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ac conductance of a magnetic multilayer structure with internal potential
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The transport properties of a magnetic multilayer structure under a low-voltage and low-frequency pertur-
bation are investigated. The theory is based on the ac linear response approximation developiiédneBu
al. In the numerical calculations, the scattering matrix method is used. Also the calculations are self-consistent
in order to take into account the internal potential caused by charge interactions inside the system. The
numerical results reveal the transmission probabilities, dynamic admittance, and internal potential distributions
under the changes of magnetic field and incident electron energy. The dc part and ac part of the conductance
are dependent on the magnetic field strength, the size of the system, and the incident electron energy. In
particular, the ac part of the conductance depends also on the wave-vector. This characteristic can be used to
realize the wave-vector filtering device under ac perturbation. More interesting is that a transformation can be
fulfilled between the inductive and capacitive behavior by tuning the magnetic field.
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[. INTRODUCTION ensure current conservation and gauge invariance, carriers
will absorb and emit phonons and the interaction between
As the applications of nanostructure electronic devices in€arriers must be considered.
crease rapidly in many fields, the electronic transport prop- Due to Biitiker’s pioneering work, the low-frequency,
erties of small conductive structures are becoming more anglauge-invariant, and current conserved theory has been es-
more important. Pertinent researches, such as those on migblished in the scattering framewdtk**®In this theory the
soscopic multilayered structures, experimentally and theopartial density of stateDOS and the local partial density
retically, have been carried out for a long time. The properof states(LPDOS (Refs. 14 and 1pbplay important roles.
ties of conductance driven away from its steady state byrhe dynamic properties of electron motion in mesoscopic
time-dependent external perturbation has caused great r8ystems are dominated by these partial densities of states. As
search interest? Transport of electrons in multiple-barrier one knows, the density of staté®OS) is used to describe
magnetic structures under steady bias has been studied Bye equilibrium properties of a physical system. In order to
many authors:>~" Theoretically, Matuliset al. pointed out treat the nonequilibrium problems, the PDOS has been pro-
that a magnetic multilayer structure has the property ofosed to describe the dynamic properties such as injectivity
wave-vector filtering for electrons passing through theand emissivity. The former describes carriers injected from a
structure* Experimentally, Yeet al. investigated the periodic reservoir regardless to which reservoir the carriers exit, and
deposition of ferromagnetic microstructures on top of a highihe latter describes carriers emitted to a reservoir regardless
mobility two-dimensional electron gas and found the mag-from which reservoir the carriers enter. In fact, the PDOS is
netic commensurability oscillatiofsThe transport proper- important in describing the ac conductance as will be dis-
ties of a macroscopic counterpart for such a structure undegussed in the following section.
time-dependent electric fields have also been explored In this paper we are concerned about several issues for a
classically’° It is intriguing and necessary to explore the magnetic multilayer structure, such as the transmission prob-
effect of oscillating external perturbation on similar systemsability, the dynamic admittance, and the charge accumula-
in a microscopic way. One of u&hao and Chelt) has tion. Especially, the interesting wave vector as well as mag-
investigated a nonmagnetic two-barrier system with the selfnetic field dependences of ac conductance will be shown.
consistent approach which takes into account the internalhe paper is organized as follows. The model and formula-
potential caused by Coulomb interactions. tion are introduced in Sec. Il; then in Sec. lll the numerical
For magnetic fields perpendicular to the plane of carriework is done for several transport quantities, and the results
motion, one can alter the effective geometrical confinemen@re presented and discussed; in the last section a brief sum-
on the carriers’ transport by varying the magnetic fields andnary Is given.
hence tune the functional dependence of the conductance on
the magnetic field. Studying the conductance of quantum
transport in a periodic magnetic field makes it possible to Il. MODEL AND FORMULATION
find important factors that affect the movement of carriers,
including the parameters of the confining potential, charge
accumulation, and wave-vector dependence, in the energy We consider a mesoscopic structure with several terminals
spectrum. Under the alternating external perturbation there igbeled bya,B,y, . ... If thechemical potential at terminal
more physical information. Charge carriers will be affectede is changed, such as applied an external perturbation, we
by alternating electric field and confining magnetic field. Tocan get the total current response at termpaFor indepen-

A. General theory for linear ac conductance
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dent electrons, the only potential energy an electron acquirda which
is from external field. In the linear response theory, the con-

ductance is determined by dngg(r) B 1 0S5 E,U(r)]
L dE = Gt | Sl EV(M)] SU(r)
giﬁ:%fo drexdi(w+i0")7K[14(7),140)]), (1) 8sh[E,U(N)] : : -
— S EU(N) 7

- ouU(r)
wherel , is the current operator which can be expressed by
creation and annihilation operatoad,a andb’, b, wherea ~ 2Nddna(r)/dE=X zdn,(r)/dE. For the complex conduc-

N ) ) tance, Eq(4), we can define its phase angle

andb are related by a scattering mati$«—i.e., b=Sa.

If the transport is in a steady state, the charge accumula- tanf= — wezEaﬁ/gaﬁ(O). (8)
tion (or depletion produces only electrostatic fields. In this
case there is no current associated with excess charges. HoWdis definition is useful for investigating the capacitive or
ever, with a time-dependent perturbation the charge accumuductive properties of small quantum systems.
lation (or depletion is always associated with displacement Because the internal potential is caused by the charge dis-
currents. In fact ignorance of electron-electron interactiondfibution, we can use the Poisson equation to calculate the
makes Eq(1) not satisfy the current conservation and gaugecharacteristic potential distribution, i.e.,
invariance. To ensure that the transport theory is current con-

served and gauge invariant, filker and co-workers'?1317 _vy, (r)+47rezf drTI(r,r U (r,):4we2dna(f)
have developed an ac transport theory. The key notion in this “ e dE
theory is to consider a self-consistent internal potential in- 9)

duced by the piled-up charges. Therefore the interactions b‘%\?hereH(r,r’) is the response function of charge density to

tween electrons must be taken into account. Due to the inte Slectrostatic potential. As a simple case we use the Thomas-
nal interactions, an internal potential is formed. In the case of, i approximatiorﬂ.(r r')=dn(r)/dES(r — ') to reduce
low voltage and in the Hartree approximation, the effectivethe above equation to '

internal potential for an electron is
dan(r)

—V2u,(r) +4we2d—Eua(r) =4 7e?

dn,(r)
dE ’

U= uy(r)e“op,, @ (10

. o . . in which dn(r)/dE is the total DOS distribution. It is worth
where oy, is the variation of the electrochemical potential hointing out that we shall self-consistently compute the ac
In reseryorr ., while u,(r) is the characteristic potential ¢onguctance for a mesoscopic structure. The self-consistency
function.” The current response to this internal potential iSiayes electron-electron interactions as a screening effect, so
through there will be a screening lengths in the computation. This

pr dn.(r) is just the Thomas-Fermi screening length which is related to
g‘aB(w)ziweZJ' dE( ——) f dr d“ ug(r), (3) the DOS, i.e.\s2=4me?dn(r)/dE. So the screening length
JE - itself will join in the self-consistent calculation.
wheref is the Fermi distribution function in reservoirs and _ From these formulas we can study specific structures to
dn,(r)/dE is called injectivity which describes the density OPtain their dynamical conductances. One can see that the
of states of carriers that incident into probeno matter important quantities are the density of states and its compo-

which probe it goes out. nents as well as the internal potential. These quantities can
Combining Eq.(1) and Eq.(3), we can obtain the total ac be obtained by solving the coupled Saflirger equation and
conductance Poisson equation iteratively.
gaﬁ(w)=ga5(0)—iwezEa5. (4) B. Electron in a magnetic multilayer

In this formula,g,z(0) represents the dc conductance of the The system investigated here is shown in Figa) 11t
system, whileE,,; is characteristic of the ac response underconsists of a series of magnetic fields parefiirrierlike or
an external oscillating perturbation, calledittance In the ~ antiparallel(well-like) with the z axis and arranged along the

Hartree approximation it can be expressed as X axis in a rang¢x, ,x,], while in they direction it is taken to
be homogeneous. This structure is usually called a magnetic
of dn,e(r)  dn,(r) multilayer or magnetic superlatti¢é® There are two perfect
Eaﬁzf dE( - E) j dr dE  dE YD} leads connecting this magnetic multilayer to an external

(5) source and drain, labeled by contact 1 and contact 2. If an
external alternating voltage is applied to the source, electrons

At zero temperature, Ed5) can be reduced into will incident from one probe to the other experienced modu-
lated magnetic fields. It is assumed that there are no mag-
£ :f drd”aﬂ(r) _f d dny(r) Uy(r) ©) netic fields in the leads. The vector potential distribution of
B dE dg A7 this structure is shown in Fig.(8).
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Q (@) H= nd + 2 2+C (14)
'-g—)- m - 2m dX2 zmw (X XO) ’
53
(]
Sir X X where
(eZBZ+ mUrr)l/Z
z 0=, (15
Lﬁfy
X eBig—mu’ 16
< e a——
— (b) ° e2B2+mu”
QO .=
o€
2 % and
e 2
1 (eBhg—mU’)
X X _ 2
[ r C=U0O)—E+——|(hq)"+ ———|. (1
(0 -E+ gl ()P — 2|, (17)
FIG. 1. Schematic drawing of a magnetic multilayer structure
with the spatial distributions of magnetic fieB (a) and vector For convenience, we define a new variable
potential A (b).
&€= (Malh)4(x—xo) (18)

In the case fo_r a two—dlmens_lonal gas that there exist an 4 a new function
external magnetic field perpendicular to it and a small oscil-
lating electric potential applied to it, the corresponding one- W(€)=P(&)exp — £212). (19)
electron Hamiltonian reads
According the above definition, we can rewrite Efj2) as

1
H=-—[p+eA]?+U(x) d?P(¢) dP(§)
2m _ _
) e 2¢ dE +AP(£)=0, (20)
= ﬁ{p§+[py+eA(x)]2}+U(x), (1) wherex=2(E—C)/(hw)—1. This is a standard Hermitian
equation whose general solution is
where m is the effective mass of an electronA
=(0, A(x),0) is the vector potential in the Landau gauge, P(£)=CoPo(§)+C1P1(8), (21)
i.e., A(X)=Bx or —Bx piecewise continuously,[py, in which
+eA(x)]%/2m provides an equivalent magnetostatic poten-
tial, andU(x) is the internal potential caused by the charge -\ —N(4—X\)
distribution. We can see that tiyecomponent of the momen- Po(§) =1+ 7§2+ T§4
tum commutes with the Hamiltonian, i.¢p,,%]=0. As a ' '
consequence we can write the wave functionaé&,y) —N4—=N\)---(4n—4—N\) on
=e¥y(x), whereq represents thg component of a wave + (2n)! &Mt (22
vector, later called the traverse wave vector. Thus we obtain
the following one-dimensional Schiimger equation involv- and
ing the internal potential:
2=\ 5 (2=M)(6—N)
Pué) =+ 5 &+ ———5 &+
h% d> 1 , ! [
2m gy 2mieAXTAd] U(X)+E] $(x)=0. (2-N)(6-N)---(4n—2-N)
(12) - 2n+1)! e

Because the applied field is low, the internal potential @3

U(x) is smoothly varied and can be expanded in a series. i[Then we get the wave function immediately

can be written to the first three terms as 5
#(X) =[CoPo(§) +C1P1(§) Jexp(— §72). (24)

U(Xx+AX)=U(X)+ U’ (X)Ax+ EU”(x)sz. (13) The wave function of an electron beyond the magnetic
2 region is just the superposition of plane waves propagating in
the opposite directions, i.e.,
Using this expansion, the Hamiltonian can then be rewritten
as P(x)=Aexpikx)+ B exp —ikx), (25
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wherek=\2mE/# andE is the energy of an electron. In the and
leads attached to the magnetic multilayer structure the in-

coming and outgoing wave functions are (Bo) (Ao)
_ _ = : (34)
ghxtre kX x<x, An Bn
YOO=1 gk X>X,, 26

The relationship between the elements of the scattering ma-
wherer andt are the reflection and transmission amplitudes trix and the transfer matrix is

respectivelyk,y = vV2m(E—Vy)/A, andV,,, is the poten-
tial in the left(right) region of the structure, arising from the S S r ot
small deviation of chemical potentialw,, . ( ):( )

Sa S/ \Y o1y
C. Calculation scheme _(T21/T11 Too=TorT1p/ Ty (35)
For numerical calculations, we divide the system into UTy =TTy
very large number of small regiorsg ,s,,S3, . ..,S,. The
whole system is constructed by ®s,®53;9 - ®S,. In The ballistic dc conductance of a structure is directly re-
each region, a uniform field is assumed. The electronic wavéated to the transmission probability
functions in different regions can be obtained by composing
of the Hermitian function or the plane wave, such as 22
921(0) = ——T(Ep), (36)
U (X)=Ajdj1(X) +Bjdja(X), 27

where ¢;; can be either an Hermitian function or a plane whereE is the Fermi energy an@i(Eg) is the transmission
wave. Between two adjacent regions, the continuum condiprobability of electrons with the Fermi energy.

tions of wave functions and their derivatives at the boundary The above discussion is based on the one-electron picture.
result in a coefficient transfer matrix which connects the twoAs mentioned in the first part of this section, there are inter-

couples of coefficients of the wave functions, i.e., actions between electrons in real circumstances, so we have
to consider the interactions between electrons. The effective

(Aj _ _(Aj+1) (28) interaction of electrons is equivalent to an internal potential,

Bj y Bj+1/ which should be solved by a self-consistent numerical

method. From the Schdinger equation, we know that the

At jth boundary, we have wave function(x) is determined by the potential energy

and, while from the Poisson equation, we see that the char-
M;(x;) =M, 1(X;) , (29) acteristic potentiali(x) is determined by the charge density
B, Bj+1 distribution in the volume. According to the physical mean-

P ing of the partial density of state, the carriers’ density can be
soTj=M; *(x)M;,(x;), where g p y , y

obtained by
éja(x) éj2(X)
M -(x):( . (30)
: deja(x)/dx  deja(x)/dx dr:jal(zx) -~ %Iwa(x)lz, (37)
For the systens;®s,0s53® - - - ®S,, we can obtain the
global transfer matrix by multiplying all matricef , i.e., where ¢,(X) is the scattering wave function incident from

probe « andJ is the incoming particle flux. By this partial

(T Tag| _ density of states one can obtain the total DOS by summing

=1, T, _,Hl T (D yp injectivitiesdn, (x)/dE anddn,(x)/dE. Putting all these

results into the Poisson equati@t0), we obtain the charac-

then the plane waves in the leads are connected by teristic potentialu,(x). Combining the internal potential
ki ke with the e_quivalent .r_nz.agnetostatic_potential_, one gets a new

' )zT ) 32) pptenual in Fhe S_chrcd]nger equation. Solvmg the Schro_
re ki 0 dinger equation with the new effective potential, one obtains
new wave function. Since our structure is an open system,
e have to use the transmission and reflection amplitudes to

. o . a
It is clear that one can get the transmission and the reflectlo\r,],

coefficients by numerical calculations. get the total wave function. With these self-consistent itera-

In addition one can also obtain the scattering matrix of the;, ¢ 15 4 necessary precision, we finally obtain the quantities
system. This can be realized by comparing the form of th%eeded

transfer matrix and the scattering matrix

In calculating the Poisson equation, we divide the struc-
A A ture inton small segments, each having a lengtk. Then
0 n . N .
( ) = ( ) (33  we are able to make the Poisson equation discrete and trans-
Bo Bn form Eq. (10) into the following solvable linear equation:
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a;; ap Uy d, tob v v v b
Ap1 Az Ao 0 uz do
.. : — : ~ 05
0 @n-1n : : 0.0 ——J L=200nm+
Ann-1 @nn Un dy 3 t t } t }
(39) 1.0 |
. . o - | (b)
where u; is the discrete value of the potential in tl ~ o5}
segment andl, = 4me?Ax?dn,(x;)/dE. The coefficient ma-
trix is a tridiagonal matrix, in  which a;; 0.0
=4mAx*e?dn(x;)/dE+2, & ;_1=4a;;.1=—1. The bound- | , , , , ,
ary condition isu;=(1+R)/2 on contact 1 andi,=(1 1.0} ' ' ' ' o
—R)/2 at contact 2, wherR=|r|? is the reflection probabil- I ©)
ity. The total internal potentidl (x) at pointx in the Schre ~ o5 /|
dinger equation i&J(x)=Xu,(x)du,. |
Using the expressions given above we can calculate the 0.0 i
electronic transport properties of magnetic multilayer struc- | , , . , L=36?"m_
tures. We shall take the double magnetic barriers 2) and 1F ' ' | ' e
five magnetic barriersn=5), as examples, to study theirdc @ (d)
and ac properties. B3
ES
€5
Ill. RESULTS AND DISCUSSIONS 0
A. dc conductive properties 0 ' é ' :1 ' é ' é ' 1|0
We first provide the numerical results for the transmission E (meV)

versus energy of a double magnetic structure with different

system sizes in Fig. 2. The magnetic field strength is fixed at FIG. 2. Transmission probabilify vs energyE for an incident

B=1 T. One can see that the transmission probabilities argIeCtron In the casa=2 for different system lengthis, but a con-

. . tant tic fieldg=1T). A i i de with th
exactly the same as those in the usual double-barrier strué—iggneﬂzz}gc Oflea iarmo%ic oggm;zgfoffzorgin? V(Vl;) L ©

t_ures wheng=0. The, corresponding magnetOStatiC p_Oter,]'=300 nm,(c) L=360 nm, andd) the eigenenergy levels of a har-
tials for these three different system sizes are shown in Figy,onic oscillator.

3. Due to the magnetostatic potential from the magnetic field
being aboutUg=(eBX)?, the larger the size of the system,

the higher the potential as shown in Fig. 3, and the more.
bound states as shown in Fig. 2. The positions of the level

are th? Same in spite of the different level widths for ef"‘ChTherefore the transmission probability will be affected by the
potential. This is due to the fact that the small potential is &raverse wave vectay, 18 because the resonant levels will

part of the large potential which is clearly shown in Fig. 3. _; o P
From Fig. 3 one can also see that the effective potentials arShlft under the change af. As indicated in Fig. 4, for some

. . . . . c? there exist bound states and for otlgghere may not exist
all finite harmonic potentials. It is confirmed that the energy,ound states, inside the magnetic field region. This charac-

In the presence of a magnetic field, the equivalent mag-
tostatic potentidll 5(x) =[eA(x) +%q]? depends not only
n the magnetic field, but also on the traverse wave vector.

spectra tend to the spectrum of a harmonic oscillator when
the potential profile approaches the harmonic oscillator po-
tential, as is shown in Fig.(d).

It is convenient to study the energy-dependent transmis- __ L=360nm

0.8 T T T T T

06 SN —--L=300nm ;% ]
;v ——L=200nm .,

sion and the internal potential distribution under different
strengths of magnetic fields. Also from the fact that the mag-
netostatic potentidl g is related to the vector potentialx)

which is the product of length and magnetic field, we can o4r ]
imagine that to increase the magnetic field may have the
same effect as to increase the system length. Numerical re-§ o2} .

Effective potential (meV

sults forB=1, 2, 3 T and fixed system length=200 nm
have confirmed this conjecture; i.e., the transmission prob- .
ability and effective potential have almost the same profiles 0'-130
as in Fig. 2 and Fig. 3, respectively, although there are two
differences: one is that the eigenenergies become denser as

the magnetic field is larger; the other is that the higher po- FIG. 3. Magnetostatic potential distributions for three systems
tential has narrower well width, different from that of Fig. 3. with the different lengths corresponding to Fig. 2.

180
x (nm)
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FIG. 4. Magnetostatic potential distributions with different

traverse wave vectors.
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2402 2403 2404 2405 2406 2402 2403 2404 2405 24.06

17.862617.862817.863017.863217.8634 17.862617.862817.863017.863217.8634
E (meV) E (meV)

FIG. 6. (a),(b) Diagonal emittancek,; vs chemical potentid.
c),(d) Off-diagonal emittance&,;, vs chemical potentiak. In (a)

teristic is different from the electric potential and can be usetimd (c), the resonant energy B=24.0413 meV, while inb) and
to adjust the effective potential by using the vector potentialg) the resonant energy E=17.8630 meV.

A(x). The transmission spectra with differepare shown in
Fig. 5. In order to make the effects gimore clearly, we plot
T vs E, instead of T vs E, where E, is the longitudinal
energy satisfyingE=E,+#42g%/2m. The traverse-wave-

system with magnetic fieldB=3 T, and system length
=200 nm. These parameters lead to resonant peaks within
the energy range from zero to top of the barriers. It will be

vector-dependent shift of the resonant levels is clearly showhelpful for us to understand the role of emittance by thinking

in Fig. 5.

of classical circuit elements, such as capadii@nd inductor

We have also perform numerical calculations for fiveL. Both appear in the imaginary part of a circuit conductance
magnetic barriers. It can be found that each transmissiog=g,+iwX, where X represents the dynamic admittance
peak in Fig. 2 will be split into 4. This is consistent with the which is caused by the dynamic interaction between the

rule of (n—1) splitting for an multibarrier structure.

B. Emittance

According to Eq.(4) the ac dynamic admittance is gov-
erned by the imaginary part of the conductance andrait-
tanceis defined? Figure 6 shows the emittande, ; of a

1.0

0.8

0.6

0.4

0.2

0.0

E (meV)

FIG. 5. Transmission probabilitf vs longitudinal energye,
with the different traverse wave vectors in the case2, where
ko= (2mw/#)*2,

charges. From the discussion in Sec. Il, one sees that the
emittance is a function of Coulomb interaction and magnetic
field. In Figs. &a) and Gb) are the diagonal emittancés,

and in Figs. 6c) and Gd) are the off-diagonal emittances
E,,. From Fig. 6 one sees that the large variations occur
around the resonant energy.

The numerical results show that a diagonal emittance is
negative when the Fermi energy of the reservoir is close to
the resonant energly,. That is a inductive behavior. But it
increases rapidly as the Fermi energy departs from the reso-
nant energy and goes from negative to positive, and so shows
the capacitive feature. After it reaches a maximum at each
side ofE, it will slowly drops down and goes to zero asymp-
totically. This behavior for the emittance in a magnetic
multilayer structure is similar to the theoretical results ob-
tained by Pree et al. for electric multibarriet*’ WhenEg
is close toE,, the transmission probability is high. But this
does not mean that electrons travel through the structure di-
rectly. It will dwell inside the system like an oscillatowe
will discuss this phenomenon in Sec. Il)50 the phase of
the disturbance will be delayed through the system. This is a
key characteristic of an inductance. If the incident energy is
apart from the resonant enerBy, the transmission probabil-
ity becomes small. The electrons cannot travel through the
system easily. Charges will be accumulated in the structure.
The system behaves just like a capacitor. The emittance
changes the sign from negative to positive.
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12 - - - - 10— ' ' ' 1
=-0.02k, 0 O.q2 ;
~ 8 : T
o 4
= } ~ o5} T
LLIN 41 E: J
: ;
0 <7 i 00F . - -
4 : : : : ol— ' ' ' 1
0 2 ."
b v = 20l 1
sl ' 3 | 40F . . . .
: : : L 0.5 1.0 15 2.0 25
B(T)
1.0} [ ] 7
' FIG. 8. Transmission probabilitf vs magnetic fieldB in the
~ 0sl I p | casen=2. InT is plotted for clearness.
h :
0.0 AN J 2 that as the magnetic field increases, the number of resonant

energy levels also increases. So the curve in Fig. 8 can be
explained as follows: WheB is small, the barriers of the
E, (meV) equivalent magnetostatic potential are low, and the electrons
with a given energy, which is higher above the barriers, can
pass through the structure easily; thus the transmission prob-
abilities are near to 1. As the barrier height increases to a
value which is larger than a given electron energy, the trans-
mission probabilityT falls down quickly until the electron

On the contrary, the off-diagonal emittances have an openergy is near the highest intrinsic energy level of the struc-
posite shape with respect to the diagonal ones. Near a resfire, whereT is a sharp peak in th&-B spectrum. The num-
nant energyi,; has a positive peak; then it drops to negativeper of resonant energies and the level distance increase with
values as the Fermi energy deviated from the vicinityepf  the stronger magnetic fiel. At last the lowest-energy level
And it also has one minimum at each sidefgfcorrespond-  exceeds the energy of the incident electrons; there is no reso-
ing to the two maxima oE ;. Two of us(Zhaoet al'®) have  nant level matching the incident energy, so there is no peak
calculated the off-diagonal emittance theoretically. And ourin the spectrum.
numerical results here agree with the theoretical ones very Figure 9 shows the emittancEs;, E,; and phase angle
well. of the complex conductana@g,(w) changing with magnetic

There is an interesting wave-vector filtering property forfield B and chemical potentidt. The emittances and phase
ac transport. As we calculate the emittance with diffel’en'[ang|e have the same zero point on Bi@xis and on thee
traverse wave vectors, it is found that, like in the dc case, thexis which can be determined from the definition of the

emittance is dependent on the wave vedoFrom Eq.(5)  phase angle, Eq8). Here we take the frequency of the os-
one can see that the emittance is related to the PDOS and tBglating external perturbatiomn=1 GHz. The plot of the
internal potential. We know that the magnetostatic potentiabhase angle in Fig. 9 shows the transformation between the
is Ug(x)=[eA(x)+%q]% The shift and shape of peaks are capacitive and inductive behavior of the structure. Around
dominated by this potential, and therefore determined by théhe resonant peak, the off-diagonal emittaiicg is positive
wave vectorg. From Fig. 3 one can see thgt>0 corre-  as shown in Fig. @) and the phase angle is negative in Fig.
sponds to a double-barrier structure, witjle 0 corresponds  9(c). These results indicate that the magnetic barrier structure
to a four-well structure. These potential structures indicatgyossesses capacitive and inductive properties for different
that the resonance occurs at lower positionsderO and  magnetic strengths. In the narrow width of a resonant peak,
higher positions forq>0. These results are clearly con- the structure behaves as an inductancelike property, and apart
firmed by our numerical calculations as shown in Fig. 7. from the resonant peak, the structure has a capacitancelike
property.

We show in Figs. 10 and 11 the transmission probability
T, emittanceE,;, and phase angle of the complex conduc-

For a fixed chemical potential, the conductance is a functance g,,(w) near the resonant energies for a five-period
tion of magnetic fieldB. We will explore the field-dependent system. The system length is set to 600 nm. The quantities in
properties for a double-magnetic-barrier structure. Fig. 10 are all versus the variation of the chemical potential

The transmission probability is shown as a function of in the reservoir. Corresponding to the four resonant peaks in
magnetic fieldB in Fig. 8. As discussed before, one can seeFig. 10a), the emittance in Fig. 1) also consists of four

7.65 7.70 7.75 7.80 7.85 7.90

FIG. 7. Emittance€,; andE,;, compared with the transmis-
sion probability T, vs longitudinal energye, with three different
traverse wave vectorg in the casen=2, wherek,=(2maw/#)*2

C. Spectrum versus magnetic field
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FIG. 9. Emittance&,,, E,;, and phase anglé of the complex
conductanceg,(w) vs magnetic field and vs chemical potenti&d
in the casen=2.

FIG. 10. Transmission probabilityf, off-diagonal emittance

23 2.4 25 2.6 2.7 2.8

E (meV)

E,1, and phase angl@ of the complex conductancg,,(w) vs
chemical potentiak near the resonant peaks in the case5.
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0.90 0.95 1.00 1.05
B(T)

FIG. 11. Transmission probabilitiff, off-diagonal emittance
E,;, and phase angl@ of the complex conductancg,;(w) vs
magnetic fieldB near the resonant peaks in the case5.

peaks. Each peak is very similar to that of the two-period
case. It seems that the emittance in the five-period case is just
a combination of four parts of emittance in the two-period
case. From the derivation we can see that the emittance is
determined mainly by the phase angle of the complex trans-
mission amplitude, so the results show that each of the four
resonant peaks experiences a complete change in magnitude
and phase angle. Each peak of the emittance in the energy
band is different. The first and fourth peaks of the transmis-
sion probability are relatively narrow. Thus the correspond-
ing parts in the emittance curve are larger, while the second
and third peaks are smaller. The phase angle in Fi¢c)10
tells us that the characteristics of a device can be well regu-
lated to change from inductive to capacitive, or vice versa, in
a small energy range. This gives us a series of small induc-
tive and capacitive “windows” which are arranged alter-
nately. From the plot of the phase angle of the complex con-
ductance, we can still recognize the difference between the
five-period case and the two-period case. The phase angle is
positive, but close to zero outside the four resonant regions;
however, it decreases to lower than zero when the chemical
potential locates in the middle of the resonant regions.
Figure 11 is also the results for a five-period case, but the
relevant physical quantities are versus magnetic figld
From these figures we find that the results are very similar to
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ol ' ' ' 1 4ol ' ' ' ] low and the charge density is very small inside the system.
=10 7=0.1 As T increases, charge piles up in the structure. BUEas
08r {08 " ": 1 goes near the resonant tunneling endfgy the charge den-
i N () 1 o6l u (%) 1 sity decreases and there is almost no charge distributed in-
N N i side the structure at resonance. This phenomenon can be eas-
04f 104r ] ily understood. At low transmission, incident electrons
ozl {02} ".‘ 1 cannot go inside the magnetic structure, so they can only pile
n(x) n(x) v up outside the potential near the two ends of the structure.
0.0 > 0.0 W But the accumulated charges are so small that we cannot see
them obviously in Fig. 1&). As T increases, electrons can
-0.2F 4-02F E . .
(a) (b) go farther inside the structure, but they cannot all pass
041 {-0.41 1 through the structure since the transmission probability is not
180 0 o 90 180 180 90 0 90 180 1. The charges jam in the magnetic field region and the
charge density becomes large. Near the resonant energy,
{10l ' ' ' | electrons pass through the structure without reflection so that

few charges pile up inside the structure.

However, the resonance does not mean that electrons
1 o6l u(x) | travel directly from one end to the other. This can be seen
---------------------------- from the large density of electrons inside the potential well.

4 0.8F

0.4 Because our structure is formed by magnetic fields, electrons

02l | will convolute inside the magnetic field region before they

n(x) go through the system. Thus the probability of electrons

0.0 dwell inside the potential well is relatively large. This feature

]oal ] is consistent with the numerical results which show the in-
(d) creasing probabilities of electrons inside the magnetic poten-

1041 1 tial well as the transmission probability increases.

180 90 0 9 180 -180 90 0 _ 90 180 Another special property in our magnetic structure is that

x (nm) x (nm) the boundaries of the system are not so clear as for the non-

magnetic double barriers. For example, the potential profiles
FIG. 12. Charge distributions(x) and characteristic potential in these two cases are different, so that the charge accumu-
distributionsu,(x) for the cases with different transmission prob- lation in present case is not obvious as that in a nonmagnetic
abilities. (a) Very small transmission probabilityh) T=0.1, (c) T double-barrier structure. It makes the result more compli-
=0.5, and(d) T=1. cated, but we can still confirm the main characteristics of
charge distribution.
those discussed in Fig. 10. But these quantities change with In Fig. 12, the characteristic potential distributiof(x) is
magnetic fieldB in a direction opposite to those that change@lso shown. At very low transmission, the potential profile is
with energyE. The capacitive and inductive “windows” are Very simple. We would point out an important feature of this
also alternately arranged inside a certain range of Beltis ~ case: that the potential near two ends of the structure is rather
obvious that a multiperiod structure can give the sequentidiat. These regions can be regarded as the penetration depth
regulation of the inductive and capacitive property by chemi-2s electrons can penetrate inside the system. The central part
cal potential or magnetic field. However, a device may bes just a straight line; it is also true at resonance, but the slope
more manipu|ab|e by Changing the magnetic field tharis different. When the transmission prObabi”tieS are neither
changing the chemical potential. This kind of a device mayvery high nor very low, the potential profiles apart from the
have many app”cationS, such as to memory units. above extreme ones fluctuate drastica”y. These fluctuations
are caused by the intricate charge distribution. The overall
trend of potentials is decreasing from the left side to the right
D. Charge distribution and internal potential side. This is determined by the boundary conditions. We can
As discussed in Sec. Il the interactions between electronge€ that as the reflection probability decreases, the potential
will induce a charge accumulation and give arise to an interproflle.tends to b(.a.ﬂat, which proves the relat.lc_)n between_the
nal potential. We can calculate the internal potential for aéflection probability and the boundary conditions of the in-
magnetic multilayer structure. The internal potential gives arférnal potential.
insight into the properties of a magnetic system under ac
perturbation and reveals the meanings of physical quantities
in magnetic fields. Figure 12 shows some charge distribu-
tions and characteristic potential profiles for a two-period We have studied the electronic transport properties of a
magnetic structure. magnetic multilayer structure under an alternating external
It is clear that the charge distribution is related to theperturbation based on the theory proposed bitiker et al.
transmission probability. This is similar to the nonmagneticThe internal potential arising from electron interactions has
double barrier cas¥:?°In Fig. 12a) the transmission is very been taken into account. With an iterative calculation, the

IV. SUMMARY
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coupled Schidinger equation and Poisson equation werethe features of our system greatly. For different Fermi energy
solved self-consistently. Some interesting results of the syssr applied magnetic field, the emittance can behave induc-
tem were obtained. We have obtained the dc conductandévely, or capacitively, which can be characterized by the
which is consistent with previous works. The magneticphase angle of the total conductance. Because magnetic field
multilayer structure shows some similar properties with thes more manipulable in reality, these results are useful for
common semiconductor multiwell structures. Yet it has itsdesigning new devices.

own special characteristics. What is more interesting is the ac
part. By inspecting the charge distribution and internal po-
tential distribution of the system, we can understand what
happens inside the system that influences the overall elec- This work was supported by The State Key Project of
tronic transport and gives explanations for the behavior oFundamental Research Grant No. 001CB610602, NSF Grant
emittance. Corresponding to the filtering effect of the strucNo. 10274069, Zhejiang Provincial Natural Foundation
ture on transmission electrons with different wave vectors inGrant No. 500079, Natural Science Foundation of Jiangsu
the dc case, it has been found that the emittance is varied lBrovince Grant No. BK200286, Educational Department of
the wave vectors of the incident electrons. The ac part act&hejiang Province Grant No. G20010059, and SRF for
just like the capacitance or inductance in classical circuitsROCS, SEM. One of the authof&.J) is also grateful for
And the results of our calculations indicate that it plays athe support of Grinnell College-Nanjing University Ex-
very important role in the total conductance and can affecthange Program.
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