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Interconnected magnetoquantum de Haas–van Alphen oscillations in a two-dimensional metal:
Wave form and Fourier harmonics

M. A. Itskovsky
Department of Chemistry, Technion–Israel Institute of Technology, Haifa, 32000, Israel

~Received 26 December 2002; revised manuscript received 31 March 2003; published 26 August 2003!

The theory of magnetoquantum oscillations in a two-dimensional~2D! metal with overlapping 2D and 1D
energy bands, admitting multiple sets of closed and open orbits and a multisheet Fermi surface, is elaborated
on. A system of coupled nonlinear equations for the chemical potential and magnetization oscillations is
obtained in a level and harmonic representation. In the framework of a parametrical solution the resulting wave
form of oscillation patterns, due to various fundamental frequencies interconnected through chemical potential
oscillations, is calculated at any temperature and strength of reservoirs of magnetically unperturbed back-
ground states. Analytical expressions for renormalized Fourier harmonics of fundamental and combination
frequencies~satellites of the higher frequency and its harmonics! are obtained dependent on the strength of the
reservoir. The criterion of validity of these expressions as solutions of nonlinear equations is discussed. The
symmetrization effect of the oscillation wave form is found in a multiband electron system without a reservoir
of background states. It can be enhanced by the presence of a reservoir. The symmetrization effect is reflected
via the nonstandard behavior of second harmonics: nonmonotonic temperature–magnetic-field dependence and
disappearance at certain temperatures and magnetic fields~second harmonics zeros!. Effects of this kind can
also be revealed in heterostructures with external reservoirs of background states.

DOI: 10.1103/PhysRevB.68.054423 PACS number~s!: 75.20.En, 75.30.Cr, 71.18.1y, 71.70.Di
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I. INTRODUCTION

The phenomenon of magnetic quantum oscillations
magnetization and magnetoresistance@de Haas–van Alphen
~dHvA!# and @Shubnikov–de Haas~SdH! effects# is widely
utilized in establishing Fermi surfaces of metals.1 The most
important properties of metals, specific heat, electrocond
tivity, superconductivity, charge, spin density waves, etc.,
determined by the details of their Fermi surface topolo
Strongly anisotropic metals~such as recently synthesized o
ganic conductors2,3! having relatively simple quasi-two
dimensional~2D! Fermi surfaces could be used as mod
crystals for checking various theoretical approaches desc
ing magnetic quantum oscillations. In addition to the Fer
surface, the energy bands overlapping and the relative di
sition of band edges also play an important role in influe
ing magnetic oscillation properties of metals. Genera
magnetic quantum oscillations in multiband 2D metals,
mitting multiple fundamental frequencies, are strongly int
connected by the chemical potential oscillations. This res
in the appearance of combination frequencies. A theoret
analysis of such magnetization oscillations in 2D metals w
two energy bands, providing sets of closed orbits of electr
under high quantizing magnetic field, was undertaken by
exandrov and Bratkovsky4,5 and Nakano.6 Their initial analy-
sis was constrained by numerical calculations at zero t
perature. Later the analytical expressions for Fou
harmonics of combination frequencies were obtained in
approximation of relatively high temperature7 and for a
model of two 2D bands with equal mass the theory has b
extended to zero temperature.8 Recently Kishigi and Hase
gawa have numerically analyzed the expressions for dH
oscillations in two 2D band electron systems applicable
any temperature.9 The combination frequencies have be
0163-1829/2003/68~5!/054423~13!/$20.00 68 0544
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recently observed in uranium dipnictide USb2 ~Ref. 10! and
layered perovskite superconductor Sr2RuO4,11,12both having
cylindrical Fermi surfaces~similar to 2D metals!. Combina-
tion frequencies have been also detected in multib
quantum-well heterostructure of InGaAs.13

In this work we will develop a theory of chemical poten
tial and magnetization oscillations in multiband 2D meta
having both closed and open Fermi surface sheets, the
pressions obtained being applicable at arbitrary temperat
The presence of a reservoir of electrons situated on mag
cally unperturbed background states@such as in open Ferm
surface sheets and on impurity and defect levels~subbands!#
will greatly influence the entire pattern of magnetic quantu
oscillations. We will consider in detail an electron syste
consisting of two 2D bands and one 1D band which serve
a reservoir of background states. Under strong quantiz
magnetic field the 2D bands provide closed electron or
and 1D bands provide open ones~electronlike or holelike!. It
will be shown that due to the presence of reservoir states
effect of symmetrization of oscillations takes place: the wa
form of oscillations will be symmetrized even at ultralo
temperature as in one closed~2D! and one open~1D! band
model considered in Ref. 14. The Fourier spectrum will
greatly influenced by the strength of the reservoir of ba
ground states. It will be characterized by the nonstand
nonmonotonic temperature dependence of second harmo
for electron systems with moderate reservoir strength. It w
be shown that at certain temperature/magnetic field the
ond ~even! harmonics may traverse the zero value~which is
the manifestation of the symmetrization effect on magne
quantum oscillations15!. A stronger Fourier spectrum of com
bination frequencies is revealed at weaker strengths of
reservoir due to the stronger chemical potential oscillatio
The symmetrization effect will also take place in a multiba
©2003 The American Physical Society23-1
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electron system without reservoir. These effects under h
quantizing magnetic fields will also take place in syste
other than metal 2D electron systems, for example, in h
erostructures with external reservoir of background state

In Sec. II we will generalize the system of basic nonline
equations for chemical potential and magnetization osc
tions for multiband metals in the framework of level an
harmonic approaches~developed in detail for one 2D ban
and one 1D band in Refs. 16 and 15!. The model of multi-
band structure with two 2D bands and one 1D band will
elaborated and the strength of reservoir of background st
presented by a transfer parameter calculated. In Sec. III A
wave form of interconnected oscillations will be calculat
via the parametrical method14 at various reservoir strengths
In Sec. III B the Fourier harmonics of fundamental and co
bination frequencies of magnetization oscillations in t
presence of reservoir of background states will be deri
and the validity of the obtained analytical expressions d
cussed. The effect of the symmetrization of oscillations wa
form reflected by the temperature/magnetic field behavio
second harmonics of fundamental frequencies will be con
ered. In the Conclusion the comparison of theoretical res
with available experimental Fourier spectrum in multiba
electron systems is briefly discussed.

II. BASIC EQUATIONS FOR CHEMICAL POTENTIAL
AND MAGNETIZATION OSCILLATIONS

A. Model

We consider here a model of a strongly anisotropic cry
~quasi-two-dimensional! having two two-dimensional~2D!
energy bands overlapping with a 1D band~Fig. 1!. There can
be two situations: first, when one or two valence electrons
an unit cell fill the bottoms of the two 2D bands~forming
electron pockets! and the bottom of the 1D band~electron
pocket!, and second, when two valence electrons on a
cell fill the bottoms of the two 2D bands~electron pockets!
and the 1D band, leaving a hole pocket near the ceiling of
1D band. In the first model the whole number of electro
conserved in the bottoms of the three upper bands, is fi
in the second, the number of electrons in electron pocket
the two 2D bands is dependent on overlapping energy
may be arbitrary~as in compensated metal!. The second
model is reminiscent of the band structure of orga
conductors2 and will be considered here in detail. All resul
inhering to this model will also be valid for the first one, wi
the exception of the expression for the Fermi energy level~in
the absence of magnetic field! and transfer parameter~de-
scribing the strength of reservoir!. In both cases the Ferm
surface consists of two closed and one open 2D sheets,
responding to two Fermi surface cylinders~represented by
two 2D bands! and a plain sheet~represented by the 1D
band, will be called a sheet from here on!.

Under high quantizing magnetic field electrons mo
along closed orbits, filling the corresponding quasiclass
energy levels@Landau levels~LL’s !# in the 2D bands:

« l s
~B!5\vs~B!~ l s11/2!1Ds , s51,2 ~1!
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~wherel s50,1, . . . ,designates quantized energy levels! and
along open orbits~unperturbed by magnetic field where th
spin splitting is neglected!, filling the background reservoi
states, which near the maximum~top! of the 1D bandD
could be represented as parabolic holelike ones~see Fig. 1!

ek5D2\2~ky2p/b* !2/2msh . ~2!

In Eq. ~1! vs(B)5eB/msc is the cyclotron frequency cor
responding to the cyclotron massms of the s energy band
~heres51,2 with s51 denoting the upper 2D band ands
52 that of the lower one, see Fig. 1! and Ds are the 2D
bands bottom edges. All energies are counted from the
tom edge of thes52 bandD250. In this case the uppe
edge of the 1D bandD stands for the overlapping energy. I
the Eq.~2! ky is they component of the wave vector,b* is
the corresponding lattice constant@expression~1! includes
anisotropy in thexy plain: ms5Amsxmsy (msx , msy are com-
ponents of the effective mass tensor in thexy plain!, cer-
tainly, the anisotropy in thez direction ~anisotropic axis! is

FIG. 1. Scheme of the dispersion in multiband energy structu
consisting of two 2D bands overlapping with a 1D band. For si
plicity, dispersion isotropic in thexy plain is shown for 2D bands
The top of the 1D band is situated at theky5p/b* Brillouin zone
line. The Fermi surface consists of two cylinders and two pl
sheets. Energies are counted off the bottom of the second (s52)
2D band,D1 is the bottom of the first (s51) 2D band,D is the
ceiling of the 1D band~overlapping energy!, «F is the Fermi energy
~or Fermi level, which is common to all bands!, «F1 is the Fermi
energy of the first band,ky is the wave vector component andb* is
the lattice constant in they direction. The parameters used are
follows. The effective mass of the second band ism2 /me51.5 (me

is the electron mass!, that of the first band ism15m2/1.5. The
Fermi energy ratio is«F1 /«F51/3 ~which corresponds to the fun
damental frequency ratio F2 /F154.5), D/D251/2 @D2

[\2(2/b* )2/2m2 is the second band width in theky direction#. All
energies are in«b units: «b[\2(p/b* )2/2me ~at b* 510 Å «b

'376 meV). The band structure in~a! corresponds to the effective
mass of the 1D bandmsh50.7me and transfer parametercR'1
~moderate strength 1D reservoir!, in ~b! msh511me and cR'10
~strong 1D reservoir!.
3-2
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INTERCONNECTED MAGNETOQUANTUM DE HAAS–VAN . . . PHYSICAL REVIEW B68, 054423 ~2003!
much stronger, leading to the 2D crystal#. msh is the absolute
value of the hole mass tensor component in theky direction
~which is for the holelike open plain sheet of the Fermi s
face, arising from the 1D band, is negative!. In considered
case the number of electrons inside electron pockets is e
to the number of holes in a hole pocket of the hole sheet
is independent on magnetic field.

Thermodynamic potential for the considered model c
be written as

V~B,z!5VLL~B,z!1VR~z!, ~3!

VLL~B,z!/AV

52kBTB(
s51

2

(
l s50

ln„11exp$@z2« l s
~B!#/kBT%…,

~4!

VR~z!/V522kBT(
k

ln$11exp@~z2«k!/kBT#%, ~5!

where VLL(B,z) represents thermodynamic potential
electrons filling magnetically quantized states, Eq.~1!.

VR(z) is the one due to electrons filling magnetica
unperturbed states«k @near the ceiling of this 1D band bein
holelike, Eq. ~2!#, A52 cosQ/c*f0 (f05hc/e is the flux
quantum,c* is the lattice constant in the anisotropic dire
tion of a 2D metal, andQ is the tilt angle between aniso
tropic axis c* and magnetic induction vectorB), z is the
chemical potential generally dependent on magnetic fi
andV is the crystal volume.

B. Nonlinear equation for chemical potential oscillations

First of all we obtain in the framework of considere
model the equation for the chemical potential in the case
three overlapping bands~for one 2D and one 1D overlappin
bands see Ref. 16!:

nLL~B,z!5psh~z!, ~6!

where nLL(B,z)52]VLL(B,z)/]z is the concentration o
electrons filling the two 2D bands electronlike pockets an

psh~z!5
1

vA«sh
E

0

`

$11exp@~z2D1«!/kBT#%21
d«

A«
,

~7!

is the hole concentration in the 1D band holelike poc
@«sh[\2(p/b* )2/2msh#. Equation~6! is obtained from ex-
pression for total concentration of electrons filling all thr
overlapping bands:nt5nLL(B,z)1nsh(z) @where nsh(z)
52]VR(z)/]z is the electron concentration in the 1D ban#
by substitution:nt2nsh(z)5psh(z). The total concentration
of electrons filling the three overlapping bandsnt52/v
~wheren is the unit cell volume! is obviously magnetic field
independent.

Following the method derived in Refs. 14 and 16@the
level approach~LA !# from Eq. ~6! we obtain an equation fo
chemical potential oscillationsz̃(B,T)5z(B,T)2«F :
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2(
s51

2
bs

2bns

5(
s51

2

g~xs ,Qs!1
cR

\v1
z̃, ~8!

where fors51,2

2
bs

2bns

5
Fs

B
2

Fs

Bns

, bs[B2Bns
, 2bns

5
BBns

Fs
, ~9!

g~xs ,Qs!5
1

11exp~xs!
2 (

k51

ns sinh~xs!

cosh~xs!1cosh~kQs!
,

~10!

Qs~B,T!5
\vs~B!

kBT
, Fs5

«Fs

ms
, ms[

e\

msc
, ~11!

whereFs are the fundamental frequencies of oscillations@F1
is the low frequency characterizing thes51 2D band,F2 is
the high frequency characterizing thes52 2D band~both
bands give closed 2D Fermi surface sheets constraining
electron pockets, see Fig. 1!#, 2bns

are quasiperiods, corre

sponding to fundamental frequenciesFs , Qs(B,T) are the
temperature smoothing parameters. The parametrical v
ablesxs are defined as

xs~B,T![«ns
~B!2z~B,T!/kBT, s51,2,

and can be written via temperature smoothing parame
Qs(B,T) and chemical potential oscillationsz̃(B,T) as

2xs

Qs
511

bs

bns

2
2

\vs
z̃, s51,2. ~12!

Magnetic fieldsBns
are defined so that the correspondi

quantized levels with quantum numbersns and ns21 are
situated on equal distances from Fermi level, the magn
fields Bns

being in this case the points of symmetry for co
responding disposition of quantized levels: the filling of ele
trons on the upper level is equal to filling of holes on t
underlying level on the same energetic distance from
Fermi level that the upper one. This symmetry provides
basis of level approach~LA ! @level representation~LR! of
g(xs ,Qs) function14#.

The strength of reservoir of background states is de
mined by the transfer parametercR which in considered here
case is defined relatively to the cyclotron mass of the fi
(s51) 2D band:

cR5m1u]psh~z!/]zu«F
/A, m15e\/m1c. ~13!

Substituting the relationsbs /bns
(s51,2) from Eqs.~12!

into Eq. ~8! we obtain chemical potential oscillations v
parametrical variablesx1 and x2 in the level representation
~LR! @g(xs ,Qs) function is the sum on pairs of quantize
levels symmetrical relatively to the Fermi level in a sep
rated large and small periods defined respectively by m
netic fieldsBn111 andBn1

andBn211 andBn2
]:
3-3
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2S (
s51

2
1

\vs
1

cR

\v1
D z̃~x1 ,x2!5(

s51

2 S 122g~xs ,Qs!2
2xs

Qs
D .

~14!

Using the universal relation derived in Ref. 15

122g~xs ,Qs!2
2xs

Qs
5 (

j s51
m̃j s

~Qs!sin~2p j sxs /Qs!,

s51,2, ~15!

m̃j s
~Qs!5

4p

Qssinh~ j s2p2/Qs!
, ~16!

we obtain the harmonic representation~HR! of chemical po-
tential oscillations~the sum is now on Fourier harmonics!

2S (
s51

2
1

\vs
1

cR

\v1
D z̃~x1 ,x2!

5(
s51

2

(
j s51

m̃j s
~Qs!sin~2p j sxs /Qs!. ~17!

Substitutingxs from Eqs. ~12! into this equation we fi-
nally obtain the nonlinear equation for chemical poten
oscillations in the harmonic representation

2S (
s51

2
1

\vs
1

cR

\v1
D z̃~B,T!

5(
s51

2

(
j s51

~21! j s11m̃j s
~Qs!

3sinH j sF2p
Fs

B
1p

2z̃~B,T!

\vs
G J

5(
s51

2

(
j s51

~21! j sm̃j s
~Qs!sinH j sFksbs2p

2z̃~B,T!

\vs
G J .

~18!

To obtain the second line of Eq.~18! we used the defini-
tion of magnetic fieldsB

ns
at which the mean line betwee

Landau levels with quantum numbersns andns21 is cross-
ing the Fermi level«F :

Fs5nsBns
, s51,2. ~19!

In the third line of Eq.~18! ks52p/2bns
is the cyclic fre-

quency with respect to the variablebs5B2B
ns

. The ‘‘Fermi

energy’’ of the corresponding energy band is defined as«Fs
5«F2Ds @see Fig. 1, where the bottom edge of the seco
2D band (s52) is taken as zero energy levelD250 and
therefore«F2[«F]. ‘‘Fermi energies’’ can also be expresse
as«Fs5msFs5msnsBns

5\vs(Bns
)ns . This being taken into

account, in the used throughout this paper approximation
appropriate magnetic fieldsB/Fs>B

n
/Fs5\vs /«Fs!1,
s

05442
l

d

or

the large~for 2D bands51) and small~for 2D bands52)
period of oscillations can be represented as 2bns

5BB
ns

/Fs

>Bns11B
ns

/Fs>B
ns

2 /Fs and, hence, the cyclic frequencie

corresponding to these periods areks>2pFs /Bns

2 .

C. Magnetization oscillations

Acting in the framework of the level approach~LA !
elaborated in detail in Refs. 14 and 16 we obtain express
for magnetization oscillations for our model as a function
parametrical variablesxs

M ~x1 ,x2!

M0
5(

s51

2
«Fs

«F
F122g~xs ,Qs!2

2xs

Qs
G , ~20!

where M05A«F/2 is the saturation magnetization of th
deepest quantized band~the second 2D band iss52, in our
case we have designated«F[«F2>«F1, see Fig. 1!.

This is the level representation~LR! of magnetization os-
cillations via parametrical variablesxs . The deposition of
each quantized band into the total magnetization is de
mined by the corresponding ‘‘weight’’ factor, the Fermi e
ergy«Fs . Comparing this expression with that of the chem
cal potential oscillations~14!, we now see that magnetizatio
oscillations are nonproportional to the chemical potential
cillations @as was the case in the presence of a single qu
tized band~see the Refs. 14 and 16!#. Only in a special case
when the bottoms of quantized 2D bands coincide~degener-
ate! (D15D2, that is,«F15«F2[«F , see Fig. 1! the propor-
tionality relation preserves.

Using the identity~15!, ~16!, we obtain magnetization os
cillations in the harmonic representation~HR! via parametri-
cal variablesxs :

M ~x1 ,x2!

M0
5(

s51

2
«Fs

«F
(
j s51

m̃j s
~Qs!sin~2p j sxs /Qs!.

~21!

As in a case with chemical potential oscillations the ma
netization oscillations can be represented as functions b
of inverse magnetic field (1/B) and magnetic field (bs5B
2Bns

) by substituting the parametrical variablesxs via Eqs.
~12!:

M ~B,T!

M0
5(

s51

2
«Fs

«F
(
j s51

~21! j s11m̃j s
~Qs!

3sinH j sF2p
Fs

B
1p

2z̃~B,T!

\vs
G J

5(
s51

2
«Fs

«F
(
j s51

~21! j sm̃j s
~Qs!

3sinH j sFksbs2p
2z̃~B,T!

\vs
G J . ~22!

Now we see that magnetization oscillations can be
tained by solving firstly the nonlinear equation for the chem
3-4
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cal potential oscillations: Eq.~14! with Eq. ~12! in level rep-
resentation~LR! or Eq.~18! in harmonic representation~HR!
that will be done in the next section. If we completely n
glect chemical potential oscillationsz̃(B,T)[0, the expres-
sion in Eq.~22! reduces to Lifshitz-Kosevich formula17 for
two quantized independent 2D bands~for single 2D band this
formula was obtained by Shoenberg18!.

D. Transfer parameter for overlapping bands

The electrons filling magnetically unperturbed states
nonquantized 1D band implicitly influence magnetization
cillations via participation in the chemical potential oscill
tions which are depending explicitly on the transfer para
eter cR @see nonlinear equation for the chemical poten
oscillations, Eq.~14! in level representation or Eqs.~17!,
~18! in harmonic representation#. This parameter as define
by Eq. ~13! is determined by theB50 band structure. The
Fermi level can be found from Eq.~6! at B50:

«F

m2
1

«F2D1

m1
5

psh~«F!

A
, ~23!

with ms (s51,2) from Eq.~11!.
The degenerate hole concentration inside the hole po

of the 1D band is obtained from Eq.~7!:

psh~z!>
1

vA«sh

~D2z!1/2. ~24!

Solving Eq.~23! we obtain Fermi energy in our model:

«F

«b
5

4

p2

msh

m2

1

m2 /me
3FA114~11F1 /F2!2D/«e f21

2~11F1 /F2!2 G ,

~25!

where

D/«e f[~D/D2!~m2 /msh!,
F1

F2
5

m1«F1

m2«F
, ~26!

«b5
\2~p/b* !2

2me
, D25

2\2~b* !22

m2
5

~4/p2!«b

m2 /me
,

D2 is the width of the second 2D band (s52) in the ky
direction. For parabolic band approximation being true,
viously, the overlapping should beD/D2&1/2 ~see Fig. 1!.

Now the transfer parameter calculated in the conside
model is

cR5
~m2 /m1!~11F1 /F2!

A114~11F1 /F2!2D/«e f21
. ~27!

Hence, the transfer parameter is determined by the four
rametersm2 /m1 , m2 /msh , «F /«F1 ~or F1 /F2 as F1 /F2
5m1«F1 /m2«F), andD/D2.

The transfer parameter for a model consisting of t
bands, one 2D band with an electron pocket and one
band also with an electron pocket, was calculated in Ref.
cR can be calculated in a way similar to two 2D bands a
05442
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1D band, all with electron pockets. The limit forcR→0 in
models with two 2D bands plus one 1D band depends
whether the 1D pocket is electronlike or holelike: in the fi
case the weak electronlike reservoir~containing a small num-
ber of carriers, for example, because of a small effect
mass! means strong magnetization oscillations@with large
amplitudeM0 because of large Fermi energies«F1 and «F
~corresponding to large numbers of electrons conserve
two 2D bands!#. In the second case~considered here! the
weak holelike reservoir means extremely small magnetic
cillations due to the small number of carriers filling the 2
bands. Consequently, the holelike reservoir influences
magnetic oscillations more strongly than the electronl
one. But qualitatively the influence of the reservoir on ma
netic quantum oscillations in both cases for the same va
of cRÞ0 is the same.

It should be noted that the expressions for magnetiza
@Eqs. ~20!–~22!# do not contain the transfer parametercR
explicitly. Reservoir of background states influences
magnetization implicitly through chemical potential oscill
tions, ~14!, ~17!, ~18!. All expressions for magnetization an
chemical potential oscillations, obtained here, are applica
independently of the concrete nature of the background s
reservoir.

III. WAVE FORM AND FOURIER SPECTRUM
IN THE PRESENCE OF RESERVOIR

OF BACKGROUND STATES

A. Wave forms observed in oscillation pattern

The wave form of magnetization oscillations can be c
culated at arbitrary temperature and any reservoir strengt
application of expressions of the level representation@Eq.
~20!# and harmonic representation@Eq. ~21!#, both dependent
on parametrical variablesxs , without the necessity of solv
ing the nonlinear equation for chemical potential oscillatio
~as these equations do not contain chemical potential o
lations explicitly!. For a 2D crystal containing a single en
ergy band and a reservoir of background states this pro
dure was described in Refs. 14,16. The parametr
variables should be given in certain limits of temperatu
smoothing parametersQs . For obtaining the wave form in a
single large period corresponding to the low fundamen
frequencyF1 ~with variablex1 ranging in the limits2Q1/2
,x1,Q1/2) the variablex2 should be taken in the regio
2(F2 /F1)Q2,x2,(F2 /F1)Q2 so as to cover several sma
periods corresponding to high fundamental frequencyF2. To
show two large periods the regions ofxs should be doubled
and so on. This parametrical method proved successful e
cially at ultralow temperature~large Qs) when only a few
levels in theg functions play the decisive role. The par
metrical method provides the possibility of elucidating t
role of the reservoir of the background nonquantized in m
netic field states. These results are shown in Fig. 2, where
presence of weak (cR!1), intermediate (cR;122), and
strong (cR@1) reservoirs of background states greatly infl
ences the wave form of oscillations.

It is seen that the shape of high frequency oscillatio
~corresponding to fundamental frequencyF2) alters from
3-5
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FIG. 2. Magnetization oscillations patterns in two 2D band electron systems at various strengths of 1D reservoirs of backgrou
at ultralow temperature (Q15100): ~a! transfer parametercR50 ~absence of reservoir!, ~b! cR51 ~moderate strength reservoir!, ~c! cR

510 ~strong reservoir!. The fundamental frequency ratio isF2 /F154.5, the effective mass ratio ism2 /m151.5 ~these data correspond t
a Fermi energy ratio«F1 /«F51/3). Four periods corresponding to low fundamental frequencyF1 are shown, corresponding to two larg
periods~with frequencyF1/2, see text!. The half period corresponding to high fundamental frequencyF2 is separated by dashed lines. Insid
it the change of the wave form of oscillations due to background states reservoir is manifested: from sawtooth@in ~a! at cR50] through more
symmetric@in ~b! at cR51] to inverse sawtooth@in ~c! at cR510].
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sawtooth (cR!1) to inverse sawtooth (cR@1) in a symmet-
ric pattern (cR;122). As in the case with a single quan
tized band background the states do not change the am
tudes of the oscillations. It is also seen from the wave fo
of the oscillations pattern that a new feature of the two
band system arises: the largest visible period of oscillati
in the case of the fundamental frequency ratio given by
half-integer numbersF2 /F15N/2 (N53,5, . . . ) istwice of
the low frequency period and corresponds to theF1/2 funda-
mental frequency. This case is provided in Fig. 2 for the ra
F2 /F154.559/2. In the case of integer ratioF2 /F15N(N
52,3, . . . ) the largest visible period is that of the low fre
quencyF1. This is illustrated in Fig. 3 for fundamental fre
quencies ratioF2 /F154.

Generally, these properties follow from the expression
the fundamental frequencies ratioF2 /F15Bn2

n2 /Bn1n1 @see
05442
li-

s
e

o

r

the definition of magnetic fieldsBns
, Eqs.~19!# at the con-

dition that magnetic fields where mean lines between lev
with quantum numbersns and ns21 belonging to different
bands (s51,2) cross the Fermi level at one point:Bn2

5Bn1
, F2 /F15n2 /n1. If the ratio F2 /F15N/4 (N

55,7, . . . ) thevisible period of oscillations pattern will be
four times of the low frequency period and correspond
fundamental frequencyF1/4. If F2 /F15N/5 and F2 /F1

5N/10 ~whereN/5 andN/10 are irreducible improper frac
tions! the corresponding visible period of the oscillation pa
tern will be 5 and 10 times of the low frequency period wi
fundamental frequenciesF1/5 andF1/10. This exhausts the
cases when the ratioF2 /F1 is given with precision to tenths
F2 /F15NL (N,L are integer numbers!. For a ratio with
more precision the greater visible periods can be constru
3-6
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accordingly. While features influenced by background sta
are difficult to observe from the oscillation pattern itself t
Fourier spectrum will be a much more powerful tool.

B. Fourier spectrum

For analytically obtaining the Fourier spectrum of magn
tization in two quantized bands and a reservoir of ba
ground states model the nonlinear equation for chemical
tential oscillations should be solved first and then t
solution should be substituted into the expression for mag
tization. Such a problem is very difficult to perform. For
simple model of a single quantized band in the presence
reservoir of background states this problem was solved
Ref. 15 taking into account the spin splitting atT50 in Ref.
19. Here for obtaining the Fourier spectrum at arbitrary te
perature~including ultralow temperatures corresponding
largeQs@10) we solve the nonlinear equation for chemic
potential oscillations numerically.

At high temperature (Qs&10) we solve the problem ana
lytically obtaining explicit expressions for Fourier harmo
ics. A similar solution in the multiband system without re
ervoir states was presented in Ref. 7. Further discuss
conditions for such a solution which appeared to be be
applicable in the high-temperature–low-magnetic field
gion and for electron systems with stronger reservoirs.

The Fourier spectrum of magnetization oscillations in
two 2D band system without (cR50) and with moderate
(cR;1) and strong (cR*10) reservoirs of background state
is presented in Fig. 4. In the absence of a reservoir and
moderate reservoirs@see Figs. 4~a!, 4~b!# the higher harmon-

FIG. 3. The magnetization oscillation pattern in two 2D ban
electron systems at an integer fundamental frequency ratio. Pa
eters used: fundamental frequencies ratioF2 /F154, cyclotron
mass ratio m2 /m151.5, temperature smoothing parameterQ1

5100, transfer parametercR51. Note that the visible period of the
oscillation pattern completely coincides with that of the low fund
mental frequencyF1. Four such periods are shown. A half perio
due to the high fundamental frequencyF2 is separated by dashe
lines demonstrating the nearly symmetric wave form of oscillatio
due to the moderate strength (cR51) 1D reservoir.
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ics of both low F1 and high F2 fundamental frequencie
( j s52,3, . . . ) aresuppressed~see second harmonics 2F1
and 2F2), but combination frequencies (F26F1 , 2F2
1F1 , 2F212F1) are much stronger due to the substant
chemical potential oscillations present. In a system with
strong reservoir@see Fig. 4~c!# the second harmonics 2F1
and 2F2 are of the same order as the combination frequ
cies which are diminished in this case of suppressed che
cal potential oscillations. Obviously, all these differences
the Fourier spectrum are mirrowing the changes in the s
metry of the wave form of the oscillation pattern~shown in
Figs. 2, 3! reflecting in turn the influence of backgroun
reservoir states. Note that the suppression of second harm
ics of fundamental frequencies is utmost in multiband s
tems without a reservoir reflecting the interference of
bands due to chemical potential oscillations which are str
gest in this case. This effect of the second~even! harmonics
suppression in multiband systems without a reservoir@see
Fig. 4~a!# is of the same nature as revealed in electron s
tems consisting of a single band and reservoir~see Ref. 15!:
the symmetrization of the wave form of oscillations is due
chemical potential oscillations leading to the redistribution
electrons between bands~for the symmetrization effect in
multiband systems see Figs. 6, 7 and the corresponding
cussion!.

Later we will solve the system of equations~18! ~chemi-
cal potential oscillations! and ~22! ~magnetization oscilla-
tions! with conditions of relatively small amplitudes o
chemical potential oscillations:

j sp
2z̃~B,T!

\vs
&0.5, s51,2, j s51,2, . . . ~28!

~when trigonometric functions entering into these equatio
can be substituted as cosx>1 and sinx>x) obtaining the
Fourier harmonics of fundamental and combination frequ
cies. Obviously, these conditions are better satisfied in s
tems with a larger ratio of quantized band massm2 /m1,
stronger reservoir~larger transfer parametercR), and mainly
at relatively small standard Lifshitz-Kosevich~LK ! harmon-
ics m̃j s

(Qs)5(4p/Qs)sinh(js2p2/Qs) which takes place a

relatively high temperature (Qs&10). It is obvious that re-
strictions from high frequency oscillations~representing the
s52 band! are tougher because of greater mass~and conse-
quently, the lesser separation between levels\v2,\v1).

In the linear on chemical potential oscillations approxim
tion we obtain for magnetization

M ~B,T!

M0
>(

s51

2
«Fs

«F
(
j s51

~21! j sm̃j s
~Qs!H sin~ j sksbs!

2 j sp
2z̃~B,T!

\vs
cos~ j sksbs!J . ~29!

Substituting the expression for chemical potential osci
tions ~18!, in which we neglect by chemical potential osc
lations terms in the right-hand-side of Eq.~18! ~in the argu-
ments of trigonometric functions!, into Eq. ~29! and using
the trigonometric relation sin(x)cos(y)5(1/2)@sin(x1y)
1sin(x2y)] we obtain a Fourier series for magnetization.

s
m-

-

s
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FIG. 4. Fourier transform of magnetization oscillations in two 2D bands electron systems:~a! in the absence of reservoir,~b! with
moderate (cR51), and~c! strong (cR510) reservoir of background states. The fundamental frequency ratioF2 /F154.5, cyclotron mass
ratio m2 /m151.5, temperature smoothing parameterQ1520. Note in~a! and ~b! the strong harmonics of combination frequencies„first
satellitesF22F1 , F21F1 and second satellitesF222F1 , F212F1 of the first harmonic of fundamental frequencyF2 and first 2F21F1

and second 2F212F1 right satellites of the second harmonic 2F2 @in ~a! also the first left satellite 2F22F1] and weak second harmonic
of fundamental frequencies (2F1 and 2F2). ~c! The inverse situation with weak harmonics of combination frequencies and relatively s
second harmonics of fundamentals. Note the substantial suppression of second harmonics in~a! and ~b! in comparison with those in~c!.
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this series will be represented together with renormali
harmonics of fundamental frequencies„meaning the standar
LK harmonicsm̃j s

(Qs) @see Eq.~16!# plus additions due to
chemical potential oscillations, expressed as powers on s
dard LK harmonics… also the harmonics of combination fre
quenciesj s8ks86 j sks (s8Þs) ~we remind the reader thatks
}Fs). Similarly, the higher chemical potential oscillatio
terms can be calculated providing the third and higher or
terms on standard LK harmonics in the Fourier series.

We will not present simple but cumbersome general
pressions for Fourier series on fundamental and combina
frequencies@general solution of Eqs.~18!, ~22! in linear and
a higher approximation on chemical potential oscillationsz̃].
Instead, we will provide expressions for the first and seco
05442
d

n-

r

-
n

d

renormalized harmonics of fundamental frequenciesF1 and
F2 and the harmonics of combination frequenciesj 2F2
6 j 1F1 ( j 1 , j 251,2, . . . ) later.

1. First harmonics

The renormalized amplitude of the first harmonic of t
low fundamental frequencyF1 ( j 151,s51)M1

(F1)(Q1)/M0

5h1
(F1)(Q1)sin(k1b1) is

h1
(F1)

~Q1!52
«F1

«F
H m̃1~Q1!1

pm̃1~Q1!m̃2~Q1!

2~11m2 /m11cR!

2
p2@m̃1~Q1!#3

4~11m2 /m11cR!2J , ~30!
3-8
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where the subscripts ofM1
(F1) ,h1

(F1) , and m̃1 designate the
number of harmonics (j 151), the subscripts of
Q1 ,F1 ,m1 , j 1, andk1 stand for the number of the first~low!
fundamental frequencyF1 ~bands51), and the subscript fo
m2, for the second band (s52). It should be noted that th
last term in braces was obtained when the terms proporti
to (z̃)2 were taken into account while solving the nonline
equations.

The renormalized amplitude of the first harmonic of t
high fundamental frequency F2 ( j 251,s
52)M1

(F2)(Q2)/M05h1
(F2)(Q2)sin(k2b2) is

h1
(F2)

~Q2!52H m̃1~Q2!1
p~m2 /m1!m̃1~Q2!m̃2~Q2!

2~11m2 /m11cR!

2
p2~m2 /m1!2@m̃1~Q2!#3

4~11m2 /m11cR!2 J . ~31!

The renormalized first harmonic amplitudes~30!, ~31! are
shown in Fig. 5. Designationsh1

(F1)(Q1)→1F1 and

h1
(F2)(Q2)→1F2 , («F1 /«F)m̃1(Q1)→LK1F1, andm̃1(Q2)

→LK1F2 ~for Lifshitz-Kosevich (LK) harmonics! are used
and here and later the sign ‘‘→ ’’ stands for ‘‘designated as.’

FIG. 5. ~a! First harmonic amplitudes@h1
(F1)(Q1)→1F1 and

h1
(F2)(Q2)→1F2] of the low (F1) and high (F2) fundamental fre-

quencies in electron system consisting of two 2D bands1 a 1D
reservoir of background states. For each fundamental frequenc
curves from above correspond to transfer parametercR53,2,1,0,

LK harmonics («F1 /«F)m̃1(Q1)→LK1F1 and m̃1(Q2)→LK1F2

are shown by dashed lines. Note that curve 1F2, corresponding to
cR50 at ultralow temperatures, is rather approximate@see criterion
~28!#. The fundamental frequency ratio isF2 /F154.5, the effective
mass ratio ism2 /m151.5, the Fermi energy ratio is«F1 /«F51/3.
~b! First harmonic 1F2 of the high fundamental frequencyF2 ver-
sus strength of background states, represented by transfer para
cR , at temperature smoothing parameterQ15100. LK 1F2 ~corre-
sponding tocR→`) and 1F2 at cR50 are shown by dashed lines
05442
al
r

It is seen@see Fig. 5~b!# that at low temperatures~large tem-
perature smoothing parameterQ15100) the first harmonics
nonmonotonically depend on the strength of background
ervoir states: at a given temperature~or Q1) with increasing
reservoir strengthcR they first increase, then decrease rea
ing the limiting value of the LK ones@LK first harmonics
m̃1(Q1) and m̃1(Q2) characterize the considered syste
with completely neglected chemical potential oscillatio
z̃(B,T)[0, that can be asymptotically achieved in ultra
trong reservoirs of background statescR→`)]. This behav-
ior reflects the symmetry of oscillation wave forms due
the various reservoir strengths.14,15At high temperatures the
1F1 becomes greater than 1F2 @see crossing in Fig. 5~a!#
notwithstanding that it is presented with a smaller weig
~smaller Fermi energy«F1 /«F51/3).

In pure two 2D band systems~i.e., without a reservoir! the
first harmonics can be essentially suppressed only at
temperature@see the curve LK 1F2 at cR50 in Fig. 5~a!#
reflecting the minimal symmetry of oscillations wave form
this case@sawtooth, see Fig. 2~a!#.

In general, the first harmonics at moderate and high te
peratures (Q1&20) are slightly affected by the interferenc
of 2D bands and by the reservoir of background sta
Therefore, the cyclotron masses obtained from LK first h
monics in this temperature range are reasonable„excluding
the special case of two 2D bands without reservoir@see the
first harmonic 1F2 for cR50 at low temperatures (Q1
*20) in Fig. 5~a!#.

2. Nonstandard temperatureÕmagnetic field dependence
of second harmonics

Renormalized amplitude of the second harmonic of
low fundamental frequencyF1 ( j 152,s51)M2

(F1)(Q1)/M0

5h2
(F1)(Q1)sin(2k1b1) is

h2
(F1)

~Q1!5
«F1

«F
H m̃2~Q1!2

p@m̃1~Q1!#2

2~11m2 /m11cR!
J .

~32!

The renormalized amplitude of the second harmonic of
high fundamental frequencyF2 ( j 252,s52)M2

(F2)(Q2)/

M05h2
(F2)(Q2)sin(2k2b2) is

h2
(F2)

~Q2!5m̃2~Q2!2
p~m2 /m1!@m̃1~Q2!#2

2~11m2 /m11cR!
. ~33!

The second harmonic amplitudesh2
(F1)(Q1)→2F1 and

h2
(F2)(Q2)→2F2, Eqs.~32!, ~33!, can be decreased substa

tially, compared with LK second harmonic
(«F1 /«F)m̃2(Q1)→LK2F1 andm̃2(Q2)→LK2F2, in a cer-
tain interval of temperatures because they contain the sq
of the unrenormalized~LK ! first harmonic amplitudes in
their negative term. This effect of diminishing of the absolu
value of the second harmonic and even becoming zer
certain temperature/magnetic fields was first predicted to

the

eter
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M. A. ITSKOVSKY PHYSICAL REVIEW B 68, 054423 ~2003!
cur in the electronic 2D system containing a single quanti
band and a reservoir of background states in Ref. 15.
second harmonics 2F1 and 2F2 are shown in Fig. 6.

Note the nonmonotonic behavior of the absolute value
the renormalized second harmonics in comparison to mo
tonic LK harmonics. We see that at certain temperatures
magnetic fields the second harmonics even traverse the
value reflecting the symmetric wave form of the correspo
ing oscillations. Note that the ‘‘weight factor’’ of the first 2D
band («F1 /«F51/3) relatively diminishes the second ha
monics of the low fundamental frequencyF1. Note also that
the zeros of the second harmonics are independent of
weight factor@see Eqs.~32!, ~33!#.

It is remarkable that the nonstandard behavior of the s
ond harmonics, nonmonotonic behavior including the
pearance of zeros at certain temperatures and magnetic
is also inherent in multiband electron systems without a r
ervoir of background states@see the second harmonic of th
low fundamental frequency 2F1(cR50) in Fig. 6#. This
property is analogous to the symmetrization effect that w
revealed in an electron system consisting of a single 2D b
plus a reservoir@see Ref. 15, where the correlation betwe
the symmetric wave form and the second harmonics ze
has been underlined, see also Ref. 20, where the effect o
symmetrization of magnetic oscillation wave forms due
the background states~represented by the states in 1D ba
producing open Fermi surface sheet! was first discovered a

FIG. 6. Second harmonics versus temperature and mag
field in the two 2D band electron system without and with a res
voir of background states of various strengthcR . The second har-
monics of the low fundamental frequency@designated as
h2

(F1)(Q1)→2F1] are shown by solid lines forcR50 ~without res-
ervoir! and cR51. Those belonging to the high fundamental fr
quency@h2

(F2)(Q2)→2F2# are shown by dashed lines for reservo
of moderate strengthcR51.5 andcR53. The standard LK second

harmonics (cR→`) @designated as («F1 /«F)m̃2(Q1)→LK2F1 and

m̃2(Q2)→LK2F2] are also shown. Note that in certai
temperature/magnetic field intervals the second harmonics have
posite signs traversing the zero value. Zeros of the second harm
ics appearing in electron systems with and without reservoirs,
shown by arrows.
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reservoir strengthcR51 ~see also numerical calculation i
Ref. 21!#. Some indications on the nonstandard behavior
the second harmonics can be traced in Refs. 6,19, and 9

The temperatures and magnetic fields where zeros of
second harmonics occur, dependent of the strength of b
ground reservoir states~measured by transfer parametercR),
are shown in Fig. 7. In contrast to the single band syst
with a reservoir in multiband systems the zeros of the sec
harmonics are shifted to higher temperatures for the sa
strength of reservoir, manifesting the additive interband
fluence on the effect of symmetrization of the magne
quantum oscillation wave forms. The same effect of symm
trization occurs in multiband electron systems without a r
ervoir reflected by the appearance of second~even! harmon-
ics zeros at certain temperatures and magnetic fie
~presented in Fig. 7 by crossings of the curves with the
dinate axiscR50). We see that for the same reservo
strength or in the absence of a reservoir the zeros of
second harmonics corresponding to low and high fundam
tal frequencies expand from each other with increasing m
ratio m2 /m1. In pure multiband systems~without reservoir,
cR50) the effect of the symmetrization of wave forms do
not occur in all fundamental periods. We see that for two
systems without a reservoir at mass ratiom2 /m1*1.5 only
the wave forms of oscillations corresponding to low fund
mental frequencyF1 are symmetrized. The second harmon
2F1 has zeros, but 2F2 does not for mass ratiom2 /m1

tic
r-

p-
n-

re

FIG. 7. Temperature and magnetic field of zeros of the sec
harmonics 2F1 and 2F2 of the low F1 and highF2 fundamental
frequencies versus strength of reservoir of background states. T
pairs of sets corresponding to mass ratiom2 /m151.01,1.5,2 are
presented. The range of temperature and magnetic field corresp
to Q1[kBT/\v1(B)552100. Temperature and magnetic field
corresponding to zeros of the second harmonics for electron
tems with mass ratiom2 /m151.5 and reservoir strengths present
in Fig. 6 (cR50,1,1.5,3), are shown for low fundamental frequen
by solid arrows, for high fundamental frequency by dashed arro
~all arrows shown correspond to the arrows in Fig. 6!. Note the
appearance of second harmonic zeros in the two 2D band sy
without a reservoir (cR50).
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51.5,2 at temperatures and magnetic fields correspondin
Q1<100 @see also the asymmetric sawtooth wave form c
responding to oscillations with high fundamental frequen
F2 in Fig. 2~a! for a system without reservoircR50]. Fur-
ther presentation and discussion of second harmonics p
erties in multiband electron systems depending on reser
of background states of various strengthcR can be seen in
and after Fig. 9 in the following subsection.

3. Combination harmonics

Now we will write down the expressions for the harmon
amplitudes of combination frequencies:

M j 2F26 j 1F1

M0
5

~21! j 11 j 2p

2~11m2 /m11cR! S «F1

«F
j 16

m2

m1
j 2D

3m̃j 1
~Q1!m̃j 2

~Q2!, j 1 , j 251,2, . . . ,

~34!

where a plus sign stands for the right-hand-side satellite
the high fundamental frequency (F2 , j 251) and its harmon-
ics (j 2F2 , j 252,3, . . . ) and theminus sign stands for the
left-hand-side satellites. It is clear, however, that these
pressions are correct for small numbersj s51,2 for electron
systems with weak strength of reservoircR!1 @see the con-
ditions for the validity of the whole theory of combinatio
frequencies~28!#. The situation improves for electron sy
tems with strong reservoir (cR@1) but the magnitude o
combination harmonics decreases dramatically in this c
The expressions for Fourier harmonics of combination f
quencies, Eqs.~34!, are coinciding with those written dow
in the Ref. 22 in the frameworks of the same method tha
used in this article, i.e., in the linear approximation
chemical potential oscillations in the expression for oscill
ing magnetization~22!.

The ratio of satellites amplitudes of the high fundamen
frequencyF2 and its harmonics disposed on the equal d
tances fromF2 at the left and the right side@i.e., the (2) and
(1) satellites have the samej 1)] is independent of tempera
ture, magnetic field, and the presence of reservoir of ba
ground states:

M j 2F22 j 1F1

M j 2F21 j 1F1

5
j 2~F2 /F1!2 j 1

j 2~F2 /F1!1 j 1
, j 1 , j 251,2, . . . . ~35!

In the derivation of this expression the relation for pa
bolic bands were used:«F1 /«F5(F1m2 /F2m1) @see Eq.
~26!#. This expression is independent of the transfer para
eter in the limits of the fulfillment of the criterion@Eq. ~28!#,
i.e., in the range where the chemical potential oscillations
small enough. Hence, the above expressions have a lim
application constrained by high temperatures, low magn
fields, and a relatively strong reservoir of background sta

The first satellites of high fundamental frequencyF2 ~har-
monics of combination frequenciesF22F1 andF21F1) for
two 2D band systems without a reservoir and with reserv
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with strengths corresponding tocR51 andcR510 are pre-
sented in Fig. 8. It is seen that the combination harmon
increase with the increase of the chemical potential osc
tions, i.e., for weaker reservoirs of background states una
to pin the chemical potential to the Fermi level at all ma
netic fields.

The ratio of the first satellites of the high frequencyF2 to
the first LK harmonic of the low frequencyF1 in the absence
of a reservoir (cR50) is

MF26F1
/M0

~«F1 /«F!m̃1~Q1!
5

2p2kBTm2~F16F2!

F1~m11m2!\v1sinh~2p2/Q2!
,

which coincides with a similar relation obtained in th
framework of the free energy calculation in Ref. 7~see their
Fig. 1!.

Finally, we represent in Fig. 9 the comparison of com
nation and second harmonics for an electron system con
ing of two 2D bands with reservoirs of background states
various strengths at a fixed temperature/magnetic field r
corresponding toQ1520. We see the monotonic decrease
combination harmonics and a monotonic increase of sec
harmonics with an increase of the strength of backgrou
states. AroundcR;10 there is a crossover from dominatin
combination harmonics to prevailing of second harmoni
The combination harmonics asymptotically disappear wh
second harmonics approach their corresponding LK val
for electron systems with large reservoir strengthcR .

The exact calculations of the Fourier harmonics spectr
for two 2D band systems without a reservoir (cR50) pre-
sented in Fig. 4~a! and with a reservoir of strengthcR51 in
Fig. 4~b! yields that atQ1520 the second harmonic of th

FIG. 8. First satellites of the first harmonic of high fundamen
frequencyF2 ~harmonics of combination frequenciesF22F1 and
F21F1) versus temperature/magnetic field for two 2D band el
tron systems: in the absence of reservoir (cR50, solid curves! and
with a reservoir of moderate (cR51, dashed curves! and strong
(cR510, dot-dashed curves! strengths. Note that the reservoir su
presses combination harmonics.
3-11
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high fundamental frequency isu2F2(cR50)u,u2F2(cR
51)u, which contradicts the monotonic behavior of th
negative values of this second harmonic 2F2 as a function of
cR in the region of smallcR<1 ~see Fig. 9, curve 2F2). A
similar nonmonotonic behavior at small reservoir strength
ultralow temperatures has been revealed in a model o
single 2D band with reservoir@in Ref. 15, where exact ana
lytical calculations of Fourier harmonics have been p
formed and demonstrated in Fig. 3, curve 2~second LA har-
monic! in the regioncR,1]. Obviously, in calculations of
the second harmonic of high fundamental frequency 2F2 in
the considered model at smallcR<1 and in a low-
temperature–high-magnetic-field region~large Q1) the re-
striction by the second order terms on LK harmonics in
expression of 2F2 is insufficient @neglection by the highe
order terms becomes unjustified: see Eq.~33! and the crite-
rion of its validity, Eq.~28!, in the following discussion#.

For the second harmonic of the low frequency 2F1 the
criterion @Eq. ~28!# is much easier to fulfill atcR→0 and
largeQ1 and, really, the calculations using Eq.~32! and the
exact one provide the same results@confer 2F1 at Q1520 for
two 2D band system without (cR50) and with reservoir
(cR51) from Figs. 4~a!, 4~b! ~exact calculations!, Fig. 6 ~at
Q1520) and Fig. 9 which are in complete compliance#.

IV. CONCLUSION

Usually the Fourier spectrum of magnetoquantum osci
tions is analyzed by the Lifshitz-Kosevich formula whic

FIG. 9. Second harmonics of lowF1 and highF2 fundamental
frequencies and combination harmonics~first satellites of the first
harmonic! of high fundamental frequencyF2 (F22F1 and F2

1F1) versus reservoir strengthcR at temperatures and magnet
fields corresponding to temperature smoothing parameterQ1

5\v1(B)/kBT520. The second harmonic of low frequency 2F1

and the corresponding second LK harmonic~designated as LK
2F1) are shown by dashed lines, those belonging to high freque
(2F2 and LK 2F2) by dot-dashed lines. The combination harmo
ics F22F1 and F21F1 are shown by solid lines. Note the corre
sponding asymptotic behavior of harmonics at large reser
strength and crossovers in the region aroundcR;10.
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rigorously speaking is applicable for independent fundam
tal frequencies, which is the case where an extremely str
reservoir of background states pins the chemical poten
oscillations. Generally, magnetoquantum oscillations due
different parts of the Fermi surface~containing closed and
open sheets! are interconnected by oscillations of the chem
cal potential via exchange of electrons between various
bits in conditions of the thermal equilibrium. Here we ha
quantitatively investigated the influence of the backgrou
states on the wave form and Fourier harmonics of a mu
band 2D metal, having a multisheet Fermi surface, at a
trary temperature and strength of reservoir.

The most striking changes undergo the second harmo
of the fundamental low and high frequencies. First of a
they nonmonotonically depend on either temperature or m
netic field in contrast to the monotonic dependence of st
dard Lifshitz-Kosevich harmonics. Secondly, depending
the strength of background states they can traverse thro
zero values, characterizing the most symmetric wave fo
of oscillations. In multiband systems zeros of second h
monics occur at higher temperatures due to interband in
ence, as compared to the single band system with the s
reservoir strength. It looks as if the exchange of electro
between 2D bands produce the same symmetrization e
on wave forms of magnetoquantum oscillations as reserv
in single 2D band systems.15 At temperatures and magnet
fields where second harmonics zeros occur, the first harm
ics and satellites of the high fundamental frequency~har-
monics of combination frequencies! dominate the entire Fou
rier spectrum even at extremely low temperatures where
Lifshitz-Kosevich second harmonics~and higher! should be
mostly substantial.

It is remarkable that the effect of symmetrization of osc
lation wave forms and the corresponding behavior of sec
~even! harmonics of the Fourier spectrum is also inherent
multiband electron systems without a reservoir of ba
ground states. This effect is due to the interference betw
different 2D bands via the exchange of electrons in
course of chemical potential oscillations.

Obviously, the developed theory is applicable to 2
multiband electron systems with any number of bands,
mitting electron and hole pockets and any kind of reserv
of background magnetically unperturbed states. Howe
with the increase of the number of bands their total m
factor (s(1/\vs);(sms and transfer parametercR will in-
crease, eliminating the chemical potential oscillations@see
Eqs.~14!, ~18!# and the corresponding interconnected effec
The relatively small first satellites of the high frequency~har-
monics of the sum and different combination frequenci!
observed in USb2 ~Ref. 10! are due to the large mass fact
~in the dHvA effect in this compound the deposition fro
four fundamental frequencies provides(s

4ms'16). The rela-
tive magnitudes of the first harmonics of fundamental f
quencies depicted in the abovementioned compound i
accordance with our weight factor«Fs /«F @note that for
parabolic bands«Fs}Fs /ms , for the expression of magneti
zation in multiband metals see Eqs.~20!, ~21#.
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