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Influence of uniaxial anisotropy on a quantum XY spin-glass model with ferromagnetic coupling
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In the replica symmetric approximation and the static limit in Matsubara “imaginary time,” we have
investigated a quanturY spin-glass system with the ferromagnetic coupling and the uniaxial anisotropy
numerically. We found that, foB=1, under the uniaxial anisotropy, the spin-glass phase breaks into two
phases: a longitudinal spin-glass phase, and a spin-glass phase; the mixed phase of the spin glass and the
ferromagnet breaks into two phases: a mixed phase of the longitudinal spin glass and the longitudinal ferro-
magnet, a mixed phase of the spin glass and the ferromagnet; the peak in the curve of the specific heat versus
temperature is split into two peaks: the peak of uniaxial anisotropy and the peak of the ferromagnetic coupling.
The system will be dominated by the random exchange interaction if the probability of the random exchange
interaction taking negative value is greater than 15.87%. In the absence of the uniaxial anisotropy, there is a
mean-interaction translational invariance in the spin-glass phase and the paramagnetic phase. In the presence of
the uniaxial anisotropy, there is a mean-interaction translational invariance in the spin-glass phase, the longi-
tudinal spin-glass phase and the paramagnetic phase. In these phases, the entropy, the specific heat and the
susceptibility do not depend on the mean-interaction.
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[. INTRODUCTION model with the uniaxial anisotropy, but they neglect the ther-
modynamic quantities. Motivated by this problem, we revisit
The properties of the spin glass have usually been intethis model, and focus our attention on the thermodynamic
preted in terms of the Sherrington-Kirkpartri¢RK) infinite-  and magnetic quantities, and discuss the differences between
range model treated in various extensions and approximdhe XY spin glass with and without the uniaxial anisotropy. In
tions. Quantum spin glasses were studied for the first time byprder to map the mean interaction-temperature phase dia-
Sommer$ and by Brayet al? independently who treated an gram, we let the Gaussian probability distribution of the ran-
isotropic guantum Heisenberg spin-glass model. Though thdom exchange interaction be asymmetric.
infinite-range SK model is rather unrealistic, the quantum
problems are usually treated in the “static” limit, in which
the noncommutativity of spin is neglected partially, the es- Il. MODEL HAMILTONIAN AND METHOD
sential propertied;® even the detailed propertie$of the
thermodynamic and magnetic quantities of the spin glass
systems are revealed. Recently, a large number of experf¥
mental and theoretical studies on the spin glasses have be8Yen bY
obtained®?* These works focus their attentions on the

The Hamilton operator for the quantuXy spin glass
ith ferromagnetic couplings and uniaxial anisotropy is

aging®?® the memon?’?® the  nonequilibrium

£ 29,30 . - oal )
IQynamlcs?, agzgsGrlfﬂths singularities! even on the non H=— J,(SxSx+5,Sy)~D> S,2 @
inear responsé? i< |

As is known, various anisotropies play important roles in
the spin glass systems. A strong anisotropy of the magnetic o o
susceptibility have been found in hexagonal metallic spin\Where the sums extend over all distinct pairs iof Y. For a
glass systems experimentalfyz3® These systems behave in 9iven pair {,j), the exchange interactiod; is a random
an Ising-type XY-like or Heisenberg-type manner, dependingParameter with Gaussian probability distribution,
on the sign and the magnitude of the single-spin uniaxial

anisotropy energy N(Ji; —Jg)2
_ ij— Yo

N 1/2
hy=—DS},. & P(Jii):(m) eXp( 2—32> @3

The long-range SK spin glass model with local uniaxial
anisotropy has been studied by Bfagnd by Cragg and whereJ, andJ are defined as the mean and the variance of
Sherringtor?’ Its quantum version has been discussed bythe exchange interaction respectively. The spin oper&ors
Usadel et al32° They showed that the phase diagram ofobey the standard spin commutation relations.
these systems is function of the impurity concentration and To carry out the average over the random bonds, we use
the strength of the anisotropy. the replica method and the imaginary time functional tech-
In Refs. 37 and 38, the authors discussed the phase diaique. In the replica symmetry approximation, the static free
gram and the magnetic susceptibility of the random SKenergy function per spin is given by
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wherej =Jo/J and B=1/kgT, T is the temperaturekg is RL_(JBa4)2f DXL(X)f DX’ (y 1),121 expJBAn),
Boltzmann constant. Fd= 1, the functionL(x) is defined (8)
as . . . )
3 1!
Q= fDx(—f Dx'x 2 exp(JBA )) ,
L(x)= f Dx' 2, exp(IBNy), (5) T (Ipay)? L(¥) =1 "
n=0 (9)
with 1 1 3 2
> Q= ZJ DX(WJ Dx'y’ 2 exr(Jm)) ,
_Zd+ SJd?+3A2+3B2 (JBas) n=1
i 3d+3 d“+3A“+3B (10)
" 2n77+1 2d3+9A%d— 18B%d " 1 JD Lo )
coS —— + s arccos — , = xx InL(x),
3 3 2(d3+3A2+3B2)32 T JBa,
dZD/J, A=a1X+a2X +JOMT1 ML:JBa f nyln L(X) (12)
3

B=agy+asy' +joM_, i i i
yTay TloM These functions are obtained franin Eq. (4) at the saddle

N N o — A I ——— point with respect to the spin self-interactions, the spin-glass
u=V0r  &=VRr—Qr  a=VQu a=VR, Q(Lé) order parameters and the magnetization.
In the above, the abbreviation denotes

The Ry, R, Q, Q. andM+, M| represent the trans-

verse and longitudinal components of the self-interactions, f DxA(x)Eif J dxdyexp( Xty )A(x).
the spin-glass order parameter and the magnetization respec- 27 )~ )~ 2
tively, and are determined by (13
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FIG. 2. The curves of the entropy depending
on the temperature fd8=1, (a) for uniaxial an-
isotropyu=0.0, (b) for u=0.3.
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FIG. 3. The functions of the specific heat as
the temperature foB= 1, (a) for uniaxial anisot-
ropy u=0.0, (b) for u=0.3.

According to Eq.(4), it is straightforward to get the en- where Q;#0, Q,#0, M;=0, M =0, the region of the

tropy paramagnetidPM) phase whereQ:=0, Q, =0, M;=0,
(38)2 M_ =0 and the region of the mixed-M+SG) phase of the
Ska= R2+R2— 02— 02 +f DxInL(x ferromagnet and the spin-glass wh&pe+0, Q, #0, M+
B4 (Rr+RE=Qr— QL) ) #0, M #0. The data of the boundary of the PM and SG

3
—Jﬂf Dxm > NnexpJdBN,). (14)

tization.

By using Eq.(14), the specific heat can be calculated from

CV:

1

n=1

ds

phases is lie on a good straight line AB. But in the presence
of the uniaxial anisotropy, as shown in Fig(bl, the SG
phase breaks into a longitudinal SG phase whgre=0,

. Q_#0, Mt=0, M_ =0 and a SG phase whe€g;#0, Q_

In the above calculations, we have used the saddle condio M,=0, M, =0, the FM+SG phase breaks into a lon-
tion of the free energy with respect to the spin Self'gitudinal FM+SG phase wher€;=0, Q #0, M=0
interactions, the spin-glass order parameters, and the magngr ..o and a FM-SG phase wherQ;a&O QL?ﬁO M'Ii

#0, M #0. The data of the boundary of the PM and LSG
phases lie on a straight line CD while the data of the bound-

ary of the LSG and SG phases lie on a straight line EF.
(15 Figure 2 exhibits the dependence of the entropy on tem-
perature for differenf,. The entropy is positive in the tem-

We do not give the final expression of the specific heat bePerature region considered, not as other models such as
cause of its complication. Heisenberg model in which the entropy usually goes nega-
tive at lower temperatures. The reason may be that the model
considered here is akY model. In Fig. 2a), the diamond
line corresponds t§,=0.00, jo=0.25, j=0.50, j;=0.75,
Equationg7)—(12) can be solved self-consistently whén and j,=1.00. The other two correspond jg=1.25 and
andj, are given. Therefore, the entropy, the specific heat and.50, respectively. There is a salient kink in each of these
the susceptibility are determined. The phase diagram is olthree curves. The salient kink in diamond line corresponds to
tained too. Now we wish to report our numerical results inthe transition from SG to PM. The salient kinks in the other
this section. two lines correspond to the transition from NG to PM.

IIl. NUMERICAL RESULTS AND ANALYSIS

Figure 1 shows the mean interaction-temperature phade Fig. 2(b), the diamond line corresponds jg=0.00, j,
diagrams ford=0.0 andd=0.3. In the absence of the =0.25,j,=0.50, j,=0.75, andjo=1.00. The others corre-
uniaxial anisotropy, as shown in Fig(), the phase diagram spond toj,=1.25 and 1.50, respectively. There are two sa-
has three regions: the region of the spin-gléS&) phase

j =0.00~1.00
oy 7 o
a
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FIG. 4. The dependence of the susceptibility
on the temperature fd8=1, (a) for uniaxial an-
isotropyu=0.0, (b) for u=0.3.
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heat and the susceptibility do not depend jgnfor 0<j,

=<1 demonstrates that, fal=0.0, there is g, translational

= invariance in the SG phase and the PM phase;dfei0.3,

there is ajq translational invariance in the SG phase, the
LSG phase and the PM phase. The invariance in these phases

Probability
(=
'Y

Jo

~15.87% 0.2 . . .
p S can be represented .by clusters of straight Imeg as shown in
A Fig. 1. Along these lines, the entropy, the specific heat, and
" 0 2 I3 the susceptibility will be the same. And then, the system is
dominated by the disorder interaction.
02 As we know, different values of, give different spin
o glass samples. The difference between different samples, if
FIG. 5. A Gaussian distribution whedg=J. there is any, cannot be observed in a single sample. Sggthis

translational invariance is never noticed by previous studies.
can be noticed in Fig. (®) if hold the paper in a gracing The fact mentioned above tells us that the quenched samples
anglg. The salient kinks in diamond line correspond to thewill show no difference if their probability of the random
transition(the lef) from SG to LSG and to the transitidthe = exchange interaction taking negative value is greater than
right) from LSG to PM, respectively. The salient kinks in the 15.87%. That is to say, once the probability is beyond
other two lines correspond to the transition from-8@M to  15.87%, the sample will give the same spin glass behavior.
LSG+LFM and to the transition from LSGLFM to PM,  This property makes the preparation of spin glass samples

respectively. easier than expected.
Figure 3 illustrates the dependence of the specific heat on
temperature for differenfy. For d=0.0, as shown in Fig. IV. CONCLUSIONS

3(a), in every line, there is a peak corresponding to the sa-
lient kink in Fig. 2a), it is caused byj,. But when the
uniaxial anisotropy is present, see Figh)3 it splits into two

In summary, we have investigated the quantdmspin-
glass system with the ferromagnetic coupling and the
; uniaxial anisotropy numerically. We found that, under the
p_eaks. These_ two pea_lks are caused lﬁl}ne_ lefy andj (the uniaxial anisotropy, the SG phase breaks into two phases:
right) respectively. It is worthy to be noticed that the right SG phase and SG phase: the -SBV phase breaks into
peaks seem to look like that in the curves for the ordere o pﬁaseS' LSGBLFMpphasé and SEEFI\a phase. The peak
O 6 . . .

systerﬁ sn?r}ha}t 0‘; ttf;]e &CE]OH)PtQ sgmdple? .Tht's dmt?y ?he in the curve of the specific heat versus temperature is split
gausgz yh € a_ct a i € system IS dominated by € Ofi4 two peaks: the peak of uniaxial anisotropy and the peak

ered excnange interaction. of the ferromagnetic coupling. The system will be dominated

The influence of uniaxial anisotropy on the system cal . : ea
also be seen in the susceptibility, Fig. 4 shows this effect. Ir]xoyr tJhe <désic;rd?Laeécrrlﬁggelgwtse?roa/:tlggr;f (’;h(;e ?ﬁg?:?sll't'.es
Fig. 4(a), the curves of the transverse and longitudinal sus; Y 9 ' ; T 4o

ceptibilities are coincided. But in the presence of the uniaxiatmms'altional invariance in the SG phase and the PM phase;
P A, P or d=0.3, there is g translational invariance in the SG
anisotropy, as shown in Fig(l), they are separated by the

uniaxial anisotro It can be seen that the curves a roac%hase’ the LSG phase and the PM phase. The entropy, the
Py PP Specific heat and the susceptibility do not depend on the

to the same asymptote in the high temperature region. Thig . .
. ) .., mean interaction in these phases.
feature agrees with Refs. 34 and 35. But there is a cusp in the
o S i In the above, we have s8=1, but these results are not
longitudinal susceptibility. This may be caused by the fact

that we have sed=0.3, which is smaller than that in Ref. co_mp_letely _held for hal-integer spins. Fd=1/2, the
37 uniaxial anisotropy cannot make the phase break. But

From the above discussions, one can see that the entropm:r:ggﬁsdeg%%r\]lceea?g ;‘T’l ﬁgltl ::Ig' AI; o][;:sﬁg Zrt:gﬁ ':(181:23 del
the specific heat and the susceptibility do not dependqon ‘ 9 '

for 0<j,=1. According to the definition ofg=J/J, the ' '€Mains an open problem.
condition 0<j,=<1 determines a Gaussian distribution of the
random exchange interaction, in which the me&gnof the
Gaussian distribution is smaller than the variadoé it. This The authors wish to thank the National Natural Science
means that the probability fak;; <O must be greater than Foundation of China for their support under Grant Nos.
15.87%, see Fig. 5. The fact that the entropy, the specifi@0174023 and 90103034.
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