated. In Sec. Il A the
wave form of interconnected oscillations will be calculated
via the parametrical methdtat various reservoir strengths. 2D s=2
In Sec. 1l B the Fourier harmonics of fundamental and com- T L
bination frequencies of magnetization oscillations in the %0 02 04 06 08 00 02 04 06 08 10
presence of reservoir of background states will be derived kb'/m kb'/n
and the validity of the obtained analytical expressions dis-
cussed. The effect of the symmetrization of oscillations wave FIG- 1. Scheme of the dispersion in multiband energy structures
form reflected by the temperature/magnetic field behavior ofOnsisting of two 2D bands overlapping with a 1D band. For sim-
second harmonics of fundamental frequencies will be consid?!Icit: dispersion isotropic in they plain is shown for 2D bands.
ered. In the Conclusion the comparison of theoretical resultgn® ©P of the 1D band is situated at thg= a/b* Brillouin zone

with available experimental Fourier spectrum in multiband " The Fermi surface consists of two cylinders and two plain
electron systems is briefly discussed sheets. Energies are counted off the bottom of the secen@)

2D band,A; is the bottom of the first§=1) 2D band,A is the
ceiling of the 1D bandoverlapping energy ¢ is the Fermi energy

0.1

A

1

2D s=2

Il. BASIC EQUATIONS FOR CHEMICAL POTENTIAL (or Fermi level, which is common to all bands, is the Fermi
AND MAGNETIZATION OSCILLATIONS energy of the first band, is the wave vector component ahd is

the lattice constant in thg direction. The parameters used are as
A. Model follows. The effective mass of the second bandigm,=1.5 (m,

We consider here a model of a strongly anisotropic crystals the electron magsthat of the first band isn,=m,/1.5. The
(quasi-two-dimensionalhaving two two-dimensionai2D) Fermi energy ratio |3:F1/8F_= 1/3 (which corresponds to the fun-
energy bands overlapping with a 1D ba(fidg. 1). There can iaﬁ”;e;/f,! Z/fzrequ!er;ﬁy rat'odeZ/Fé_‘.ldfr)]’. tA/DdZ._ 1{2 [Elf
be two situations: first, when one or two valence electrons on (. ) M2 1S e.s_econ_ zan Vl” > in thg |£e_c for.
an unit cell fill the bottoms of the two 2D bandforming - dc> 8¢ s units: e,=#(m/b*)*/2m, (at b*=10 A e,

~376 meV). The band structure {a) corresponds to the effective
electron pockejsand the bottom of the 1D ban@lectron mass of the 1D banah,,=0.7m, and transfer parametagz~1
pocke}, and second, when two valence electrons on a ””'Emoderate strength 1D reservpiin (b) mg,=11m, and cg~10
cell fill the bottoms of the two 2D bandglectron pockes (sirong 1D reservojr ° ¢
and the 1D band, leaving a hole pocket near the ceiling of the
1D band. In the first model the whole number of electrons%

: - 2" (wherel¢=0,1, . . . ,designates quantized energy leyelad
conserved in the bottoms of the three upper bands, is fixe long open orbitgunperturbed by magnetic field where the

in the second, the number of electrons in electron pockets qf .; o an :
' . . pin splitting is neglected filling the background reservoir
the two 2D bands is dependent on overlapping energy angtates, which near the maximuftop) of the 1D bandA

may be_ arbitrz_ary(as in compensated mefalThe second ._could be represented as parabolic holelike oiseg Fig. 1
model is reminiscent of the band structure of organic

conductoré and will be considered here in detail. All results A x5 20 12

inhering to this model will also be valid for the first one, with ex= A=A (ky = m/b™)"2mg,. )
the exception of the expression for the Fermi energy lénel _ .
the absence of magnetic figldnd transfer parametéde- In Eg'.(l) wS(ﬁ) —eB]/msc is the cyc][ot;on frequenc%/ codr-
scribing the strength of reservhirn both cases the Fermi respon_lng to _the Eyc gtron .maﬂﬁs of the s enetz)rgyd and
surface consists of two closed and one open 2D sheets, cd1€rés=1,2 with s=1 denoting the upper 2D band as

responding to two Fermi surface cylindeirepresented by =2 that of the lower one, see Fig) &nd A, are the 2D
two 2D bands and a plain sheetrepresented by the 1D bands bottom edges. All energies are cpunted from the bot-
band, will be called a sheet from here)on tom edge of thes=2 bandA,=0. In this case the upper

Under high quantizing magnetic field electrons move€dge of the 1D band stands for the overlapping energy. In

along closed orbits, filling the corresponding quasiclassicai® Ed-(2) ky is they component of the wave vectds} is
energy level§Landau leveldLL’s)] in the 2D bands: thg correspondmg Ia’Ftlce constaxpression(1) includes
anisotropy in they plain: mg= ymg,mg, (Mg, , Mg, are com-
B B ponents of the effective mass tensor in theplain), cer-
g (B)=fiwg(B)(Is+1/2)+As, s=1.2 @) tainly, the anisotropy in the direction (anisotropic axisis
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much stronger, leading to the 2D crygtahg,, is the absolute 2 b 2
) o s Cr ~
value of the hole mass tensor component inkielirection - 2 b E g(xs,Qs)Jrﬁ—g, (8)
(which is for the holelike open plain sheet of the Fermi sur- s=14Fng  s=1 ®1
face, arising from the 1D ban_d, is negaivén con3|dered where fors=1,2
case the number of electrons inside electron pockets is equal
to the number of holes in a hole pocket of the hole sheet and BB
is independent tic field bs _Fs Fs s
is independent on magnetic field. _ _ ==__° p=B-B,, 2b,= . (9)
Thermodynamic potential for the considered model can 2b,, B By, s s Fs
be written as
1 ns .
Q(B,0)=0u(B,O)+ Qr(0), () 3(%e.Q0) = B sinh(x,)
S'ST 14 expixs) K1 coshxg)+cosikQg) '
Q. (B,)IAV (10)
2
_ hwyB) > eh
=—kgTB In(1+exp{[{—¢,(B)]/ksT}), — s _ZFs =
B Szl |SZO ( F{[g SIS( )] B }) QS(BaT)_ kBT ’ FS_ /—LS 1 ,(LS— msca (ll)

) whereF are the fundamental frequencies of oscillatipRs

is the low frequency characterizing tee=1 2D band,F, is

QR(g)/Vz—ZkBTZ In{1+exd ({—e/kgT]}, (5)  the high frequency characterizing tise=2 2D band(both
k bands give closed 2D Fermi surface sheets constraining the

where Q,,(B,{) represents thermodynamic potential of electron pockets, see Fig)];Lans are quasiperiods, corre-
electrons filling magnetically quantized states, Eq. sponding to fundamental frequenciBg, Q¢(B,T) are the

Qg(2) is the one due to electrons filling magnetically temperature smoothing parameters. The parametrical vari-
unperturbed states, [near the ceiling of this 1D band being ablesxs are defined as
holelike, Eq.(2)], A=2 cosB/c* ¢y (do=hcle is the flux
quantum,c* is the lattice constant in the anisotropic direc- Xs(B, T)=¢en (B)={(B,T)/kgT, s=12,
tion of a 2D metal, and is the tilt angle between aniso-
tropic axisc* and magnetic induction vectd), ¢ is the and can be written via temperature smoothing parameters
chemical potential generally dependent on magnetic fieldQ<(B,T) and chemical potential oscillatior§B,T) as
andV is the crystal volume.

2Xs by 2 -

B. Nonlinear equation for chemical potential oscillations Q. + b, ﬁwsg’ s=12. (12)
S

First of all we obtain in the framework of considered L . .
model the equation for the chemical potential in the case oMagdnetic fieldsB, are defined so that the corresponding

three overlapping bandgor one 2D and one 1D overlapping quantized levels with quantum numbers and ns—1 are
bands see Ref. 16 situated on equal distances from Fermi level, the magnetic

fields Bn, being in this case the points of symmetry for cor-
NLL(B,0)=psn({), (6)  responding disposition of quantized levels: the filling of elec-

wheren,((B,¢)=—dQ, . (B,{)/a¢ is the concentration of (rons on the upper level is equal to filling of holes on the

electrons filling the two 2D bands electronlike pockets and Underlying level on the same energetic distance from the
Fermi level that the upper one. This symmetry provides the

o basis of level approacfLA) [level representatioiLR) of
f {1+exd (—A+e)/kgT]} 1 —, g(xs,Qq) function'].
UVEsp’ 0 Ve The strength of reservoir of background states is deter-
() mined by the transfer parameigs which in considered here

is the hole concentration in the 1D band holelike pocketcase is defined relatively to the cyclotron mass of the first

[esn=12(7/b*)?/2mg,]. Equation(6) is obtained from ex- (s=1) 2D band:

pression for total concentration of electrons filling all three

overlapping bandsn,=n,(B,{)+nsy({) [where ngy(Z) Cr= pa|IPsh(O)IL[c 1A, pi=ehlmc. (13

=—0Qg()/¢ is the electron concentration in the 1D band

by substitutionn;—ng({) = psp(¢). The total concentration Substituting the relationls’s/bnS (s=1,2) from Egs.(12)

of electrons filling the three overlapping ban#s=2/v  into Eq. (8) we obtain chemical potential oscillations via

(wherew is the unit cell volumgis obviously magnetic field parametrical variables; andx, in the level representation

independent. (LR) [g(xs,Qs) function is the sum on pairs of quantized
Following the method derived in Refs. 14 and [tBe  |evels symmetrical relatively to the Fermi level in a sepa-

level approact{LA)] from Eqg. (6) we obtain an equation for rated large and small periods defined respectively by mag-

chemical potential oscillation&(B,T)=¢(B,T) — & : netic fieIdanl+1 and Bn, and Bn,+1 and an]:

de

Psn({) =
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the large(for 2D bands=1) and small(for 2D bands=2)
period of oscillations can be represented ﬁ){ﬁs% BB, IFg

2
1
2(521 ﬁw

g(xl,x2> 2 (1 29(xs,Qs) — Q

(14) EanHBnS/FSEBi/FS and, hence, the cyclic frequencies

: . 2
Using the universal relation derived in Ref. 15 corresponding to these periods 3@527':3/8“5'

1-2g(x¢,Qc)— Q _ 2 M. (Qu)sin( 27 x./Qy), . | C. Magnetization oscillations
s js=1 Acting in the framework of the level approacdiiA)
elaborated in detail in Refs. 14 and 16 we obtain expression
s=1.2, (19  for magnetization oscillations for our model as a function of
parametrical variables,
M (Qs)= o (16) 2
Jo s stinl‘(jSZﬂ'Z/QS)' MZE EFs 1-29(Xs,Qq) — (20)

. . . . Mo s=1 €F Qs
we obtain the harmonic representati@tR) of chemical po-
tential oscillationsthe sum is now on Fourier harmonjcs ~ Where My=Ae¢/2 is the saturation magnetization of the
) deepest quantized baitthe second 2D band s=2, in our
case we have designated=gg,=¢gq, see Fig. L
Z ho )g(xl,xz) This is the level representatidhR) of magnetization os-
cillations via parametrical variables;. The deposition of
2 _ each quantized band into the total magnetization is deter-
=> > m; (Qs)sinN(27jXs/Qs).  (17)  mined by the corresponding “weight” factor, the Fermi en-
s=1is=1 ergy egs. Comparing this expression with that of the chemi-
cal potential oscillation§l4), we now see that magnetization
|OSC|||at|0nS are nonproportional to the chemical potential os-
cillations [as was the case in the presence of a single quan-
tized band(see the Refs. 14 and Y|6O0nly in a special case
( 2 ) when the bottoms of quantized 2D bands coindidiegener-
{(B,T)

Substitutingxs from Egs.(12) into this equation we fi-
nally obtain the nonlinear equation for chemical potential
oscillations in the harmonic representation

E ate (A1=A,, thatis,eg;=ep,=¢g, see Fig. 1the propor-
= tionality relation preserves.

2 Using the identity(15), (16), we obtain magnetization os-
2 2 (— 1)Js+1m (Qs) cillations in the harmonic representati@iR) via parametri-
s=1 jg= cal variablesxg:

. . FS ZZ(B,T) M(Xl’XZ) 2 EFs
><S|n|JS 27r§+7rh—ws M—o 521 - SZ: m;, (Qg)siN(27] Xs/Qg).
~ (21)
CSS (—vi (0usinl ik BT
& e (= 1)’sm; (Qg)sin| j§| ksbs— T As in a case with chemical potential oscillations the mag-

netization oscillations can be represented as functions both
(18)  of inverse magnetic field (B) and magnetic field =

To obtain the second line of E¢L8) we used the defini- Br) by subsituting the parametrical variabbesvia Eqs.

tion of magnetic fieIdsBn at which the mean line between (12

Landau levels with quantum numbergandng—1 is cross- M(B T & epe o
ing the Fermi levek : E — '21 (—1)'S+1mjs(QS)
S= F ]S=
Fs=nB , s=12. (19 F S3(B.T)
- . . Xsinj jg 2m— T ———
In the third line of Eq.(18) ks=2m/2b,_is the cyclic fre- B hws

guency with respect to the variallbe=B — Bn . The “Fermi 2 .
energy” of the corresponding energy band is definee as = = 2: (= 1)'sm; (Qy)

=gr— A, [see Fig. 1, where the bottom edge of the second s=1 %F s

2D band 6=2) is taken as zero energy levab=0 and 27(B,T)
thereforee,=¢¢]. “Fermi energies” can also be expressed ><sin+jS ksbs— Wh—H (22
aseps= usFs= ung B ﬁwS(B )nS This being taken into Ws

account, in the used throughout this paper approximation for Now we see that magnetization oscillations can be ob-
appropriate magnetic field8/F¢= B, IFs=hwsleps<1, tained by solving firstly the nonlinear equation for the chemi-
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cal potential oscillations: Eq14) with Eq. (12) in level rep- 1D band, all with electron pockets. The limit fag—0 in
resentatior{LR) or Eq.(18) in harmonic representatidiiR) models with two 2D bands plus one 1D band depends on
that will be done in the next section. If we completely ne-whether the 1D pocket is electronlike or holelike: in the first
glect chemical potential oscillationgB,T)=0, the expres- case the weak electronlike reserv@ontaining a small num-
sion in Eq.(22) reduces to Lifshitz-Kosevich formulafor ~ ber of carriers, for example, because of a small effective
two quantized independent 2D bar(ftsr single 2D band this Mas$ means strong magnetization oscillatiojwith large

formula was obtained by Shoenbé&tg amplitudeM, because of large Fermi energies; and ¢
(corresponding to large numbers of electrons conserved in

two 2D bandy]. In the second caséonsidered hejethe

o ) ~weak holelike reservoir means extremely small magnetic os-
The electrons filling magnetically unperturbed states ingjjjations due to the small number of carriers filling the 2D

nonquantized 1D band implicitly influence magnetization 0SHands. Consequently, the holelike reservoir influences the
q|llat|ons. via participation in the_ c_hem|cal potential oscilla- magnetic oscillations more strongly than the electronlike
tions which are depending explicitly on the transfer paramyne. But qualitatively the influence of the reservoir on mag-

eter Cg [see nonlinear equation for the chemical potentialyetic quantum oscillations in both cases for the same value
oscillations, Eq.(14) in level representation or Eq$l7),  of c,#0 is the same.

(18) in harmonic representatignThis parameter as defined |t should be noted that the expressions for magnetization
by Eq. (13) is determined by th&=0 band structure. The [Egs. (20)—(22)] do not contain the transfer parametgy

D. Transfer parameter for overlapping bands

Fermi level can be found from E¢6) at B=0: explicitly. Reservoir of background states influences the
N magnetization implicitly through chemical potential oscilla-
EF PR A1 Psh(eF) ' (23  tions,(14), (17), (18). All expressions for magnetization and
M2 M1 A chemical potential oscillations, obtained here, are applicable
with ug (s=1,2) from Eq.(L2). independently of the concrete nature of the background state

The degenerate hole concentration inside the hole pocké?servow.

of the 1D band is obtained from E(/):
1. WAVE FORM AND FOURIER SPECTRUM

IN THE PRESENCE OF RESERVOIR
(A=) (24) OF BACKGROUND STATES

1
psh(§)= U\/S_sh

Solving Eq.(23) we obtain Fermi energy in our model:

A. Wave forms observed in oscillation pattern

The wave form of magnetization oscillations can be cal-
> B culated at arbitrary temperature and any reservoir strength by
S_F:i% 1 % VIHA(L+F /Ry Alegi—1 , application of expressions of the level representafiéag.

ep 72 My My/mg 2(1+F,/F,)? (20)] and harmonic representatipBg. (21)], both dependent
(25 on parametrical variables;, without the necessity of solv-
ing the nonlinear equation for chemical potential oscillations

where . . ) ) -
(as these equations do not contain chemical potential oscil-
Fi Mg lations explicitly. For a 2D crystal containing a single en-
Aleer=(AIDy)(Mp/mgy), ==-———,  (26) ergy band and a reservoir of background states this proce-
2 T2F dure was described in Refs. 14,16. The parametrical
#2(/b*)2 2h2(b*)"2  (4lmd)e, varlablgs should be given in cerlta-m limits of temperature
gp=—r7—, o= = , smoothing paramete@. For obtaining the wave form in a
2mg m, m,/me

single large period corresponding to the low fundamental

D, is the width of the second 2D band<2) in thek,  frequencyF; (with variablex, ranging in the limits—Q,/2
direction. For parabolic band approximation being true, ob-<X1<Q1/2) the variablex, should be taken in the region

viously, the overlapping should h&/D,=<1/2 (see Fig. 1 —(F2/F1)Qa<x,<(F,/F1)Q, so as to cover several small
Now the transfer parameter calculated in the considere@eriods corresponding to high fundamental frequefgyTo
model is show two large periods the regions xaf should be doubled
and so on. This parametrical method proved successful espe-
(my/my)(1+F4/F5) cially at ultralow temperaturélarge Q;) when only a few
Cr™ \/1+4(1+F1/F2)2A/eef—1' (27 levels in theg functions play the decisive role. The para-

metrical method provides the possibility of elucidating the

Hence, the transfer parameter is determined by the four paele of the reservoir of the background nonquantized in mag-
rametersm,/my, my/mg,, eglegy (or F1/F, as F{/F, netic field states. These results are shown in Fig. 2, where the
=myeg/Myeg), andA/D,. presence of weakcg<1), intermediate ¢g~1—2), and

The transfer parameter for a model consisting of twostrong Cg>1) reservoirs of background states greatly influ-
bands, one 2D band with an electron pocket and one 1l@Bnces the wave form of oscillations.
band also with an electron pocket, was calculated in Ref. 14. It is seen that the shape of high frequency oscillations
Cgr can be calculated in a way similar to two 2D bands andcorresponding to fundamental frequenEy) alters from
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FIG. 2. Magnetization oscillations patterns in two 2D band electron systems at various strengths of 1D reservoirs of background states
at ultralow temperature@;=100): (a) transfer parameterg=0 (absence of reservojr(b) ck=1 (moderate strength reservpikc) cg
=10 (strong reservojr The fundamental frequency ratio ks, /F,;=4.5, the effective mass ratio s, /m;=1.5 (these data correspond to
a Fermi energy ratieg,/eg=1/3). Four periods corresponding to low fundamental frequdncywre shown, corresponding to two large
periods(with frequencyF,/2, see text The half period corresponding to high fundamental frequéncis separated by dashed lines. Inside
it the change of the wave form of oscillations due to background states reservoir is manifested: from Jawtapéicg= 0] through more
symmetric[in (b) at cg=1] to inverse sawtoothin (c) at cg=10].

sawtooth €g<<1) to inverse sawtoothcg>1) in a symmet- the definition of magnetic fieIdBnS, Egs.(19)] at the con-

ric pattern €g~1—2). As in the case with a single quan- dition that magnetic fields where mean lines between levels

tized band background the states do not change the amplgith quantum numbers, andn,— 1 belonging to different
tudes of the oscillations. It is also seen from the wave formyands =1,2) cross the Fermi level at one poiri,
! 2

of the oscillations pattern that a new feature of the two 2D .
band system ariseg: the largest visible period of oscillations Bn, F2/Fi=nz/ny. If the ratio F,/F,=N/4 (N
in the case of the fundamental frequency ratio given by the=5.7, . . .) thevisible period of oscillations pattern will be
half-integer number§,/F;=N/2 (N=3,5, ...) istwice of ~ four times of the low frequency period and correspond to
the low frequency period and corresponds tofh£2 funda-  fundamental frequencyr,/4. If F,/F;=N/5 and F,/F;
mental frequency. This case is provided in Fig. 2 for the ratio=N/10 (whereN/5 andN/10 are irreducible improper frac-
F,/F,=4.5=9/2. In the case of integer rati®, /F;=N(N tions) the corresponding visible period of the oscillation pat-
=2,3,...) the lagest visible period is that of the low fre- tern will be 5 and 10 times of the low frequency period with
quencyF,. This is illustrated in Fig. 3 for fundamental fre- fundamental frequencids;/5 andF;/10. This exhausts the
guencies ratid=,/F;=4. cases when the rati®, /F, is given with precision to tenths:
Generally, these properties follow from the expression forF,/F;=NL (N,L are integer numbeys For a ratio with
the fundamental frequencies rafig/F, =B, n,/Bnin; [see  more precision the greater visible periods can be constructed
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ics of both lowF; and highF, fundamental frequencies

and 2, are of the same order as the combination frequen-
cies which are diminished in this case of suppressed chemi-
cal potential oscillations. Obviously, all these differences in
the Fourier spectrum are mirrowing the changes in the sym-
metry of the wave form of the oscillation pattefshown in
Figs. 2, 3 reflecting in turn the influence of background
reservoir states. Note that the suppression of second harmon-
ics of fundamental frequencies is utmost in multiband sys-
tems without a reservoir reflecting the interference of 2D
= 21 0 2 bands due to chemical potential oscillations which are stron-
kb/2n gest in this case. This effect of the secdesler) harmonics
suppression in multiband systems without a reser{sée
FIG. 3. The magnetization oscillation pattern in two 2D bandsFig. 4(a)] is of the same nature as revealed in electron sys-
electron systems at an integer fundamental frequency ratio. Pararfems consisting of a single band and reserysée Ref. 15
eters used: fundamental frequencies raftip/F =4, cyclotron  the symmetrization of the wave form of oscillations is due to
mass ratiom,/m;=1.5, temperature smoothing parame®i  chemical potential oscillations leading to the redistribution of
=100, transfer parameteg=1. Note that the visible period of the g|actrons between bandfor the symmetrization effect in
oscillation pattern completely coincides with that of the low funda- 1, ,itiband systems see Figs. 6, 7 and the corresponding dis-
mental frequencyr,;. Four such periods are shown. A half period cussion.

due to the high fundamental frequenEy is separated by dashed Later we will solve the system of equatiof&8) (chemi-
lines demonstrating the nearly symmetric wave form of oscillations . P o -
due to the moderate strengtbg1) 1D reservoir. cal potential oscillationsand (22) (magnetization oscilla

tions) with conditions of relatively small amplitudes of
ghemical potential oscillations:

[ {
! 1 Gl Q100 (js=2,3,...) aresuppressedsee second harmonicsF2
A . AL ! and Z,), but combination frequenciesF{+F,;, 2F,
j A i i i +F,, 2F,+2F,) are much stronger due to the substantial
i M| i chemical potential oscillations present. In a system with a
05 r H 4 i strong reservoifsee Fig. 4c)] the second harmonicsF2
L

: s
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YTYON
seeen
se0vasese
R SN

voe
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L "%
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Y
Y IR
ceees
EYyYe
P sve sonees
cvesacss o
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I g AT 22 LY XY

accordingly. While features influenced by background state ~
are difficult to observe from the oscillation pattern itself the _2¢(B,T)

Fourier spectrum will be a much more powerful tool. JsT =05, =12, js=1.2,... (28)

hwg
(when trigonometric functions entering into these equations
can be substituted as cos1l and sirk=x) obtaining the
For analytically obtaining the Fourier spectrum of magne-Fourier harmonics of fundamental and combination frequen-
tization in two quantized bands and a reservoir of backcies. Obviously, these conditions are better satisfied in sys-
ground states model the nonlinear equation for chemical paems with a larger ratio of quantized band mass/m;,
tential oscillations should be solved first and then thisstronger reservoiflarger transfer parameteg), and mainly
solution should be substituted into the expression for magneat relatively small standard Lifshitz-Kosevi¢hK) harmon-

tization. Such a problem is very difficult to perform. For a jcg r~nj (Qo) = (47/QJ)sinh(274Q) which takes place at

simple model of a single quantized band in the presence Offelatively high temperatureQ=10). It is obvious that re-

reservoir of background states this problem was solved "drictions from high frequency oscillatiorisepresenting the

Ref. 15 taking into account the spin splitting®t 0 in Ref. -
19. Here for obtaining the Fourier spectrum at arbitrary tem-s’_2 bang are tougher because of greater m@si conse-

perature(including ultralow temperatures corresponding toqu{le:ilr):’etl?r?efrsjr?rcf\(;?na}::aatllogtgitt\il;?iggfllﬂaie‘btio§n<sf;w1)r6xima-
large Qs>10) we solve the nonlinear equation for chemical . ; A PO PP

. s . tion we obtain for magnetization
potential oscillations numerically. )
At high temperature@¢=<10) we solve the problem ana- M(B,T) Ers
lytically obtaining explicit expressions for Fourier harmon- T& o 2

ics. A similar solution in the multiband system without res-

B. Fourier spectrum

) (—1>J‘sr~njs<Qs>[sin<jsksbs>

MO s=1 €F is=

ervoir states was presented in Ref. 7. Further discuss the - 2¢(B,T) _

conditions for such a solution which appeared to be better —JSWTCOS{JSkaS) : (29
applicable in the high-temperature—low-magnetic field re- s

gion and for electron systems with stronger reservoirs. Substituting the expression for chemical potential oscilla-

The Fourier spectrum of magnetization oscillations in ations (18), in which we neglect by chemical potential oscil-
two 2D band system withoutck=0) and with moderate lations terms in the right-hand-side of EG8) (in the argu-
(cg~1) and strong ¢g=10) reservoirs of background states ments of trigonometric functionsinto Eq. (29) and using
is presented in Fig. 4. In the absence of a reservoir and witthe trigonometric relation  sigfcosf)=(1/2)[ sin(x+Y)
moderate reservoifsee Figs. &), 4(b)] the higher harmon-  + sin(x—y)] we obtain a Fourier series for magnetization. In

054423-7



M. A. ITSKOVSKY PHYSICAL REVIEW B 68, 054423 (2003
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(a) absence -¢n= moderate F, —1
of reservoir F, ® reservoir
F/F =45
/F, B/F=45
myfm=1.5 m,/m,=1.5
F#F, Q= Q=20
o o F+F
mozr F F-F, 2F,+2F, - Eo02r F +Fy _
2F2_F1 2F2+Fl FZ—FI 2F, +F|
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© strong F, =10
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F,/F,=4.5
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E 02 F i
2F2_F1 2F2+Fl
. F,+F, 2F,
! F2_Fl
O'O 1 1 1 1 1 1 ——
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6
FIF,
FIG. 4. Fourier transform of magnetization oscillations in two 2D bands electron systanis: the absence of reservoit) with
moderate ¢g=1), and(c) strong €r=10) reservoir of background states. The fundamental frequencyRatiB,=4.5, cyclotron mass

ratio m,/m;=1.5, temperature smoothing paramefr=20. Note in(a) and (b) the strong harmonics of combination frequendifist
satellitesF,—F,, F,+F; and second satellitds,—2F,, F,+2F; of the first harmonic of fundamental frequengEy and first F,+F,
and second B,+ 2F; right satellites of the second harmoniE 2[in (a) also the first left satellite R,—F,] and weak second harmonics

of fundamental frequencies F2 and Z,). (c) The inverse situation with weak harmonics of combination frequencies and relatively strong
second harmonics of fundamentals. Note the substantial suppression of second harm@hiaadiib) in comparison with those ifc).

this series will be represented together with renormalizedenormalized harmonics of fundamental frequenéiesand
harmonics of fundamental frequenci@seaning the standard F, and the harmonics of combination frequencig$,

LK harmonicsﬁjs(QS) [see Eq(16)] plus additions due to *11F1 (j1,12=1,2,...)later.

chemical potential oscillations, expressed as powers on stan- 1. First harmonics
dard LK harmonick also the harmonics of combination fre-
qguenciesj g kg = jKs (8" #S) (we remind the reader thét
«F). Similarly, the higher chemical potential oscillation i ,
terms can be calculated idi i i Fhy Y(Qusinlby) is
providing the third and higher order "'1 1 1

terms on standard LK harmonics in the Fourier series. ~ ~

We will not present simple but cumbersome general ex-  p(F)(q )= i My (Qp) + mMy(Q1)M(Qy)
pressions for Fourier series on fundamental and combination ~ * F 2(1+my/m;+cg)
frequencieggeneral solution of Eqg18), (22) in linear and

~ 2r o~ 3
a higher approximation on chemical potential oscillatighs 71mi(Qy)] ] (30)

The renormalized amplitude of the first harmonic of the
low fundamental frequenci, (j;=1,5= 1)M(1F1)(Q1)/MO

Instead, we will provide expressions for the first and second 4(1+my/my+cg)?
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0.8 . . . It is seen[see Fig. )] that at low temperaturegarge tem-

(@ Q=100 &F 2 (b) perature smoothing paramet®y; = 100) the first harmonics
nonmonotonically depend on the strength of background res-
ervoir states: at a given temperatyoz Q,) with increasing
reservoir strengtleg they first increase, then decrease reach-
ing the limiting value of the LK one$LK first harmonics

m;(Q,) and m;(Q,) characterize the considered system
with completely neglected chemical potential oscillations

: ' ; : 7(B,T)=0, that can be asymptotically achieved in ultras-

trong reservoirs of background stags—)]. This behav-

ior reflects the symmetry of oscillation wave forms due to

the various reservoir strengtfs!® At high temperatures the

| crossing 1F, becomes greater tharF} [see crossing in Fig.(8)]

; notwithstanding that it is presented with a smaller weight

00 , , , (smaller Fermi energyg,/ep=1/3).

"0.00 0.05 0.10 0.15 0.20 In pure two 2D band systentse., without a reservaojrthe

1/Q,=k;T/ho, first harmonics can be essentially suppressed only at low

_ ) ) 1) temperaturdsee the curve LK E, at cg=0 in Fig. 5a)]
(FF)'G- 5. (@ First harmonic amplitudegh; ¥(Q,)—1F, and  reflecting the minimal symmetry of oscillations wave form in

h; #(Qz)—1F,] of the low (F;) and high £,) fundamental fre-  this case sawtooth, see Fig.(d)].

quencies in electron system consisting of two 2D bada 1D In general, the first harmonics at moderate and high tem-

reservoir of background states. For each fundamental frequency thearatures ©,<20) are slightly affected by the interference

curves from above correspond to transfer paramefer3,2,1.0.  of 2D pands and by the reservoir of background states.

LK harmonics €r1/e¢)My(Qq) —LK1F, and m(Q;)—LK1F,  Therefore, the cyclotron masses obtained from LK first har-

are shown by dashed lines. Note that cur¥g,1corresponding 0 ygnics in this temperature range are reasonédteluding

cg=0 at ultralow temperatures, is rather approxiniage criterion the special case of two 2D bands without reserys@e the

(28)]. The fundamental frequency ratioks /F,=4.5, the effective first harmonic E, for ck=0 at low temperaturesQ;

mass ratio ism, /m;=1.5, the Fermi energy ratio isg; /eg=1/3. =20) in Fig. 5a)].

(b) First harmonic F, of the high fundamental frequendy, ver-

sus strength of background states, represented by transfer parameter

Cr, at temperature smoothing paramefgr=100. LK 1F, (corre-

sponding tocg— ) and 1F, atcg=0 are shown by dashed lines.

06 F X3

first harmonic 1F,
o
(=)}

04

first harmonic

reservoir strength ¢,

02

2. Nonstandard temperaturenagnetic field dependence
of second harmonics

Renormalized amplitude of the second harmonic of the
where the subscripts d‘tll(lFl),h(lFl), andm; designate the low fundamental frequenc{, (11=2,S=1)M(2F1)(Q1)/Mo
number of harmonics j¢=1), the subscripts of =h(2F1)(Q1)sin(2klb1) is

Q;1,F1,my,j1, andk; stand for the number of the firdbw)
fundamental frequendy, (bands= 1), and the subscript for

m,, for the second bands&2). It should be noted that the hF(Q,) = it A (Qy)— m[my(Qy)]?

last term in braces was obtained when the terms proportional 2 YV er 2V 2(1+my/my+cR) ]

to (2)? were taken into account while solving the nonlinear (32
equations. _ . .

The renormalized amplitude of the first harmonic of the The renormalized amplitude of the second haanomc of the
high fundamental frequency F, (j,=1s high fundamental frequencyF, (j2=2,s=2)M(2 2)(Q2)/
=2)M?(Q)/Mo=h{"?(Qp)sinfeby) is Mo=h§2(Qy)sin(2eby) is

= 2
= = (Fo) o~ (M /mMy)[My(Q2)]
Fiy | = m(My/my)my(Q2)My(Q7) hy ?(Q2) =My(Q,) — (33
h; #(Q2) my(Qz) + 2(1+ my/my,+cr) 2(1+m,/m;+cR)
~ The second harmonic amplitudds » —2F, and
72(m, My [y (Q) TP o plituciéy™(Qs) — 2F
- > (B)  h;#(Qy)—2F,, Egs.(32), (33), can be decreased substan-
4(1+m,/m;+cg) tialy, —compared with LK second harmonics

The renormalized first harmonic amplitud&®), (31) are (S,Fl./SF)mZ(Ql)_)LKZFl andm,(Q,) —LK2F,, Ina cer-

shown in Fig. 5. Designationsh(Fl)(Q )—1F, and tain interval of temperatures pecause they contain the square
(F2) = 1 1 1 of the unrenormalizedLK) first harmonic amplitudes in

hy #(Q2)—1F3, (ep1/ep)Mi(Q1) —LK1Fy, andmy(Qz)  their negative term. This effect of diminishing of the absolute

—LK1F, (for Lifshitz-Kosevich LK) harmonic$ are used value of the second harmonic and even becoming zero at

and here and later the sign-" stands for “designated as.” certain temperature/magnetic fields was first predicted to oc-
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FIG. 6. Second harmonics versus temperature and magnetic

field in the two 2D band electron system without and with a reser-  FIG. 7. Temperature and magnetic field of zeros of the second
voir of background states of various strength. The second har-  harmonics £, and &, of the low F; and highF, fundamental
monics of the low fundamental frequencydesignated as frequencies versus strength of reservoir of background states. Three
h{™(Q;)—2F,] are shown by solid lines focg=0 (without res-  pairs of sets corresponding to mass ratie/m,=1.01,1.5,2 are
ervoir) and cg=1. Those belonging to the high fundamental fre- presented. The range of temperature and magnetic field corresponds
quency[h(zFZ)(Qz)HZFz] are shown by dashed lines for reservoir to Q;=kgT/%w;(B)=5—100. Temperature and magnetic fields,

of moderate strengthz=1.5 andcg=3. The standard LK second corresponding to zeros of the second harmonics for electron sys-
harmonics ¢z— ) [designated ase(; /e)My(Q;) —LK2F, and ~ tems with mass ratim, /m;=1.5 and reservoir strengths presented
Fnz(Qz)—>LK2F2] are also shown. Note that in certain in Fig._G (cR=O,1,1.5,:_’>), are shown for low fundamental frequency
temperature/magnetic field intervals the second harmonics have of”. solid arrows, for high fundamental frequency by dashed arrows
posite signs traversing the zero value. Zeros of the second harmo all arrows shown correspond to the arrows in Fig. Kote the

ics appearing in electron systems with and without reservoirs, argPPearance of second harmonic zeros in the two 2D band system
shown by arrows. without a reservoir ¢g=0).

cur in the electronic 2D system containing a single quantizedeservoir strengtltry=1 (see also numerical calculation in
band and a reservoir of background states in Ref. 15. ThRef. 21)]. Some indications on the nonstandard behavior of
second harmonicsR and &, are shown in Fig. 6. the second harmonics can be traced in Refs. 6,19, and 9.
Note the nonmonotonic behavior of the absolute value of The temperatures and magnetic fields where zeros of the
the renormalized second harmonics in comparison to mongsecond harmonics occur, dependent of the strength of back-
tonic LK harmonics. We see that at certain temperatures andround reservoir statdsneasured by transfer parametg),
magnetic fields the second harmonics even traverse the zease shown in Fig. 7. In contrast to the single band system
value reflecting the symmetric wave form of the correspondwith a reservoir in multiband systems the zeros of the second
ing oscillations. Note that the “weight factor” of the first 2D harmonics are shifted to higher temperatures for the same
band Er,/ep=1/3) relatively diminishes the second har- strength of reservoir, manifesting the additive interband in-
monics of the low fundamental frequenEy. Note also that fluence on the effect of symmetrization of the magnetic
the zeros of the second harmonics are independent of trguantum oscillation wave forms. The same effect of symme-
weight factor[see Eqs(32), (33)]. trization occurs in multiband electron systems without a res-
It is remarkable that the nonstandard behavior of the secervoir reflected by the appearance of sectewkn harmon-
ond harmonics, nonmonotonic behavior including the apics zeros at certain temperatures and magnetic fields
pearance of zeros at certain temperatures and magnetic fielggresented in Fig. 7 by crossings of the curves with the or-
is also inherent in multiband electron systems without a resdinate axiscg=0). We see that for the same reservoir
ervoir of background statgsee the second harmonic of the strength or in the absence of a reservoir the zeros of the
low fundamental frequency R (cg=0) in Fig. 6]. This  second harmonics corresponding to low and high fundamen-
property is analogous to the symmetrization effect that wasgal frequencies expand from each other with increasing mass
revealed in an electron system consisting of a single 2D banthtio m,/m;. In pure multiband systemsvithout reservoir,
plus a reservoifsee Ref. 15, where the correlation betweencg=0) the effect of the symmetrization of wave forms does
the symmetric wave form and the second harmonics zerogot occur in all fundamental periods. We see that for two 2D
has been underlined, see also Ref. 20, where the effect of tleystems without a reservoir at mass ratig/m;=1.5 only
symmetrization of magnetic oscillation wave forms due tothe wave forms of oscillations corresponding to low funda-
the background statdsepresented by the states in 1D bandmental frequency; are symmetrized. The second harmonic
producing open Fermi surface shewias first discovered at 2F; has zeros, but 2, does not for mass ration,/m;
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=1.5,2 at temperatures and magnetic fields corresponding t 0.50 . . .
Q;=100[see also the asymmetric sawtooth wave form cor- absence of reservoir: F,/F =45
responding to oscillations with high fundamental frequency E, (e=0) mm =15
F, in Fig. 2(a@) for a system without reservogg=0]. Fur- " 040 - F,F, (c;=0) '
ther presentation and discussion of second harmonics pror.g Eyfe=1/3
erties in multiband electron systems depending on reservoig “~ .
. . 030 - moderate reservoir: |
of background states of various strength can be seen in & FAF. (cn)
and after Fig. 9 in the following subsection. = TR
] EF, (c=1)
N
. . . < -
3. Combination harmonics £ 020 7
= S .
Now we will write down the expressions for the harmonic § strong reservoir:
. . . . ] =
amplitudes of combination frequencies: o010 L F4F, (c=10) |
e ~F, (cg=10)
_____ \-\
MJZFZilel_ (_1)J1+]27T EE1. +m2_ 0.00 ) P rare |
Mo 2(1+my/my+cg) | ef Jl—mljz ~0.00 0.05 0.10 0.15 0.20

1/Q,=k,T/ho,(B)
Xm m =12, ...,
Jl(Ql) Jz(QZ) Jud2 FIG. 8. First satellites of the first harmonic of high fundamental
(34 frequencyF, (harmonics of combination frequenci€s—F; and
F,+F,) versus temperature/magnetic field for two 2D band elec-
where a plus sign stands for the right-hand-side satellites dfon systems: in the absence of reservoj=< 0, solid curvesand
the high fundamental frequenc§{,j,=1) and its harmon- with a reservoir of moderatecg=1, dashed curvesand strong
ics (j,F», j,=2,3 ) and theminus sign stands for the (cg= 10, dot-dashed curvestrengths. Note that the reservoir sup-
left-hand-side satellites. It is clear, however, that these ex?'©°5€3 combination harmonics.
pressions are correct for small numbggs 1,2 for electron
systems with weak strength of reservojy<1 [see the con-
ditions for the validity of the whole theory of combination
frequencies(28)]. The situation improves for electron sys-

with strengths corresponding t,o=1 andcg=10 are pre-
sented in Fig. 8. It is seen that the combination harmonics
increase with the increase of the chemical potential oscilla-
) . . tions, i.e., for weaker reservoirs of background states unable
tems .W'th strong re_serv0|rc§>1) but the_ magr_utud_e of to pin the chemical potential to the Fer?ni level at all mag-
combination harmonics decreases dramatically in this Casatic fields

The expressions for Fourier harmonics of combination fre- The ratic.) of the first satellites of the high frequerfeyto

guencies, Eqs34), are coinciding with those written down ! . .
in the Ref. 22 in the frameworks of the same method that isthe first LK harmonic of the low frequendy, in the absence

. ; : . ; . S of a reservoir ¢g=0) is
used in this article, i.e., in the linear approximation on ¢==0)
chemical potential oscillations in the expression for oscillat-

ing magnetizatior(22). Mg, +r, /Mo 2m2kg Tmy(F 1 F)p)
F1(my+my)Aw;sinh(2724/Q,)

The ratio of satellites amplitudes of the high fundamental = =
frequencyF, and its harmonics disposed on the equal dis- (er1/er)Mi(Qy)
tances fronf, at the left and the right side.e., the (~) and
(+) satellites have the sanjg)] is independent of tempera- which coincides with a similar relation obtained in the
ture, magnetic field, and the presence of reservoir of backframework of the free energy calculation in Ref(see their
ground states: Fig. 1).

Finally, we represent in Fig. 9 the comparison of combi-
Mir b i(FalE)—i pation and second harmonics for an electron system consist-
R EUt N U LA Vi) FU j,=1,2 (35 ing of two 2D bands with reservoirs of background states of
Mie,ei,r, J2(F2/F)+j" 7172 o various strengths at a fixed temperature/magnetic field ratio
corresponding t@;=20. We see the monotonic decrease of

In the derivation of this expression the relation for para-combination harmonics and a monotonic increase of second
bolic bands were usedsg,/er=(F;m,/F,m;) [see Eq. harmonics with an increase of the strength of background
(26)]. This expression is independent of the transfer paramstates. Arounag~ 10 there is a crossover from dominating
eter in the limits of the fulfillment of the criteriofEqg. (28)], combination harmonics to prevailing of second harmonics.
i.e., in the range where the chemical potential oscillations aréhe combination harmonics asymptotically disappear while
small enough. Hence, the above expressions have a limitegecond harmonics approach their corresponding LK values
application constrained by high temperatures, low magnetifor electron systems with large reservoir strenggh
fields, and a relatively strong reservoir of background states. The exact calculations of the Fourier harmonics spectrum

The first satellites of high fundamental frequertey(har-  for two 2D band systems without a reservoarE0) pre-
monics of combination frequenci®s—F, andF,+F,) for  sented in Fig. &) and with a reservoir of strengttk=1 in
two 2D band systems without a reservoir and with reservoirg-ig. 4(b) yields that atQ,=20 the second harmonic of the
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rigorously speaking is applicable for independent fundamen-

Q,=20 =4, ) .

! FJ/Fi=45 tal frequencies, which is the case where an extremely strong

m,/m,=1.5 reservoir of background states pins the chemical potential

02 - /F2+F1 exfe=13 | oscillations. Generally, magnetoquantum oscillations due to

0.0 G

second, combination harmonics
[l
=

different parts of the Fermi surfadeontaining closed and
open sheejsare interconnected by oscillations of the chemi-
cal potential via exchange of electrons between various or-
bits in conditions of the thermal equilibrium. Here we have
quantitatively investigated the influence of the background
states on the wave form and Fourier harmonics of a multi-
band 2D metal, having a multisheet Fermi surface, at arbi-
trary temperature and strength of reservoir.

L/ 2F,  LKZF, The most striking changes undergo the second harmonics
/ of the fundamental low and high frequencies. First of all,
01 0 20 2 they nonmonotonically depend on either temperature or mag-

reservoir strength c,

netic field in contrast to the monotonic dependence of stan-

dard Lifshitz-Kosevich harmonics. Secondly, depending on
the strength of background states they can traverse through
frequencies and combination harmonidisst satellites of the first  zero values, characterizing the most symmetric wave forms
harmonig of high fundamental frequenc§, (Fp—Fy and F,  of oscillations. In multiband systems zeros of second har-
+Fy) versus reservoir strengity at temperatures and magnetic monjcs occur at higher temperatures due to interband influ-
fields corresponding to temperature smoothing param&@er  once a5 compared to the single band system with the same
=%,(B)/kgT=20. The second harmonic of low frequencf2 — oco0ir strength. It looks as if the exchange of electrons

and the corresponding second LK harmofféesignated as LK o
2F,) are shown by dashed lines, those belonging to high frequencpetween 2D bands produce the same symmetrization effect

(2F, and LK 2F,) by dot-dashed lines. The combination harmon- 0N Wave forms of magnetoquantum oscillations as reservpirs
ics F,—F4 andF,+F, are shown by solid lines. Note the corre- N Single 2D band systentS At temperatures and magnetic
sponding asymptotic behavior of harmonics at large reservoifields where second harmonics zeros occur, the first harmon-
strength and crossovers in the region aroope 10. ics and satellites of the high fundamental frequeilosr-
monics of combination frequenciegominate the entire Fou-
high fundamental frequency i§2F,(cg=0)|<|2F,(cgr rier spectrum even at extremely low temperatures where the
=1)|, which contradicts the monotonic behavior of the Lifshitz-Kosevich second harmonic¢and highey should be
negative values of this second harmonke,zas a function of  mostly substantial.
Cg in the region of smaltg<1 (see Fig. 9, curve B,). A It is remarkable that the effect of symmetrization of oscil-
similar nonmonotonic behavior at small reservoir strength atation wave forms and the corresponding behavior of second
ultralow temperatures has been revealed in a model of gever) harmonics of the Fourier spectrum is also inherent in
single 2D band with reservofin Ref. 15, where exact ana- myitiband electron systems without a reservoir of back-
lytical calculations of Fourier harmonics have been perground states. This effect is due to the interference between
formed and demonstrated in Fig. 3, curvéseeond LA har-  gitterent 2D bands via the exchange of electrons in the
monig) in the regioncg<1]. Obviously, in calculations of course of chemical potential oscillations.

the second harmonic of high fundamental frequenEy th Obviously, the developed theory is applicable to 2D

the considered model at smafle<1 and in a low- multiband electron systems with any number of bands, ad-

t;:rcrt)iirnatgjriﬁg'ggggﬁgn;gg:'g(rjmrse%'fiifehg% otr?iisr?r; themitting electron and hole pockets and any kind of reservoir
oy i - . ; of background magnetically unperturbed states. However,
expression of E, is insufficient[neglection by the higher

order terms becomes unjustified: see BBp) and the crite- }N'ﬂ: thEe T;LreasE EOf the ndurtnberfof bands tthelr t_cl)ltz_;\l mass
rion of its validity, Eq.(28), in the following discussioh actor 24(1/h w) ~Zms and transfer parameteg will in-

For the second harmonic of the low frequendy,2the crease, eliminating the chemical potential oscillatipase
criterion [Eq. (28)] is much easier to fulfill atg—0 and Eqs.(14),_(18)] and th_e corresponding inte_rconnected effects.
large Q, and, really, the calculations using E@2) and the The 'relat|vely small first sa‘;ellltes of the hlgh.frequer@hw— '
exact one provide the same reslittenfer 27, atQ, =20 for ~ Monics of_ the sum and different combination frequencies
two 2D band system withoutck=0) and with reservoir Observed in USp(Ref. 10 are due to the large mass factor
(cr=1) from Figs. 4a), 4(b) (exact calculations Fig. 6 (at  (in the dHvA effect in this compound the deposition from
Q1:20) and F|g 9 which are in Comp|ete Comp"aﬂ]ce four fundamental frequencies providEéms~ 16) The rela-
tive magnitudes of the first harmonics of fundamental fre-
quencies depicted in the abovementioned compound is in
accordance with our weight factargs/eg [note that for

Usually the Fourier spectrum of magnetoquantum oscillaparabolic bands g <Fgs/mg, for the expression of magneti-
tions is analyzed by the Lifshitz-Kosevich formula which zation in multiband metals see Ed20), (21].

FIG. 9. Second harmonics of low; and highF, fundamental

IV. CONCLUSION
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