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Quantum numbers for relative ground states of antiferromagnetic Heisenberg spin rings

Klaus Bärwinkel,* Peter Hage,† Heinz-Jürgen Schmidt,‡ and Ju¨rgen Schnack§

Universität Osnabrück, Fachbereich Physik, D-49069 Osnabru¨ck, Germany
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We suggest a general rule for the shift quantum numbersk of the relative ground states of antiferromagnetic
Heisenberg spin rings. This rule generalizes the well-known results of Marshall, Peierls, Lieb, Schultz, and
Mattis for even rings. Our rule is confirmed by numerical investigations and rigorous proofs for special cases,
including systems with a Haldane gap forN→`. Implications for the total spin quantum numberSof relative
ground states are discussed as well as generalizations to theXXZ model.
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I. INTRODUCTION

Rigorous results on spin systems such as the Marsh
Peierls sign rule1 and the famous theorems of Lieb, Schul
and Mattis2,3 have sharpened our understanding of magn
phenomena. They also serve as a theoretical input for q
tum computing with spin systems.4–6

Exact diagonalization methods yield the energy eigenv
ues and eigenvectors for small spin rings of various numb
N of spin sites and spin quantum numberss where the inter-
action is given by antiferromagnetic nearest neigh
exchange.7–12 One quantity of interest is the shift quantu
numberk50, . . . ,N21 associated with the cyclic shift sym
metry of the rings. The corresponding crystal momentum
then 2pk/N. Using the sign rule of Marshall and Peierls1 or
equivalently the theorems of Lieb, Schultz, and Mattis2,3 one
can explain the shift quantum numbers for the relat
ground states in subspacesH(M ) of total magnetic quantum
numberM for rings with evenN. In the case of single-spin
quantum numbers51/2 one knows the shift quantum num
bers of the total ground states for allN via the Bethe
ansatz.10

The sign rule of Marshall and Peierls as well as the th
rems of Lieb, Schultz, and Mattis only apply to biparti
rings, i.e., rings with evenN. Nevertheless, even for frus
trated rings with oddN astonishing regularities are numer
cally verified. This creates the need for a deeper insi
or—at best—an analytic proof for the simplek rule 1 ~see
below! which comprises all these results. Unifying the p
ture for even and oddN, we find the following for the ground
state without exception.11,12

~1! The ground state belongs to the subspaceH(S) with
the smallest possible total spin quantum numberS; this is
eitherS50 for theN•s integer, then the total magnetic qua
tum numberM is also zero, orS51/2 for theN•s half inte-
ger, thenM561/2.

~2! If N•s is an integer, then the ground state is nond
generate.

~3! If N•s is a half integer, then the ground state is fou
fold degenerate.

~4! If s is an integer orN•s is even, then the shift quan
tum number isk50.

~5! If s is a half integer andN•s is odd, then the shift
quantum number turns out to bek5N/2.

~6! If N•s is a half integer, thenk5 b(N11)/4c and k
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5N2b(N11)/4c is found.b(N11)/4c symbolizes the greates
integer less than or equal to (N11)/4.

In this article we will extend the knowledge about sh
quantum numbers to the relative ground states in subsp
H(M ) for odd rings. Table I shows a small selection of sh
quantum numbers for someN ands. The dependence ofk on
N and M or, equivalently, onN and the magnon numbera
5Ns2M can—for even as well as for oddN—be general-
ized as given by the following.

k-rule 1:

If NÞ3 then k[6aF N

2 G modN. ~1!

TABLE I. Numerically verified shift quantum numbers for se
lected N and s in subspacesH(M ). Instead ofM the quantitya
5Ns2M is used. The shift quantum number for the magn
vacuuma50 is alwaysk50. The shift quantum numbers are in
variant under a↔2Ns2a and hence only displayed fora
51,2, . . . ,bNsc. Extraordinary shift quantum numbers given
bold do not comply with Eq.~1!.

N s a
1 2 3 4 5 6 7 8 9 10 11

3 1/2 1,2
3 1 1,2 0,1,2 0
3 3/2 1,2 0,1,2 0,1,2 1,2
3 2 1,2 0,1,2 0,1,2 0,1,2 0,1,2 0

5 1/2 2,3 1,4
5 1 2,3 1,4 1,4 2,3 0
5 3/2 2,3 1,4 1,4 2,3 0 2,3 1,4
5 2 2,3 1,4 1,4 2,3 0 2,3 1,4 1,4 2,3 0

7 1/2 3,4 1,6 2,5
7 1 3,4 1,6 2,5 2,5 1,6 3,4 0
7 3/2 3,4 1,6 2,5 2,5 1,6 3,4 0 3,4 1,6 2,5

9 1/2 4,5 1,8 3,6 2,7
9 1 4,5 1,8 3,6 2,7 2,7 3,6 1,8 4,5 0

11 1/2 5,6 1,10 4,7 2,9 3,8
11 1 5,6 1,10 4,7 2,9 3,8 3,8 2,9 4,7 1,10 5,6
©2003 The American Physical Society22-1
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Moreover the degeneracy of the relative ground state is m
mal.

Here dN/2e denotes the smallest integer greater than
equal toN/2. ‘‘Minimal degeneracy’’ means that the relativ
ground state inH(M ) is twofold degenerate if there are tw
different shift quantum numbers and nondegenerate ifk50
mod N or k5N/2 modN, the latter for evenN.

It is noteworthy that the shift quantum numbers do n
explicitly depend ons. For N53 and 3s22>uM u>1 we
find in addition to the ordinary shift quantum numbers giv
by Eq. ~1! extraordinary shift quantum numbers, whic
supplement the ordinary ones to the complete set$k%
5$0,1,2%. This means an additional degeneracy of the
spective relative ground state, which is caused by the h
symmetry of the Heisenberg triangle.

For evenN the k rule ~1! results in an alternatingk se-
quence 0,N/2,0,N/2, . . . , on descending from the magno
vacuum withM5Ns, i.e.,a50, which immediately implies
that the ground state inH(M ) has the total spin quantum
numberS5uM u, cf. Refs. 1–3.

For oddN the regularity following from Eq.~1! will be
illustrated by the following example. LetN511 ands be
sufficiently large. Then thek sequence reads 0,66,61,67,
62,68,63,69,64,610,65,0, . . . , where all shift quan-
tum numbers are understood mod 11. The sequence is
odic with period 11 and repeats itself after 5 steps in reve
order. In the first five steps each possiblek value is assumed
exactly once. Since68573 mod 11, the shift quantum
numbers fora55 and a56 are the same, likewise fora
516 anda517, and so on.

The last finding can be easily generalized. For oddN the
k quantum numbers are the same in adjacent subsp
H(M5Ns2a) andH@M 85Ns2(a11)# if N divides (2a
11). In such cases one cannot conclude that the gro
state inH(M ) has the total spin quantum numberS5uM u,
nevertheless, in all other cases including the total gro
state one can, see Sec. III.

Thek rule 1 is founded in a mathematically rigorous w
for N even,1–3 N53 ~including extraordinaryk numbers, see
Sec. IV C!, a50 ~trivial!, a51 ~see Sec. IV A!, a52 ~but
only in a weakened version, see Sec. IV D!. For the ground
state withN odd, s51/2 thek rule follows from the Bethe
ansatz, see Sec. IV B. An asymptotic proof for large enou
N is provided in Sec. IV E for systems with an asympto
cally finite excitation gap~Haldane systems!. Thek rule also
holds for the exactly solvableXY model with s51/2, see
Sec. VI. ForN•s being half integer field theory method
yield that the ground state shift quantum number approac
N/4 for largeN.13 Apart from these findings a rigorous proo
of the k rule still remains a challenge.

II. HEISENBERG MODEL

The Hamilton operator of the Heisenberg model with a
tiferromagnetic isotropic nearest neighbor interaction
tween spins of equal spin quantum numbers is given by

H> [2(
i 51

N

sW> i•sW> i 11 , N11[1. ~2!
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H> is invariant under cyclic shifts generated by the shift o
eratorT> . T> is defined by its action on the product basisumW &

T> um1 , . . . ,mN&[umN ,m1 , . . . ,mN21&, ~3!

where the product basis is constructed from single-part
eigenstates of alls> i

3

s> i
3um1 , . . . ,mN&5mi um1 , . . . ,mN&. ~4!

The shift quantum numberk50, . . . ,N21 moduloN labels
the eigenvalues ofT> which are theNth roots of unity

z5expH 2 i
2pk

N J . ~5!

AltogetherH> , T> , the squareSW> 2, and the three-componentS> 3

of the total spin are four commuting operators. The su
spaces of states with the quantum numbersM ,S,k will be
denoted byHN(M ,S,k).

The Hamilton operator~2! can be cast in the form

H> 5D> 1G> 1G> †, ~6!

where we introduced

D> [2(
i 51

N

s> i
3s> i 11

3 ~7!

and the ‘‘generation operator’’

G> [(
i 51

N

s> i
2s> i 11

1 ~8!

together with its adjointG> †.
It follows that H> is represented by a real matrix wit

respect to the product basis. Hence if an eigenvector of
matrix has the shift quantum numberk, its complex conju-
gate will be again an eigenvector with the same eigenva
but with shift quantum number2k mod N. Simultaneous
eigenvectors ofH> and T> can be chosen to be real in th
product basis only ifk50 or k5N/2.

We define a unitary ‘‘Bloch’’ operatorU> for spin rings,
compare Refs. 2,14,

U> [expH 2p i

N (
j 51

N

j ~s2s> j
3!J , ~9!

which is diagonal in the product basis~4!.
We then have, with a little bit of calculation,

T>U> T> †U> †5expH 2
2p i

N (
j 51

N

~s2s> j
3!J ~10!

5expH 2
2p i

N
aJ , ~11!

where the last line~11! holds in subspacesH(M5Ns2a).
Consequently,U> is a shift operator ink space and shifts the
quantum numberk of a stateuf&PH(M ) by a:
2-2
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If T> uf&5expH 2
2p i

N
kJ uf&, ~12!

then T>U> uf&5expH 2
2p i

N
~k1a!J U> uf&.

We also observe that

U> G> U> †5expH 2
2p i

N J G> , ~13!

and define the unitary ‘‘Bloch’’ transform of the Hamilto
operator

H>̂ ~ l ![U> lH> ~U> †! l

5D> 1cosS 2p l

N D $G> 1G> †%

2 i sinS 2p l

N D $G> 2G> †%. ~14!

If we choosel 5 l (N)56 dN/2e, then cos(2pl/N) is as close
to 21 as possible. We will use the short-hand notationH> B

[H>̂ ( dN/2e) and Eq.~12! then yields a relation between th
eigenstates ofH> B andH> : If any eigenstateuCB& of H> B has
the shift quantum numberkB then the corresponding eigen
state of the original Hamiltonian has the shift quantum nu
ber k5kB2adN/2e.

Consequently thek rule 1 is equivalent to the following.
k rule 2: ForNÞ3 the relative ground states ofH> B have

the shift quantum numbers

k5H 0 modN: N even,

0,a modN: N odd.
~15!

Their degeneracy is minimal.
For later use we also define a ‘‘Frobenius-Perron’’ Ham

tonian as

H> FP~x!5D> 1x$G> 1G> †%, ~16!

wherex is an arbitrary real number. For negativex the op-
erator~16! satisfies the conditions of the theorem of Frob
nius and Perron15 with respect to the product basis. We w
utilize the following version of this theorem, adapted to t
needs of physicists.

Let a symmetric matrixA have off-diagonal element
<0. Moreover, letA be irreducible, which means that every
matrix element ofA n is nonzero for sufficiently high power
n of A. ThenA has a nondegenerate ground state with po
tive components. Thus, in our case and for oddN the ground
state ofH> FP(x) will have the shift quantum numberk50.

The Bloch transform for evenN results in a pure
Frobenius-Perron Hamiltonian, i.e.,H> B5H> FP(21), whereas
for odd N one obtains

H> B5H> FPF2cosS p

ND G1 i sinS p

ND $G> 2G> †%. ~17!
05442
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III. CONSEQUENCES OF THE k RULE

In the following we only consider the new case of oddN
since the respective relations for evenN have been known
for a long time.1–3 SubspacesH(M ) andH(M 8) are named
‘‘adjacent’’ if M 85M21 or, equivalently,a85a11. The
ordinaryk numbers for the respective relative ground sta
are k56adN/2emodN and k856(a11)dN/2emodN. As
mentioned above these quantum numbers are different un
N divides 2a11.

Relative ground states can be chosen to be eigenstat
SW> 2. As we are going to show, thek rule helps one to under
stand that the total spin quantum numberS of a relative
ground state inH(M>0) is S5M not only for evenN but
also for oddN.

Let us considerM 85Ns2(a11)>0 and let ufk(a
11)& be a ground state inH(M 8). If this state vanishes on
applying the total ladder operatorS>15( is> i

1 , it is an eigen-

state ofSW> 2 with S5M 85Ns2(a11).
The question is now whetherS>1ufk(a11)&Þ0 is pos-

sible? If so, the resulting state would be an eigenstate of
shift operatorT> with the samek number, i.e.,k56(a
11)dN/2e. But on the other hand the resulting state is als
ground state inH(M5Ns2a), because all the energy e
genvalues inH(M5Ns2a) are inherited byH@M 85Ns
2(a11)#. Then, thek rule applies, but now fora instead of
(a11), which produces a contradiction unless for tho
cases whereN divides (2a11). In the latter cases one can
not exclude that the relative ground state energiesEmin(M )
and Emin(M 8) are the same. We thus derive anS rule from
the k rule for oddN.

If N does not divide (2a11), then any relative ground
state in H@M5Ns2(a11)# has the total spin quantum
numberS5uM u. In accordance the minimal energies fulfi
Emin(M5S),Emin(M5S11).

For the absolute ground state witha115Ns or a11
5Ns21/2, N never divides (2a11). The k rule therefore
yields that the total spin of the absolute ground state iS
50 for Ns integer andS51/2 for Ns half integer.

As an example we would like to discuss the case ofN
55 ands51, cf. Table I. The magnon vacuuma50 has the
total magnetic quantum numberM5Ns55, k50, and S
5Ns55. The adjacent subspace witha51 hasM54 and
k52,3, therefore, the ground state in this subspace m
have S54. If the ground state hadS55 it would already
appear in the subspace ‘‘above.’’ The next subspace belo
to a52, i.e., M53. It again has a differentk, thus S53.
While going to the next subspaceH(M ) the k number does
not change. Therefore, we cannot use our argument. We
know that the minimal energy in this subspace is sma
than or equal to that of the previous subspace. Going fur
down in M the k-values of adjacent subspaces are again
ferent, thusS5uM u andEmin(M5S),Emin(M5S11).

IV. PROOFS FOR SPECIAL CASES

A. The caseaÄ1

The eigenvalues of the Hamiltonian in the subspace w
a51 are well known:
2-3
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Ek52Ns224s14s cos
2pk

N
, ~18!

k50,1, . . . ,N21,

wherek is the corresponding shift quantum number. Ob
ously, the relative ground state is obtained fork5N/2 for
evenN andk5(N61)/2 for oddN.

B. The ground state of oddsÄ1Õ2 rings

In this case the ground state belongs toa5(N21)/2 and
the k rule ~1! reads

k56a2 modN56S N21

2 D 2

modN. ~19!

This now is an immediate consequence of the Bethe an
as we will show. Following the notation of Ref. 16, chapt
9.3, the energy eigenvalues in the subspace withM51/2
may be written as

E52e2N/2, ~20!

with

e5(
i 50

a

~12cosf i ! ~21!

and

N fi52pl i1(
j

w i j , ~22!

where thel i are natural numbers between 0 andN21 sat-
isfying ul i2l j u>2 for iÞ j and thew i j are the entries of
some antisymmetric phase matrix. Hence the two gro
state configurations arelW 5(1,3,5, . . . ,N22) and lW 8

5(2,4,6, . . . ,N21)52lW modN. According to Ref. 16, p.
137, the shift quantum number of the ground state will b

k5(
j

l j56a2 modN, ~23!

in accordance with Eq.~19!.

C. The caseNÄ3

In this subsection we want to prove that the shift quant
numbersk of relative ground states satisfy the rule

k55
1,2: a51,

0: a53s,s integer,

1,2: a53s21/2,s half integer,

0,1,2: else.

~24!

By completing squares the Hamiltonian can be written in
form

H> 5SW> 223s~s11! ~25!
05442
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and can be diagonalized in terms of Racah 6j symbols. The
lowest eigenvalues inH(M ) are those withS5M53s2a.
In order to determine the shift quantum numbers of the c
responding eigenvectors we may employ the results in R
17 on the dimension of the spacesHN(M ,S,k). Using Eqs.
~11! and ~12! of Ref. 17 we obtain after some algebra

dim@H3~M ,S5M !#5H a11: 0<a<2s,

6s22a11: 2s<a< b3sc.
~26!

Now consider dim@H3(M ,k)#. The product basis inH3(M )
may be grouped inton(a) proper cycles of three differen
states$umW &,T> umW &,T> 2umW &%, and, if a50 mod 3, one addi-
tional stateul,l,l& having k50. Each three-dimensiona
subspace spanned by a cycle contains a basis of eigenve
of T> with each shift quantum numberk50,1,2 occurring
exactly once, hence

dim @H3~M ,k!#

5H n~a!: aÞ0, mod 3,

n~a!: k51,2, and a50, mod 3,

n~a!11: k50 and a50, mod 3.

~27!

Note further thatS>2:H(M )→H(M21) commutes withT> ,
hence maps eigenvectors ofT> onto eigenvectors with the
same shift quantum number. This leads to

dim@H3~M ,S5M ,k!#55
m~a!11: k50,a50, mod 3,

m~a!21: k50,a51, mod 3,

m~a!: k50,a52, mod 3,

m~a!: k51,2
~28!

with

m~a![H 0: a50,

n~a!2n~a21!: a.0.
~29!

Comparison with Eq.~26! yields those values ofa and s
where dim@H3(M ,S5M ,k)# vanishes for somek, i.e., where
not all possible shift quantum numbers occur for the relat
ground states. Due to Eq.~28! this happens ifm(a)50 or
m(a)51.

For a51 only the valuesk51,2 appear according to Se
IV A, hence m(a)51. If s is integer anda53s, Eq. ~26!
yields dim@H3(M50,S50)#51, hence onlyk50 appears
for the ground state andm(a)50. If s is half integer anda
53s21/2, Eq. ~26! yields dim@H3(M51/2,S51/2)#52,
hence onlyk51,2 appear for the ground state andm(a)
51. For all other cases,m(a).1 and all shift quantum
numbersk50,1,2 occur. This completes the proof of E
~24!.
2-4
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D. aÄ2 and odd N

In this subsection all states considered will be in the s
spaceH(M5Ns22), N being odd. We will prove a weake
statement thank rule 1.

k rule 3:If there are relative ground states ofH> with k
Þ0 then there are exactly two such states withk51 andk
521.

We think that the possibilityk50 can be excluded fo
N.3, but the proof of this apparently requires a more d
tailed analysis of the energy spectrum and will be publish
elsewhere. The situation in the casea52 is greatly simpli-
fied due to the following fact:

T> uc&5uc& ⇒ G> uc&5G> †uc&. ~30!

To prove this we define the unitary reflection operatorR> by
linear extension of

R> um1 ,m2 , . . . ,mN&[umN ,mN21 , . . . ,m1&. ~31!

Obviously,

R> G> R> 5G> †. ~32!

For a52 any reflected product state can also be obtained
a suitable shift, i.e.,

R> umW &5T> n(mW )umW &. ~33!

Hence R> maps any cycle$umW &,T> umW &, . . . ,T> N21umW &% onto
itself and thus leaves statesuc& with T> uc&5uc&, i.e. with
shift quantum numberk50, invariant. Now assumeT> uc&
5uc&. We conclude G> †uc&5R> G> R> uc&5R> G> uc&5G> uc&,
since T>G> uc&5G> T> uc&5G> uc&. This concludes the proof o
Eq. ~30!.

In the following EFP(x) denotes the lowest eigenvalue
the Frobenius-Perron HamiltonianH> FP(x) as defined by Eq.
~16!. Since@H> FP(x),T> #50 there exists a complete system
simultaneous eigenvectors ofH> FP(x) and T> . Especially, for
x,0 the eigenvector corresponding toEFP(x) will have
positive components in the product basis~4! and hence the
shift quantum numberk50.

By using arguments based on the Ritz variational pr
ciple one shows easily

x,y,0⇒EFP~x!,EFP~y! ~34!

and

xÞ0⇒EFP~2uxu!,EFP~ uxu!. ~35!

Equivalent tok rule 3 is the corresponding statement onH> B :
If there are relative ground states ofH> B with kBÞ1, then
there are exactly two such states withkB50 andkB52.

Note that in our case kB5k12@(N11)/2#
5k11 modN. Due to Eqs. ~17! and ~30! H> B equals
H> FP@2cos(p/N)#, if restricted to the sectork50. The ground
state in this sector is nondegenerate according to the theo
of Frobenius-Perron and will be denoted byuF&. It remains
to show that~A! uF& is also a ground state ofH> B in the
05442
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whole subspace$kB51%' which is orthogonal to thekB51
sector and~B! any other relative ground state ofH> B haskB
51 or kB52.

The relative ground state ofH> B with kB52 will then be
nondegenerate too. This is easily proven by retranslating
the H> picture and employing the1k↔2k symmetry.

In order to prove~A! we consider an arbitrary eigenvalu
E of H> B in H(M5Ns22) which does not comply with the
shift quantum numberkB51. We have to show that

E>EFPS 2cos
p

ND . ~36!

E is also an eigenvalue ofH> corresponding to an eigenvecto
uc& with shift quantum numberkÞ0. SinceN is odd, there
exists an integerlÞ0, unique moduloN, such that 2l 5N
2k modN. According to Eq.~12!, uf&[U> l uc& satisfies

T> uf&5uf&, ~37!

and, using Eq.~14! together with Eq.~30!,

U> lH> U> †l uf&5Euf&5H> FP~cosa l !uf&, ~38!

wherea[2p/N. Hence

E>EFP~cosa l !, ~39!

by the definition ofEFP(x). If cosal.0, Eqs.~34! and ~35!
yield

EFP~cosa l !>EFP~2cosa l !

5EFP@cos~p2a l !#

>EFPS 2cos
p

ND , ~40!

since lÞ0. For cosal,0 the analogous inequality follow
directly from Eq.~34!. Hence

E>EFPS 2cos
p

ND , ~41!

and the proof of~A! is complete.
Turning to the proof of~B! we note that, because o

the strict inequalities ~34! and ~35!, E5EFP(cosal)
5EFP@2cos(p/N)# is only possible if

cos
2p l

N
5cosa l 52cos

p

N
. ~42!

Using 2l 5N2k modN, after some elementary calculation
this can be shown to be equivalent to

k561 modN, ~43!

i.e.,

kB50,2 modN, ~44!

which completes the proof of~B! andk-rule 3.
2-5
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E. Haldane systems

One idea to prove part of thek rule 2 for oddN would be
to show that one of the relative ground states has an ove
with another eigenstate of the shift operator whose s
quantum number is known to be zero. A good candid
would be the relative ground state ofH> FP(2cosp/N) ~16! in
H(M ) which hask50. If this state has overlap with a rela
tive ground state ofH> B ~17! the latter also possessesk50.

Let V> 5U> (N11)/2, uC0& and uĈ0&5V> uC0& be one of the
relative ground states ofH> ~2! and H> B ~14!, respectively.
uCFP& denotes the relative ground state ofH> FP. Then part of
the k rule is implied by the following.

k rule 4: uCFP& has a nonvanishingH> B-ground-state com-
ponent, i.e.,̂ CFPuĈ0&Þ0.

The validity of thisk rule would immediately follow from
the sufficient~but not necessary! inequality

EFP2E0,E12E0 , ~45!

whereE1 is the energy of the first excited state above
relative ground state inH(M ) and

EFP5^CFPuH> BuCFP&5^CFPuH> FPuCFP&. ~46!

As a substitute for the lacking proof ofk rule 4 we submit the
inequality ~45! to some numerical tests, see Sec. V.

Looking at the largeN behavior it is nevertheless possib
to devise an asymptotic proof for systems which posse
finite energy gap in the thermodynamic limitN→`. These
systems are called ‘‘Haldane systems.’’ According
Haldane’s conjecture18,19 spin rings with an integer spin
quantum numbers possess such gaps.

To start with the proof, let us look for an upper bound
EFP2E0. Take uC0& to be a ground state ofH> with real
coefficients with respect to the product basis$umW &%. Evi-
dently,

EFP<^C0uV> †H> FPV> uC0&

<E02 i sinS p

ND ^C0uV> †$G> 2G> †%V> uC0&. ~47!

Further, in view of Eq.~13!

V> †$G> 2G> †%V> 52$ei (p/N)G> 2e2 i (p/N)G> †% ~48!

and, becausêmW uC0& is real, ^C0uG> 2G> †uC0&50. There-
fore,

EFP2E0<sin2S p

ND u^C0uG> 1G> †uC0&u. ~49!

A rough upper estimate for the operator norm of$G> 1G> †% in
H(M5Ns2a) can be deduced from the well-known Gerˇ-
gorin bounds for matrix eigenvalues@cf. Ref. 15, Eq.~7.2!#:

uuG> 1G> †uu<2 f ~s! min~a,N,2Ns2a!, ~50!

where
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f ~s!5H S s1
1

2D 2

, s half integer,

S s1
1

2D 2

2
1

4
, s integer.

~51!

We therefore conclude

EFP2E0<2N sin2S p

ND f ~s!. ~52!

Thus, with increasingN, (EFP2E0) approaches zero at lea
like 1/N and therefore, above someN0 , (EFP2E0) must be
smaller than the Haldane gap (E12E0).

One would of course like to accomplish a similar pro
for half integer spin systems, but in this case (E12E0) drops
similar to 1/N itself as given by the Wess-Zumino-Witte
model, see e.g., Ref. 13. Thus for such systems a car
analysis of the coefficient in front of the 1/N might be very
valuable. As shown in the next section, numerical investi
tions indicate that (EFP2E0) approaches zero faster tha
(E12E0).

V. NUMERICAL STUDIES

The question ~45! of whether (EFP2E0),(E12E0)
holds inH(M ) with minimal uM u was investigated numeri
cally. For some of the investigated rings the respective e
gies are given in Table II.

Figure 1 shows the ratio (EFP2E0)/(E12E0) for rings
with s51/2, . . . ,3 andvariousN. This ratio is smaller than
one for s51/2,1,3/2,5/2 for all investigatedN. Only for s
52,3 the ratio reaches values above one. Nevertheless
discussed in the previous section, in the cases of integs
this ratio must approach zero as 1/N if ( E12E0) tends to a
nonzero Haldane gap. But also in the cases of half inte
spin one is led to anticipate that the ratio (EFP2E0)/(E1
2E0) remains smaller than one and that the curves ris
with N for smallN might even bend down later and approa
zero for largeN. DMRG calculations could help to clarify
this question.

VI. GENERALIZATION TO OTHER SPIN MODELS

It is a legitimate question whether thek-rule holds for
Heisenberg spin rings only or whether it is valid for
broader class of spin Hamiltonians. In order to clarify th
question we investigate the followingXXZ Hamiltonian:

H> ~d!5d•D> 1G> 1G> †, ~53!

for various values ofd. The cased51 corresponds to the
original Heisenberg Hamiltonian~6!, d→` results in the an-
tiferromagnetic Ising model,d→2` in the ferromagnetic
Ising model, andd50 describes theXY model.

We have numerically investigated the cases ofd
521000,21,0,0.5,1000 for s51/2, . . .,5/2 and N
55, . . . ,8. Forudu<1 no violation of thek rule was found,
whereas thek rule is violated ford561000.
2-6
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In the limiting case of the Ising model thek rule 1 is in
general violated. Any product stateumW & will be an eigenstate
of the Ising Hamiltonian and the shifted statesT> numW & belong
to the same eigenvalueEmW . The set of the correspondin
shift quantum numbers then depends on the degree of s
metry of umW &: Let n denote the smallest positive integer su
thatT> numW &5umW &. Clearly,n dividesN. Then the correspond
ing shift quantum numbers will be of the formk
5(N/n) l modN, l 50,1,2, . . . . In most cases,n5N and
hence all possible shift quantum numbers will occur, wh
violatesk rule 1. On the other hand, consider the total grou
state u↑,↓,↑,↓, . . . & of an evens51/2 antiferromagnetic
Ising spin ring. Here we haven52 and only the shift quan
tum numbersk50,N/2 occur, also contrary to 1. Figure
summarizes our findings as a graphics.

It is not clear at whichd exactly thek rule breaks down.
This quantum phase transition might very well depend onN
and s. It is then an open question whether anotherk rule
takes over.

Finally we would like to mention that the exactly solvab
s51/2 XY model2,21 satisfies thek rule 1. This model is

TABLE II. Lowest energy eigenvalues of the Heisenberg Ham
tonian (E0 ,E1) as well as of the respective Frobenius-Perr
Hamiltonian (EFP) for various oddN and s. Note that we findE0

<EFP,E1 for all N if s<5/2. Except forN55,s51/2 the first
excited state has a higher total spin than the ground state, i.eS1

5S011.

s N
3 5 7 9 11

21.5 23.736 25.710 27.595 29.438 E0
1
2 21.5 23.736 25.706 27.589 29.431 EFP

1.5 21.5 23.612 25.872 27.984 E1

26.0 213.062 219.144 224.960 230.67 E0

1 25.162 212.180 218.338 224.235 230.02 EFP

24.0 211.133 217.431 223.420 229.26 E1

210.5 224.865 237.370 249.296 260.98a E0
3
2 29.788 224.095 236.663 248.658 260.40a EFP

27.5 222.237 235.199 247.458 259.38a E1

218.0 242.278 263.315 283.364a 2103.0b E0

2 216.506 240.615 261.789 281.989a 2101.8b EFP

216.0 240.356 261.663 281.934a 2101.7b E1

225.5 262.168 294.160 2124.63a 2154.4b E0
5
2 224.188 260.699 292.814 2123.42a 2153.3b EFP

222.5 259.538 292.006 2122.83a 2152.9b E1

236.0 287.666 2132.68a 2175.55a 2217.5b E0

3 233.936 285.325 2130.55a 2173.66a 2215.8b EFP

234.0 285.747 2131.06a 2174.18a 2216.3b E1

aProjection method~Ref. 20!.
bLánczos method.
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essentially equivalent to a system ofa noninteracting Fermi-
ons. More precisely, for odda its energy eigenvalues are o
the form

EkW
(odd)

52(
n51

a

cosS 2p

N
knD , kn integer, ~54!

with corresponding shift quantum numbers

k5 (
n51

a

kn modN. ~55!

Relative ground state configurationskW for a51,3,5, . . . , and
odd N are, for example,

kW5S N11

2 D ,S N61

2
,
N13

2 D ,S N61

2
,
N63

2
,
N15

2 D , . . . .

~56!

This leads to the shift quantum numbers

-

FIG. 1. Dependence of (EFP2E0)/(E12E0) on N for variouss.
Crosses denote values obtained by exact diagonalization or pr
tion method, circled crosses denote values obtained by a La´nczos
method. Fors51/2, where@G> ,G> †#50, the ratio (EFP2E0)/(E1

2E0) is extremely small, i.e.,'1022.

FIG. 2. Solid line: Estimated validity of thek rule for various
parametersd of the Hamiltonian~53!. The numbers denote th
cases which have been examined numerically. Thek rule is violated
for d561000. No violation was found forudu<1.
2-7
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k5
N11

2
,
N13

2
,
N15

2
, . . . , ~57!

in accordance with Eq.~1!. Similarly, the values

k5
N21

2
,
N23

2
,
N25

2
, . . . , ~58!

are realized. In the case of evena we have

EkW
(even)

52(
n51

a

cosS 2p

N

2kn11

2 D , kn integer, ~59!
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k5 (
n51

a S kn1
1

2D modN, ~60!

and thek rule 1 follows analogously.
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