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Influence of disorder on the transport and optical properties of a two-dimensional binary alloy
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We address the issue of wave propagation in two-dimensional disordered systems, as well as analyze the role
of disorder on transport and optical properties of a two-dimensional binary alloy. We present results regarding
the propagating properties of wave packets in the alloy with an applied dc electric field. We also show the
behavior of the specific heat as a function of temperature and the optical absorption coefficient for different
alloy compositions and degrees of disorder.
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I. INTRODUCTION

The aim of this work is to analyze the influence of diso
der on transport and optical properties of carriers in a tw
dimensional binary alloyaxb12x of finite size, as well as the
interplay between the degree of disorder and alloy comp
tion. It is well established that there is no metal-insula
transition in disordered two-dimensional systems in the th
modynamic limit, in the absence of a magnetic field.1 But the
main subject of the present work is to analyze the beha
of mesoscopic systems such as the ones produced in th
vices, so that our conclusions can not be assumed to ho
the thermodynamic limit.

Nevertheless, experiments done on clean samples
GaAs/AlGaAs heterostructures suggested that a me
insulator transition could take place on a two-dimensio
~2D! system.2 Other groups, while studying the phase d
gram of the quantum Hall effect in disordered Si metal ox
semiconductor field effect transistors~MOSFETs! and GaAs/
AlGaAs heterostructures, arrived at similar conclusions3,4

On top of that, a systematic series of experiments rece
done on MOSFETs compounds,5–7 showed anunusualbe-
havior, suggesting the existence of a metallic phase. T
have observed that, for carrier densities above a critical va
nc , the resistivity decreases with decreasing temperatur
typical metallic behavior observed down to low tempe
tures. For an extensive account of the state of the art of
problem of localization in 2D disordered electronic syste
see the work by Abrahamset al.8

We are aware that ours is a one-particle model. Never
less, there are situations in which even if the interaction
tween particles is relevant, a single particle description
give a clue to explain certain phenomena. We would like
refer to the detection of Bloch oscillations in superlattices9 a
phenomenon predicted in the realm of one-particle phys
Another example being the detection of the famous Ho
tadter butterfly spectrum for electrons in two-dimensio
under a magnetic field.10 A noninteracting-electron mode
was recently introduced to describe a metal-insulator tra
tion in two dimensions.11

In Sec. II we present the model Hamiltonian used to
scribe propagating properties in a 2D binary alloy with dia
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onal disorder under the action of a dc electric field, for d
ferent values of the order parameter and alloy composit
Following, we show the density of states~DOS! obtained,
after solving the eigenvalue problem for each case in stu
By applying the statistics of a Fermi gas, we obtain the s
cific heat as a function of temperature for the alloy. Fina
we present a model to obtain the behavior of the opti
absorption coefficient of the alloy as a function of the in
dent photon frequency.

II. DYNAMICAL PROPERTIES

As stated above, we treat the problem of quantum per
lation in a binary alloyaxb12x , along the tight-binding
model, with diagonal disorder, in a 2D underlying squa
lattice where the on-site energies («n,m5«a or «b) are ran-
domly distributed under the action of an electric fieldEi( i
5x,y). We expand the wave function in the Wannier rep
sentation

uc~ t !&5(
n,m

f n,m~ t !un,m& ~1!

so that the time dependent Schro¨dinger equation is

i
d fn,m

dt
5~ f n11,m1 f n21,m1 f n,m111 f n,m21!

1~en,m1nEx1mEy! f n,m ~2!

in terms of the dimensionless variables

t5
Wt

\
, en,m5

«n,m

W
, Ei5

eaEi

W
, ~3!

whereW is the hopping term considered to be constant ana
is the lattice parameter. Taken as the initial condition a w
localized particle at the origin of the lattice:

f n,m~ t50!5dn,0dm,0 . ~4!

In a previous work12 it was shown that the set of equation
can be cast in the matrix form
©2003 The American Physical Society04-1
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FIG. 1. The left figure indicates the occupation in the dimer structure ofa sites~open circles! andb sites~asterisks!. The brackets indicate
the pairs of IFD lines with the same on-site energy. The example shown corresponds to the caseeEa/W5h. Note the zigzageasyroute for
the packet. The right figure shows the packet at a particular time, making it evident that propagation occurs perpendicular to the app
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5MF ~5!

whereM is the dynamical matrix and the vectorF is con-
structed from the Wannier amplitudesf n,m(t). To solve Eq.
~5! we introduced a method that showed that the solution
the matrix equation can be cast as follows13:

F~t!5Rtexp~2 iDt!RF~0!, ~6!

whereD is the diagonal form of the dynamical matrixM .
Since the lattice assumed in the simulations is finite

sizeN5Nx3Ny , we chose it to be large enough in order
avoid boundary effects. As for the time limit taken in o
calculation it was 10211 sec, longer than any reasonable c
lision time in the sample, something that implies that
have to consider a lattice sufficiently large to eliminate u
desirable boundary effects.

In order to describe the kind of propagation of an initia
localized wave packet, we analyze the following:~i! The
mean-square displacement~MSD! ^r 2&, which in units of the
lattice parameter is given by

^r 2&~ t !5(
n,m

u f n,m~ t !u2~n21m2!. ~7!

~ii ! We make three-dimensional plots of the wave pac
taken at different times. It must be pointed out that this o
particle picture remains valid for sufficient long times su
that the dephasing of the wave function due to interactio
with phonons for example, is not significant.

Givenx, the concentration ofa-atoms in the alloy, anothe
crucial parameter that measures the degree of disorder in
present model is

h5U«a2«b

W U. ~8!

Our results will be characterized in terms of these t
dimensionless parameters, since we are interested in st
ing the interplay between alloy composition and degree
disorder. The calculations proceeded as follows: Having c
sen the concentration parameterx, we start att50 with the
electron localized at a certaina site in the lattice. Clearly,
whenh is very small, hopping is favoredevenbetween sites
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occupied by atoms of different species. In such a case
independently of the concentration of the alloy, we have
ballistic propagation of the initially well localized wave
packet:^r 2&5Ct2. On the other extreme, for sufficient larg
h, hopping between different atoms is strongly inhibite
and the wave remainslocalized in a definite region. For in-
termediateh values we can have several kinds of pictur
characterized as superdiffusive, diffusive, or subdiffus
propagation.

In a previous work,15 we presented a summary of th
results obtained along the methods outlined above, by sh
ing a phase diagram in the (x,h) plane, in which different
types of propagation~localization! are indicated. We mus
point out that it is not only the strength of the disorder b
also the dimensionality of the system that determines
kind of propagation~localization! of carriers. In 1D disor-
deredrandom systems the situation was definitively esta
lished, that is, it is impossible for a carrier to propaga
through them. Still in one dimension, we have exceptio
situations that belong to the class ofdeterministicaperiodic
structures such as Fibonacci, Thue-Morse, and Harper, w
one can even obtain superdiffusive propagation.16–18 But, as
happens in this work, in a 2D system, due to the grea
connectivity of the lattice, we expect a different behav
from the one-dimensional case.

A. Effect of a dc electric field

In our previous work15 we did not include the presence o
an electric field, with which we will deal now. A given ran
dom configuration results in a given site distribution, whi
in turn determines the route the wave follows as tim
progresses, as explained above. On the other hand, whe
field is acting, sites that were degenerate in energy could
longer be so, and this inhibits propagation along these s

The inclusion of the electric field produces directio
along which the additional potential energy is constant.
can call this effectinduced field degeneracy~IFD!. For a
field E5E(1,b), the IFD lines satisfy the equation

y1
x

b
5cte,

which areperpendicularto the field. Sites along these line
tend to be degenerate due to the acting field. Conseque
4-2
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FIG. 2. For h51 and an ap-
plied electric field E5E(1,1).
The first figure shows the MSD
for the concentrationsx50.3, 0.5,
and 0.9 together with the mono
mer and dimer. The other figure
show the wave packet evolutio
for x50.5.
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propagation is favored along these directions. See Fig
where we illustrate the dimer situation.

Let us discuss different situations starting with the mon
mer case. It is well established that in such a system
action of a dc electric field produces Bloch oscillations12

Going to the dimer structure the behavior is dramatica
different. In fact, let us consider the case of the field be
applied along the diagonalE5E(1,1), for which the IFD
lines are parallel to the secondary diagonal. The line pas
through the origin contains sites with an on-site energy eq
to zero (a type!. The nearest neighboring~n.n.! lines contain
sites with an on-site energy equal toh6eEa/W (b-type!,
the n.n.n. lines contain sites with an on-site energy equa
62eEa/W, and so on. By tuning the field intensity we ca
cause the first two IFD lines to the right of the second
diagonal to contain sites with the same on-site energy
fact, taking, for instance,eEa/W5h, the first line contains
sites with the same on-site energy as the second one, equ
2h. Another two degenerate lines are the secondary diag
and the first line to the left, with an on-site energy equal
zero. This explains why in the dimer case the wave pro
gates in the presence of an electric field, a different situa
as compared with the monomer lattice. We can see in
present example that the direction of propagation is para
to the secondary diagonal, i.e.,perpendicularto the applied
field. See Fig. 1.

It is interesting to analyze the effect of the application
a dc electric field, mainly in the case of small disorder~h
51!, where we have ballistic propagation for all concent
tions in the absence of the field.15 By applying a field along
the diagonalE5E(1,1) we note that the packet is localize
in a very small region of the lattice. This is the phenomen
of dynamic localizationas opposed to the case of Anders
localization,14 caused by a sufficiently strong disorder. W
note this dynamical effect in Fig. 2, where we show the wa
packet for a concentrationx50.5, at three different times
The localization is evident, and the packet has a tendenc
propagate along the directionperpendicularto the direction
05420
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of the applied field, in agreement with the above explanati
For a concentrationx50.9 we observe an oscillation of th
wave packet resembling the Bloch oscillation of the mon
mer, since, for these parameters, the alloy is close to
monomer structure. See the corresponding MSD shown
Fig. 2.

III. STATISTICAL PROPERTIES

In this section we are concerned with statistical proper
such as the temperature dependence of the specific he
our model alloy. In order to solve the stationary Schro¨dinger
equation we expand the wave function in the Wannier rep
sentation

uC~r !&5(
n,m

gn,mun,m&, ~9!

which leads to the following set of equations for the amp
tudes:

Egn,m5@gn11,m1gn21,m1gn,m111gn,m21#1en,mgn,m ,
~10!

where the energies are in units ofW. We have taken a lattice
of 7137155041 sites which will produce that number o
eigenfunctions and corresponding eigenvalues. Notice
now the Wannier amplitudesgn,m are time independent. We
considered several alloy concentrations and different va
of the crucial parameterh.

In order to check our programs, we calculated the sp
trum of energies and the DOS for the ordered structures:
monomer and the periodic dimer for different values ofh. In
the latter cases one notices that the single band of the m
mer splits into two sub-bands, with an energy gap equa
h. In Fig. 3 we show the DOSs for the monomer~h50! and
for the periodic dimers forh51, 5, and 10; we note a reflec
tion symmetry around the middle of the gap for the thr
4-3
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FIG. 3. The density of states
~DOS! for the ordered structures
monomer ~h50! and dimers for
h51, 5, and 10, respectively.
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dimers. Clearly, as we increaseh, the bands get narrowe
reaching the atomic limits whenu«a2«bu@gW.

Performing the calculation for different disordered co
figurations, we noted, in the density of states, the appeara
of states inside the gap region of the ordered structures;
states are localized ones. At the same time, the symmetr
the DOS presented in the ordered cases is absent in the
First of all, in the five cases treated above for small disor
~h51!, the associated DOSs show no gap; in addition,
they resemble the DOSs of the monomer case sinceh is
small. See Fig. 4, where we show the DOSs forx50.3 and
0.5 and for the three casesh51, 5, and 10. For intermediat
05420
-
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disorder~h55! the associated DOS shows the absence o
gap in the spectrum in any of the concentrations. We
compare the DOS corresponding toh55 for the dimer with
the alloy for a concentrationx50.5. In the alloy, the gap is
completely closed, while the peaks which are present in
ordered structure are severely depleted; see Figs. 3~h55!
and 4 (x50.5 andh55!. For large disorder~h510!, a com-
mon feature for all the cases is the presence of gaps in
spectra, due to the greath. We can again compare the ob
tained DOSs forx50.5 andh510 shown in Fig. 4 with the
corresponding DOS in the ordered dimer shown in Fig.
Similar to the case of intermediate disorder, the peaks in
FIG. 4. The DOSs forx50.3
and 0.5 andh51, 5, and 10.
4-4
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FIG. 5. The specific heat as
function of temperature.~a! Spe-
cific heat for the four ordered
cases.~b! Specific heat for con-
centrationx50.3 andh51, 5, and
10. ~c! Specific heat forx50.5
and h51, 5, and 10.~d! Specific
heat forh510 and concentrations
x50.1, 0.3, 0.5, 0.7, and 0.9. Th
temperature units areW/kB ,
where kB is the Boltzmann con-
stant.
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ordered structure are depleted in the alloy. The differenc
that in this case of largeh, the states that appear in the g
region cannot fill it completely. It is interesting to analyze
less symmetric case, namely, one withx50.3 andh510 ~see
Fig. 4!. Sincex is the concentration ofa atoms, the corre-
sponding subband is narrower than theb subband. Still, in
this case, the DOS presents an appreciable gap. If we
sider the same concentration ofa atoms but now take a
smallerh55, we notice that there is no gap.

Specific heat

Having solved the Schro¨dinger equation we must appl
the recipes of statistical mechanics to obtain the internal
ergy and the specific heat. Considering a number of carr
that can fillN/2 levels~a subband! we set the condition

N

2
5(

k
@eb(Ek2m)11#21 ~11!

from which the chemical potential as a function of tempe
ture is obtained. After this we evaluate the internal ene
U(T):

U~T!5(
k

Ek

eb(Ek2m)11
. ~12!

After this step is completed we are in a position to eva
ate the specific heat:

Cv~T!5
]U

]T
. ~13!

We now present the results corresponding to the specific
as a function of temperature, for different values of the
rametersx andh:
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In Fig. 5~a! we show the specific heat curves for the fo
ordered cases, the monomer and the three dimers co
sponding toh51, 5, and 10. Notice that the position an
intensity of the peak, in the specific heat, are increasing w
temperature as, the gaph, in the DOS, increases. Now w
discuss the results obtained for an alloy corresponding
different values ofx andh. Fixing the concentration we var
ied the parameterh and found a definite trend in the behavi
of the specific heat as a function of temperature. We fi
consider the casesx50.3 andh51, 5, and 10. In the two
former cases we noticed that the specific heat curves sho
a single peak, while in the latter case two peaks were pre
@see Fig. 5~b!#. Going back to the DOS associated with the
cases, we see~in Fig. 4! that we obtained a gap in the spe
trum for h510, while forh55 and 1 the gap is closed. Thi
is due to the presence of the two asymmetric subbands in
case ofh510, the one responsible for the appearance of
two peaks in the specific heat. In Fig. 5~c! we show the
specific heat forx50.5 andh51, 5, and 10. Note that ther
is a single peak for all three cases, while for the two sma
values ofh, no gap is present in the DOS, in addition f
h510 there is a gap in the spectrum, which showed t
symmetricsubbands.

In Fig. 5~d! we show the caseh510 for five concentra-
tions. Because of symmetry, the curves corresponding tx
50.1 and 0.9 coincide; the same occurs for concentrati
x50.3 and 0.7. If we compare this with the ordered case
which the specific heat has a single peak irrespective of
magnitude of the gap, in the case of the alloy the presenc
two peaks is due to both conditions: the existence of the
and the asymmetry in the spectrum. Note that, in the orde
cases, the DOS presents a reflection symmetry, that is ab
in the alloy. The asymmetry in the DOS is greater for
concentrationx'0.25, while the two peaks are of the sam
intensity and more pronounced than for other concentratio
In all cases the specific heat goes to zero asT→`, since the
spectrum is bounded.
4-5
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FIG. 6. The optical absorption
coefficient in arbitrary units as a
function of the incident photon
energy.~a! The absorption coeffi-
cient for concentrationsx50.1
~continuous line! and x50.9
~dashed line!. ~b! The absorption
coefficient for concentrationsx
50.3 ~continuous line! and x
50.7 ~dashed line!. ~c! The ab-
sorption coefficient for the dimer
corresponding toh510.
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IV. OPTICAL ABSORPTION

For the cases shown above, in which, due to a largeh, the
spectrum shows a gap, we can study the optical absorp
due to interband transitions. In fact, once the energy sp
trum and the DOS of the alloy are determined, we can c
culate the optical absorption coefficient as a function of
incident photon frequencyv, due to transitions betwee
bands, which we shall calla and b. Considering vertical
transitions, one can write the absorption coefficient in
compact form

a~v!5
M
v

3Jab~\v!, ~14!

whereJab(v) is the joint density of states~JDOS! andM is
proportional to the matrix element of the perturbation b
tween initial and final states. In the Appendix we show t
steps that lead to this expression for the absorp
coefficient.19,20

We shall first present the results for the ordered dim
where the density of states is a maximum one for the top
the ‘‘valence’’ banda and the bottom of the ‘‘conduction’
bandb. As a consequence, the JDOS presents a maximu
an energy equal to the gap. In this way, the band-to-b
transitions spectrum peaks at\v5Egap . Moreover, it pre-
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sents a shoulder for a frequency for which («b2«a)/\ is a
maximum one, because it is a critical point or a Van Ho
singularity.21,22

Following this, we consider the alloy case for differe
alloy compositions and for a fixed value of the disorder p
rameterh. First of all, as stated above, in the case of
disordered system the gap between bands is reduced, w
means that the absorption threshold occurs at a lower
quency as compared with the ordered case. At the same
we note that the peak in the spectrum appears at an en
~frequency! close to, but a little larger than, the energy of t
gap of the ordered case~see Fig. 6!. This behavior is com-
mon to all alloy compositions, as can be noticed in Fi
6~a!–6~c! where we show the absorption coefficient f
h510 and concentrationsx50.1, 0.3, 0.7, and 0.9 and fo
the corresponding dimer. The absorption curves for the
concentrationsx50.1 and 0.9 coincide because of the stru
ture of the corresponding DOS; the same happens with
casesx50.3 and 0.7. Note that the peak of the absorpt
coefficient of the dimer is much greater than the ones in
alloy cases.

V. CONCLUSIONS

In the present work we analyzed the propagation prop
ties of carriers in a 2D binary alloyaxb12x along the tight-
4-6
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INFLUENCE OF DISORDER ON THE TRANSPORT AND . . . PHYSICAL REVIEW B68, 054204 ~2003!
binding model with diagonal disorder under the action o
dc electric field, and presented the results of the specific
as a function of temperature as well as the optical absorp
coefficient for several compositions~x! and intensities of the
disorder~h!. In a previous work15 we presented, through
phase diagram in the (x,h) plane, the different kinds of be
havior concerning the propagation properties of wave pa
ets in the binary alloy, without the presence of an elec
field.

The inclusion of a dc electric field radically changes t
behavior observed in the absence of the field. In fact,
previously shown, its effect is more evident in the case
small disorder, where ballistic propagation is obtained in
field free case; however once it is included, a strong loc
ization is observed. As explained above, the field breaks
degeneracy of sites of the same kind, inhibiting propaga
along them. We also discussed the effect of the presence
field in the case of a dimer structure, where we explain
why, by properly tuning the electric field, it is possible
create pair of lines perpendicular to the field, that cont
degenerate sites which in turn produces propagation a
them. This is the effect due to the presence of the field,
we calledinduced field degeneracy.

We also presented the density of states for different a
compositions and different degrees of disorder. When
compared the results for the alloy with ordered 2D structu
for several values ofh, we observed, in the gap region of th
ordered dimers, the appearance of states in the alloy cas
the degree of disorder is sufficiently large, there is still a g
in the alloy spectrum, although smaller than in the cor
sponding ordered case. For small to moderate disorder
gap is closed by the presence of localized states. In o
words, for largeh the spectrum is characterized by two su
bands separated by a gap, while for smaller values ofh no
gap is present in the DOS. This has as the immediate co
quence that, for an alloy with largeh and a concentration
such that its corresponding DOS is asymmetric, the spe
heat as a function of temperature shows two peaks. In
absence of a gap in the spectrum~small to moderateh! the
curve shows a single peak.

Finally, we evaluated the optical absorption coefficient
the alloy by considering interband transitions for the case
which, due to large values of the disorder parameterh, there
a

ll,

a

ur

h
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is a gap in the spectrum. The maximum in the absorpt
curve occurs for an energy a bit larger than the energy ga
the spectrum of the ordered dimer.

APPENDIX

To obtain Eq.~14! we proceed as follows. We take th
interaction between electrons and the radiation field of f
quencyv, in the linear approximation in the vector potenti
which satisfies the Lorentz gauge“•A50,

Hint5
e

mc
@A„x,t !•p]. ~A1!

We apply the Fermi golden rule to calculate the transit
probability per unit time between an initial stateu i & with
energy« i to a final stateu f & with energy« f :

Pi f ~v!5
1

\
u^ f uHintu i &u2d~« f2« i2\v!. ~A2!

To get the total number of transitions per unit time w
must perform a sum over all states in both bands that
separated in energy by the photon incident energy\v:

W~v!5(
i→ f

Pi f ~v!. ~A3!

The absorption coefficienta is the ratio between the en
ergy absorbed in the unit time and the energy fluxu(c/n),
whereu is the density of energy of the electromagnetic fie
andn is the refraction index,

a5
\vW~v!

u~c/n!
~A4!

where the average energy densityu in the medium is given
by

u5C
v2

~c/n!2
~A5!

If we consider the matrix elements of Eq.~A2! as a con-
stant, we can extract the joint density of states to obtain
~14! for the absorption coefficient.
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