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ac conductance of a magnetic multilayer structure with internal potential
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The transport properties of a magnetic multilayer structure under a low-voltage and low-frequency pertur-
bation are investigated. The theory is based on the ac linear response approximation developed by Bu¨ttiker et
al. In the numerical calculations, the scattering matrix method is used. Also the calculations are self-consistent
in order to take into account the internal potential caused by charge interactions inside the system. The
numerical results reveal the transmission probabilities, dynamic admittance, and internal potential distributions
under the changes of magnetic field and incident electron energy. The dc part and ac part of the conductance
are dependent on the magnetic field strength, the size of the system, and the incident electron energy. In
particular, the ac part of the conductance depends also on the wave-vector. This characteristic can be used to
realize the wave-vector filtering device under ac perturbation. More interesting is that a transformation can be
fulfilled between the inductive and capacitive behavior by tuning the magnetic field.
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I. INTRODUCTION

As the applications of nanostructure electronic devices
crease rapidly in many fields, the electronic transport pr
erties of small conductive structures are becoming more
more important. Pertinent researches, such as those on
soscopic multilayered structures, experimentally and th
retically, have been carried out for a long time. The prop
ties of conductance driven away from its steady state
time-dependent external perturbation has caused grea
search interest.1,2 Transport of electrons in multiple-barrie
magnetic structures under steady bias has been studie
many authors.1,3–7 Theoretically, Matuliset al. pointed out
that a magnetic multilayer structure has the property
wave-vector filtering for electrons passing through t
structure.1 Experimentally, Yeet al. investigated the periodic
deposition of ferromagnetic microstructures on top of a hi
mobility two-dimensional electron gas and found the ma
netic commensurability oscillations.8 The transport proper
ties of a macroscopic counterpart for such a structure un
time-dependent electric fields have also been explo
classically.9,10 It is intriguing and necessary to explore th
effect of oscillating external perturbation on similar syste
in a microscopic way. One of us~Zhao and Chen11! has
investigated a nonmagnetic two-barrier system with the s
consistent approach which takes into account the inte
potential caused by Coulomb interactions.

For magnetic fields perpendicular to the plane of car
motion, one can alter the effective geometrical confinem
on the carriers’ transport by varying the magnetic fields a
hence tune the functional dependence of the conductanc
the magnetic field. Studying the conductance of quant
transport in a periodic magnetic field makes it possible
find important factors that affect the movement of carrie
including the parameters of the confining potential, cha
accumulation, and wave-vector dependence, in the en
spectrum. Under the alternating external perturbation ther
more physical information. Charge carriers will be affect
by alternating electric field and confining magnetic field.
0163-1829/2003/68~5!/054407~10!/$20.00 68 0544
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ensure current conservation and gauge invariance, car
will absorb and emit phonons and the interaction betwe
carriers must be considered.

Due to Büttiker’s pioneering work, the low-frequency
gauge-invariant, and current conserved theory has been
tablished in the scattering framework.2,12,13In this theory the
partial density of states~PDOS! and the local partial density
of states~LPDOS! ~Refs. 14 and 15! play important roles.
The dynamic properties of electron motion in mesosco
systems are dominated by these partial densities of state
one knows, the density of states~DOS! is used to describe
the equilibrium properties of a physical system. In order
treat the nonequilibrium problems, the PDOS has been p
posed to describe the dynamic properties such as inject
and emissivity. The former describes carriers injected from
reservoir regardless to which reservoir the carriers exit,
the latter describes carriers emitted to a reservoir regard
from which reservoir the carriers enter. In fact, the PDOS
important in describing the ac conductance as will be d
cussed in the following section.

In this paper we are concerned about several issues f
magnetic multilayer structure, such as the transmission p
ability, the dynamic admittance, and the charge accum
tion. Especially, the interesting wave vector as well as m
netic field dependences of ac conductance will be sho
The paper is organized as follows. The model and formu
tion are introduced in Sec. II; then in Sec. III the numeric
work is done for several transport quantities, and the res
are presented and discussed; in the last section a brief s
mary is given.

II. MODEL AND FORMULATION

A. General theory for linear ac conductance

We consider a mesoscopic structure with several termin
labeled bya,b,g, . . . . If thechemical potential at termina
a is changed, such as applied an external perturbation,
can get the total current response at terminalb. For indepen-
©2003 The American Physical Society07-1
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dent electrons, the only potential energy an electron acqu
is from external field. In the linear response theory, the c
ductance is determined by

gab
e 5

1

\vE0

`

dt exp@ i ~v1 i01!t#^@ Î a~t!, Î b~0!#&, ~1!

where Î a is the current operator which can be expressed
creation and annihilation operatorsâ†,â and b̂†, b̂, whereâ

and b̂ are related by a scattering matrixS—i.e., b5Sa.
If the transport is in a steady state, the charge accum

tion ~or depletion! produces only electrostatic fields. In th
case there is no current associated with excess charges.
ever, with a time-dependent perturbation the charge accu
lation ~or depletion! is always associated with displaceme
currents. In fact ignorance of electron-electron interactio
makes Eq.~1! not satisfy the current conservation and gau
invariance. To ensure that the transport theory is current c
served and gauge invariant, Bu¨ttiker and co-workers2,12,13,17

have developed an ac transport theory. The key notion in
theory is to consider a self-consistent internal potential
duced by the piled-up charges. Therefore the interactions
tween electrons must be taken into account. Due to the in
nal interactions, an internal potential is formed. In the case
low voltage and in the Hartree approximation, the effect
internal potential for an electron is

U~r ,t !5(
a

ua~r !eivtdma , ~2!

wheredma is the variation of the electrochemical potent
in reservoir a, while ua(r ) is the characteristic potentia
function.12 The current response to this internal potential
through

gab
i ~v!5 ive2E dES 2

] f

]ED E dr
dna~r !

dE
ub~r !, ~3!

where f is the Fermi distribution function in reservoirs an
dna(r )/dE is called injectivity which describes the densi
of states of carriers that incident into probea no matter
which probe it goes out.

Combining Eq.~1! and Eq.~3!, we can obtain the total a
conductance

gab~v!5gab~0!2 ive2Eab . ~4!

In this formula,gab(0) represents the dc conductance of t
system, whileEab is characteristic of the ac response und
an external oscillating perturbation, calledemittance. In the
Hartree approximation it can be expressed as

Eab5E dES 2
] f

]ED E dr Fdnab~r …

dE
2

dna~r !

dE
ub~r !G .

~5!

At zero temperature, Eq.~5! can be reduced into

Eab5E dr
dnab~r !

dE
2E dr

dna~r !

dE
ub~r !, ~6!
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dnab~r !

dE
52

1

4p i H Sab
† @E,U~r !#

dSab@E,U~r !#

dU~r !

2
dSab

† @E,U~r !#

dU~r !
Sab@E,U~r !#J ~7!

and dna(r )/dE5(bdnab(r )/dE. For the complex conduc
tance, Eq.~4!, we can define its phase angle

tanu52ve2Eab /gab~0!. ~8!

This definition is useful for investigating the capacitive
inductive properties of small quantum systems.

Because the internal potential is caused by the charge
tribution, we can use the Poisson equation to calculate
characteristic potential distribution, i.e.,

2¹2ua~r !14pe2E dr 8P~r ,r 8!ua~r 8!54pe2
dna~r !

dE
,

~9!

whereP(r ,r 8) is the response function of charge density
electrostatic potential. As a simple case we use the Thom
Fermi approximationP(r ,r 8)5dn(r )/dEd(r2r 8) to reduce
the above equation to

2¹2ua~r !14pe2
dn~r !

dE
ua~r !54pe2

dna~r !

dE
, ~10!

in which dn(r )/dE is the total DOS distribution. It is worth
pointing out that we shall self-consistently compute the
conductance for a mesoscopic structure. The self-consiste
takes electron-electron interactions as a screening effec
there will be a screening lengthlS in the computation. This
is just the Thomas-Fermi screening length which is related
the DOS, i.e.,lS

2254pe2dn(r …ÕdE. So the screening lengt
itself will join in the self-consistent calculation.

From these formulas we can study specific structures
obtain their dynamical conductances. One can see that
important quantities are the density of states and its com
nents as well as the internal potential. These quantities
be obtained by solving the coupled Schro¨dinger equation and
Poisson equation iteratively.

B. Electron in a magnetic multilayer

The system investigated here is shown in Fig. 1~a!. It
consists of a series of magnetic fields parallel~barrierlike! or
antiparallel~well-like! with thez axis and arranged along th
x axis in a range@xl ,xr#, while in they direction it is taken to
be homogeneous. This structure is usually called a magn
multilayer or magnetic superlattice.1,16 There are two perfec
leads connecting this magnetic multilayer to an exter
source and drain, labeled by contact 1 and contact 2. If
external alternating voltage is applied to the source, electr
will incident from one probe to the other experienced mod
lated magnetic fields. It is assumed that there are no m
netic fields in the leads. The vector potential distribution
this structure is shown in Fig. 1~b!.
7-2
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In the case for a two-dimensional gas that there exist
external magnetic field perpendicular to it and a small os
lating electric potential applied to it, the corresponding on
electron Hamiltonian reads

H5
1

2m
@p1eA#21U~x!

5
1

2m
$px

21@py1eA~x!#2%1U~x!, ~11!

where m is the effective mass of an electron,A
5„0, A(x),0… is the vector potential in the Landau gaug
i.e., A(x)5Bx or 2Bx piecewise continuously,@py
1eA(x)#2/2m provides an equivalent magnetostatic pote
tial, andU(x) is the internal potential caused by the char
distribution. We can see that they component of the momen
tum commutes with the Hamiltonian, i.e.,@py ,H#50. As a
consequence we can write the wave function asC(x,y)
5eiqyc(x), whereq represents they component of a wave
vector, later called the traverse wave vector. Thus we ob
the following one-dimensional Schro¨dinger equation involv-
ing the internal potential:

H \2

2m

d2

dx2
2

1

2m
@eA~x!1\q#22U~x!1EJ c~x!50.

~12!

Because the applied field is low, the internal poten
U(x) is smoothly varied and can be expanded in a serie
can be written to the first three terms as

U~x1Dx!5U~x!1U8~x!Dx1
1

2
U9~x!Dx2. ~13!

Using this expansion, the Hamiltonian can then be rewrit
as

FIG. 1. Schematic drawing of a magnetic multilayer structu
with the spatial distributions of magnetic fieldB ~a! and vector
potentialA ~b!.
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H52
\2

2m

d2

dx2
1

1

2
mv2~x2x0!21C, ~14!

where

v5
~e2B21mU9!1/2

m
, ~15!

x05
eB\q2mU8

e2B21mU9
, ~16!

and

C5U~0!2E1
1

2mF ~\q!21
~eB\q2mU8!2

e2B21mU9
G . ~17!

For convenience, we define a new variable

j5~mv/\!1/2~x2x0! ~18!

and a new function

c~j!5P~j!exp~2j2/2!. ~19!

According the above definition, we can rewrite Eq.~12! as

d2P~j!

dj2
22j

dP~j!

dj
1lP~j!50, ~20!

wherel52(E2C)/(hv)21. This is a standard Hermitian
equation whose general solution is

P~j!5C0P0~j!1C1P1~j!, ~21!

in which

P0~j!511
2l

2!
j21

2l~42l!

4!
j41•••

1
2l~42l!•••~4n242l!

~2n!!
j2n1••• ~22!

and

P1~j!5j1
22l

3!
j31

~22l!~62l!

5!
j51•••

1
~22l!~62l!•••~4n222l!

~2n11!!
j2n111•••.

~23!

Then we get the wave function immediately

c~x!5@C0P0~j!1C1P1~j!#exp~2j2/2!. ~24!

The wave function of an electron beyond the magne
region is just the superposition of plane waves propagatin
the opposite directions, i.e.,

c~x!5A exp~ ikx!1B exp~2 ikx!, ~25!
7-3
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wherek5A2mE/\ andE is the energy of an electron. In th
leads attached to the magnetic multilayer structure the
coming and outgoing wave functions are

c~x!5H eik lx1re2 ik lx, x,xl ,

teikrx, x.xr ,
~26!

wherer andt are the reflection and transmission amplitud
respectively,kl(r)5A2m(E2Vl(r) )/\, andVl(r) is the poten-
tial in the left ~right! region of the structure, arising from th
small deviation of chemical potentialdma .

C. Calculation scheme

For numerical calculations, we divide the system in
very large number of small regionss1 ,s2 ,s3 , . . . ,sn . The
whole system is constructed bys1^ s2^ s3^ •••^ sn . In
each region, a uniform field is assumed. The electronic w
functions in different regions can be obtained by compos
of the Hermitian function or the plane wave, such as

c j~x!5Ajf j 1~x!1Bjf j 2~x!, ~27!

where f j i can be either an Hermitian function or a pla
wave. Between two adjacent regions, the continuum co
tions of wave functions and their derivatives at the bound
result in a coefficient transfer matrix which connects the t
couples of coefficients of the wave functions, i.e.,

S Aj

Bj
D 5Tj S Aj 11

Bj 11
D . ~28!

At j th boundary, we have

M j~xj !S Aj

Bj
D 5M j 11~xj !S Aj 11

Bj 11
D , ~29!

so Tj5M j
21(xj )M j 11(xj ), where

M j~x!5S f j 1~x! f j 2~x!

df j 1~x!/dx df j 2~x!/dxD . ~30!

For the systems1^ s2^ s3^ •••^ sn , we can obtain the
global transfer matrix by multiplying all matricesTj , i.e.,

T5S T11 T12

T21 T22
D 5)

j 51

n

Tj ; ~31!

then the plane waves in the leads are connected by

S eik lxl

re2 ik lxl
D 5TS teikrxr

0 D . ~32!

It is clear that one can get the transmission and the reflec
coefficients by numerical calculations.

In addition one can also obtain the scattering matrix of
system. This can be realized by comparing the form of
transfer matrix and the scattering matrix

S A0

B0
D 5TS An

Bn
D ~33!
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S B0

An
D 5SS A0

Bn
D . ~34!

The relationship between the elements of the scattering
trix and the transfer matrix is

S S11 S12

S21 S22
D 5S r l t r

t l r r
D

5S T21/T11 T222T21T12/T11

1/T11 2T12/T11
D . ~35!

The ballistic dc conductance of a structure is directly
lated to the transmission probability

g21~0!5
2e2

h
T~EF!, ~36!

whereEF is the Fermi energy andT(EF) is the transmission
probability of electrons with the Fermi energy.

The above discussion is based on the one-electron pic
As mentioned in the first part of this section, there are int
actions between electrons in real circumstances, so we h
to consider the interactions between electrons. The effec
interaction of electrons is equivalent to an internal potent
which should be solved by a self-consistent numeri
method. From the Schro¨dinger equation, we know that th
wave functionc(x) is determined by the potential energ
and, while from the Poisson equation, we see that the c
acteristic potentialu(x) is determined by the charge densi
distribution in the volume. According to the physical mea
ing of the partial density of state, the carriers’ density can
obtained by

dna~x!

dE
5

1

hJ
uca~x!u2, ~37!

whereca(x) is the scattering wave function incident from
probea and J is the incoming particle flux. By this partia
density of states one can obtain the total DOS by summ
up injectivitiesdn1(x)/dE anddn2(x)/dE. Putting all these
results into the Poisson equation~10!, we obtain the charac
teristic potentialua(x). Combining the internal potentia
with the equivalent magnetostatic potential, one gets a n
potential in the Schro¨dinger equation. Solving the Schro¨-
dinger equation with the new effective potential, one obta
a new wave function. Since our structure is an open syst
we have to use the transmission and reflection amplitude
get the total wave function. With these self-consistent ite
tions to a necessary precision, we finally obtain the quanti
needed.

In calculating the Poisson equation, we divide the str
ture into n small segments, each having a lengthDx. Then
we are able to make the Poisson equation discrete and tr
form Eq. ~10! into the following solvable linear equation:
7-4
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S a11 a12

a21 a22 a23 0

�

0 an21,n

an,n21 ann

D S u1

u2

A

A

un

D 5S d1

d2

A

A

dn

D ,

~38!

where ui is the discrete value of the potential in thei th
segment anddi54pe2Dx2dna(xi)/dE. The coefficient ma-
trix is a tridiagonal matrix, in which ai ,i
54pDx2e2dn(xi)/dE12, ai ,i 215ai ,i 11521. The bound-
ary condition is u15(11R)/2 on contact 1 andun5(1
2R)/2 at contact 2, whereR5ur u2 is the reflection probabil-
ity. The total internal potentialU(x) at pointx in the Schro¨-
dinger equation isU(x)5Sua(x)dma .

Using the expressions given above we can calculate
electronic transport properties of magnetic multilayer str
tures. We shall take the double magnetic barriers (n52) and
five magnetic barriers (n55), as examples, to study their d
and ac properties.

III. RESULTS AND DISCUSSIONS

A. dc conductive properties

We first provide the numerical results for the transmiss
versus energy of a double magnetic structure with differ
system sizes in Fig. 2. The magnetic field strength is fixe
B51 T. One can see that the transmission probabilities
exactly the same as those in the usual double-barrier s
tures whenq50. The corresponding magnetostatic pote
tials for these three different system sizes are shown in
3. Due to the magnetostatic potential from the magnetic fi
being aboutUB5(eBx)2, the larger the size of the system
the higher the potential as shown in Fig. 3, and the m
bound states as shown in Fig. 2. The positions of the le
are the same in spite of the different level widths for ea
potential. This is due to the fact that the small potential i
part of the large potential which is clearly shown in Fig.
From Fig. 3 one can also see that the effective potentials
all finite harmonic potentials. It is confirmed that the ener
spectra tend to the spectrum of a harmonic oscillator w
the potential profile approaches the harmonic oscillator
tential, as is shown in Fig. 2~d!.

It is convenient to study the energy-dependent transm
sion and the internal potential distribution under differe
strengths of magnetic fields. Also from the fact that the m
netostatic potentialUB is related to the vector potentialA(x)
which is the product of lengthL and magnetic fieldB, we can
imagine that to increase the magnetic field may have
same effect as to increase the system length. Numerica
sults for B51, 2, 3 T and fixed system lengthL5200 nm
have confirmed this conjecture; i.e., the transmission pr
ability and effective potential have almost the same profi
as in Fig. 2 and Fig. 3, respectively, although there are
differences: one is that the eigenenergies become dens
the magnetic field is larger; the other is that the higher
tential has narrower well width, different from that of Fig.
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In the presence of a magnetic field, the equivalent m
netostatic potentialUB(x)5@eA(x)1\q#2 depends not only
on the magnetic field, but also on the traverse wave vec
Therefore the transmission probability will be affected by t
traverse wave vectorq,1,18 because the resonant levels w
shift under the change ofq. As indicated in Fig. 4, for some
q there exist bound states and for otherq there may not exist
bound states, inside the magnetic field region. This cha

FIG. 2. Transmission probabilityT vs energyE for an incident
electron in the casen52 for different system lengthsL, but a con-
stant magnetic field (B51 T). A comparison is made with the
eigenenergies of a harmonic oscillator.~a! L5200 nm, ~b! L
5300 nm,~c! L5360 nm, and~d! the eigenenergy levels of a ha
monic oscillator.

FIG. 3. Magnetostatic potential distributions for three syste
with the different lengths corresponding to Fig. 2.
7-5
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teristic is different from the electric potential and can be us
to adjust the effective potential by using the vector poten
A(x). The transmission spectra with differentq are shown in
Fig. 5. In order to make the effects ofq more clearly, we plot
T vs Ex instead ofT vs E, where Ex is the longitudinal
energy satisfyingE5Ex1\2q2/2m. The traverse-wave
vector-dependent shift of the resonant levels is clearly sho
in Fig. 5.

We have also perform numerical calculations for fi
magnetic barriers. It can be found that each transmiss
peak in Fig. 2 will be split into 4. This is consistent with th
rule of (n21) splitting for an multibarrier structure.

B. Emittance

According to Eq.~4! the ac dynamic admittance is gov
erned by the imaginary part of the conductance and anemit-
tance is defined.12 Figure 6 shows the emittanceEab of a

FIG. 4. Magnetostatic potential distributions with differe
traverse wave vectors.

FIG. 5. Transmission probabilityT vs longitudinal energyEx

with the different traverse wave vectors in the casen52, where
k05(2mv/\)1/2.
05440
d
l

n

n

system with magnetic field,B53 T, and system lengthL
5200 nm. These parameters lead to resonant peaks w
the energy range from zero to top of the barriers. It will
helpful for us to understand the role of emittance by thinki
of classical circuit elements, such as capacitorC and inductor
L. Both appear in the imaginary part of a circuit conductan
g5g01 ivX, where X represents the dynamic admittan
which is caused by the dynamic interaction between
charges. From the discussion in Sec. II, one sees that
emittance is a function of Coulomb interaction and magne
field. In Figs. 6~a! and 6~b! are the diagonal emittancesE11,
and in Figs. 6~c! and 6~d! are the off-diagonal emittance
E21. From Fig. 6 one sees that the large variations oc
around the resonant energy.

The numerical results show that a diagonal emittance
negative when the Fermi energy of the reservoir is close
the resonant energyEr . That is a inductive behavior. But i
increases rapidly as the Fermi energy departs from the r
nant energy and goes from negative to positive, and so sh
the capacitive feature. After it reaches a maximum at e
side ofEr it will slowly drops down and goes to zero asym
totically. This behavior for the emittance in a magne
multilayer structure is similar to the theoretical results o
tained by Preˆtre et al. for electric multibarrier.11,17 WhenEF
is close toEr , the transmission probability is high. But th
does not mean that electrons travel through the structure
rectly. It will dwell inside the system like an oscillator~we
will discuss this phenomenon in Sec. III D!. So the phase of
the disturbance will be delayed through the system. This
key characteristic of an inductance. If the incident energy
apart from the resonant energyEr , the transmission probabil
ity becomes small. The electrons cannot travel through
system easily. Charges will be accumulated in the struct
The system behaves just like a capacitor. The emitta
changes the sign from negative to positive.

FIG. 6. ~a!,~b! Diagonal emittancesE11 vs chemical potentialE.
~c!,~d! Off-diagonal emittancesE21 vs chemical potentialE. In ~a!
and ~c!, the resonant energy isE524.0413 meV, while in~b! and
~d! the resonant energy isE517.8630 meV.
7-6
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On the contrary, the off-diagonal emittances have an
posite shape with respect to the diagonal ones. Near a r
nant energy,E21 has a positive peak; then it drops to negat
values as the Fermi energy deviated from the vicinity ofEr .
And it also has one minimum at each side ofEr correspond-
ing to the two maxima ofE11. Two of us~Zhaoet al.19! have
calculated the off-diagonal emittance theoretically. And o
numerical results here agree with the theoretical ones v
well.

There is an interesting wave-vector filtering property
ac transport. As we calculate the emittance with differ
traverse wave vectors, it is found that, like in the dc case,
emittance is dependent on the wave vectorq. From Eq.~5!
one can see that the emittance is related to the PDOS an
internal potential. We know that the magnetostatic poten
is UB(x)5@eA(x)1\q#2. The shift and shape of peaks a
dominated by this potential, and therefore determined by
wave vectorq. From Fig. 3 one can see thatq.0 corre-
sponds to a double-barrier structure, whileq,0 corresponds
to a four-well structure. These potential structures indic
that the resonance occurs at lower positions forq,0 and
higher positions forq.0. These results are clearly con
firmed by our numerical calculations as shown in Fig. 7.

C. Spectrum versus magnetic field

For a fixed chemical potential, the conductance is a fu
tion of magnetic fieldB. We will explore the field-dependen
properties for a double-magnetic-barrier structure.

The transmission probabilityT is shown as a function o
magnetic fieldB in Fig. 8. As discussed before, one can s

FIG. 7. EmittancesE11 and E21, compared with the transmis
sion probabilityT, vs longitudinal energyEx with three different
traverse wave vectorsq in the casen52, wherek05(2mv/\)1/2.
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that as the magnetic field increases, the number of reso
energy levels also increases. So the curve in Fig. 8 can
explained as follows: WhenB is small, the barriers of the
equivalent magnetostatic potential are low, and the electr
with a given energy, which is higher above the barriers, c
pass through the structure easily; thus the transmission p
abilities are near to 1. As the barrier height increases t
value which is larger than a given electron energy, the tra
mission probabilityT falls down quickly until the electron
energy is near the highest intrinsic energy level of the str
ture, whereT is a sharp peak in theT-B spectrum. The num-
ber of resonant energies and the level distance increase
the stronger magnetic fieldB. At last the lowest-energy leve
exceeds the energy of the incident electrons; there is no r
nant level matching the incident energy, so there is no p
in the spectrum.

Figure 9 shows the emittancesE11, E21 and phase angleu
of the complex conductanceg21(v) changing with magnetic
field B and chemical potentialE. The emittances and phas
angle have the same zero point on theB axis and on theE
axis which can be determined from the definition of t
phase angle, Eq.~8!. Here we take the frequency of the o
cillating external perturbationv51 GHz. The plot of the
phase angle in Fig. 9 shows the transformation between
capacitive and inductive behavior of the structure. Arou
the resonant peak, the off-diagonal emittanceE21 is positive
as shown in Fig. 9~b! and the phase angle is negative in F
9~c!. These results indicate that the magnetic barrier struc
possesses capacitive and inductive properties for diffe
magnetic strengths. In the narrow width of a resonant pe
the structure behaves as an inductancelike property, and a
from the resonant peak, the structure has a capacitanc
property.

We show in Figs. 10 and 11 the transmission probabi
T, emittanceE21, and phase angleu of the complex conduc-
tance g21(v) near the resonant energies for a five-peri
system. The system length is set to 600 nm. The quantitie
Fig. 10 are all versus the variation of the chemical poten
in the reservoir. Corresponding to the four resonant peak
Fig. 10~a!, the emittance in Fig. 10~b! also consists of four

FIG. 8. Transmission probabilityT vs magnetic fieldB in the
casen52. lnT is plotted for clearness.
7-7
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FIG. 9. EmittancesE11, E21, and phase angleu of the complex
conductanceg21(v) vs magnetic fieldB and vs chemical potentialE
in the casen52.

FIG. 10. Transmission probabilityT, off-diagonal emittance
E21, and phase angleu of the complex conductanceg21(v) vs
chemical potentialE near the resonant peaks in the casen55.
05440
peaks. Each peak is very similar to that of the two-per
case. It seems that the emittance in the five-period case is
a combination of four parts of emittance in the two-peri
case. From the derivation we can see that the emittanc
determined mainly by the phase angle of the complex tra
mission amplitude, so the results show that each of the f
resonant peaks experiences a complete change in magn
and phase angle. Each peak of the emittance in the en
band is different. The first and fourth peaks of the transm
sion probability are relatively narrow. Thus the correspon
ing parts in the emittance curve are larger, while the sec
and third peaks are smaller. The phase angle in Fig. 1~c!
tells us that the characteristics of a device can be well re
lated to change from inductive to capacitive, or vice versa
a small energy range. This gives us a series of small ind
tive and capacitive ‘‘windows’’ which are arranged alte
nately. From the plot of the phase angle of the complex c
ductance, we can still recognize the difference between
five-period case and the two-period case. The phase ang
positive, but close to zero outside the four resonant regio
however, it decreases to lower than zero when the chem
potential locates in the middle of the resonant regions.

Figure 11 is also the results for a five-period case, but
relevant physical quantities are versus magnetic fieldB.
From these figures we find that the results are very simila

FIG. 11. Transmission probabilityT, off-diagonal emittance
E21, and phase angleu of the complex conductanceg21(v) vs
magnetic fieldB near the resonant peaks in the casen55.
7-8
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those discussed in Fig. 10. But these quantities change
magnetic fieldB in a direction opposite to those that chan
with energyE. The capacitive and inductive ‘‘windows’’ are
also alternately arranged inside a certain range of fieldB. It is
obvious that a multiperiod structure can give the sequen
regulation of the inductive and capacitive property by che
cal potential or magnetic field. However, a device may
more manipulable by changing the magnetic field th
changing the chemical potential. This kind of a device m
have many applications, such as to memory units.

D. Charge distribution and internal potential

As discussed in Sec. II, the interactions between electr
will induce a charge accumulation and give arise to an in
nal potential. We can calculate the internal potential fo
magnetic multilayer structure. The internal potential gives
insight into the properties of a magnetic system under
perturbation and reveals the meanings of physical quant
in magnetic fields. Figure 12 shows some charge distri
tions and characteristic potential profiles for a two-per
magnetic structure.

It is clear that the charge distribution is related to t
transmission probability. This is similar to the nonmagne
double barrier case.19,20In Fig. 12~a! the transmission is very

FIG. 12. Charge distributionsn(x) and characteristic potentia
distributionsu1(x) for the cases with different transmission pro
abilities. ~a! Very small transmission probability,~b! T50.1, ~c! T
50.5, and~d! T51.
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low and the charge density is very small inside the syste
As T increases, charge piles up in the structure. But asEF
goes near the resonant tunneling energyEr , the charge den-
sity decreases and there is almost no charge distributed
side the structure at resonance. This phenomenon can be
ily understood. At low transmission, incident electro
cannot go inside the magnetic structure, so they can only
up outside the potential near the two ends of the struct
But the accumulated charges are so small that we canno
them obviously in Fig. 12~a!. As T increases, electrons ca
go farther inside the structure, but they cannot all p
through the structure since the transmission probability is
1. The charges jam in the magnetic field region and
charge density becomes large. Near the resonant en
electrons pass through the structure without reflection so
few charges pile up inside the structure.

However, the resonance does not mean that elect
travel directly from one end to the other. This can be se
from the large density of electrons inside the potential w
Because our structure is formed by magnetic fields, electr
will convolute inside the magnetic field region before th
go through the system. Thus the probability of electro
dwell inside the potential well is relatively large. This featu
is consistent with the numerical results which show the
creasing probabilities of electrons inside the magnetic po
tial well as the transmission probability increases.

Another special property in our magnetic structure is t
the boundaries of the system are not so clear as for the
magnetic double barriers. For example, the potential profi
in these two cases are different, so that the charge accu
lation in present case is not obvious as that in a nonmagn
double-barrier structure. It makes the result more com
cated, but we can still confirm the main characteristics
charge distribution.

In Fig. 12, the characteristic potential distributionu1(x) is
also shown. At very low transmission, the potential profile
very simple. We would point out an important feature of th
case: that the potential near two ends of the structure is ra
flat. These regions can be regarded as the penetration d
as electrons can penetrate inside the system. The centra
is just a straight line; it is also true at resonance, but the sl
is different. When the transmission probabilities are neit
very high nor very low, the potential profiles apart from th
above extreme ones fluctuate drastically. These fluctuat
are caused by the intricate charge distribution. The ove
trend of potentials is decreasing from the left side to the ri
side. This is determined by the boundary conditions. We
see that as the reflection probability decreases, the pote
profile tends to be flat, which proves the relation between
reflection probability and the boundary conditions of the
ternal potential.

IV. SUMMARY

We have studied the electronic transport properties o
magnetic multilayer structure under an alternating exter
perturbation based on the theory proposed by Bu¨ttiker et al.
The internal potential arising from electron interactions h
been taken into account. With an iterative calculation,
7-9
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JIE YAO, XUEAN ZHAO, GUOJUN JIN, AND YUQIANG MA PHYSICAL REVIEW B68, 054407 ~2003!
coupled Schro¨dinger equation and Poisson equation we
solved self-consistently. Some interesting results of the s
tem were obtained. We have obtained the dc conducta
which is consistent with previous works. The magne
multilayer structure shows some similar properties with
common semiconductor multiwell structures. Yet it has
own special characteristics. What is more interesting is th
part. By inspecting the charge distribution and internal p
tential distribution of the system, we can understand w
happens inside the system that influences the overall e
tronic transport and gives explanations for the behavior
emittance. Corresponding to the filtering effect of the str
ture on transmission electrons with different wave vectors
the dc case, it has been found that the emittance is varie
the wave vectors of the incident electrons. The ac part
just like the capacitance or inductance in classical circu
And the results of our calculations indicate that it plays
very important role in the total conductance and can aff
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