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Motivated by recent interest in42L dimensional quantum dimer models, we revisit Fisher’s mapping of
two-dimensional Ising models to hardcore dimer models. First, we note that the symmetry breaking transition
of the ferromagnetic Ising model maps onto a non-symmetry breaking transition in dimer language—instead it
becomes a deconfinement transition for test monomers. Next, we introduce a modification of Fisher’'s mapping
in which a second dimer model, also equivalent to the Ising model, is defined on a generically different lattice
derived from the dual. In contrast to Fisher’s original mapping, this enables us to reformulate frustrated Ising
models as dimer models with positive weights and we illustrate this by providing a new solution of the fully
frustrated Ising model on the square lattice. Finally, by means of the modified mapping we show that a large
class of three-dimensional Ising models are precisely equivalent, in the time continuum limit, to particular
quantum dimer models. As Ising models in three dimensions are dual to Ising gauge theories, this further yields
an exact map between the latter and the quantum dimer models. The paramagnetic phase in Ising language
maps onto a deconfined, topologically ordered phase in the dimer models. Using this set of ideas, we also
construct an exactly soluble quantum eight vertex model.
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[. INTRODUCTION related to frustrated quantuftransverse fieldlsing models
in d=2+1 in the limit of weak transverse fields and thence
Dimer models have long been of interest to statisticalto a set of ideas and techniques for obtaining their phase
mechaniciand=® In addition to their interest in various diagrams'® Very recently, Misguictet al. have constructed
physical contexts, they have the striking feature that they ar@n exactly soluble dimer model on the kagome lattice. This
exactly soluble on any planar grapfrollowing this insight, model maps onto a transverse field Ising model vaéno
Fishef constructed a general mapping—reviewed bebw_gxchange, thereby allowing the entire spectrum and correla-
from two-dimensional Ising onto planar dimer models, fions to be determinetf. _
thereby relating the solvability of the one to that of the other, !N this note, we further explore the above connections
In particular he related the partition function of the ferromag-b_etv"een Ismg_and dlm_er r_nodel_s In ,tWO and thfee _d|men-
netic Ising model on the square lattice to that of the dimer>'°NS: We begm by reviewing Fisher's construction in two
model on the(now) Fisher lattice, which is sketched in Fig. dimensions which utilizes the loop model generated by the
1. Earlier work by Kasteleynand Stephensdrhad related Igmg h|gh-temperaturg expansion, and maps its conﬂgura-
some Ising models to dimer models on nonplanar decoratef{ons onto those of a dimer model on a decorated lattice. We
lattices. note that the symmetry breaking transition in the two-

More recentlyguantumdimer model§QDMs) have been dimensional_ferromagngtic Ising modell.maps onto a nonsym-
formulated and studie¥l. These live in Hilbert spaces metry breaking, deconfinement transition of test monomers

spanned by dimer configurations of a given lattice and theif? € dimer model. As an aside we point out that the dimer

Hamiltonians contain kinetic and potential energies that aréormulation provides an immediate insight into how the Ising
naturally defined in this basis. These models were introduced
to capture the dynamics of valence bond dominated phases
of quantum antiferromagnets, with the particular intent of
finding Anderson’s hypothesized resonating valence bond
(RVB) liquid®—a hope realized recent}.

In this context, attention has been focused on the nature of i
the quantum dimer phases, in particular their topological L3 13
properties and low-energy excitations, and a recurring and 4

2 2

useful theme has been their interpretation in gauge theoretic

terms, particularly E?E_)e identification of the RVB phase as @ g, 1. (Left) The Fisher lattice, a decorated square lattice. The
deconfined phasé:™® In Ref. 14 this identification was six sites in the basis correspond to one square lattice site. A dimer

made as an exact reduction of an “odd" Ising gauge theorymodel on this lattice can be used to calculate the partition function
to a quantum dimer model on the same lattice, in the extremegf an Ising model on thédirect square lattice(Right) The modi-

strong coupling limit. As Ising gauge theoriesdr-2+1 are  fied Fisher lattice, used to solve the fully frustrated Ising model on
dual to Ising models, this allows dimer models to be exactlythe square lattice as a positive weight dimer model.
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Ising model orbital current models, such as tkledensity wave models
high—t at duality H H
;%LPJW Nﬂ’mg considered in Ref. 17.
loop model soft dimers on dual
on direct lattice (domain walls) Il. THE ISING TRANSITION IN  d=2
Fisher generalised| Fisher AS A DECONFINEMENT TRANSITION
construction construction

difietmiodsl 68 difiierhodsl i In this and further sections, we consider classical Ising
decorated direct lattice decorated dual lattice models defined by the Hamiltonian

(negative fugacities in ositive fugacities
case of frustration
) H==3 3;0fo], 2.
1]

FIG. 2. The mappings of the Ising model onto dimer models. ~ where ¢ is a Pauli matrix, and);; is the strength of bond
(ij). The sites of the lattice, labeled by 1, . . . N, together

model yields a lattice theory without doubled fermions.with the bonds(ij) with nonzeroJ;; form a graphg, the
While Fisher’s construction suffices to solve any planar Isingnteraction graph. In the following, we will use the following
model _by dimer m_ethods, it has two features that obs_truct itglefinitions: B=1/kgT; Kij=BJij; vi;=1hv; =tanhK; . Al-
extension to making contact between quantum Ising anghough we have formally written a quantum Hamiltonian, the
quantum dimer models. The first is that it does not relate groplem is, of course, still classical.
giVen Spin Configurations to a SpeCifiC dimel’ Conﬁguration. We first b”eﬂy review Fisher’s mappn«%'ts Starting
The second is that for frustrated Ising models it leads tqyint is the high temperature expansion of the partition func-
negative weights in the equivalent dimer model—which is ajon, z="Trexp(~gH), of the Ising model,
problem as quantum dimer models are equivalent to classical
dimer models with positive weights at high temperatures. To N
get around these problems, we introduce a modification of z=2N11 exp(—Kjj)coshKij) |Y(v;;:0). (22
Fisher's construction which proceeds via an intermediate Ll
map to a generalizehonhardcoredimer model on the dual Here,Y (vj; ;G) is the crucial quantity: it is the sum over all
lattice which is then decorated to produce the hardcore corleop coverings, labeled by(G), of the graphg. These loops
straint. As an illustration of this new construction, we solvecan intersect one another, provided an even number of links
the fully frustrated Ising model on the square lattice as amanate from each site. The weighting of a particular cover-
purely positive weight dimer model on a modified Fishering is given by the product afj; of all the links of its loops,
lattice. so that

Finally, we turn to a class of three-dimensional classical
Ising models—these are geneffiustrated or unfrustrated ]
two-dimensional Ising magnets stacked ferro- or antiferro- Y (i ’g):F(G) <k1;[69 o =3
magnetically in the third direction, which can therefore be
mapped onto transverse field Ising magnets il 2dimen- ~ Fisher’s mapping turns the resulting loop model on the graph
sions by taking a continuum limit in the third direction. ¢ into a dimer model on a decorated grafh, by a decora-
Armed with the modified Fisher construction we are able totion procedure outlined in Ref. 6, see in particular its Fig. 6
map these onto quantum dimer models where the quantuifer the general decoration rule and Fig. 7 for the explicit
dynamics induced by the transverse field translates to a pagxample of the square lattice magnet. The resulting lattice is
ticular “resonance” dynamics of the kind studied by Mis- depicted in Fig. 1. There are now two types of bonds, the
guich et al. This is particularly interesting from the view- original (“external”) ones and the newinterior” ) ones.
point of the dimer models since it allows known lore on Ising  The crucial property of Fisher’s mapping is thatgiis a
models to be transcribed into statements about the formeplanar graph, so i®. The partition function of the dimer
Quite generally, the paramagnetic phases of the Ising modefsodel onD, Z, which is related to that of the original Ising
map to deconfined, topologically ordered phases in the dimeghodel in a simple way, can in that case be evaluated by
models. Specifically, for the case of the ferromagnetic IsingPfaffian methods; by Kasteleyn's theorérone can assign
model we find a dimer transition characterized solely by condirections to each bond dP such that the product of orien-
finement and the loss of topological order. We also observéations when traversing any elementary plagquette in a clock-
that the dimer models are exactly equivalent to Ising gaugavise direction is odd. These orientations can be used to de-
theories, as they must be since the latter are dual to Isinine a matrix,A, which has entrie\;=+1(—1) if bond
models in 21 dimensions. Consequently their spectrum in(ij) is oriented fori toj (fromj toi). With fugacities of the
the deconfined phase is understood in terms of Ising vorticegxternal and internal bonds given ty; and 1, respectively,
or visons. The relationships between these mappings are disne hasZ,=PfA.
played in Fig. 2. A nonanalyticity inZ bequeathes one . For instance,

We close with some remarks concerning possible extenthe Fisher lattice dimer model obtained from the square lat-
sions of this work, including the construction of an exactlytice ferromagnetic Ising model must exhibit a phase transi-
soluble quantum eight-vertex model along the lines of Reftion as the ratio of external to internal fugacities is varied.
15. Such a model may also be of interest in the context oNevertheless the Ising character of the transition seems to
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have disappeareeh route—there no longer is an Ising sym- % | H I H
metry to break. In the following paragraphs, we will see that VJAYI H H | |

the dimer model does not break any symmetries whatsoever.
FIG. 3. The open string configuratioffeur rightmost plotsare

Instead the Ising transition has turned into a confinement—
deconfinement transition in which the free energy to separate

9y P Igenerated with a monoméfilled circle) placed on the upper inte-
jor point of the cluster. The other monomer locatiteftmost plo}

two test monomers is the appropriate diagnostic. The unive
sality classes of the two transitions coincide, as they must, b o . ” i )

enerates the remaining four string configurations, obtained by a
reflection of the four displayed ones along a diagonal.

virtue of both of them mapping onto the theory of a single
gapless Majorana Fermion.
As D is periodic, one can find the partition function by

Fourier transformation; Z=PfA= \/detA= /Hq detA(q), monomers in the clustergj being placed independently

here&(a) is the Fourier t f o at ; onto one of two interior points of the cluster. The partition
where (q'). IS the Fourier transform on at wave vecton. function of the loop-string model is thus given by the sum
The specific free energy;, is given by

over the four monomer—dimer partition functiorigg(i,j)
_ =3Zp (i ).
~NBF=InZp=(1/2)>, In(detA(q)). (2.9 Next, one useéaio;)=Zs(i,])/Zp. It follows that in the
q high temperaturdparamagneticphase, wheréo;oj) van-
This expression does indeed reproduce Onsager’s formulghes exponentially, all the monomer pairs are confined. Con-
for the square lattice Ising model for any coupling strengthVersely, in the low temperature phase;;o;) decays to a

K.81® In particular, nonanalyticities occur when de) constant, which |mp(lj|es that aat least ofend probably all
=0, With® monomer pairs are deconfined.

Two comments on related issues are worth making. First,
dimer models generally exhibit topologically disconnected
sectors under local moves—a classical precursor of the no-
this happens only fog,=q,=0 andw=w,=1+ V2 so that tion of topological order for quantum problefAsvhich we
K.=In(1+ \/5)/27 as it should. sha}ll invoke below for quantum dimer models. On the F|$her

What is the nature of the phases on either side & For lattice there are fOL_Jr sm_Jch sectors on a torus corresponding to
w— o0, only one dimer configuration survives, namely, oneth€ various combinations of an even or odd number of
in which all external bonds and the bond linking the two dimers |ntersect|r_lg the tv_v_o nontrlv_lal loops. The Fisher map
internal sites are occupied. This configuration breaks no laff€Presents the Ising partition function as a sum over all four

tice symmetries, and is in that sense not a crystal. In th€€ctors of the dimer model. Evidently, all Ising spin configu-
opposite limit, w=1, all dimer configurations have equal rations in a finite system are accessible from one another by

weight and their ensemble also respects all lattice symme2¢@! spin flips, and the topological distinction in the dimer
tries. Evidently the transition does not involve symmetrymOdel is an artifact of the bookkeeping from the perspective
breaking. of the Ising model. _ _
Instead, the two phases differ in their response to the in. S€cond, dimer problems are solved by lattice Majorana
sertion of a pair of test monomefsites not part of a dimer ferm|ons. As the unit cell of the Fl_sher lattice has six sites,
It is not hard to see that the high temperature phase is cofpicroscopically the dimer formulation leads to as many Ma-
fining. If one places a monomer on one end of an externdPranas. However, at the transition fugaciti, two eigen-
leg, the site on its other end has to pair up with another sit¥alues of A(0) vanish. These two combine to form one
in its cluster(group of sites obtained from one original site single Majorana Fermion, to yield the known critical theory
by decoratiof, which in turn leaves the partner of the latter as in the Ising model. We note that given the lore on fermion
site unpaired. Two monomers placed a distanegart there- doubling? it is somewhat surprising that we obtain only a
fore exact a cost in free energy proportional to the minimalsingle Majorana Fermion from our lattice problem. While
number of unoccupied external bonds, which is proportionathis has been commented on from a different perspective
to L. This point is thus in a confined phase. Intuitively, the before?* we note that in the dimer formulation this conclu-
low temperature phase involves a true dimer fluid whichsion arises from the manifestly asymmetric nature of our
should therefore allow monomers to be separated with finitéattice, no longer invariant under reflections along botind
free energy cost. y axes. This leads to lattice derivatives different from the
These statements can be made precise by tracking ties normally encountered when discretizing the continuum.
spin—spin correlation,oc;), from the spin formulation into
the dimer formulation. The spin correlator can, in the context
of the high-temperature expansion, be expressed as a loopil. FRUSTRATED ISING MODELS AS DIMER MODELS
model on the square lattice containing, along with the closed WITH POSITIVE FUGACITIES
loops, one open string running between the sitesid j.*°
This loop-string model can in turn be cast in terms of a dimer
model with two monomerg¢Fig. 3). The vertices at the ends Fisher’s construction is quite general. The high tempera-
of the string can be encoded in the monomer—dimer modelire expansion generates a loop model on any interaction
by summing over four partition functionZ,q, with the  graphg, and the rules for generating the clusters out of the

detA(q) = (1+w?)2—2w(w?—1)(cosg,+ cosd,),

A. The modified Fisher construction
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vertices depend only on the number of legs of each given Three comments on the differences between the Fisher
vertex. All resulting models are in principle exactly soluble. construction and the modified Fisher construction are in or-
As mentioned in the Introduction, an unfortunate featureder. First, as is appropriate for a dual construction, high and
of the Fisher mapping, in the context of quantum dimer modiow temperatures trade places when we compare the original
els discussed below, is that it leads to negative dimer fugaciFisher construction to the modified construction, e.g., the
ties in the case of frustrated models: thel’e, not all interaCequa| fugacity dimer model Corresponds to zero and |nf|n|te
tions can be chosen to be ferromagnetic, and hencethe temperature, respectively. Second, in the modified construc-
= Liw;; =tanhK;; are negative for some of the bonds. tjon the spin model maps onto a single topological sector of
Here, we present a way of addressing this problem via ge dimer model. The remaining sectors are generated by
modified Fisher construction on the dual of a tWo- cqngidering different boundary conditions for the spin model.
d|men5|o_nal p"’?‘”ar Iattlce._ It proce_eds b_y mapping each ISInQ'hird, the original mapping does not relate individual spin
lseﬁlpcgonﬂguratmn onto a link configuratiofir}, on the dual configurations to dimer configurations but the modified map-
: . L . . ing does, upto a twofold ambiguity coming from global
A given link of the dual lattice is occupiedr€1) if and Ein% reversaIF.DThis will be importgnt i¥1 making a conngection

only if the bond of the direct lattice it crosses is frustrated. : ;
. ) ; ; tw I | t I low. But
Such a link configuration has the property that the site of thjz{e een Ising models and quantum dimer models below. Bu

dual lattice at the. center of a frust.rated plaquette has an o : gggfaﬁf%zgidn}gidr:geﬂOc(;)gltc,trucnon to the solution of a
number of occupied links emanating from it; for an unfrus-
trated plaquette, this quantity is even. Clearly a spin configu-
ration and its Ising reversed counterpart map onto the same
link configuration on the dual lattice. . ) . )
Such soft dimer configurations on the dual lattice can be As an illustration of the above technique, we now use it to
converted into hardcore dimer coverings by suitably decoratSolve Villain's odd model, also known as the fully frustrated
ing each site. Depending on the even or oddness of the nunksing model on the square lattié€This model is defined for
ber of occupied links at the site, two different decorationsSpins on the square lattice with nearest neighbor interactions
operations are required, leading to two different types ofuch that each plaguette has an odd number of antiferromag-
clusters. The decoration transformation for odd sites id'etic interactions. This can for example be achieved by
shown in Fig. 4. For even sites, one requires a slightly dif-choosing all horizontal bonds to be ferromagnetic and the
ferent prescription as in Fisher’s original construction, as thayertical bonds in ferromagnetic rows alternating with antifer-
included interchanging empty and occupied links. The correfomagnetic ones. Transcribed to the dual lattice, which is
sponding construction is also given in Fig. 4. again square, this corresponds to an odd number of occupled
The dimer fugacities are determined by the Boltzmanrlinks emanating out of each plaquette. The corresponding
factors which come with the presence of a frustrated bondgdecorated latticéFig. 1) has five sites per cluster.
We find it convenient to add a constant term to the Hamil- The Kasteleyn matrix on this lattice can be partially di-
tonian so that an unfrustrated bond has energy 0 and a fruggonalized by means of a Fourier transform. While the lattice
trated bond has energyd2so that the dimer fugacity of link itself has five sites per unit celsee Fig. 3, choosing appro-
(ij) is given byu=exp(—2K;), which is always positive and priate signs for fche matrix requires that we consider a
between 0 and 1. As in Fisher’s original construction, |Singdoubled unit cell in one direction which we take to be the

models on planar lattices lead to planar dimer models, whichorizontal direction. This yields the X010 Fourier trans-

B. The fully-frustrated Ising model as a dimer model

can hence be solved using Kasteleyn’s theorem. formed matrix,A(q),
0 -1 -1 0 0 0 0 0 —ue % 0
1 0 -1 0 uey 0 0 0 0 0
1 1 0o -1 -1 0 0 0 0 0
0 0 1 0 -1 -u ©0 0 0 0
N 0 -—ue¥y 1 1 0 0 0 0 0
A=l 4 O 0 u 0 1 1 0 0 @
0 0 0 o0 0 0 1 0 —ue 9
0 0 0 0 0o -1 -1 0 1 1
uex 0 0 © 0 0o -1 0 -1
0 0 0 o0 0 0 uedy -1 1 0
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|

~ 2 i .A
G ffd gexplig-rR)/f(q), (3.5

3
L 1l q n+l
2 n FIG. 5. Arrow convention for the Kasteleyn matrix of the frus-
trated Fisher lattice.
3 n—-1
1 a
2
30 |1 where the zeros of dé(q) determine the locations of the
poles of the integrand—we have checked that the cofactors

FIG. 4. Decoration of vertices of coordinatigntop) into clus- g not all vanish at the locations of the poles. In this equa-

ters to generate the lattice on which a frustramétidle) or unfrus- tion, we have emphasized the two-dimensional naturg of
trated (bottom) Ising model is represented by a hardcore dimer ’ o . . . ~
=(0x,qy) by writing it as g for the time being.r

model with positive fugacities. . . - . . . .
P g =(cosé,sind) is a unit vector in the direction of which the

correlations are to be computed, a@Ré- oo is the quantity in

Its determinant, dei(q), is given by which we will evaluate the integral asymptotically, so that

detA(q) = 2u%(2(1+ u?)2+(~ 1 +u?) cog ) (xy)=Rr. |
Let us first carry out the integral ovey:
—(—1+u??cog2q,)), 3.2
which yields the dimensionless free energy per site, IXEJ dq, explRig, cos6)/(q). 36

Inu 1 (2=dg.day A(q) . .
—BF= 7+ Zj f > Inde > |- (3.3 From Egs.(3.2) and (3.4), we find that the location of the
0 (2m) u poles can be written in terms af =(2qy,qy) so thatp,
The first term is the ground state energy, as there is one p{”+q’, where we have inserted a factor of 2 in front of
frustrated bond for each pair of sites. At zero temperatureq, to make the square symmetry more apparent,
the second term gives the ground state entropy, which inte-
grates to the well-known resu/ 7, whereG is Catalan’s q'2=q)’(2+ q)’/zz —4u?=— ??, (3.7
constant?* After a little algebra, our expression E(B.3)
can be shown to agree with Villain's result for the partition so that the poles lie ap, =+ w/a2u2+q§2. Depending on the
function given in Appendix 2 of Ref. 22 at all temperatufes. sjgn of coss, we therefore choose an integration contour that
A direct examination of Eq(3.3) shows that the model is  ryns through the following points in the comple plane:
critical only at T=0, whereu=0. As a final exercise we (0,0)—(2,0)— (27, =%)—(0,=%)—(0,0). Due to the peri-
will now compute the divergence of the correlation length aspdicity of the integrand, the contribution from the vertical
T—0 by means of our solution. contours cancel. The contribution from the horizontal con-
To find its behavior in the critical regime, we consider thetoyr at+ | vanishes folR— as exp{R|cosd]), so thatl,

case of small. Nearu=0, we can expand de&(q))/(2u?) only picks up a contribution from the enclosed poles, where

to find that it varies as we denote the residue asf1fpi(qy)].
5 To find G, we then need to determine
2+cogqy) —cog2q,) +2u“(2—cogqy) +cog 2qy)).
(3.9 o

In particular, atu=0, it vanishes ap{”=(=,0) andp{® G~ . daylx
=(m,m).

To find the correlation length, it is necessary to compute (—1)% (— 1)<y
the Green function by inverting. This is done by inverting =J v T ; I ;
A(q) to obtain and then carrying out the inverse Fourier LP(ay)] LP2(ay)]

transform onG(q)=A"1(q). If one is only interested in the X ex] — R(|cosf|\a?u?+q,*~igy sin6)].
correlation length and not the details of the correlations, it

suffices to do the Fourier integrdlf d?q exp(qr)G(q) as-

ymptotically, using the property that due to the inversionThijs integral can be treated asymptotically using Laplace’s
process, the structure &(q)=g(q)/detA(q), whereg(q)  method. The dominant contribution comes from points where
denotes a cofactor. We thus have to do integrals of the typéhe argument of the exponential is stationary,

(3.9
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d
F{|cos€| Va?u?+q,%~igy sin6}=0. (3.9
Ay
One findsq);: i au sin g, so that at large distanceS,decays
exponentially as exp{R/&), where the correlation length
£ 1=2u. AsT—0, the correlation length of the Ising model

therefore displays a divergence proportional to edfi), FIG. 6. One kinetic energy term of the quantum dimer Hamil-
in agreement with the result given in Ref. 23, which wasy,nian generated by the simple cubic Ising ferromagnet has a matrix

obtained using the transfer matrix technique. element between the two configuration shown here.
IV. THE THREE-DIMENSIONAL ISING MODEL number of frustrated bonds—translates into a potential en-
AS A TWO-DIMENSIONAL QUANTUM DIMER MODEL ergy for dimers on the external bonds.

The resulting quantum dimer Hamiltonian of this model

In this section we use the modified Fisher construction tecan be schematically written as
reformulate a class of three-dimensional Ising models as

quantum dimer models in-21 dimensions. The interest of Hp=V+T

this mapping is that it yields nontrivial information on the

quantum dimer models by transcrib_ing known Ipre on the :_E ‘]ij’\;(j"*_rz H Ar,f (4.1)
Ising models—no advances in solubility are entaffed. i O O

The prototypical example of the Ising models of interest i
is the nearest neighbor ferromagnetic Ising model on the culN€Jij of internal bonds are zero and the stim runs over
bic lattice. As is well known, this is equivalent to ar2- all closed loops made up of the external bonds surrounding a

dimensional transverse field Ising model in the “time Con_spin of the direct lattice and any of the bonds of the clusters

tinuum” limit. Briefly, this proceeds by the recognition that on which these bonds terminaié, 7 stands for alternating
the phase structure of the model is unchanged if we take theaising and lowering operators, - 7;; rj’kr,j Tim* - as one

cubic lattice to be a set of stacked square lattices and allogoes around the loop; this form prejserves the hardcore con-
unequal couplings in the plane and in the stacking directiongition.
H(J,,J9)=—J,2j0707—IZjyoi0;, where the sums In the above we have ignored one subtlety, namely that
{ij} and(ij) run over nearest neighbor sites in the stackingthe map between Ising configurations and dimer configura-
and planar directions. The anisotropic scaling limittions is two-to-one and the Ising dynamidsesconnect a
exp(KM—= can be identified with the Trotter-Suzuki de- state and its Ising reversed counterpart. The solution to this
composition of the imaginary time path integral of the two- lies in considering combinations of a given state and its re-
dimensional transverse field Ising model with the quantunversed counterpatf,
HamiltonianH = — 3.3 i 070{—T S 07 .

The Hilbert space of this quantum model is spanned by all -
classical Ising configurations of the two-dimensional classi- |{‘Ti}>e/0_ﬁ(|{ffi}>i {=ai}) (4.2
cal model and the transverse field moves the system between
these configurations. As the classical configurations can bthat are even and odd under global Ising reversal—a property
related to dimer configurations on the Fisher lattice by thaespected by the Ising dynamics. In order to fix the “up”
modified Fisher construction, it should be intuitively clear states we choose those so that a particular spin is always up
that the model can equally well be cast as a resonance dya them. Now both sets of states can be mapped onto dimer
namics in the space of dimer configurations. states but the dimer dynamics is slightlyut importantly

The quantum dynamics induced in this way can be visudifferent in the two sectors. In the even sector it is exactly
alized by noting that the effect of the transverse field is to flipwhat we described above. In the odd sector most matrix el-
individual spins. In the modified Fisher construction, thisements are the same but the ones that involve the chosen spin
corresponds to replacing empéxternal links surrounding  acquire an extra minus sign. SinEecan be chosen negative
the spin by occupied ones, and vice versa. In the dimewithout loss of generality, by the Perron-Frobenius theorem
model, this also entails moving internal bonds to accommothe ground state will always be in the even sector, although
date the change in external bonds. Here, it is important téhe first excited state need not be. So for the purposes of
note that the configuration of internal bonds of a clusterdetermining phase structure one can ignore this complication
given a set of external bonds, is unique and determined onlgntirely. From the perspective of the dimer model, which is
by the external bonds belonging to that cluster. The quanturwhat we will take in the remaining, its dynamics will be
dimer Hamiltonian is therefore strictly local, although it in- represented solely by the even states of the Ising model.
cludes a number of kinetic energy terms and loop flips of At zero temperature, there is one parameter in this prob-
varying length with exactly the same strength—all nonzerdem, namely the ratio of transverse field to bond strength,
off-diagonal matrix elements equatI’. An example of a [I'/Jg and two phases that meet at a critical point. In Ising
dimer move present in the current Hamiltonian is given inlanguage, the two phases are, of course, the ferromagnet and
Fig. 6. In addition the Ising nearest neighbor interaction—theparamagnet. As the reader may anticipate from our previous
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constraint states, in the Hamiltonian formulation, that the
number of units of Ising electric flux entering/leaving a site
(the distinction is irrelevant for Ising variablesnust be
even. If we identify a dimer on the external bonds of the
Fisher lattice with such a flux, we recover this constraint.
This conclusion is only to be expected since the even Ising
+ 1 : : gauge theory is dual to the transverse field Ising model.
Interestingly, the dimer constraint on the Fisher lattice,
that the number of dimers coming out of a given site be one,
is a U1) constraint. As discussed in Ref. 14, this gives the
dimer model the character of a(l) gauge theory at the
lattice scale. As in the case of the triangular lattice QDM, the
topological sectors indicate a low energy structure with Ising
FIG. 7. A spin antialigned with the transverse field at the centercharacter—which would be the general expectation for a de-
of the plaquette denoted by the cross translates into a vortex excéonfined(RVB) phase. What is special here is that, unlike the
tation in the quantum dimer model. triangular QDM, we are able to put all states of the Fisher
lattice QDM under consideration into correspondence with
classical considerations, the dimer transition is between &tates in the Ising gauge theory. _ _
deconfining phase at large/J; and a confining phase at ~ Our basic considerations in this section can be generalized

small T'/J, neither of which break any lattice symmetries. {0 @ wide class of Ising models that permit a time continuum

I'/Js= is the “Rokhsar-Kivelson” point of the model identical pla_nes stacked fgrromagngticglly or antiferromag-
where the ground state wave function is the equal amplitud8€tically (or in any alternating combinationDepending on
sum over all dimer configurations, which is the canonicalthe frustration in the planes, we will obtain a QDM on a
short ranged RVB state. As discussed in Ref. 15, the elemer§Pecific lattice obtained by the decoration procedure. For ex-
tary Ising excitation is a spin antialigned with the transverseé2mple, the FFIM stacked ferromagnetically will give rise to a
field with energy I', and the entire spectrum is composed of @PM on the lattice shown in Fig. 1, which will be exactly
them. In the dimer model the flipped spin translates into &dual to the “odd” Ising gauge theory in which the number
vortex in which dimerconfigurations pick up a minus sign if f 1sing fluxes leaving a site is odd. This QDM will exhibit a
the number of dimers on a string extending from the choseffansition from a deconfined phase to a confining phase that
plaquette to infinity is oddlabeled by dotted bonds in Fig. does break_lattlce symmetries, as first discussed in the lan-
7). The dimer model is exactly equivalent to the standarg@uage of Ising models in Ref. 27.
Ising gauge theory, and the vortex is therefore an Ising vor-
tex (vison). For a system on a torus, these vortices need to be
created in pairs, so that the minimal excitation energy is in
fact 4.1°

The Ising states with a single flipped spin have disap- The dimer model we obtain &/J,— has much in com-
peared in the course of the duality transformation. In factmon with the kagome dimer model discussed by Misguich
together with the other states with an odd number of flippedt al, their quantum dimer model also has a range of kinetic
spins, they make up the sector, odd under global Ising reveterms around a given hexagonal plaquette, and it displays an
sal, which was discardeen routeto the Ising model. The analogous excitation spectrum consisting of Ising vortices.
ground state at the Rokhsar-Kivelson point in this sector isNevertheless, the solubility and beautiful simplicity of their
the first excited state of the Ising model and has a degeneraeyodel does not derive from a Fisher construction. Instead,
proportional to the system size. The equal amplitude supetheir problem has another very useful ingredient, namely the
position of the configurations in that sector corresponds tenapping of hardcore dimers to arrows on the kagome

V. COMMENTS ON THE SOLUBLE KAGOME
QUANTUM DIMER MODEL

the reference spin being antialigned with the field. lattice?® and indeed any other lattice consisting of corner-
As observed before there are four dimer sectors on theharing triangles.
torus (and £ on lattices of genug) which cannot be con- Not until they have executed this mapping does our dis-

nected by local dimer moves. As these sectors correspond tussion of the Rokhsar-Kivelson point parallel their model,
different boundary conditions in the Ising problem, and theas one can consider the arrowskesdvariables of a trian-
latter have only arO(e™“/¢) effect on the ground state en- gular lattice Ising modelor equivalently, link variables* of

ergy in the paramagnetic phasgié the correlation length  a honeycomb gauge thegrwhich, crucially, has zero ex-

it follows that they lead to four exponentially degeneratechange strength. The quantum dynamics they study consists
ground states. Hence the deconfined phase displays topologif the Wilson loop operatiofl 7%

cal order in the sense of Weéf.

Finally we observe that the dimer model on the Fisher
lattice is exactly equivalent to the standard Ising gauge
theory on the square lattice—dubbed the “even” Ising gauge To illustrate this correspondence, and because it is of
theory in Ref. 14 due to the nature of its constraint. Thatinterest to ask if the arrow mapping used by Misguich

An exactly soluble quantum eight vertex model
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FIG. 9. Possible interpretation of the eight vertex configurations
(denoted by arrows on thin lingm terms of singlet bond&lenoted
by dimerg between spins 1/2 on the corners of the square. The
rightmost figure denotes an overall singlet of the four spins, of
which there are two linearly independent ones.

This becomes the zero-exchange transverse field Ising model
on the dashed square lattiteThe results, such as on the
gap, 4", or on the ultra-short correlation, follow just as they
did before'®

FIG. 8. A lattice of corner sharing squar@ick lines, whichis A POssible interpretation of the different eight-vertex con-
the medial lattice of the lattice denoted by thin lines, which is in figurations in terms of singlet bonds is as follovsee Fig.
turn dual to the lattice denoted by dashed lines. 9). Let spinsS=1/2 reside on the vertices of the fat square
lattice. If no arrows point into a given square, there are no
et al.can be generalized, we note that their approach can b%;%lﬁab?hneoi EsegyseirelnI:tngo?lzlrbzftviggr? tcrjlfet?vsosc#] ]% rjr' Ifotivr\llto
used to define an exactly soluble quantum eight verte - 9 L P
: . . . 1n, the spins on the square form some collective singlet state.
model. This model can also be given an interpretation in. . o .
he choice of equal fugacities for all vertices amounts to

terms of singlet bonds. disregarding the entropic contribution of the two linearly in-
The basic geometric object of this model are squares 9 g P y

(instead of triangles which are again arranged to share cor—dee”dent collective singlets. . . .
ners. At the corners of the squares reside Ising degrees of S & relatedand known combinatorial result, we notice
freedom (arrows, which point either in or out. In addition, N Passing that the number of nonoverlappibgt possibly
we impose the constraint that an even number of arrowgﬂtersectlng loop conflgura}t!on on a Iattlcg can be trivially
point out. evaluated in the same spirit. One can think of the loops as

The simplest case occurs when the squddesioted by —domain walls of an Ising model on the dual lattice. Up to a
fat lines in Fig. 8 are arranged on a square lattitein lines ~ factor 2 from the global Ising symmetry, the number of do-
so that they share corners. The different arrow configurationgain wall configurations is then given by the size of the
can be mapped onto configurations of the eight vertex modetonfiguration space of the Ising model, which is of siZé 2
on the dual square lattice by identifying the arromghich ~ for a dual lattice withN sites.
by construction live on the links of the dual lattjosith the
arrows of the vertices of the eight-vertex model.

One can further interpret the arrows as link variables of an VI. SUMMARY
Ising model. The sites defining this model live on a further
dual lattice (dashed lines For the case of a bipartite thin ~ Two-dimensional Ising models are intimately related to
lattice, one can label a bond frustrated if the arrow pointgdimer models. By means of the modified Fisher construction
from sublattice A to sublattice B and unfrustrated otherwiseintroduced in this paper, this connection can be exhibited
(In the case of a nonbipartite thin lattice, one can choose aonfiguration by configuration. The Ising transition in two
reference arrow and a reference spin configuration and idemimensions maps onto a deconfinement transition in the
tify the two. The constraint of the eight-vertex model then dimer language as does the Ising transition in three dimen-
becomes a constraint on the product of exchanges];; sions, which now appears in a quantum dimer model. This
=1, around a plaquette of the dashed lattice. However, thigast equivalence provides an instructive example of a topo-
only imposes a constraint on allowed states—the strength abgically ordered RVB phase and a transition from it to a
the exchanges vanishes. From this method, one can easignfining phase, and one for which all the details are known.

visualize the known result that the number of eight-vertexthese ideas can be extended straightforwardly to generate an
configurations on the square lattice equdls &s there are no exactly soluble quantum eight vertex model.

constraints on the Ising model on the dashed lattice. This
result is straightforwardly generalized to any lattice defined
by the midpoints of corner-sharing squares, as explained in
Ref. 15 for lattices defined by midpoints of corner-sharing
triangles. We would like to thank Gregoire Misguich, Vincent Pas-

This eight-vertex model can again be endowed with aguier, and Didina Serban for useful discussions, Paul Fend-
guantum dynamics generated by a Wilson loop action on th&ey for those and for collaboration on related work, and
links of the elementary plaquette of the thin square latticeMichael Fisher for comments on the manuscript.
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