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Ising and dimer models in two and three dimensions
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Motivated by recent interest in 211 dimensional quantum dimer models, we revisit Fisher’s mapping of
two-dimensional Ising models to hardcore dimer models. First, we note that the symmetry breaking transition
of the ferromagnetic Ising model maps onto a non-symmetry breaking transition in dimer language—instead it
becomes a deconfinement transition for test monomers. Next, we introduce a modification of Fisher’s mapping
in which a second dimer model, also equivalent to the Ising model, is defined on a generically different lattice
derived from the dual. In contrast to Fisher’s original mapping, this enables us to reformulate frustrated Ising
models as dimer models with positive weights and we illustrate this by providing a new solution of the fully
frustrated Ising model on the square lattice. Finally, by means of the modified mapping we show that a large
class of three-dimensional Ising models are precisely equivalent, in the time continuum limit, to particular
quantum dimer models. As Ising models in three dimensions are dual to Ising gauge theories, this further yields
an exact map between the latter and the quantum dimer models. The paramagnetic phase in Ising language
maps onto a deconfined, topologically ordered phase in the dimer models. Using this set of ideas, we also
construct an exactly soluble quantum eight vertex model.

DOI: 10.1103/PhysRevB.68.054405 PACS number~s!: 75.10.Jm, 75.10.Hk, 74.20.Mn
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I. INTRODUCTION

Dimer models have long been of interest to statisti
mechanicians.1–5 In addition to their interest in variou
physical contexts, they have the striking feature that they
exactly soluble on any planar graph.2 Following this insight,
Fisher6 constructed a general mapping—reviewed below
from two-dimensional Ising onto planar dimer mode
thereby relating the solvability of the one to that of the oth
In particular he related the partition function of the ferroma
netic Ising model on the square lattice to that of the dim
model on the~now! Fisher lattice, which is sketched in Fig
1. Earlier work by Kasteleyn2 and Stephenson7 had related
some Ising models to dimer models on nonplanar decor
lattices.

More recently,quantumdimer models~QDMs! have been
formulated and studied.8 These live in Hilbert space
spanned by dimer configurations of a given lattice and th
Hamiltonians contain kinetic and potential energies that
naturally defined in this basis. These models were introdu
to capture the dynamics of valence bond dominated ph
of quantum antiferromagnets, with the particular intent
finding Anderson’s hypothesized resonating valence b
~RVB! liquid9—a hope realized recently.10

In this context, attention has been focused on the natur
the quantum dimer phases, in particular their topologi
properties and low-energy excitations, and a recurring
useful theme has been their interpretation in gauge theo
terms, particularly the identification of the RVB phase as
deconfined phase.11–15 In Ref. 14 this identification was
made as an exact reduction of an ‘‘odd’’ Ising gauge the
to a quantum dimer model on the same lattice, in the extre
strong coupling limit. As Ising gauge theories ind5211 are
dual to Ising models, this allows dimer models to be exac
0163-1829/2003/68~5!/054405~9!/$20.00 68 0544
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related to frustrated quantum~transverse field! Ising models
in d5211 in the limit of weak transverse fields and then
to a set of ideas and techniques for obtaining their ph
diagrams.16 Very recently, Misguichet al. have constructed
an exactly soluble dimer model on the kagome lattice. T
model maps onto a transverse field Ising model withzero
exchange, thereby allowing the entire spectrum and corr
tions to be determined.15

In this note, we further explore the above connectio
between Ising and dimer models in two and three dim
sions. We begin by reviewing Fisher’s construction in tw
dimensions which utilizes the loop model generated by
Ising high-temperature expansion, and maps its configu
tions onto those of a dimer model on a decorated lattice.
note that the symmetry breaking transition in the tw
dimensional ferromagnetic Ising model maps onto a nons
metry breaking, deconfinement transition of test monom
in the dimer model. As an aside we point out that the dim
formulation provides an immediate insight into how the Isi

FIG. 1. ~Left! The Fisher lattice, a decorated square lattice. T
six sites in the basis correspond to one square lattice site. A d
model on this lattice can be used to calculate the partition func
of an Ising model on the~direct! square lattice.~Right! The modi-
fied Fisher lattice, used to solve the fully frustrated Ising model
the square lattice as a positive weight dimer model.
©2003 The American Physical Society05-1
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model yields a lattice theory without doubled fermion
While Fisher’s construction suffices to solve any planar Is
model by dimer methods, it has two features that obstruc
extension to making contact between quantum Ising
quantum dimer models. The first is that it does not relat
given spin configurations to a specific dimer configuratio
The second is that for frustrated Ising models it leads
negative weights in the equivalent dimer model—which i
problem as quantum dimer models are equivalent to class
dimer models with positive weights at high temperatures.
get around these problems, we introduce a modification
Fisher’s construction which proceeds via an intermed
map to a generalized~nonhardcore! dimer model on the dua
lattice which is then decorated to produce the hardcore c
straint. As an illustration of this new construction, we sol
the fully frustrated Ising model on the square lattice a
purely positive weight dimer model on a modified Fish
lattice.

Finally, we turn to a class of three-dimensional classi
Ising models—these are general~frustrated or unfrustrated!
two-dimensional Ising magnets stacked ferro- or antifer
magnetically in the third direction, which can therefore
mapped onto transverse field Ising magnets in 211 dimen-
sions by taking a continuum limit in the third direction
Armed with the modified Fisher construction we are able
map these onto quantum dimer models where the quan
dynamics induced by the transverse field translates to a
ticular ‘‘resonance’’ dynamics of the kind studied by Mi
guich et al. This is particularly interesting from the view
point of the dimer models since it allows known lore on Isi
models to be transcribed into statements about the form
Quite generally, the paramagnetic phases of the Ising mo
map to deconfined, topologically ordered phases in the di
models. Specifically, for the case of the ferromagnetic Is
model we find a dimer transition characterized solely by c
finement and the loss of topological order. We also obse
that the dimer models are exactly equivalent to Ising ga
theories, as they must be since the latter are dual to I
models in 211 dimensions. Consequently their spectrum
the deconfined phase is understood in terms of Ising vort
or visons. The relationships between these mappings are
played in Fig. 2.

We close with some remarks concerning possible ex
sions of this work, including the construction of an exac
soluble quantum eight-vertex model along the lines of R
15. Such a model may also be of interest in the contex

FIG. 2. The mappings of the Ising model onto dimer models.
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orbital current models, such as thed-density wave models
considered in Ref. 17.

II. THE ISING TRANSITION IN dÄ2
AS A DECONFINEMENT TRANSITION

In this and further sections, we consider classical Is
models defined by the Hamiltonian

H52(̂
i j &

Ji j s i
zs j

z , ~2.1!

wheresz is a Pauli matrix, andJi j is the strength of bond
^ i j &. The sites of the lattice, labeled byi 51, . . . ,N, together
with the bondŝ i j & with nonzeroJi j form a graph,G, the
interaction graph. In the following, we will use the followin
definitions:b51/kBT; Ki j 5bJi j ; v i j 51/wi j 5tanhKij . Al-
though we have formally written a quantum Hamiltonian, t
problem is, of course, still classical.

We first briefly review Fisher’s mapping.6 Its starting
point is the high temperature expansion of the partition fu
tion, Z5Tr exp(2bH), of the Ising model,

Z52NF)̂
i j &

exp~2Ki j !cosh~Ki j !GY~v i j ;G!. ~2.2!

Here,Y(v i j ;G) is the crucial quantity: it is the sum over a
loop coverings, labeled byG(G), of the graphG. These loops
can intersect one another, provided an even number of l
emanate from each site. The weighting of a particular cov
ing is given by the product ofv i j of all the links of its loops,
so that

Y~v i j ;G!5 (
G(G)

)
^kl&PG

vkl . ~2.3!

Fisher’s mapping turns the resulting loop model on the gra
G into a dimer model on a decorated graph,D, by a decora-
tion procedure outlined in Ref. 6, see in particular its Fig
for the general decoration rule and Fig. 7 for the expli
example of the square lattice magnet. The resulting lattic
depicted in Fig. 1. There are now two types of bonds,
original ~‘‘external’’ ! ones and the new~‘‘interior’’ ! ones.

The crucial property of Fisher’s mapping is that, ifG is a
planar graph, so isD. The partition function of the dimer
model onD, ZD , which is related to that of the original Isin
model in a simple way, can in that case be evaluated
Pfaffian methods; by Kasteleyn’s theorem,2 one can assign
directions to each bond ofD such that the product of orien
tations when traversing any elementary plaquette in a clo
wise direction is odd. These orientations can be used to
fine a matrix,A, which has entriesAi j 511(21) if bond
^ i j & is oriented fori to j ~from j to i ). With fugacities of the
external and internal bonds given bywi j and 1, respectively,
one hasZD5PfA.

A nonanalyticity inZ bequeathes one toZD . For instance,
the Fisher lattice dimer model obtained from the square
tice ferromagnetic Ising model must exhibit a phase tran
tion as the ratio of external to internal fugacities is varie
Nevertheless the Ising character of the transition seem
5-2
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have disappeareden route—there no longer is an Ising sym
metry to break. In the following paragraphs, we will see th
the dimer model does not break any symmetries whatsoe
Instead the Ising transition has turned into a confineme
deconfinement transition in which the free energy to sepa
two test monomers is the appropriate diagnostic. The uni
sality classes of the two transitions coincide, as they must
virtue of both of them mapping onto the theory of a sing
gapless Majorana Fermion.

As D is periodic, one can find the partition function b

Fourier transformation;Z5PfA5AdetA5A)q detÃ(q),
whereÃ(q) is the Fourier transform ofA at wave vectorq.
The specific free energy,F, is given by

2NbF5 ln ZD5~1/2!(
q

ln~detÃ~q!!. ~2.4!

This expression does indeed reproduce Onsager’s form
for the square lattice Ising model for any coupling stren
K.6,18 In particular, nonanalyticities occur when detÃ(q)
50. With6

detÃ~q!5~11w2!222w~w221!~cosqx1cosqy!,

this happens only forqx5qy50 andw5wc511A2 so that
Kc5 ln(11A2)/2, as it should.

What is the nature of the phases on either side ofwc? For
w→`, only one dimer configuration survives, namely, o
in which all external bonds and the bond linking the tw
internal sites are occupied. This configuration breaks no
tice symmetries, and is in that sense not a crystal. In
opposite limit, w51, all dimer configurations have equ
weight and their ensemble also respects all lattice sym
tries. Evidently the transition does not involve symme
breaking.

Instead, the two phases differ in their response to the
sertion of a pair of test monomers~sites not part of a dimer!.
It is not hard to see that the high temperature phase is
fining. If one places a monomer on one end of an exter
leg, the site on its other end has to pair up with another
in its cluster~group of sites obtained from one original si
by decoration!, which in turn leaves the partner of the latt
site unpaired. Two monomers placed a distanceL apart there-
fore exact a cost in free energy proportional to the minim
number of unoccupied external bonds, which is proportio
to L. This point is thus in a confined phase. Intuitively, t
low temperature phase involves a true dimer fluid wh
should therefore allow monomers to be separated with fi
free energy cost.

These statements can be made precise by tracking
spin–spin correlation,̂s is j&, from the spin formulation into
the dimer formulation. The spin correlator can, in the cont
of the high-temperature expansion, be expressed as a
model on the square lattice containing, along with the clo
loops, one open string running between the sitesi and j.19

This loop-string model can in turn be cast in terms of a dim
model with two monomers~Fig. 3!. The vertices at the end
of the string can be encoded in the monomer–dimer mo
by summing over four partition functions,Zmd , with the
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monomers in the clustersi , j being placed independentl
onto one of two interior points of the cluster. The partitio
function of the loop-string model is thus given by the su
over the four monomer–dimer partition functions,Zls( i , j )
5(Zmd( i , j ).

Next, one useŝs is j&5Zls( i , j )/ZD . It follows that in the
high temperature~paramagnetic! phase, wherês is j& van-
ishes exponentially, all the monomer pairs are confined. C
versely, in the low temperature phase,^s is j& decays to a
constant, which implies that at least one~and probably all!
monomer pairs are deconfined.

Two comments on related issues are worth making. F
dimer models generally exhibit topologically disconnect
sectors under local moves—a classical precursor of the
tion of topological order for quantum problems12 which we
shall invoke below for quantum dimer models. On the Fish
lattice there are four such sectors on a torus correspondin
the various combinations of an even or odd number
dimers intersecting the two nontrivial loops. The Fisher m
represents the Ising partition function as a sum over all f
sectors of the dimer model. Evidently, all Ising spin config
rations in a finite system are accessible from one anothe
local spin flips, and the topological distinction in the dim
model is an artifact of the bookkeeping from the perspect
of the Ising model.

Second, dimer problems are solved by lattice Majora
fermions. As the unit cell of the Fisher lattice has six sit
microscopically the dimer formulation leads to as many M
joranas. However, at the transition fugacitywc , two eigen-
values of Ã(0) vanish. These two combine to form on
single Majorana Fermion, to yield the known critical theo
as in the Ising model. We note that given the lore on ferm
doubling,20 it is somewhat surprising that we obtain only
single Majorana Fermion from our lattice problem. Whi
this has been commented on from a different perspec
before,21 we note that in the dimer formulation this conclu
sion arises from the manifestly asymmetric nature of o
lattice, no longer invariant under reflections along bothx and
y axes. This leads to lattice derivatives different from t
ones normally encountered when discretizing the continu

III. FRUSTRATED ISING MODELS AS DIMER MODELS
WITH POSITIVE FUGACITIES

A. The modified Fisher construction

Fisher’s construction is quite general. The high tempe
ture expansion generates a loop model on any interac
graphG, and the rules for generating the clusters out of

FIG. 3. The open string configurations~four rightmost plots! are
generated with a monomer~filled circle! placed on the upper inte
rior point of the cluster. The other monomer location~leftmost plot!
generates the remaining four string configurations, obtained b
reflection of the four displayed ones along a diagonal.
5-3
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vertices depend only on the number of legs of each gi
vertex. All resulting models are in principle exactly solub

As mentioned in the Introduction, an unfortunate featu
of the Fisher mapping, in the context of quantum dimer m
els discussed below, is that it leads to negative dimer fug
ties in the case of frustrated models: there, not all inter
tions can be chosen to be ferromagnetic, and hence thev i j
51/wi j 5tanhKij are negative for some of the bonds.

Here, we present a way of addressing this problem v
modified Fisher construction on the dual of a tw
dimensional planar lattice. It proceeds by mapping each Is
spin configuration onto a link configuration,$t%, on the dual
lattice.

A given link of the dual lattice is occupied (t51) if and
only if the bond of the direct lattice it crosses is frustrate
Such a link configuration has the property that the site of
dual lattice at the center of a frustrated plaquette has an
number of occupied links emanating from it; for an unfru
trated plaquette, this quantity is even. Clearly a spin confi
ration and its Ising reversed counterpart map onto the s
link configuration on the dual lattice.

Such soft dimer configurations on the dual lattice can
converted into hardcore dimer coverings by suitably deco
ing each site. Depending on the even or oddness of the n
ber of occupied links at the site, two different decorati
operations are required, leading to two different types
clusters. The decoration transformation for odd sites
shown in Fig. 4. For even sites, one requires a slightly d
ferent prescription as in Fisher’s original construction, as t
included interchanging empty and occupied links. The co
sponding construction is also given in Fig. 4.

The dimer fugacities are determined by the Boltzma
factors which come with the presence of a frustrated bo
We find it convenient to add a constant term to the Ham
tonian so that an unfrustrated bond has energy 0 and a
trated bond has energy 2J, so that the dimer fugacity of link
^ i j & is given byu[exp(22Kij), which is always positive and
between 0 and 1. As in Fisher’s original construction, Is
models on planar lattices lead to planar dimer models, wh
can hence be solved using Kasteleyn’s theorem.
05440
n
.
e
-
i-

c-

a

g

.
e
dd
-
-
e

e
t-
m-

f
is
-
t
-

n
d.
-
s-

h

Three comments on the differences between the Fis
construction and the modified Fisher construction are in
der. First, as is appropriate for a dual construction, high a
low temperatures trade places when we compare the orig
Fisher construction to the modified construction, e.g.,
equal fugacity dimer model corresponds to zero and infin
temperature, respectively. Second, in the modified const
tion the spin model maps onto a single topological secto
the dimer model. The remaining sectors are generated
considering different boundary conditions for the spin mod
Third, the original mapping does not relate individual sp
configurations to dimer configurations but the modified ma
ping does, upto a twofold ambiguity coming from glob
Ising reversal. This will be important in making a connecti
between Ising models and quantum dimer models below.
first we apply the modified construction to the solution o
classical frustrated Ising model.

B. The fully-frustrated Ising model as a dimer model

As an illustration of the above technique, we now use it
solve Villain’s odd model, also known as the fully frustrate
Ising model on the square lattice.22 This model is defined for
spins on the square lattice with nearest neighbor interact
such that each plaquette has an odd number of antiferrom
netic interactions. This can for example be achieved
choosing all horizontal bonds to be ferromagnetic and
vertical bonds in ferromagnetic rows alternating with antife
romagnetic ones. Transcribed to the dual lattice, which
again square, this corresponds to an odd number of occu
links emanating out of each plaquette. The correspond
decorated lattice~Fig. 1! has five sites per cluster.

The Kasteleyn matrix on this lattice can be partially d
agonalized by means of a Fourier transform. While the latt
itself has five sites per unit cell~see Fig. 5!, choosing appro-
priate signs for the matrix requires that we consider
doubled unit cell in one direction which we take to be t
horizontal direction. This yields the 10310 Fourier trans-
formed matrix,Ã(q),
Ã~q!51
0 21 21 0 0 0 0 0 2ue2 iqx 0

1 0 21 0 ue2 iqy 0 0 0 0 0

1 1 0 21 21 0 0 0 0 0

0 0 1 0 21 2u 0 0 0 0

0 2ueiqy 1 1 0 0 0 0 0 0

0 0 0 u 0 0 21 1 0 0

0 0 0 0 0 1 0 1 0 2ue2 iqy

0 0 0 0 0 21 21 0 1 1

ueiqx 0 0 0 0 0 0 21 0 21

0 0 0 0 0 0 ueiqy 21 1 0

2 ~3.1!
5-4
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Its determinant, detÃ(q), is given by

detÃ~q!52u2~2~11u2!21~211u2!2 cos~qx!

2~211u2!2 cos~2qy!!, ~3.2!

which yields the dimensionless free energy per site,

2bF5
ln u

2
1

1

4E E
0

2pdqxdqy

~2p!2
ln detS Ã~q!

u2 D . ~3.3!

The first term is the ground state energy, as there is
frustrated bond for each pair of sites. At zero temperatu
the second term gives the ground state entropy, which i
grates to the well-known resultG/p, whereG is Catalan’s
constant.2,24 After a little algebra, our expression Eq.~3.3!
can be shown to agree with Villain’s result for the partitio
function given in Appendix 2 of Ref. 22 at all temperatures26

A direct examination of Eq.~3.3! shows that the model is
critical only at T50, whereu50. As a final exercise we
will now compute the divergence of the correlation length
T→0 by means of our solution.

To find its behavior in the critical regime, we consider t
case of smallu. Nearu50, we can expand det(Ã(q))/(2u2)
to find that it varies as

21cos~qx!2cos~2qy!12u2~22cos~qx!1cos~2qy!!.
~3.4!

In particular, atu50, it vanishes atp1
(0)5(p,0) and p2

(0)

5(p,p).
To find the correlation length, it is necessary to comp

the Green function by invertingA. This is done by inverting
Ã(q) to obtain and then carrying out the inverse Four
transform onG̃(q)5Ã21(q). If one is only interested in the
correlation length and not the details of the correlations
suffices to do the Fourier integral**d2q exp(iqr)G̃(q) as-
ymptotically, using the property that due to the inversi
process, the structure ofG̃(q)5g̃(q)/detÃ(q), whereg̃(q)
denotes a cofactor. We thus have to do integrals of the t

FIG. 4. Decoration of vertices of coordinationq ~top! into clus-
ters to generate the lattice on which a frustrated~middle! or unfrus-
trated ~bottom! Ising model is represented by a hardcore dim
model with positive fugacities.
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G;E E d2qexp~ iq• r̂ R!/ f ~q!, ~3.5!

where the zeros of detÃ(q) determine the locations of th
poles of the integrand—we have checked that the cofac
do not all vanish at the locations of the poles. In this eq
tion, we have emphasized the two-dimensional nature oq

5(qx ,qy) by writing it as q for the time being. r̂
5(cosu,sinu) is a unit vector in the direction of which th
correlations are to be computed, andR→` is the quantity in
which we will evaluate the integral asymptotically, so th
(x,y)5Rr̂.

Let us first carry out the integral overqx :

I x[E dqx exp~Riqx cosu!/ f ~q!. ~3.6!

From Eqs.~3.2! and ~3.4!, we find that the location of the
poles can be written in terms ofq85(2qx8 ,qy8) so thatpi

5pi
(0)1q8, where we have inserted a factor of 2 in front

qx8 to make the square symmetry more apparent,

q825qx8
21qy8

2524u2[2a2u2, ~3.7!

so that the poles lie atqx856Aa2u21qy8
2. Depending on the

sign of cosu, we therefore choose an integration contour th
runs through the following points in the complexqx plane:
~0,0!→~2p,0!→~2p,6`!→~0,6`!→~0,0!. Due to the peri-
odicity of the integrand, the contribution from the vertic
contours cancel. The contribution from the horizontal co
tour at6I` vanishes forR→` as exp(2Rucosuu), so thatI x
only picks up a contribution from the enclosed poles, wh
we denote the residue as 1/f r@pi(qy8)#.

To find G, we then need to determine

G;E
0

2p

dqyI x

5E dqy8H ~21!x

f r@p1~qy8!#
1

~21!x1y

f r@p2~qy8!#
J

3exp@2R~ ucosuuAa2u21qy8
22 iqy8 sinu!#.

~3.8!

This integral can be treated asymptotically using Laplac
method. The dominant contribution comes from points wh
the argument of the exponential is stationary,

r

FIG. 5. Arrow convention for the Kasteleyn matrix of the fru
trated Fisher lattice.
5-5
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d

dqy8
$ucosuuAa2u21qy8

22 iqy8 sinu%50. ~3.9!

One findsqy85 iau sinu, so that at large distances,G decays
exponentially as exp(2R/j), where the correlation length
j2152u. As T→0, the correlation length of the Ising mod
therefore displays a divergence proportional to exp(2J/kBT),
in agreement with the result given in Ref. 23, which w
obtained using the transfer matrix technique.

IV. THE THREE-DIMENSIONAL ISING MODEL
AS A TWO-DIMENSIONAL QUANTUM DIMER MODEL

In this section we use the modified Fisher construction
reformulate a class of three-dimensional Ising models
quantum dimer models in 211 dimensions. The interest o
this mapping is that it yields nontrivial information on th
quantum dimer models by transcribing known lore on
Ising models—no advances in solubility are entailed.25

The prototypical example of the Ising models of intere
is the nearest neighbor ferromagnetic Ising model on the
bic lattice. As is well known, this is equivalent to a 211-
dimensional transverse field Ising model in the ‘‘time co
tinuum’’ limit. Briefly, this proceeds by the recognition tha
the phase structure of the model is unchanged if we take
cubic lattice to be a set of stacked square lattices and a
unequal couplings in the plane and in the stacking direct
H(Jt ,Js)52Jt($ i j %s i

zs j
z2Js(^ i j &s i

zs j
z , where the sums

$ i j % and ^ i j & run over nearest neighbor sites in the stack
and planar directions. The anisotropic scaling lim
exp(2Kt)→` can be identified with the Trotter-Suzuki de
composition of the imaginary time path integral of the tw
dimensional transverse field Ising model with the quant
HamiltonianĤ52Js(^ i j &ŝ i

zŝ j
z2G( i ŝ i

x .
The Hilbert space of this quantum model is spanned by

classical Ising configurations of the two-dimensional clas
cal model and the transverse field moves the system betw
these configurations. As the classical configurations can
related to dimer configurations on the Fisher lattice by
modified Fisher construction, it should be intuitively cle
that the model can equally well be cast as a resonance
namics in the space of dimer configurations.

The quantum dynamics induced in this way can be vi
alized by noting that the effect of the transverse field is to
individual spins. In the modified Fisher construction, th
corresponds to replacing emptyexternal links surrounding
the spin by occupied ones, and vice versa. In the dim
model, this also entails moving internal bonds to accomm
date the change in external bonds. Here, it is importan
note that the configuration of internal bonds of a clus
given a set of external bonds, is unique and determined o
by the external bonds belonging to that cluster. The quan
dimer Hamiltonian is therefore strictly local, although it in
cludes a number of kinetic energy terms and loop flips
varying length with exactly the same strength—all nonz
off-diagonal matrix elements equal2G. An example of a
dimer move present in the current Hamiltonian is given
Fig. 6. In addition the Ising nearest neighbor interaction—
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number of frustrated bonds—translates into a potential
ergy for dimers on the external bonds.

The resulting quantum dimer Hamiltonian of this mod
can be schematically written as

HD[V̂1T̂

52(̂
i j &

Ji j t̂ i j
x 1G(

h
)
h

t̂ i j
6 . ~4.1!

TheJi j of internal bonds are zero and the sum(h runs over
all closed loops made up of the external bonds surroundin
spin of the direct lattice and any of the bonds of the clust
on which these bonds terminate.)ht̂ i j

6 stands for alternating
raising and lowering operators,•••t i j

1t jk
2tkl

1t lm
2
••• as one

goes around the loop; this form preserves the hardcore
dition.

In the above we have ignored one subtlety, namely t
the map between Ising configurations and dimer configu
tions is two-to-one and the Ising dynamicsdoesconnect a
state and its Ising reversed counterpart. The solution to
lies in considering combinations of a given state and its
versed counterpart,16

u$s i%&e/o5
1

A2
~ u$s i%&6u$2s i%&) ~4.2!

that are even and odd under global Ising reversal—a prop
respected by the Ising dynamics. In order to fix the ‘‘u
states we choose those so that a particular spin is alway
in them. Now both sets of states can be mapped onto di
states but the dimer dynamics is slightly~but importantly!
different in the two sectors. In the even sector it is exac
what we described above. In the odd sector most matrix
ements are the same but the ones that involve the chosen
acquire an extra minus sign. SinceG can be chosen negativ
without loss of generality, by the Perron-Frobenius theor
the ground state will always be in the even sector, althou
the first excited state need not be. So for the purpose
determining phase structure one can ignore this complica
entirely. From the perspective of the dimer model, which
what we will take in the remaining, its dynamics will b
represented solely by the even states of the Ising model

At zero temperature, there is one parameter in this pr
lem, namely the ratio of transverse field to bond streng
G/Js and two phases that meet at a critical point. In Isi
language, the two phases are, of course, the ferromagne
paramagnet. As the reader may anticipate from our previ

FIG. 6. One kinetic energy term of the quantum dimer Ham
tonian generated by the simple cubic Ising ferromagnet has a m
element between the two configuration shown here.
5-6
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ISING AND DIMER MODELS IN TWO AND THREE . . . PHYSICAL REVIEW B 68, 054405 ~2003!
classical considerations, the dimer transition is betwee
deconfining phase at largeG/Js and a confining phase a
small G/Js neither of which break any lattice symmetries.

The deconfined phase is of particular interest. Its po
G/Js5` is the ‘‘Rokhsar-Kivelson’’ point of the mode
where the ground state wave function is the equal amplit
sum over all dimer configurations, which is the canoni
short ranged RVB state. As discussed in Ref. 15, the elem
tary Ising excitation is a spin antialigned with the transve
field with energy 2G, and the entire spectrum is composed
them. In the dimer model the flipped spin translates int
vortex in which dimerconfigurations pick up a minus sign
the number of dimers on a string extending from the cho
plaquette to infinity is odd~labeled by dotted bonds in Fig
7!. The dimer model is exactly equivalent to the stand
Ising gauge theory, and the vortex is therefore an Ising v
tex ~vison!. For a system on a torus, these vortices need to
created in pairs, so that the minimal excitation energy is
fact 4G.15

The Ising states with a single flipped spin have dis
peared in the course of the duality transformation. In fa
together with the other states with an odd number of flipp
spins, they make up the sector, odd under global Ising re
sal, which was discardeden routeto the Ising model. The
ground state at the Rokhsar-Kivelson point in this secto
the first excited state of the Ising model and has a degene
proportional to the system size. The equal amplitude su
position of the configurations in that sector corresponds
the reference spin being antialigned with the field.

As observed before there are four dimer sectors on
torus ~and 4g on lattices of genusg) which cannot be con-
nected by local dimer moves. As these sectors correspon
different boundary conditions in the Ising problem, and t
latter have only anO(e2L/j) effect on the ground state en
ergy in the paramagnetic phase (j is the correlation length!,
it follows that they lead to four exponentially degenera
ground states. Hence the deconfined phase displays topo
cal order in the sense of Wen.12

Finally we observe that the dimer model on the Fish
lattice is exactly equivalent to the standard Ising gau
theory on the square lattice—dubbed the ‘‘even’’ Ising gau
theory in Ref. 14 due to the nature of its constraint. T

FIG. 7. A spin antialigned with the transverse field at the cen
of the plaquette denoted by the cross translates into a vortex e
tation in the quantum dimer model.
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constraint states, in the Hamiltonian formulation, that t
number of units of Ising electric flux entering/leaving a s
~the distinction is irrelevant for Ising variables! must be
even. If we identify a dimer on the external bonds of t
Fisher lattice with such a flux, we recover this constrai
This conclusion is only to be expected since the even Is
gauge theory is dual to the transverse field Ising model.

Interestingly, the dimer constraint on the Fisher lattic
that the number of dimers coming out of a given site be o
is a U~1! constraint. As discussed in Ref. 14, this gives t
dimer model the character of a U~1! gauge theory at the
lattice scale. As in the case of the triangular lattice QDM,
topological sectors indicate a low energy structure with Is
character—which would be the general expectation for a
confined~RVB! phase. What is special here is that, unlike t
triangular QDM, we are able to put all states of the Fish
lattice QDM under consideration into correspondence w
states in the Ising gauge theory.

Our basic considerations in this section can be general
to a wide class of Ising models that permit a time continu
limit to be taken. These include models that can be viewed
identical planes stacked ferromagnetically or antiferrom
netically ~or in any alternating combination!. Depending on
the frustration in the planes, we will obtain a QDM on
specific lattice obtained by the decoration procedure. For
ample, the FFIM stacked ferromagnetically will give rise to
QDM on the lattice shown in Fig. 1, which will be exactl
equal to the ‘‘odd’’ Ising gauge theory in which the numb
of Ising fluxes leaving a site is odd. This QDM will exhibit
transition from a deconfined phase to a confining phase
does break lattice symmetries, as first discussed in the
guage of Ising models in Ref. 27.

V. COMMENTS ON THE SOLUBLE KAGOME
QUANTUM DIMER MODEL

The dimer model we obtain atG/Js→` has much in com-
mon with the kagome dimer model discussed by Misgu
et al., their quantum dimer model also has a range of kine
terms around a given hexagonal plaquette, and it display
analogous excitation spectrum consisting of Ising vortic
Nevertheless, the solubility and beautiful simplicity of the
model does not derive from a Fisher construction. Inste
their problem has another very useful ingredient, namely
mapping of hardcore dimers to arrows on the kago
lattice,28 and indeed any other lattice consisting of corn
sharing triangles.

Not until they have executed this mapping does our d
cussion of the Rokhsar-Kivelson point parallel their mod
as one can consider the arrows asbondvariables of a trian-
gular lattice Ising model~or equivalently, link variablestx of
a honeycomb gauge theory! which, crucially, has zero ex
change strength. The quantum dynamics they study con
of the Wilson loop operation)stz.

An exactly soluble quantum eight vertex model

To illustrate this correspondence, and because it is
interest to ask if the arrow mapping used by Misgui

r
ci-
5-7
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R. MOESSNER AND S. L. SONDHI PHYSICAL REVIEW B68, 054405 ~2003!
et al.can be generalized, we note that their approach ca
used to define an exactly soluble quantum eight ver
model. This model can also be given an interpretation
terms of singlet bonds.

The basic geometric object of this model are squa
~instead of triangles!, which are again arranged to share c
ners. At the corners of the squares reside Ising degree
freedom~arrows!, which point either in or out. In addition
we impose the constraint that an even number of arro
point out.

The simplest case occurs when the squares~denoted by
fat lines in Fig. 8! are arranged on a square lattice~thin lines!
so that they share corners. The different arrow configurati
can be mapped onto configurations of the eight vertex mo
on the dual square lattice by identifying the arrows~which
by construction live on the links of the dual lattice! with the
arrows of the vertices of the eight-vertex model.

One can further interpret the arrows as link variables of
Ising model. The sites defining this model live on a furth
dual lattice~dashed lines!. For the case of a bipartite thi
lattice, one can label a bond frustrated if the arrow poi
from sublattice A to sublattice B and unfrustrated otherwi
~In the case of a nonbipartite thin lattice, one can choos
reference arrow and a reference spin configuration and id
tify the two.! The constraint of the eight-vertex model the
becomes a constraint on the product of exchanges,)hJi j
51, around a plaquette of the dashed lattice. However,
only imposes a constraint on allowed states—the strengt
the exchanges vanishes. From this method, one can e
visualize the known result that the number of eight-ver
configurations on the square lattice equals 2N, as there are no
constraints on the Ising model on the dashed lattice. T
result is straightforwardly generalized to any lattice defin
by the midpoints of corner-sharing squares, as explaine
Ref. 15 for lattices defined by midpoints of corner-shari
triangles.

This eight-vertex model can again be endowed with
quantum dynamics generated by a Wilson loop action on
links of the elementary plaquette of the thin square latti

FIG. 8. A lattice of corner sharing squares~thick lines!, which is
the medial lattice of the lattice denoted by thin lines, which is
turn dual to the lattice denoted by dashed lines.
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This becomes the zero-exchange transverse field Ising m
on the dashed square lattice.29 The results, such as on th
gap, 4G, or on the ultra-short correlation, follow just as the
did before.15

A possible interpretation of the different eight-vertex co
figurations in terms of singlet bonds is as follows~see Fig.
9!. Let spinsS51/2 reside on the vertices of the fat squa
lattice. If no arrows point into a given square, there are
singlet bonds between any pair of spins of the square. If
point in, there is a singlet bond between the two. If four po
in, the spins on the square form some collective singlet st
The choice of equal fugacities for all vertices amounts
disregarding the entropic contribution of the two linearly i
dependent collective singlets.

As a related~and known! combinatorial result, we notice
in passing that the number of nonoverlapping~but possibly
intersecting! loop configuration on a lattice can be triviall
evaluated in the same spirit. One can think of the loops
domain walls of an Ising model on the dual lattice. Up to
factor 2 from the global Ising symmetry, the number of d
main wall configurations is then given by the size of t
configuration space of the Ising model, which is of sizeN

for a dual lattice withN sites.

VI. SUMMARY

Two-dimensional Ising models are intimately related
dimer models. By means of the modified Fisher construct
introduced in this paper, this connection can be exhibi
configuration by configuration. The Ising transition in tw
dimensions maps onto a deconfinement transition in
dimer language as does the Ising transition in three dim
sions, which now appears in a quantum dimer model. T
last equivalence provides an instructive example of a to
logically ordered RVB phase and a transition from it to
confining phase, and one for which all the details are kno
These ideas can be extended straightforwardly to genera
exactly soluble quantum eight vertex model.
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FIG. 9. Possible interpretation of the eight vertex configuratio
~denoted by arrows on thin lines! in terms of singlet bonds~denoted
by dimers! between spins 1/2 on the corners of the square. T
rightmost figure denotes an overall singlet of the four spins,
which there are two linearly independent ones.
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