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Influence of disorder on the transport and optical properties of a two-dimensional binary alloy
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We address the issue of wave propagation in two-dimensional disordered systems, as well as analyze the role
of disorder on transport and optical properties of a two-dimensional binary alloy. We present results regarding
the propagating properties of wave packets in the alloy with an applied dc electric field. We also show the
behavior of the specific heat as a function of temperature and the optical absorption coefficient for different
alloy compositions and degrees of disorder.
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[. INTRODUCTION onal disorder under the action of a dc electric field, for dif-
ferent values of the order parameter and alloy composition.
The aim of this work is to analyze the influence of disor- Following, we show the density of stat¢BOS) obtained,
der on transport and optical properties of carriers in a twoafter solving the eigenvalue problem for each case in study.
dimensional binary alloy,b, _, of finite size, as well as the BY applying the statistics of a Fermi gas, we obtain the spe-
interplay between the degree of disorder and alloy composfcific heat as a function of temperature for the alloy. Finally,
tion. It is well established that there is no metal-insulatorwe present a model to obtain the behavior of the optical
transition in disordered two-dimensional systems in the therdbsorption coefficient of the alloy as a function of the inci-
modynamic limit, in the absence of a magnetic fieBut the ~ dent photon frequency.
main subject of the present work is to analyze the behavior
of mesoscopic systems such as the ones produced in the de- Il. DYNAMICAL PROPERTIES
vices, so that our conclusions can not be assumed to hold in
the thermodynamic limit.
Nevertheless, experiments done on clean samples

As stated above, we treat the problem of quantum perco-
Jation in a binary alloya,b;_,, along the tight-binding

GaAs/AlGaAs heterostructures suggested that a meta[hCdel, with diagonal disorder, in a 2D underlying square

insulator transition could take place on a two-dimensionafattice where the on-site energies,(y=¢, or &) are ran-

(2D) systen? Other groups, while studying the phase dia-domly distributed under the action of an electric me[;{l

gram of the quantum Hall effect in disordered Si metal oxide™*:Y). We expand the wave function in the Wannier repre-

semiconductor field effect transistafdOSFETS and GaAs/ ~ Sentation

AlGaAs heterostructures, arrived at similar conclusidhs.

On top of that, a systematic series of experiments recently _

done on MOSFETs compounds, showed anunusualbe- ) % Fam(®In,m) @

havior, suggesting the existence of a metallic phase. They ) o o

have observed that, for carrier densities above a critical valug® that the time dependent Sctirger equation is

n., the resistivity decreases with decreasing temperature, a

typical metallic behavior observed down to low tempera- idfn,m

tures. For an extensive account of the state of the art of the dr

problem of localization in 2D disordered electronic systems

see the work by Abrahanet al® +(enmt NEFME)Fnm 2
We are aware that_ ours isa _one-partic_:le mo_del. Ne_verthqh terms of the dimensionless variables

less, there are situations in which even if the interaction be-

tvyeen particles is rglevant,.a single patrticle descriptio_n can Wit €nm eaE

give a clue to explain certain phenomena. We would like to T=—=, €ym=—r, &=, ©)

refer to the detection of Bloch oscillations in superlattites, h ' w

phenomenon predicted in the realm of one-particle physicsyherew is the hopping term considered to be constantand
Another example being the detection of the famous Hofs{g the |attice parameter. Taken as the initial condition a well
tadter butterfly spectrum for electrons in two-dimensions,s.ajized particle at the origin of the lattice:

under a magnetic fielt A noninteracting-electron model
was recently introducei:i to describe a metal-insulator transi- from(t=0)= 8, 0dmo. (4)
tion in two dimensions! ' T

In Sec. Il we present the model Hamiltonian used to dedn a previous worlé it was shown that the set of equations
scribe propagating properties in a 2D binary alloy with diag-can be cast in the matrix form

= (fn+l,m+ 1:nfl,m"' fn,m+1+ fn,mfl)
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FIG. 1. The left figure indicates the occupation in the dimer structueesites(open circlesandb sites(asterisks The brackets indicate
the pairs of IFD lines with the same on-site energy. The example shown corresponds to tbE &8¥e- 7. Note the zigzagasyroute for
the packet. The right figure shows the packet at a particular time, making it evident that propagation occurs perpendicular to the applied field.

dF occupied by atoms of different species. In such a case and
ig; =MF (5 independently of the concentration of the alloy, we have a
ballistic propagation of the initially well localized wave
whereM is the dynamical matrix and the vectbris con-  packet:(r?)=Ct?. On the other extreme, for sufficient large
structed from the Wannier amplitudés (7). To solve Eq. 7, hopping between different atoms is strongly inhibited,
(5) we introduced a method that showed that the solution ofind the wave remairiscalizedin a definite region. For in-
the matrix equation can be cast as follots termediaten values we can have several kinds of pictures
. , characterized as superdiffusive, diffusive, or subdiffusive
F(7)=Rlexy —iD7)RF(0), ®  propagation.
whereD is the diagonal form of the dynamical matii4. In a previous work? we presented a summary of the
Since the lattice assumed in the simulations is finite off€Sults obtained along the methods outlined above, by show-
sizeN=N,xN,, we chose it to be large enough in order to INg @ phase diagram in the(;) plane, in which different
avoid boundary effects. As for the time limit taken in our types of propagatiorilocalizatior) are indicated. We must
calculation it was 10! sec, longer than any reasonable col-Point out that it is not only the strength of the disorder but
lision time in the sample, something that implies that we@lSO the dimensionality of the system that determines the
have to consider a lattice sufficiently large to eliminate un-Kind of propagation(localization of carriers. In 1D disor-
desirable boundary effects. deredrandomsystems the situation was definitively estab-
In order to describe the kind of propagation of an initially iShed, that is, it is impossible for a carrier to propagate
localized wave packet, we analyze the followin@: The ~ through them. Still in one dimension, we have exceptional

mean-square displaceméMSD) (r2), which in units of the situations that belong to the class aéterministicaperiodic
lattice parameter is given by structures such as Fibonacci, Thue-Morse, and Harper, where

one can even obtain superdiffusive propagatfort® But, as
5 0 o happens in this work, in a 2D system, due to the greater
(r >(t)=n2m | fn,m(D]*(n*+m?). (7)  connectivity of the lattice, we expect a different behavior
’ from the one-dimensional case.
(i) We make three-dimensional plots of the wave packet
taken at different times. It must be pointed out that this one- A. Effect of a dc electric field
particle picture remains valid for sufficient long times such
that the dephasing of the wave function due to interaction
with phonons for example, is not significant.
Givenx, the concentration ad-atoms in the alloy, another

crucial parameter that measures the degree of disorder in t
present model is

S In our previous work® we did not include the presence of

an electric field, with which we will deal now. A given ran-
dom configuration results in a given site distribution, which
H% turn determines the route the wave follows as time
progresses, as explained above. On the other hand, when the
field is acting, sites that were degenerate in energy could no
longer be so, and this inhibits propagation along these sites.
(8) The inclusion of the electric field produces directions
along which the additional potential energy is constant. We

Our results will be characterized in terms of these two@n call this effecinduced field degeneracyiFD). For a
dimensionless parameters, since we are interested in studfe'd E=E(1,8), the IFD lines satisfy the equation
ing the interplay between alloy composition and degree of X
disorder. The calculations proceeded as follows: Having cho- y+ —=cte,
sen the concentration parametemwe start at=0 with the B
electron localized at a certam site in the lattice. Clearly, which areperpendicularto the field. Sites along these lines

when 7 is very small, hopping is favoreeivenbetween sites tend to be degenerate due to the acting field. Consequently

€a” €p
W

n=
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FIG. 2. For =1 and an ap-
plied electric field E=E(1,1).
The first figure shows the MSD
for the concentrationg=0.3, 0.5,
and 0.9 together with the mono-
mer and dimer. The other figures
show the wave packet evolution
for x=0.5.
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propagation is favored along these directions. See Fig. Iof the applied field, in agreement with the above explanation.
where we illustrate the dimer situation. For a concentratiox=0.9 we observe an oscillation of the

Let us discuss different situations starting with the mono-wave packet resembling the Bloch oscillation of the mono-
mer case. It is well established that in such a system thener, since, for these parameters, the alloy is close to the
action of a dc electric field produces Bloch oscillatidAs. monomer structure. See the corresponding MSD shown in
Going to the dimer structure the behavior is dramaticallyFig. 2.
different. In fact, let us consider the case of the field being
applied along the diagona=E(1,1), for which the IFD Il STATISTICAL PROPERTIES
lines are parallel to the secondary diagonal. The line passing
through the origin contains sites with an on-site energy equal In this section we are concerned with statistical properties
to zero @ type). The nearest neighborir@.n) lines contain  such as the temperature dependence of the specific heat of
sites with an on-site energy equal ip-eEaW (b-type), our model alloy. In order to solve the stationary Sclinger
the n.n.n. lines contain sites with an on-site energy equal tequation we expand the wave function in the Wannier repre-
+2eEaW, and so on. By tuning the field intensity we can sentation
cause the first two IFD lines to the right of the secondary
diagonal to contain sites with the same on-site energy. In
fact, taking, for instancegEa/W= 7, the first line contains |\P(r)>=§1 Gn,mlN.M), )
sites with the same on-site energy as the second one, equal to ’
27. Another two degenerate lines are the secondary diagonghich leads to the following set of equations for the ampli-
and the first line to the left, with an on-site energy equal totydes:
zero. This explains why in the dimer case the wave propa-
gates in the presence of an electric field, a different situation g =g, .1+ 1m+9nme1F nme1]+ €nmIn ms
as compared with the monomer lattice. We can see in the ’ ’ ' ’ ’ (10
present example that the direction of propagation is parallel
to the secondary diagonal, i.@erpendicularto the applied where the energies are in units\6f We have taken a lattice
field. See Fig. 1. of 71x71=5041 sites which will produce that number of

It is interesting to analyze the effect of the application ofeigenfunctions and corresponding eigenvalues. Notice that
a dc electric field, mainly in the case of small disorder now the Wannier amplitudes, ., are time independent. We
=1), where we have ballistic propagation for all concentra-considered several alloy concentrations and different values
tions in the absence of the fietd By applying a field along of the crucial parametes.
the diagonaE=E(1,1) we note that the packet is localized In order to check our programs, we calculated the spec-
in a very small region of the lattice. This is the phenomenortrum of energies and the DOS for the ordered structures: the
of dynamic localizatioras opposed to the case of Andersonmonomer and the periodic dimer for different valuesofn
localization** caused by a sufficiently strong disorder. We the latter cases one notices that the single band of the mono-
note this dynamical effect in Fig. 2, where we show the wavemer splits into two sub-bands, with an energy gap equal to
packet for a concentratior=0.5, at three different times. #. In Fig. 3 we show the DOSs for the mononier=0) and
The localization is evident, and the packet has a tendency tor the periodic dimers fon=1, 5, and 10; we note a reflec-
propagate along the directigrerpendicularto the direction tion symmetry around the middle of the gap for the three
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dimers. Clearly, as we increasg the bands get narrower, disorder(»=5) the associated DOS shows the absence of a
reaching the atomic limits whejz ,— &p|>gW. gap in the spectrum in any of the concentrations. We can
Performing the calculation for different disordered con-compare the DOS corresponding #e=5 for the dimer with

figurations, we noted, in the density of states, the appearandke alloy for a concentratior=0.5. In the alloy, the gap is

of states inside the gap region of the ordered structures; sucdompletely closed, while the peaks which are present in the
states are localized ones. At the same time, the symmetry afrdered structure are severely depleted; see Figs;=5)

the DOS presented in the ordered cases is absent in the alland 4 k=0.5 andz=5). For large disorde(»=10), a com-
First of all, in the five cases treated above for small disordemon feature for all the cases is the presence of gaps in the
(p=1), the associated DOSs show no gap; in addition, aspectra, due to the great We can again compare the ob-
they resemble the DOSs of the monomer case sipde  tained DOSs fox= 0.5 and%»=10 shown in Fig. 4 with the
small. See Fig. 4, where we show the DOSsXer0.3 and  corresponding DOS in the ordered dimer shown in Fig. 3.
0.5 and for the three cases=1, 5, and 10. For intermediate Similar to the case of intermediate disorder, the peaks in the
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ordered structure are depleted in the alloy. The difference is In Fig. 5@ we show the specific heat curves for the four
that in this case of large), the states that appear in the gapordered cases, the monomer and the three dimers corre-
region cannot fill it completely. It is interesting to analyze asponding ton=1, 5, and 10. Notice that the position and
less symmetric case, namely, one with 0.3 and»=10(see  intensity of the peak, in the specific heat, are increasing with
Fig. 4). Sincex is the concentration o& atoms, the corre- temperature as, the gap in the DOS, increases. Now we
sponding subband is narrower than thesubband. Still, in ~ discuss the results obtained for an alloy corresponding to

this case, the DOS presents an appreciable gap. If we coflifferent values ok and ». Fixing the concentration we var-
sider the same concentration afatoms but now take a |€d the parametepand found a definite trend in the behavior
smaller =5, we notice that there is no gap. of the specific heat as a function of temperature. We first,

consider the cases=0.3 and»=1, 5, and 10. In the two
former cases we noticed that the specific heat curves showed
a single peak, while in the latter case two peaks were present
Having solved the Scﬁdjnger equation we must apply [see Fig. )]. Going back to the DOS associated with these
the recipes of statistical mechanics to obtain the internal ercases, we se@n Fig. 4) that we obtained a gap in the spec-
ergy and the specific heat. Considering a number of carrier§um for =10, while for »=5 and 1 the gap is closed. This

that can fillN/2 levels(a subbangiwe set the condition is due to the presence of the two asymmetric subbands in the
case ofy=10, the one responsible for the appearance of the

N two peaks in the specific heat. In Fig(chb we show the
§=E [eFBm 1171 (1)  specific heat fox=0.5 andz=1, 5, and 10. Note that there
k is a single peak for all three cases, while for the two smaller

from which the chemical potential as a function of tempera—values of, no gap is present in the DOS, in addition for

ture is obtained. After this we evaluate the internal energ)ﬁ:10 thgre is a gap in the spectrum, which showed two
U(T): symmetricsubbands.

In Fig. 5(d) we show the case=10 for five concentra-
tions. Because of symmetry, the curves corresponding to
um=3 Ex . (12) =0.1 and 0.9 coincide; the same occurs for concentrations
x efEm 1 x=0.3 and 0.7. If we compare this with the ordered cases in
which the specific heat has a single peak irrespective of the

After this step is completed we are in a position to evalu-magnitude of the gap, in the case of the alloy the presence of

Specific heat

ate the specific heat: two peaks is due to both conditions: the existence of the gap
andthe asymmetry in the spectrum. Note that, in the ordered
ouU cases, the DOS presents a reflection symmetry, that is absent
Co(M=—7 (13 in the alloy. The asymmetry in the DOS is greater for a

concentratiorx~0.25, while the two peaks are of the same
We now present the results corresponding to the specific heaitensity and more pronounced than for other concentrations.
as a function of temperature, for different values of the pain all cases the specific heat goes to zer@ asx, since the
rameters< and 7 spectrum is bounded.
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IV. OPTICAL ABSORPTION sents a shoulder for a frequency for whick, & ¢,)/% is a
. . maximum one, because it is a critical point or a Van Hove
For the cases shown above, in which, due to a laggbe singularity2-22 P

spectrum shows a gap, we can study the optical absorption ' . . .
: . Following this, we consider the alloy case for different

due to interband transitions. In fact, once the energy spec- i, ' .
alloy compositions and for a fixed value of the disorder pa-

trum and the DOS of the alloy are determined, we can Cal'rametern. First of all, as stated above, in the case of a

pulate the optical absorption coefficient as a function of thedisordered system the gap between bands is reduced, which
incident photon frequencys, due to transitions between

bands, which we shall cal and b. Considering vertical means that the absorption threshold occurs at a lower fre-
transitions, one can write the absorption coefficient in theluency as compared W.'th the ordered case. At the same time
compact form we note that the peak in the spectrum appears at an energy
P (frequency close to, but a little larger than, the energy of the
M gap of the ordered cagsee Fig. 6. This behavior is com-
a(w)= —XJgp(fiw), (14) mon to all alloy compositions, as can be noticed in Figs.
@ 6(a)—6(c) where we show the absorption coefficient for

; - ; - 7n=10 and concentrations=0.1, 0.3, 0.7, and 0.9 and for
whereJa(w) is the joint density of StateJDOS and M is the corresponding dimer. The absorption curves for the two

roportional to the matrix element of the perturbation be ; o
brop P concentrationx=0.1 and 0.9 coincide because of the struc-

tween initial and final states. In the Appendix we show the , .
steps that lead to this expression for the absorptior‘iure of the corresponding DOS; the same happens with the

coefficienti%20 casesx=0.3 and 0.7. Note that the peak of the absorption
We shéll first present the results for the ordered dimeI;:oefﬁcient of the dimer is much greater than the ones in the

where the density of states is a maximum one for the top of‘”oy cases.

the “valence” banda and the bottom of the “conduction”

bandb. As a consequence, the JDOS presents a maximum at V. CONCLUSIONS

an energy equal to the gap. In this way, the band-to-band In the present work we analyzed the propagation proper-
transitions spectrum peaks &atv=Egy,,. Moreover, it pre- ties of carriers in a 2D binary allog,b, , along the tight-
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binding model with diagonal disorder under the action of ais a gap in the spectrum. The maximum in the absorption
dc electric field, and presented the results of the specific heaurve occurs for an energy a bit larger than the energy gap in
as a function of temperature as well as the optical absorptiothe spectrum of the ordered dimer.

coefficient for several compositioris) and intensities of the

disorder(7). In a previous work’ we presented, through a APPENDIX

phase diagram in thex(7) plane, the different kinds of be-

havior concerning the propagation properties of wave pack- T0 obtain Eq.(14) we proceed as follows. We take the
ets in the binary a”oy7 without the presence of an e|ectridnteract|0n between electrons and the radiation field of fre-

field. quencyw, in the linear approximation in the vector potential

The inclusion of a dc electric field radically changes theWhich satisfies the Lorentz gau§e A=0,
behavior observed in the absence of the field. In fact, as e
previously shown, its effect is more evident in the case of Hii=—[A(,t)-p]. (A1)
small disorder, where ballistic propagation is obtained in the me
field free case; however once it is included, a strong local- We apply the Fermi golden rule to calculate the transition
ization is observed. As explained above, the field breaks thgrobability per unit time between an initial staie with
degeneracy of sites of the same kind, inhibiting propagatioRnergye; to a final statdf) with energye; :
along them. We also discussed the effect of the presence of a 1
field in the case of a dimer structure, where we explained . _ = ITRNE o
why, by properly tuning the electric field, it is possible to Pir(@) h [(f[Hind D" o(er— i~ fiw). (A2)
create pair of lines perpendicular to the field, that contain To get the total number of transitions per unit time we
degenerate sites which in trn produces propagation alonl%ust erform a sum over all states in both bands that are
them. This is the effect due to the presence of the field, that pt di bv the photon incident end
we calledinduced field degeneracy Separated in energy by the photon incident enérgy

We also presented the density of states for different alloy
compositions and different degrees of disorder. When we W(“’):Zf Pit(w). (A3)
compared the results for the alloy with ordered 2D structures
for several values of), we observed, in the gap region of the  The absorption coefficient is the ratio between the en-
ordered dimers, the appearance of states in the alloy case.dfgy absorbed in the unit time and the energy fli{e/n),
the degree of disorder is sufficiently large, there is still a gapvhereu is the density of energy of the electromagnetic field
in the alloy spectrum, although smaller than in the corre-andn is the refraction index,
sponding ordered case. For small to moderate disorder, the
gap is closed by the presence of localized states. In other o= fioW(w) (A4)
words, for largen the spectrum is characterized by two sub- u(c/n)
bands separated by a gap, while for smaller valueg ab
gap is present in the DOS. This has as the immediate cons
guence that, for an alloy with large and a concentration

/here the average energy dengityn the medium is given

such that its corresponding DOS is asymmetric, the specific )
heat as a function of temperature shows two peaks. In the _ @

, u=C_C (A5)
absence of a gap in the spectrysmall to moderate;) the (c/n)?

curve shows a single peak.

Finally, we evaluated the optical absorption coefficient of If we consider the matrix elements of E@2) as a con-
the alloy by considering interband transitions for the cases istant, we can extract the joint density of states to obtain Eq.
which, due to large values of the disorder parametehere  (14) for the absorption coefficient.
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