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Quantum numbers for relative ground states of antiferromagnetic Heisenberg spin rings
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We suggest a general rule for the shift quantum numbeifshe relative ground states of antiferromagnetic
Heisenberg spin rings. This rule generalizes the well-known results of Marshall, Peierls, Lieb, Schultz, and
Mattis for even rings. Our rule is confirmed by numerical investigations and rigorous proofs for special cases,
including systems with a Haldane gap fér . Implications for the total spin quantum numtof relative
ground states are discussed as well as generalizations XXhenodel.
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[. INTRODUCTION =N—|(N+1)/4] is found.| (N+ 1)/4] symbolizes the greatest
integer less than or equal tdN(+1)/4.

Rigorous results on spin systems such as the Marshall- In this article we will extend the knowledge about shift
Peierls sign ruland the famous theorems of Lieb, Schultz, quantum numbers to the relative ground states in subspaces
and Matti$ have sharpened our understanding of magnetid<(M) for odd rings. Table | shows a small selection of shift
phenomena. They also serve as a theoretical input for qualtuantum numbers for soni¢ands. The dependence &fon
tum computing with spin systenis® N andM or, equivalently, orN and the magnon number

Exact diagonalization methods yield the energy eigenval=Ns—M can—for even as well as for odd—be general-
ues and eigenvectors for small spin rings of various numberized as given by the following.

N of spin sites and spin quantum numbemshere the inter- k-rule 1:
action is given by antiferromagnetic nearest neighbor

exchang€:? One quantity of interest is the shift quantum N

numberk=0, ... N—1 associated with the cyclic shift sym- If N#3 thenk=*a 2 modN. @
metry of the rings. The corresponding crystal momentum is

then 2rk/N. Using the sign rule of Marshall and Peiérts TABLE I. Numerically verified shift quantum numbers for se-

equivalently the theorems of Lieb, Schultz, and Mattisne  jectedN and's in subspace${(M). Instead ofM the quantitya
can explain the shift quantum numbers for the relative=Ns—M is used. The shift quantum number for the magnon
ground states in subspackE¢M) of total magnetic quantum vacuuma=0 is alwaysk=0. The shift quantum numbers are in-
numberM for rings with evenN. In the case of single-spin variant under a<~2Ns—a and hence only displayed foa
guantum numbes=1/2 one knows the shift quantum num- =1,2,...|Ns|. Extraordinary shift quantum numbers given in
bers of the total ground states for a\ via the Bethe bold do not comply with Eq(1).

ansatz-
The sign rule of Marshall and Peierls as well as the theoN s a
rems of Lieb, Schultz, and Mattis only apply to bipartite 1 2 3 4 5 6 7 8 9 101

rings, i.e., rings with everN. Nevertheless, even for frus-
trated rings with odd\ astonishing regularities are numeri-
cally verified. This creates the need for a deeper insigh
or—at best—an analytic proof for the simpkerule 1 (see
below) which comprises all these results. Unifying the pic-
ture for even and odi, we find the following for the ground
state without exceptioh:*2 5 1223 14

(1) The ground state belongs to the subspag&) with g 123 14 14 23

5

1/2 1,2

1 12012 O

32 1,2012 01,2 1.2

2 12012 012 01,2012 O

o o

the smallest possible total spin quantum num8gthis is 3223 14 14 23 2,3 1.4
eitherS=0 for theN- s integer, then the total magnetic quan- 2 23 14 14 23 0 231414 23 O
tum numberM is also zero, oS=1/2 for theN- s half inte-

ger, thenM = +1/2. 7 U234 16 25
(2) If N-s is an integer, then the ground state is nonde/ 1 34 16 25 25 16 34 0

generate. 7 3234 16 25 25 16 34 0 34 16 25
(3) If N-sis a half integer, then the ground state is four-

fold degenerate. 9 1/2 45 18 36 27

(4) If sis an integer oN-s is even, then the shiftquan- 9 1 45 18 36 27 27 36 18 45 0

tum number ik=0.
(5) If sis a half integer andN-s is odd, then the shift 11 1/2 56 1,10 4,7 29 3,8

quantum number turns out to te= N/2. 11 1 56 1,10 47 29 38 38 29 4,7 1,10 56 0
(6) If N-s is a half integer, therk=|(N+1)/4] and k
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Moreover the degeneracy of the relative ground state is miniH is invariant under cyclic shifts generated by the shift op-

mal. _ eratorT. T is defined by its action on the product basis
Here [N/2] denotes the smallest integer greater than or
equal toN/2. “Minimal degeneracy” means that the relative TImy, ... my=|my,my, ... my_y), ©)

ground state irt{(M) is twofold degenerate if there are two o ) )
different shift quantum numbers and nondegenerate=ip ~ Where the product basis is constructed from single-particle
H 3
mod N or k=N/2 modN, the latter for everi. eigenstates of al;
It is noteworthy that the shift quantum numbers do not 3
explicitly depend ons. For N=3 and 3—2=|M|=1 we siime, .My =mimy, ... my). (4)
find in addition to the ordinary shift quantum numbers givenThea shift quantum numbec=0, ... N—1 moduloN labels

by Eq. (1) extraordinary shift quantum numbers, which i, ejgenvalues of which are theNth roots of unity
supplement the ordinary ones to the complete Het .

={0,1,2}. This means an additional degeneracy of the re- p{ _27-rk]
zZ=exp —i——

S 5

spective relative ground state, which is caused by the high
symmetry of the Heisenberg triangle.

For evenN the k rule (1) results in an alternating se-  AltogetherH, T, the squaré&?, and the three-componegt
quence ON/2,0N/2, ..., ondescending from the magnon of the total spin are four commuting operators. The sub-

vacuum withM =Ns, i.e.,a=0, which immediately implies spaces of states with the quantum numddrsS,k will be
that the ground state ix(M) has the total spin quantum denoted byH(M,S k).

numberS=|M|, cf. Refs. 1-3. The Hamilton operatof2) can be cast in the form
For oddN the regularity following from Eq(1) will be
illustrated by the following example. LéX=11 ands be H=A+G+G", (6)

sufficiently large. Then th& sequence reads 06,+1,*+ 7,
+2,£8,£3,£9,£4,+10,+5,0, ..., where all shift quan-
tum numbers are understood mod 11. The sequence is peri- N
odic with period 11 and repeats itself after 5 steps in reverse AEZE 33 )
order. In the first five steps each possiklealue is assumed R i
exactly once. Sincet8=%3 mod11, the shift quantum
numbers fora=5 anda=6 are the same, likewise fa
=16 anda=17, and so on.

The last finding can be easily generalized. For ddthe G
k quantum numbers are the same in adjacent subspaces B
7:(1'\; _Ir,:l Ssu?% 22(;;[ '(\)/lne_ Elasnng?j;;r)l]clgdg ?%\g(tjiﬁe(a téagether with its adjoinG'.

i 9round= follows that H is represented by a real matrix with

f]?\fgr;p]?l((agﬂs) ?nasalltlhﬁt:]%t?lczzg]sqilriilr:}gir: nghrzli{ﬁc:allll\/l |}Ounrespect to the product basis. Hence if an eigenvector of this
' 9 9 atrix has the shift quantum numblerits complex conju-

Sta_}%gﬂ?u?gnl’ ize%usnedcéd“:ﬁ a mathematicallv ridorous wa gate will be again an eigenvector with the same eigenvalue
y rg Y but with shift qguantum number-k mod N. Simultaneous

1-3nN 2 (i ; ;
fSoerCN ﬁ}/g]’a:No_(?riS::;I)uiigle(xst ;aeogjér;ar&k/ nAuzgezrs(,bi(tae eigenvectors oH apd T can be chosen to be real in the
only in a weakened version, see Sec. |Y. Bor the ground provc\iluc;[j b?ss only.{k—ouglr kr:,,N/Z' tob) f o

state withN odd, s=1/2 thek rule follows from the Bethe comp?areellen;‘sazurluzlary och™ operatol) for Spin rings,
ansatz, see Sec. IV B. An asymptotic proof for large enough e
N is provided in Sec. IV E for systems with an asymptoti- o N
cally finite excitation gagHaldane systemsThek rule also UEex%ﬂ > j(s—sd } , 9
holds for the exactly solvablXY model with s=1/2, see - N =1 -

Sec. VI. ForN-s being half integer field theory methods
yield that the ground state shift quantum number approache\g
N/4 for largeN.*® Apart from these findings a rigorous proof

where we introduced

and the “generation operator”

N
2 ssi ®)

hich is diagonal in the product bagi).
We then have, with a little bit of calculation,

of the k rule still remains a challenge. N
ot 2i 3
TUT'U"=exp — — 2 (s—§)) (10
Il. HEISENBERG MODEL N =1
The Hamilton operator of the Heisenberg model with an- 2
tiferromagnetic isotropic nearest neighbor interaction be- =exp{ — Wa], (11

tween spins of equal spin quantum numbés given by
N where the last ling11) holds in subspaces/(M=Ns—a).
_ 2 _ ConsequentlylJ is a shift operator itk space and shifts the
H=2 i*Sit1, N+1=1. 2 <
- 21 841 @ quantum numbek of a state|¢) € H(M) by a:
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2. i IIl. CONSEQUENCES OF THE k RULE
it Tl <z>>=exp| - Wk] ), (12

In the following we only consider the new case of ddd
since the respective relations for evlinhave been known
for a long time! = Subspace${(M) andH(M') are named
Ul ). “adjacent” if M'=M—1 or, equivalentlya’=a+1. The

ordinary k numbers for the respective relative ground states

We also observe that are k=*+a[N/2lmodN and k’ =+ (a+1)[N/2lmodN. As
mentioned above these quantum numbers are different unless
N divides 2a+1.

Relative ground states can be chosen to be eigenstates of

52. As we are going to show, thlerule helps one to under-
stand that the total spin quantum numigmf a relative

2i
then Il)|¢)=exp[ - W(k+a)

UGUT=€XP[——]G, 13

and define the unitary “Bloch” transform of the Hamilton

operator ground state if{(M=0) is S=M not only for evenN but
~ i also for oddN.
H(H=UHUY Let us considerM’=Ns—(a+1)=0 and let | (a
2.7 +1)) be a ground state in{(M’). If this state vanishes on
=4+cos( W){(}Jr(}T} applying the total ladder operat&* ==;s;", it is an eigen-

state ofS? with S=M’=Ns—(a+1).

The question is now whethed"| ¢ (a+1))#0 is pos-
sible? If so, the resulting state would be an eigenstate of the
shift operatorT with the samek number, i.e. .k==*(a
If we choosel =1(N)=*=[N/2], then cos(zl/N) is as close +1)[N/2]. But on the other hand the resulting state is also a
to —1 as possible. We will use the short-hand notatit)  ground state if(M=Ns—a), because all the energy ei-
=H([N/2]) and Eq.(12) then yields a relation between the genvalues in®(M=Ns—a) are inherited byH[M’=Ns
eigenstates oHg andH: If any eigenstat¢Wg) of Hg has  —(a+1)]. Then, thek rule applies, but now foa instead of
the shift quantum numbekg then the corresponding eigen- (a+1), which produces a contradiction unless for those
state of the original Hamiltonian has the shift quantum num-cases wherd&l divides (2a+1). In the latter cases one can-
berk=kg—a[N/2]. not exclude that the relative ground state ener@igs(M)

Consequently thé& rule 1 is equivalent to the following. andE.,;,(M’") are the same. We thus derive 8mule from

k rule 2: ForN+# 3 the relative ground states bff; have  thek rule for oddN.

2l
—i sin(T){(}—(}T}. (14

the shift quantum numbers If N does not divide (2+1), then any relative ground
state in H{M=Ns—(a+1)] has the total spin quantum
0 modN: N even, numberS=|M|. In accordance the minimal energies fulffill
k= 0a modN: N odd. 19 Ep(M=9)<Epp(M=S+1). .
For the absolute ground state witht 1=Ns or a+1
Their degeneracy is minimal. =Ns—1/2, N never divides (2+1). Thek rule therefore
For later use we also define a “Frobenius-Perron” Hamil-yields that the total spin of the absolute ground stat& is
tonian as =0 for Ns integer andS=1/2 for Ns half integer.
As an example we would like to discuss the caseNof
Hes(x)=A+x{G+G"}, (16) =5 ands=1, cf. Table I. The magnon vacuua¥ 0 has the

total magnetic quantum numbéi=Ns=5, k=0, andS
=Ns=5. The adjacent subspace wil=1 hasM =4 and
k=2,3, therefore, the ground state in this subspace must
have S=4. If the ground state ha8=5 it would already
appear in the subspace “above.” The next subspace belongs
to a=2, i.e.,, M=3. It again has a differerit, thus S=3.
While going to the next subspad@®(M) the k number does

<0. .Moreover, Iev&] pewredumble whlc.h.means_ that every not change. Therefore, we cannot use our argument. We only
matrix element ofA" is nonzero for sufficiently high powers know that the minimal energy in this subspace is smaller

nof A. ThenA has a nondegenerate ground state with posiz : :
tive components. Thus, in our case and for dbithe ground than or equal to that of the previous subspace. Going further

state ofH(x) will have the shift quantum numbér=0. ?e?\év;]tlr:mgi l|(|\>|/ ?I;r?s |§ f .a(d|\J/|aie3r;t<s Eb§;:()zl\aﬂcissiri)aga|n o
The Bloch transform for everN results in a pure ’ min min '

Frobenius-Perron Hamiltonian, i.édg=Hg(—1), whereas IV. PROOFS FOR SPECIAL CASES
for odd N one obtains

Hg=H W
Ig=Fp —CO N

wherex is an arbitrary real number. For negatixehe op-
erator(16) satisfies the conditions of the theorem of Frobe-
nius and Perro? with respect to the product basis. We will
utilize the following version of this theorem, adapted to the
needs of physicists.

Let a symmetric matrix4A have off-diagonal elements

A. The casea=1

i Sin(Z){G_GT}_ (17) The eigenvalues of the Hamiltonian in the subspace with
N a=1 are well known:
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2k

Ey=2Ns’—4s+4scos N (18)

k=0,1,...N—-1,

wherek is the corresponding shift quantum number. Obvi-
ously, the relative ground state is obtained kot N/2 for
evenN andk=(N=1)/2 for oddN.

B. The ground state of odds=1/2 rings

In this case the ground state belongate(N—1)/2 and
thek rule (1) reads

2
k=+a? modN=i(—) modN. (19

This now is an immediate consequence of the Bethe ansat

as we will show. Following the notation of Ref. 16, chapter
9.3, the energy eigenvalues in the subspace Witk 1/2
may be written as

E=2e—N/2, (20)
with
a
e=>, (1—cosf,) (21)
i=0
and
Nfi=2m\i+ 2 @i, (22
]

where the\; are natural numbers between O add 1 sat-
isfying |)\i—)\j|>2 fori#] and theg;; are the entries of

some antisymmetric phase matrix. Hence the two grounddim[#3(M,S=M,k)]=

state configurations are?f=(1,3,5 ...,.N=2) and N

=(2,4,6... N—1)=—\ modN. According to Ref. 16, p.
137, the shift quantum number of the ground state will be

k=2 \;==a?modN, (23)
J

in accordance with Eq19).

C. The caseN=3

PHYSICAL REVIEW B68, 054422 (2003

and can be diagonalized in terms of Racghsgmbols. The
lowest eigenvalues ifi{(M) are those withfS=M =3s—a.

In order to determine the shift quantum numbers of the cor-
responding eigenvectors we may employ the results in Ref.
17 on the dimension of the spackg(M,S,k). Using Egs.
(11) and(12) of Ref. 17 we obtain after some algebra

a+1:
6s—2a+1:

O=sas2s,

2s<a<|3s|.
(26)

dim Hs(M,S=M)]=

Now consider difiH3(M,k)]. The product basis ift{z(M)
may be grouped inta/(a) proper cycles of three different
states{|m),T|m),T?/m)}, and, if a=0 mod3, one addi-
tional state|\,\,\) having k=0. Each three-dimensional
ubspace spanned by a cycle contains a basis of eigenvectors
of T with each shift quantum numbée=0,1,2 occurring
exactly once, hence

dim [H3(M k)]

v(a): a#0, mod 3,
=< v(a): k=1,2, anda=0, mod 3,
v(a)+1: k=0 and a=0, mod3.

(27)

Note further thatS™: H(M)—H(M —1) commutes withT,
hence maps eigenvectors @©f onto eigenvectors with the
same shift quantum number. This leads to

u(@a)+1: k=0,a=0, mod3,
pu(a)—1: k=0,a=1, mod3,
u(a): k=0,a=2, mod 3,

n(a): k=1,2
(28)

with

B 0: a=0, 08
A=) @)= pa—1): a>0. @9

Comparison with Eq(26) yields those values oh and s

In this subsection we want to prove that the shift quantumyvhere dini75(M,S=M k)] vanishes for somk, i.e., where

numbersk of relative ground states satisfy the rule

1,2: a=1,
0: a=3s,s integer,
k= . (29
1,2: a=3s—1/2s half integer,
0,1,2: else.

not all possible shift quantum numbers occur for the relative
ground states. Due to E§28) this happens ifu(a)=0 or
pn(@)=1.

Fora=1 only the valuek=1,2 appear according to Sec.
IV A, hence u(a)=1. If sis integer anda=3s, Eq. (26)
yields dinf H3(M=0,S=0)]=1, hence onlyk=0 appears
for the ground state and(a)=0. If sis half integer anch
=3s—1/2, Eq. (26) yields dinfHz(M=1/25=1/2)]=2,

By completing squares the Hamiltonian can be written in thehence onlyk=1,2 appear for the ground state apda)

form

H=5?—3s(s+1) (25)

=1. For all other casesy(a)>1 and all shift quantum
numbersk=0,1,2 occur. This completes the proof of Eq.
(24).

054422-4



QUANTUM NUMBERS FOR RELATIVE GROUND STATE . ..

D.a=2 and oddN
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whole subspacékg=1}" which is orthogonal to thé&z=1

In this subsection all states considered will be in the subSector andB) any other relative ground state bifs haskg

spaceH (M =Ns—2), N being odd. We will prove a weaker
statement thak rule 1.

k rule 3:If there are relative ground states lfwith k
#0 then there are exactly two such states viithl andk
=-1.

We think that the possibilittk=0 can be excluded for

N>3, but the proof of this apparently requires a more de
tailed analysis of the energy spectrum and will be published

elsewhere. The situation in the case 2 is greatly simpli-
fied due to the following fact:

Tl =ly) = Gly=Gy). (30)

To prove this we define the unitary reflection operdRoby
linear extension of
Rlm;,m,, .. (3D

M= [my,my_g, L my).

Obviously,

RGR=G". (32

=1 orkg=2.

The relative ground state ¢dg with kg=2 will then be
nondegenerate too. This is easily proven by retranslating into
theH picture and employing the-k— —k symmetry.

In order to proveg(/A) we consider an arbitrary eigenvalue
E of Hg in H(M =Ns—2) which does not comply with the

shift quantum numbekg=1. We have to show that

NIk (36)

a
E= EFP( —COS

E is also an eigenvalue &f corresponding to an eigenvector
| ) with shift quantum numbek+# 0. SinceN is odd, there
exists an integet+#0, unique moduldN, such that 2=N
—k modN. According to Eq.(12), | ¢)=U'|y) satisfies

Fora=2 any reflected product state can also be obtained byyherea=2m/N. Hence

a suitable shift, i.e.,

RIm)=T""™|m). (33
Hence R maps any cycle{|m),T|m), ..., TN"Ym)} onto
itself and thus leaves statég) with T|y)=|¢), i.e. with
shift quantum numbek=0, invariant. Now assume]| )
=[¢). We conclude G'|)=RGR|#)=RG|¢)=G|#),
since TG|#)=GT|#)=G|). This concludes the proof of
Eq. (30).

In the following Ep(X) denotes the lowest eigenvalue of

the Frobenius-Perron Hamiltoniaf-p(x) as defined by Eq.

(16). Since[Hep(X),T]=0 there exists a complete system of

simultaneous eigenvectors bif-p(x) and T. Especially, for
x<0 the eigenvector corresponding ®-p(x) will have
positive components in the product ba&$ and hence the
shift quantum numbek=0.

T(#)=[4). (37)

and, using Eq(14) together with Eq(30),
U'HU™|¢)=E|$)=Heelcosal )| ¢), (39)
E=Egpcosal), (39

by the definition ofEgs(X). If cosal>0, Egs.(34) and(35)
yield

Erp(cosal)=EgH—cosal)

=Egd cogdm—al)]

v
COSN ,

=Epp

(40)

sincel #0. For cos<0 the analogous
directly from Eq.(34). Hence

E=E
= — .
FR| —COSY; |

inequality follows

(41)

By using arguments based on the Ritz variational prin-and the proof ofA) is complete.

ciple one shows easily

X<Y<O0=EgX)<EgdY) (34

and

x# 0= Erel —[x|) <Eppl[X]). (35

Equivalent tok rule 3 is the corresponding statementtog:
If there are relative ground states Hfz with kg#1, then
there are exactly two such states with=0 andkg=2.
Note that in our case kg=k+2[(N+1)/2]
=k+1 modN. Due to Egs.(17) and (30) Hg equals
Hed —cos@/N)], if restricted to the sectde=0. The ground

state in this sector is nondegenerate according to the theorem

of Frobenius-Perron and will be denoted [dy). It remains
to show that(A) |®) is also a ground state dfig in the

Turning to the proof of(B) we note that, because of

the strict inequalities (34) and (35), E=Egcosal)
=Erd —cos@@/N)] is only possible if

2l B I T 42

COSW =cosal=— cosN. (42

Using 2=N-k modN, after some elementary calculations
this can be shown to be equivalent to

k==*1 modN, (43
ie.,
kg=0,2 modN, (44)

which completes the proof aB) andk-rule 3.
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E. Haldane systems

One idea to prove part of tHerule 2 for oddN would be

to show that one of the relative ground states has an overlap
with another eigenstate of the shift operator whose shift
guantum number is known to be zero. A good candidate

would be the relative ground state ldfo — cos/N) (16) in
H(M) which hask=0. If this state has overlap with a rela-
tive ground state oHg (17) the latter also possessks 0.

Let V=UNTD2 |y ) and|[¥o)=V|¥,) be one of the
relative ground states dfi (2) and Hg (14), respectively.
| p) denotes the relative ground statektfp. Then part of
the k rule is implied by the following.

k rule 4:|¥p) has a nonvanishintl z-ground-state com-
ponent, i.e.(Wed W) #0.

The validity of thisk rule would immediately follow from
the sufficient(but not necessajynequality

Erp— Eo<E1—Eo, (45

where E; is the energy of the first excited state above th
relative ground state ift/(M) and

Erp=(V e H| Ve = (Ve Hed Vi)

As a substitute for the lacking proof &frule 4 we submit the
inequality (45) to some numerical tests, see Sec. V.

(46)

[S)
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2

1
s+§ , s half integer,
f(s)= 1z 1 (51
s+§ —2 S integer.

We therefore conclude

f(s). (52

v
EFP_ Eog ZN SII’IZ( N

Thus, with increasindN, (Egp— E() approaches zero at least
like 1/N and therefore, above son\y, (Egp— Eg) must be
smaller than the Haldane gaf{(—E).

One would of course like to accomplish a similar proof
for half integer spin systems, but in this cagsg ¢ E;) drops
similar to 1N itself as given by the Wess-Zumino-Witten
model, see e.g., Ref. 13. Thus for such systems a careful
analysis of the coefficient in front of theN./might be very
valuable. As shown in the next section, numerical investiga-
tions indicate that E-p—E,) approaches zero faster than

(E1—Eo).

V. NUMERICAL STUDIES
The question (45 of whether Epp—Ey)<(E;—Ejg)

Looking at the largeN behavior it is nevertheless possible 101ds in(M) with minimal IM| was investigated numeri-
to devise an asymptotic proof for systems which possess cally. For some of the investigated rings the respective ener-

finite energy gap in the thermodynamic linhit—c. These
systems are called
Haldane’s conjectuf&® spin rings with an integer spin
guantum numbes possess such gaps.

“Haldane systems.” According to

gies are given in Table II.

Figure 1 shows the ratioHp— Eg)/(E1—E,) for rings
with s=1/2,...,3 andvariousN. This ratio is smaller than
one fors=1/2,1,3/2,5/2 for all investigatetl. Only for s

To start with the proof, let us look for an upper bound to = 2.3 the ratio reaches values above one. Nevertheless, as

Erp— Eo. Take |¥y) to be a ground state dfi with real

coefficients with respect to the product bagis)}. Evi-
dently,

Erp=(WolV'HepV|¥o)

=

=

L o
Eo—i S'n(ﬁ)<‘1'0|\~/f{(~3—(§f}\!|‘l’o>- (47)
Further, in view of Eq(13)
VHG-Gly=—{e"G-e ("G} (49

and, becausém| W) is real, (¥,|G—G'|¥y)=0. There-
fore,

. o
Erp— Eogsmz(ﬁ) (PolG+GT[Wo)l. (49
A rough upper estimate for the operator norm{ 6+ G'} in
H(M=Ns—a) can be deduced from the well-known Gers
gorin bounds for matrix eigenvalug¢sf. Ref. 15, Eq.(7.2)]:

||G+G'||<2f(s) min(a,N,2Ns—a), (50)

where

discussed in the previous section, in the cases of integer
this ratio must approach zero adN1if (E;—E,) tends to a
nonzero Haldane gap. But also in the cases of half integer
spin one is led to anticipate that the ratiBp—Eq)/(E;
—E,) remains smaller than one and that the curves rising
with N for smallN might even bend down later and approach
zero for largeN. DMRG calculations could help to clarify
this question.

VI. GENERALIZATION TO OTHER SPIN MODELS

It is a legitimate question whether therule holds for
Heisenberg spin rings only or whether it is valid for a
broader class of spin Hamiltonians. In order to clarify this
question we investigate the followingXZ Hamiltonian:

H(8)=6-4+G+G", (53
for various values of5. The cased=1 corresponds to the
original Heisenberg Hamiltoniaf®), 6— « results in the an-
tiferromagnetic Ising modelg— — in the ferromagnetic
Ising model, and=0 describes th&XY model.

We have numerically investigated the cases &f
—1000-1,0,0.5,2000 for s=1/2,...,5/2 and N
=5,...,8. For|8|<1 no violation of thek rule was found,
whereas thé rule is violated for6= =1000.
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=)
T
o

TABLE Il. Lowest energy eigenvalues of the Heisenberg Hamil- "
s=1/2

tonian (Eq,E;) as well as of the respective Frobenius-Perron '-E '-:;'T s=1
Hamiltonian Egp) for various oddN ands. Note that we findg, % %
<Egp<E, for all N if s<5/2. Except forN=5s=1/2 the first 3% FO xR g ]
excited state has a higher total spin than the ground stateSj.e., & 2
=S+1 < <
=S+1. 0.0 b, 2006 % x VDDV, 1 0.0F, , , ,
0 10 N 20 30 0 5 ,\}0 15
S N
3 5 7 9 11 —~ 10fT ) j ' —~ i " T
ur s=3/2 W WOF 52 ex-®®
—-15 —3.736 —5.710 -—7.595 —9.438 E, g L|<.T X"
1 P L 4 _
i -15 -3736 -5706 —7.589 —9.431 Egp Lp’” e @® | WS
15 -15 —-3612 -5872 -7.984 E, o - o
Lul L
e 00, N N ] = 00, L L ]
—-6.0 —13.062 —19.144 -—-24.960 -—-30.67 E, 0 5 10 15 0 5 10 15
1 -5162 —12.180 —18.338 —24.235 -—30.02 Egp N N
—4.0 —11.133 —-17.431 -23.420 -29.26 E, ~ r = }
L s=h/2 w s=3
_ _ %
u X ® w X
—105 -24.865 —37.370 —49.296 —60.98% E, X os| o X x
3 9783 —-24.095 —-36.663 —48.658 —60.40* Erp e
—-75 —22237 —35.199 —47.458 —-59.38% E, ul w
00, ' N 4 [
0 5 10 0 [} 10
—18.0 —42.278 —63.315 —83.364% —103.0° E, N N

2 —16.506 —40.615 —61.789 —81.989* —101.8° Ep

FIG. 1. Dependence off— E)/(E;—Eg) onN for variouss.
-16.0 —40.356 —61.663 —81.934 —101.7° E, P Eeo— Eo)/ (B~ Eo)

Crosses denote values obtained by exact diagonalization or projec-
tion method, circled crosses denote values obtained bynazcs
—-255 —62.168 —94.160 —124.63° —154.4° E, method. Fors=1/2, where[G,G']=0, the ratio Egp— E)/(E;
—24.188 —60.699 —92.814 —123.42* —153.3° Eqp —E,) is extremely small, i.e~10"2.

—-225 —59.538 —92.006 —122.83% —152.9° E,

Njao

essentially equivalent to a systemabhoninteracting Fermi-
—36.0 —87.666 —132.68% —175.55% —217.5° E, ons. More precisely, for odd its energy eigenvalues are of
3 —33.936 —85.325 —130.55% —173.66% —215.8° Erp the form
—340 -—85.747 —131.062 —174.18* —216.3" E,

a
— 2
%Projection methodRef. 20. E&Odd)zzz CO{ ky), k, integer, (54)
bl anczos method. =1 N

o . o with corresponding shift quantum numbers
In the limiting case of the Ising model tHerule 1 is in
general violated. Any product stalué) will be an eigenstate a

of the Ising Hamiltonian and the shifted staLE‘skrﬁ} belong k= >, k, modN. (55)
to the same eigenvalug;. The set of the corresponding v=1
shift quantum numbers then depends on the degree of sym-

N L Relative ground state configuratiok$or a=1,3,5 . . ., and
metry 01:| m): Eet n denote the_ smallest positive integer suchodd N are, for example,
thatT"|m)=|m). Clearly,n dividesN. Then the correspond-

ing shift quantum numbers will be of the fornk _ [N+1) /[N*1 N+3| [N*1 N+3 N+5

=(N/n)I modN, 1=0,1,2 ... . In most casesn=N and k= ( , , , , S

hence all possible shift quantum numbers will occur, which 2 2 2 2 2 2

violatesk rule 1. On the other hand, consider the total ground (56)

state|1,],1,],...) of an evens=1/2 antiferromagnetic This leads to the shift quantum numbers

Ising spin ring. Here we have=2 and only the shift quan-

tum numbersk=0,N/2 occur, also contrary to 1. Figure 2 1000 o 0 05 1 1000 5

summarizes our findings as a graphics. T | I T -
It is not clear at whichs exactly thek rule breaks down. ' o

This quantum phase transition might very well depend\Non — FMISING XY HSB AFMISING —

ands. It is then an open question whether anotkerule FIG. 2. Solid line: Estimated validity of thk rule for various

takes over. parameterss of the Hamiltonian(53). The numbers denote the

Finally we would like to mention that the exactly solvable cases which have been examined numerically. Khée is violated
s=1/2 XY modef?! satisfies thek rule 1. This model is for 5= +1000. No violation was found fos|<1.
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_ N+1 N+3 N+5

5 Ty T e (57

in accordance with Eq.l). Similarly, the values
~N-1 N—3 N—-5 £g
- 2 ] 2 ] 2 3 ey ( )

are realized. In the case of evarwe have
a
27 2k, +1
EEeN_2> N cog —— , k, integer, (59
K v=1 N 2

PHYSICAL REVIEW B68, 054422 (2003

with corresponding shift quantum numbers

1
k,+ 5| modN, (60)

a
k=2,
v=1

and thek rule 1 follows analogously.

ACKNOWLEDGMENTS

We thank Shannon Starr for motivating discussions and
lan Affleck for pointing out some useful literature.

*Electronic address: Klaus.Baerwinkel@uos.de

Electronic address: phage@uos.de

*Electronic address: hschmidt @uos.de

SElectronic address: jschnack@uos.de

1W. Marshall, Proc. R. Soc. London, Ser.282, 48 (1955.

2E.H. Lieb, T. Schultz, and D.C. Mattis, Ann. PhybL.Y.) 16, 407
(1961).

3E.H. Lieb and D.C. Mattis, J. Math. Phy3, 749 (1962.

4X. Wang and P. Zanardi, Phys. Lett.391, 1 (2002.

5X. Wang, Phys. Rev. &6, 034302(2002.

6X. Wang, Phys. Rev. /&6, 044305(2002.

7J. Bonner and M. Fisher, Phys. R&B5 A640 (1964).

8R. Botet and R. Jullien, Phys. Rev. H, 631(1983.

9K. Fabricius, U. Lav, K.-H. Miitter, and P. Ueberholz, Phys. Rev.
B 44, 7476(199)).

M. Karbach, Ph.D. thesis, Bergische
Gesamthochschule Wuppertal, 1994.

Universita

K. Barwinkel, H.-J. Schmidt, and J. Schnack, J. Magn. Magn.
Mater. 220, 227 (2000.

123, sSchnack, Phys. Rev. &, 14 855(2000.

13|, Affleck, D. Gepner, H. Schulz, and T. Ziman, J. Phy22\511
(1989.

14|, Affleck and E.H. Lieb, Lett. Math. Phy4.2, 57 (1986.

15p LancasterTheory of Matrices(Academic Press, New York,
1969.

16K . Yosida, The Theory of Magnetisnvol. 122 of Springer Series
in Solid-State SciencSpringer, Berlin, 1991

7K. Barwinkel, H.-J. Schmidt, and J. Schnack, J. Magn. Magn.
Mater. 212, 240(2000.

18E Haldane, Phys. Let@3A, 464 (1983.

19F Haldane, Phys. Rev. Lef0, 1153(1983.

20E. Manousakis, Rev. Mod. Phy83, 1 (1991).

21p.C. Mattis, The Theory of Magnetism Vol. 17 of Solid-State
Science 2nd ed.(Springer, Berlin, 1988

054422-8



